Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/ecryptfs/crypto.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* eCryptfs: Linux filesystem encryption layer
4
*
5
* Copyright (C) 1997-2004 Erez Zadok
6
* Copyright (C) 2001-2004 Stony Brook University
7
* Copyright (C) 2004-2007 International Business Machines Corp.
8
* Author(s): Michael A. Halcrow <[email protected]>
9
* Michael C. Thompson <[email protected]>
10
*/
11
12
#include <crypto/hash.h>
13
#include <crypto/skcipher.h>
14
#include <linux/fs.h>
15
#include <linux/mount.h>
16
#include <linux/pagemap.h>
17
#include <linux/random.h>
18
#include <linux/compiler.h>
19
#include <linux/key.h>
20
#include <linux/namei.h>
21
#include <linux/file.h>
22
#include <linux/scatterlist.h>
23
#include <linux/slab.h>
24
#include <linux/unaligned.h>
25
#include <linux/kernel.h>
26
#include <linux/xattr.h>
27
#include "ecryptfs_kernel.h"
28
29
#define DECRYPT 0
30
#define ENCRYPT 1
31
32
/**
33
* ecryptfs_from_hex
34
* @dst: Buffer to take the bytes from src hex; must be at least of
35
* size (src_size / 2)
36
* @src: Buffer to be converted from a hex string representation to raw value
37
* @dst_size: size of dst buffer, or number of hex characters pairs to convert
38
*/
39
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
40
{
41
int x;
42
char tmp[3] = { 0, };
43
44
for (x = 0; x < dst_size; x++) {
45
tmp[0] = src[x * 2];
46
tmp[1] = src[x * 2 + 1];
47
dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
48
}
49
}
50
51
/**
52
* ecryptfs_calculate_md5 - calculates the md5 of @src
53
* @dst: Pointer to 16 bytes of allocated memory
54
* @crypt_stat: Pointer to crypt_stat struct for the current inode
55
* @src: Data to be md5'd
56
* @len: Length of @src
57
*
58
* Uses the allocated crypto context that crypt_stat references to
59
* generate the MD5 sum of the contents of src.
60
*/
61
static int ecryptfs_calculate_md5(char *dst,
62
struct ecryptfs_crypt_stat *crypt_stat,
63
char *src, int len)
64
{
65
int rc = crypto_shash_tfm_digest(crypt_stat->hash_tfm, src, len, dst);
66
67
if (rc) {
68
printk(KERN_ERR
69
"%s: Error computing crypto hash; rc = [%d]\n",
70
__func__, rc);
71
goto out;
72
}
73
out:
74
return rc;
75
}
76
77
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
78
char *cipher_name,
79
char *chaining_modifier)
80
{
81
int cipher_name_len = strlen(cipher_name);
82
int chaining_modifier_len = strlen(chaining_modifier);
83
int algified_name_len;
84
int rc;
85
86
algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
87
(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
88
if (!(*algified_name)) {
89
rc = -ENOMEM;
90
goto out;
91
}
92
snprintf((*algified_name), algified_name_len, "%s(%s)",
93
chaining_modifier, cipher_name);
94
rc = 0;
95
out:
96
return rc;
97
}
98
99
/**
100
* ecryptfs_derive_iv
101
* @iv: destination for the derived iv vale
102
* @crypt_stat: Pointer to crypt_stat struct for the current inode
103
* @offset: Offset of the extent whose IV we are to derive
104
*
105
* Generate the initialization vector from the given root IV and page
106
* offset.
107
*
108
* Returns zero on success; non-zero on error.
109
*/
110
int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
111
loff_t offset)
112
{
113
int rc = 0;
114
char dst[MD5_DIGEST_SIZE];
115
char src[ECRYPTFS_MAX_IV_BYTES + 16];
116
117
if (unlikely(ecryptfs_verbosity > 0)) {
118
ecryptfs_printk(KERN_DEBUG, "root iv:\n");
119
ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
120
}
121
/* TODO: It is probably secure to just cast the least
122
* significant bits of the root IV into an unsigned long and
123
* add the offset to that rather than go through all this
124
* hashing business. -Halcrow */
125
memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
126
memset((src + crypt_stat->iv_bytes), 0, 16);
127
snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
128
if (unlikely(ecryptfs_verbosity > 0)) {
129
ecryptfs_printk(KERN_DEBUG, "source:\n");
130
ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
131
}
132
rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
133
(crypt_stat->iv_bytes + 16));
134
if (rc) {
135
ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
136
"MD5 while generating IV for a page\n");
137
goto out;
138
}
139
memcpy(iv, dst, crypt_stat->iv_bytes);
140
if (unlikely(ecryptfs_verbosity > 0)) {
141
ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
142
ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
143
}
144
out:
145
return rc;
146
}
147
148
/**
149
* ecryptfs_init_crypt_stat
150
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
151
*
152
* Initialize the crypt_stat structure.
153
*/
154
int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
155
{
156
struct crypto_shash *tfm;
157
int rc;
158
159
tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
160
if (IS_ERR(tfm)) {
161
rc = PTR_ERR(tfm);
162
ecryptfs_printk(KERN_ERR, "Error attempting to "
163
"allocate crypto context; rc = [%d]\n",
164
rc);
165
return rc;
166
}
167
168
memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
169
INIT_LIST_HEAD(&crypt_stat->keysig_list);
170
mutex_init(&crypt_stat->keysig_list_mutex);
171
mutex_init(&crypt_stat->cs_mutex);
172
mutex_init(&crypt_stat->cs_tfm_mutex);
173
crypt_stat->hash_tfm = tfm;
174
crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
175
176
return 0;
177
}
178
179
/**
180
* ecryptfs_destroy_crypt_stat
181
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
182
*
183
* Releases all memory associated with a crypt_stat struct.
184
*/
185
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
186
{
187
struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
188
189
crypto_free_skcipher(crypt_stat->tfm);
190
crypto_free_shash(crypt_stat->hash_tfm);
191
list_for_each_entry_safe(key_sig, key_sig_tmp,
192
&crypt_stat->keysig_list, crypt_stat_list) {
193
list_del(&key_sig->crypt_stat_list);
194
kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
195
}
196
memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
197
}
198
199
void ecryptfs_destroy_mount_crypt_stat(
200
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
201
{
202
struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
203
204
if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
205
return;
206
mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
207
list_for_each_entry_safe(auth_tok, auth_tok_tmp,
208
&mount_crypt_stat->global_auth_tok_list,
209
mount_crypt_stat_list) {
210
list_del(&auth_tok->mount_crypt_stat_list);
211
if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
212
key_put(auth_tok->global_auth_tok_key);
213
kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
214
}
215
mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
216
memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
217
}
218
219
/**
220
* virt_to_scatterlist
221
* @addr: Virtual address
222
* @size: Size of data; should be an even multiple of the block size
223
* @sg: Pointer to scatterlist array; set to NULL to obtain only
224
* the number of scatterlist structs required in array
225
* @sg_size: Max array size
226
*
227
* Fills in a scatterlist array with page references for a passed
228
* virtual address.
229
*
230
* Returns the number of scatterlist structs in array used
231
*/
232
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
233
int sg_size)
234
{
235
int i = 0;
236
struct page *pg;
237
int offset;
238
int remainder_of_page;
239
240
sg_init_table(sg, sg_size);
241
242
while (size > 0 && i < sg_size) {
243
pg = virt_to_page(addr);
244
offset = offset_in_page(addr);
245
sg_set_page(&sg[i], pg, 0, offset);
246
remainder_of_page = PAGE_SIZE - offset;
247
if (size >= remainder_of_page) {
248
sg[i].length = remainder_of_page;
249
addr += remainder_of_page;
250
size -= remainder_of_page;
251
} else {
252
sg[i].length = size;
253
addr += size;
254
size = 0;
255
}
256
i++;
257
}
258
if (size > 0)
259
return -ENOMEM;
260
return i;
261
}
262
263
/**
264
* crypt_scatterlist
265
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
266
* @dst_sg: Destination of the data after performing the crypto operation
267
* @src_sg: Data to be encrypted or decrypted
268
* @size: Length of data
269
* @iv: IV to use
270
* @op: ENCRYPT or DECRYPT to indicate the desired operation
271
*
272
* Returns the number of bytes encrypted or decrypted; negative value on error
273
*/
274
static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
275
struct scatterlist *dst_sg,
276
struct scatterlist *src_sg, int size,
277
unsigned char *iv, int op)
278
{
279
struct skcipher_request *req = NULL;
280
DECLARE_CRYPTO_WAIT(ecr);
281
int rc = 0;
282
283
if (unlikely(ecryptfs_verbosity > 0)) {
284
ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
285
crypt_stat->key_size);
286
ecryptfs_dump_hex(crypt_stat->key,
287
crypt_stat->key_size);
288
}
289
290
mutex_lock(&crypt_stat->cs_tfm_mutex);
291
req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
292
if (!req) {
293
mutex_unlock(&crypt_stat->cs_tfm_mutex);
294
rc = -ENOMEM;
295
goto out;
296
}
297
298
skcipher_request_set_callback(req,
299
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
300
crypto_req_done, &ecr);
301
/* Consider doing this once, when the file is opened */
302
if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
303
rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
304
crypt_stat->key_size);
305
if (rc) {
306
ecryptfs_printk(KERN_ERR,
307
"Error setting key; rc = [%d]\n",
308
rc);
309
mutex_unlock(&crypt_stat->cs_tfm_mutex);
310
rc = -EINVAL;
311
goto out;
312
}
313
crypt_stat->flags |= ECRYPTFS_KEY_SET;
314
}
315
mutex_unlock(&crypt_stat->cs_tfm_mutex);
316
skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
317
rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
318
crypto_skcipher_decrypt(req);
319
rc = crypto_wait_req(rc, &ecr);
320
out:
321
skcipher_request_free(req);
322
return rc;
323
}
324
325
/*
326
* lower_offset_for_page
327
*
328
* Convert an eCryptfs page index into a lower byte offset
329
*/
330
static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
331
struct folio *folio)
332
{
333
return ecryptfs_lower_header_size(crypt_stat) +
334
(loff_t)folio->index * PAGE_SIZE;
335
}
336
337
/**
338
* crypt_extent
339
* @crypt_stat: crypt_stat containing cryptographic context for the
340
* encryption operation
341
* @dst_page: The page to write the result into
342
* @src_page: The page to read from
343
* @page_index: The offset in the file (in units of PAGE_SIZE)
344
* @extent_offset: Page extent offset for use in generating IV
345
* @op: ENCRYPT or DECRYPT to indicate the desired operation
346
*
347
* Encrypts or decrypts one extent of data.
348
*
349
* Return zero on success; non-zero otherwise
350
*/
351
static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
352
struct page *dst_page,
353
struct page *src_page,
354
pgoff_t page_index,
355
unsigned long extent_offset, int op)
356
{
357
loff_t extent_base;
358
char extent_iv[ECRYPTFS_MAX_IV_BYTES];
359
struct scatterlist src_sg, dst_sg;
360
size_t extent_size = crypt_stat->extent_size;
361
int rc;
362
363
extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
364
rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
365
(extent_base + extent_offset));
366
if (rc) {
367
ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
368
"extent [0x%.16llx]; rc = [%d]\n",
369
(unsigned long long)(extent_base + extent_offset), rc);
370
goto out;
371
}
372
373
sg_init_table(&src_sg, 1);
374
sg_init_table(&dst_sg, 1);
375
376
sg_set_page(&src_sg, src_page, extent_size,
377
extent_offset * extent_size);
378
sg_set_page(&dst_sg, dst_page, extent_size,
379
extent_offset * extent_size);
380
381
rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
382
extent_iv, op);
383
if (rc < 0) {
384
printk(KERN_ERR "%s: Error attempting to crypt page with "
385
"page_index = [%ld], extent_offset = [%ld]; "
386
"rc = [%d]\n", __func__, page_index, extent_offset, rc);
387
goto out;
388
}
389
rc = 0;
390
out:
391
return rc;
392
}
393
394
/**
395
* ecryptfs_encrypt_page
396
* @folio: Folio mapped from the eCryptfs inode for the file; contains
397
* decrypted content that needs to be encrypted (to a temporary
398
* page; not in place) and written out to the lower file
399
*
400
* Encrypt an eCryptfs page. This is done on a per-extent basis. Note
401
* that eCryptfs pages may straddle the lower pages -- for instance,
402
* if the file was created on a machine with an 8K page size
403
* (resulting in an 8K header), and then the file is copied onto a
404
* host with a 32K page size, then when reading page 0 of the eCryptfs
405
* file, 24K of page 0 of the lower file will be read and decrypted,
406
* and then 8K of page 1 of the lower file will be read and decrypted.
407
*
408
* Returns zero on success; negative on error
409
*/
410
int ecryptfs_encrypt_page(struct folio *folio)
411
{
412
struct inode *ecryptfs_inode;
413
struct ecryptfs_crypt_stat *crypt_stat;
414
char *enc_extent_virt;
415
struct page *enc_extent_page = NULL;
416
loff_t extent_offset;
417
loff_t lower_offset;
418
int rc = 0;
419
420
ecryptfs_inode = folio->mapping->host;
421
crypt_stat =
422
&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
423
BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
424
enc_extent_page = alloc_page(GFP_USER);
425
if (!enc_extent_page) {
426
rc = -ENOMEM;
427
ecryptfs_printk(KERN_ERR, "Error allocating memory for "
428
"encrypted extent\n");
429
goto out;
430
}
431
432
for (extent_offset = 0;
433
extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
434
extent_offset++) {
435
rc = crypt_extent(crypt_stat, enc_extent_page,
436
folio_page(folio, 0), folio->index,
437
extent_offset, ENCRYPT);
438
if (rc) {
439
printk(KERN_ERR "%s: Error encrypting extent; "
440
"rc = [%d]\n", __func__, rc);
441
goto out;
442
}
443
}
444
445
lower_offset = lower_offset_for_page(crypt_stat, folio);
446
enc_extent_virt = kmap_local_page(enc_extent_page);
447
rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
448
PAGE_SIZE);
449
kunmap_local(enc_extent_virt);
450
if (rc < 0) {
451
ecryptfs_printk(KERN_ERR,
452
"Error attempting to write lower page; rc = [%d]\n",
453
rc);
454
goto out;
455
}
456
rc = 0;
457
out:
458
if (enc_extent_page) {
459
__free_page(enc_extent_page);
460
}
461
return rc;
462
}
463
464
/**
465
* ecryptfs_decrypt_page
466
* @folio: Folio mapped from the eCryptfs inode for the file; data read
467
* and decrypted from the lower file will be written into this
468
* page
469
*
470
* Decrypt an eCryptfs page. This is done on a per-extent basis. Note
471
* that eCryptfs pages may straddle the lower pages -- for instance,
472
* if the file was created on a machine with an 8K page size
473
* (resulting in an 8K header), and then the file is copied onto a
474
* host with a 32K page size, then when reading page 0 of the eCryptfs
475
* file, 24K of page 0 of the lower file will be read and decrypted,
476
* and then 8K of page 1 of the lower file will be read and decrypted.
477
*
478
* Returns zero on success; negative on error
479
*/
480
int ecryptfs_decrypt_page(struct folio *folio)
481
{
482
struct inode *ecryptfs_inode;
483
struct ecryptfs_crypt_stat *crypt_stat;
484
char *page_virt;
485
unsigned long extent_offset;
486
loff_t lower_offset;
487
int rc = 0;
488
489
ecryptfs_inode = folio->mapping->host;
490
crypt_stat =
491
&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
492
BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
493
494
lower_offset = lower_offset_for_page(crypt_stat, folio);
495
page_virt = kmap_local_folio(folio, 0);
496
rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
497
ecryptfs_inode);
498
kunmap_local(page_virt);
499
if (rc < 0) {
500
ecryptfs_printk(KERN_ERR,
501
"Error attempting to read lower page; rc = [%d]\n",
502
rc);
503
goto out;
504
}
505
506
for (extent_offset = 0;
507
extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
508
extent_offset++) {
509
struct page *page = folio_page(folio, 0);
510
rc = crypt_extent(crypt_stat, page, page, folio->index,
511
extent_offset, DECRYPT);
512
if (rc) {
513
printk(KERN_ERR "%s: Error decrypting extent; "
514
"rc = [%d]\n", __func__, rc);
515
goto out;
516
}
517
}
518
out:
519
return rc;
520
}
521
522
#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
523
524
/**
525
* ecryptfs_init_crypt_ctx
526
* @crypt_stat: Uninitialized crypt stats structure
527
*
528
* Initialize the crypto context.
529
*
530
* TODO: Performance: Keep a cache of initialized cipher contexts;
531
* only init if needed
532
*/
533
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
534
{
535
char *full_alg_name;
536
int rc = -EINVAL;
537
538
ecryptfs_printk(KERN_DEBUG,
539
"Initializing cipher [%s]; strlen = [%d]; "
540
"key_size_bits = [%zd]\n",
541
crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
542
crypt_stat->key_size << 3);
543
mutex_lock(&crypt_stat->cs_tfm_mutex);
544
if (crypt_stat->tfm) {
545
rc = 0;
546
goto out_unlock;
547
}
548
rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
549
crypt_stat->cipher, "cbc");
550
if (rc)
551
goto out_unlock;
552
crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
553
if (IS_ERR(crypt_stat->tfm)) {
554
rc = PTR_ERR(crypt_stat->tfm);
555
crypt_stat->tfm = NULL;
556
ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
557
"Error initializing cipher [%s]\n",
558
full_alg_name);
559
goto out_free;
560
}
561
crypto_skcipher_set_flags(crypt_stat->tfm,
562
CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
563
rc = 0;
564
out_free:
565
kfree(full_alg_name);
566
out_unlock:
567
mutex_unlock(&crypt_stat->cs_tfm_mutex);
568
return rc;
569
}
570
571
static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
572
{
573
int extent_size_tmp;
574
575
crypt_stat->extent_mask = 0xFFFFFFFF;
576
crypt_stat->extent_shift = 0;
577
if (crypt_stat->extent_size == 0)
578
return;
579
extent_size_tmp = crypt_stat->extent_size;
580
while ((extent_size_tmp & 0x01) == 0) {
581
extent_size_tmp >>= 1;
582
crypt_stat->extent_mask <<= 1;
583
crypt_stat->extent_shift++;
584
}
585
}
586
587
void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
588
{
589
/* Default values; may be overwritten as we are parsing the
590
* packets. */
591
crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
592
set_extent_mask_and_shift(crypt_stat);
593
crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
594
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
595
crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
596
else {
597
if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
598
crypt_stat->metadata_size =
599
ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
600
else
601
crypt_stat->metadata_size = PAGE_SIZE;
602
}
603
}
604
605
/*
606
* ecryptfs_compute_root_iv
607
*
608
* On error, sets the root IV to all 0's.
609
*/
610
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
611
{
612
int rc = 0;
613
char dst[MD5_DIGEST_SIZE];
614
615
BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
616
BUG_ON(crypt_stat->iv_bytes <= 0);
617
if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
618
rc = -EINVAL;
619
ecryptfs_printk(KERN_WARNING, "Session key not valid; "
620
"cannot generate root IV\n");
621
goto out;
622
}
623
rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
624
crypt_stat->key_size);
625
if (rc) {
626
ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
627
"MD5 while generating root IV\n");
628
goto out;
629
}
630
memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
631
out:
632
if (rc) {
633
memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
634
crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
635
}
636
return rc;
637
}
638
639
static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
640
{
641
get_random_bytes(crypt_stat->key, crypt_stat->key_size);
642
crypt_stat->flags |= ECRYPTFS_KEY_VALID;
643
ecryptfs_compute_root_iv(crypt_stat);
644
if (unlikely(ecryptfs_verbosity > 0)) {
645
ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
646
ecryptfs_dump_hex(crypt_stat->key,
647
crypt_stat->key_size);
648
}
649
}
650
651
/**
652
* ecryptfs_copy_mount_wide_flags_to_inode_flags
653
* @crypt_stat: The inode's cryptographic context
654
* @mount_crypt_stat: The mount point's cryptographic context
655
*
656
* This function propagates the mount-wide flags to individual inode
657
* flags.
658
*/
659
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
660
struct ecryptfs_crypt_stat *crypt_stat,
661
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
662
{
663
if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
664
crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
665
if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
666
crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
667
if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
668
crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
669
if (mount_crypt_stat->flags
670
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
671
crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
672
else if (mount_crypt_stat->flags
673
& ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
674
crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
675
}
676
}
677
678
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
679
struct ecryptfs_crypt_stat *crypt_stat,
680
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
681
{
682
struct ecryptfs_global_auth_tok *global_auth_tok;
683
int rc = 0;
684
685
mutex_lock(&crypt_stat->keysig_list_mutex);
686
mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
687
688
list_for_each_entry(global_auth_tok,
689
&mount_crypt_stat->global_auth_tok_list,
690
mount_crypt_stat_list) {
691
if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
692
continue;
693
rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
694
if (rc) {
695
printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
696
goto out;
697
}
698
}
699
700
out:
701
mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
702
mutex_unlock(&crypt_stat->keysig_list_mutex);
703
return rc;
704
}
705
706
/**
707
* ecryptfs_set_default_crypt_stat_vals
708
* @crypt_stat: The inode's cryptographic context
709
* @mount_crypt_stat: The mount point's cryptographic context
710
*
711
* Default values in the event that policy does not override them.
712
*/
713
static void ecryptfs_set_default_crypt_stat_vals(
714
struct ecryptfs_crypt_stat *crypt_stat,
715
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
716
{
717
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
718
mount_crypt_stat);
719
ecryptfs_set_default_sizes(crypt_stat);
720
strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
721
crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
722
crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
723
crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
724
crypt_stat->mount_crypt_stat = mount_crypt_stat;
725
}
726
727
/**
728
* ecryptfs_new_file_context
729
* @ecryptfs_inode: The eCryptfs inode
730
*
731
* If the crypto context for the file has not yet been established,
732
* this is where we do that. Establishing a new crypto context
733
* involves the following decisions:
734
* - What cipher to use?
735
* - What set of authentication tokens to use?
736
* Here we just worry about getting enough information into the
737
* authentication tokens so that we know that they are available.
738
* We associate the available authentication tokens with the new file
739
* via the set of signatures in the crypt_stat struct. Later, when
740
* the headers are actually written out, we may again defer to
741
* userspace to perform the encryption of the session key; for the
742
* foreseeable future, this will be the case with public key packets.
743
*
744
* Returns zero on success; non-zero otherwise
745
*/
746
int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
747
{
748
struct ecryptfs_crypt_stat *crypt_stat =
749
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
750
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
751
&ecryptfs_superblock_to_private(
752
ecryptfs_inode->i_sb)->mount_crypt_stat;
753
int cipher_name_len;
754
int rc = 0;
755
756
ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
757
crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
758
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
759
mount_crypt_stat);
760
rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
761
mount_crypt_stat);
762
if (rc) {
763
printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
764
"to the inode key sigs; rc = [%d]\n", rc);
765
goto out;
766
}
767
cipher_name_len =
768
strlen(mount_crypt_stat->global_default_cipher_name);
769
memcpy(crypt_stat->cipher,
770
mount_crypt_stat->global_default_cipher_name,
771
cipher_name_len);
772
crypt_stat->cipher[cipher_name_len] = '\0';
773
crypt_stat->key_size =
774
mount_crypt_stat->global_default_cipher_key_size;
775
ecryptfs_generate_new_key(crypt_stat);
776
rc = ecryptfs_init_crypt_ctx(crypt_stat);
777
if (rc)
778
ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
779
"context for cipher [%s]: rc = [%d]\n",
780
crypt_stat->cipher, rc);
781
out:
782
return rc;
783
}
784
785
/**
786
* ecryptfs_validate_marker - check for the ecryptfs marker
787
* @data: The data block in which to check
788
*
789
* Returns zero if marker found; -EINVAL if not found
790
*/
791
static int ecryptfs_validate_marker(char *data)
792
{
793
u32 m_1, m_2;
794
795
m_1 = get_unaligned_be32(data);
796
m_2 = get_unaligned_be32(data + 4);
797
if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
798
return 0;
799
ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
800
"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
801
MAGIC_ECRYPTFS_MARKER);
802
ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
803
"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
804
return -EINVAL;
805
}
806
807
struct ecryptfs_flag_map_elem {
808
u32 file_flag;
809
u32 local_flag;
810
};
811
812
/* Add support for additional flags by adding elements here. */
813
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
814
{0x00000001, ECRYPTFS_ENABLE_HMAC},
815
{0x00000002, ECRYPTFS_ENCRYPTED},
816
{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
817
{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
818
};
819
820
/**
821
* ecryptfs_process_flags
822
* @crypt_stat: The cryptographic context
823
* @page_virt: Source data to be parsed
824
* @bytes_read: Updated with the number of bytes read
825
*/
826
static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
827
char *page_virt, int *bytes_read)
828
{
829
int i;
830
u32 flags;
831
832
flags = get_unaligned_be32(page_virt);
833
for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
834
if (flags & ecryptfs_flag_map[i].file_flag) {
835
crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
836
} else
837
crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
838
/* Version is in top 8 bits of the 32-bit flag vector */
839
crypt_stat->file_version = ((flags >> 24) & 0xFF);
840
(*bytes_read) = 4;
841
}
842
843
/**
844
* write_ecryptfs_marker
845
* @page_virt: The pointer to in a page to begin writing the marker
846
* @written: Number of bytes written
847
*
848
* Marker = 0x3c81b7f5
849
*/
850
static void write_ecryptfs_marker(char *page_virt, size_t *written)
851
{
852
u32 m_1, m_2;
853
854
get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
855
m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
856
put_unaligned_be32(m_1, page_virt);
857
page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
858
put_unaligned_be32(m_2, page_virt);
859
(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
860
}
861
862
void ecryptfs_write_crypt_stat_flags(char *page_virt,
863
struct ecryptfs_crypt_stat *crypt_stat,
864
size_t *written)
865
{
866
u32 flags = 0;
867
int i;
868
869
for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
870
if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
871
flags |= ecryptfs_flag_map[i].file_flag;
872
/* Version is in top 8 bits of the 32-bit flag vector */
873
flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
874
put_unaligned_be32(flags, page_virt);
875
(*written) = 4;
876
}
877
878
struct ecryptfs_cipher_code_str_map_elem {
879
char cipher_str[16];
880
u8 cipher_code;
881
};
882
883
/* Add support for additional ciphers by adding elements here. The
884
* cipher_code is whatever OpenPGP applications use to identify the
885
* ciphers. List in order of probability. */
886
static struct ecryptfs_cipher_code_str_map_elem
887
ecryptfs_cipher_code_str_map[] = {
888
{"aes",RFC2440_CIPHER_AES_128 },
889
{"blowfish", RFC2440_CIPHER_BLOWFISH},
890
{"des3_ede", RFC2440_CIPHER_DES3_EDE},
891
{"cast5", RFC2440_CIPHER_CAST_5},
892
{"twofish", RFC2440_CIPHER_TWOFISH},
893
{"cast6", RFC2440_CIPHER_CAST_6},
894
{"aes", RFC2440_CIPHER_AES_192},
895
{"aes", RFC2440_CIPHER_AES_256}
896
};
897
898
/**
899
* ecryptfs_code_for_cipher_string
900
* @cipher_name: The string alias for the cipher
901
* @key_bytes: Length of key in bytes; used for AES code selection
902
*
903
* Returns zero on no match, or the cipher code on match
904
*/
905
u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
906
{
907
int i;
908
u8 code = 0;
909
struct ecryptfs_cipher_code_str_map_elem *map =
910
ecryptfs_cipher_code_str_map;
911
912
if (strcmp(cipher_name, "aes") == 0) {
913
switch (key_bytes) {
914
case 16:
915
code = RFC2440_CIPHER_AES_128;
916
break;
917
case 24:
918
code = RFC2440_CIPHER_AES_192;
919
break;
920
case 32:
921
code = RFC2440_CIPHER_AES_256;
922
}
923
} else {
924
for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
925
if (strcmp(cipher_name, map[i].cipher_str) == 0) {
926
code = map[i].cipher_code;
927
break;
928
}
929
}
930
return code;
931
}
932
933
/**
934
* ecryptfs_cipher_code_to_string
935
* @str: Destination to write out the cipher name
936
* @cipher_code: The code to convert to cipher name string
937
*
938
* Returns zero on success
939
*/
940
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
941
{
942
int rc = 0;
943
int i;
944
945
str[0] = '\0';
946
for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
947
if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
948
strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
949
if (str[0] == '\0') {
950
ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
951
"[%d]\n", cipher_code);
952
rc = -EINVAL;
953
}
954
return rc;
955
}
956
957
int ecryptfs_read_and_validate_header_region(struct inode *inode)
958
{
959
u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
960
u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
961
int rc;
962
963
rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
964
inode);
965
if (rc < 0)
966
return rc;
967
else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
968
return -EINVAL;
969
rc = ecryptfs_validate_marker(marker);
970
if (!rc)
971
ecryptfs_i_size_init(file_size, inode);
972
return rc;
973
}
974
975
void
976
ecryptfs_write_header_metadata(char *virt,
977
struct ecryptfs_crypt_stat *crypt_stat,
978
size_t *written)
979
{
980
u32 header_extent_size;
981
u16 num_header_extents_at_front;
982
983
header_extent_size = (u32)crypt_stat->extent_size;
984
num_header_extents_at_front =
985
(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
986
put_unaligned_be32(header_extent_size, virt);
987
virt += 4;
988
put_unaligned_be16(num_header_extents_at_front, virt);
989
(*written) = 6;
990
}
991
992
struct kmem_cache *ecryptfs_header_cache;
993
994
/**
995
* ecryptfs_write_headers_virt
996
* @page_virt: The virtual address to write the headers to
997
* @max: The size of memory allocated at page_virt
998
* @size: Set to the number of bytes written by this function
999
* @crypt_stat: The cryptographic context
1000
* @ecryptfs_dentry: The eCryptfs dentry
1001
*
1002
* Format version: 1
1003
*
1004
* Header Extent:
1005
* Octets 0-7: Unencrypted file size (big-endian)
1006
* Octets 8-15: eCryptfs special marker
1007
* Octets 16-19: Flags
1008
* Octet 16: File format version number (between 0 and 255)
1009
* Octets 17-18: Reserved
1010
* Octet 19: Bit 1 (lsb): Reserved
1011
* Bit 2: Encrypted?
1012
* Bits 3-8: Reserved
1013
* Octets 20-23: Header extent size (big-endian)
1014
* Octets 24-25: Number of header extents at front of file
1015
* (big-endian)
1016
* Octet 26: Begin RFC 2440 authentication token packet set
1017
* Data Extent 0:
1018
* Lower data (CBC encrypted)
1019
* Data Extent 1:
1020
* Lower data (CBC encrypted)
1021
* ...
1022
*
1023
* Returns zero on success
1024
*/
1025
static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1026
size_t *size,
1027
struct ecryptfs_crypt_stat *crypt_stat,
1028
struct dentry *ecryptfs_dentry)
1029
{
1030
int rc;
1031
size_t written;
1032
size_t offset;
1033
1034
offset = ECRYPTFS_FILE_SIZE_BYTES;
1035
write_ecryptfs_marker((page_virt + offset), &written);
1036
offset += written;
1037
ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1038
&written);
1039
offset += written;
1040
ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1041
&written);
1042
offset += written;
1043
rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1044
ecryptfs_dentry, &written,
1045
max - offset);
1046
if (rc)
1047
ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1048
"set; rc = [%d]\n", rc);
1049
if (size) {
1050
offset += written;
1051
*size = offset;
1052
}
1053
return rc;
1054
}
1055
1056
static int
1057
ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1058
char *virt, size_t virt_len)
1059
{
1060
int rc;
1061
1062
rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1063
0, virt_len);
1064
if (rc < 0)
1065
printk(KERN_ERR "%s: Error attempting to write header "
1066
"information to lower file; rc = [%d]\n", __func__, rc);
1067
else
1068
rc = 0;
1069
return rc;
1070
}
1071
1072
static int
1073
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1074
struct inode *ecryptfs_inode,
1075
char *page_virt, size_t size)
1076
{
1077
int rc;
1078
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1079
struct inode *lower_inode = d_inode(lower_dentry);
1080
1081
if (!(lower_inode->i_opflags & IOP_XATTR)) {
1082
rc = -EOPNOTSUPP;
1083
goto out;
1084
}
1085
1086
inode_lock(lower_inode);
1087
rc = __vfs_setxattr(&nop_mnt_idmap, lower_dentry, lower_inode,
1088
ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1089
if (!rc && ecryptfs_inode)
1090
fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1091
inode_unlock(lower_inode);
1092
out:
1093
return rc;
1094
}
1095
1096
static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1097
unsigned int order)
1098
{
1099
struct page *page;
1100
1101
page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1102
if (page)
1103
return (unsigned long) page_address(page);
1104
return 0;
1105
}
1106
1107
/**
1108
* ecryptfs_write_metadata
1109
* @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1110
* @ecryptfs_inode: The newly created eCryptfs inode
1111
*
1112
* Write the file headers out. This will likely involve a userspace
1113
* callout, in which the session key is encrypted with one or more
1114
* public keys and/or the passphrase necessary to do the encryption is
1115
* retrieved via a prompt. Exactly what happens at this point should
1116
* be policy-dependent.
1117
*
1118
* Returns zero on success; non-zero on error
1119
*/
1120
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1121
struct inode *ecryptfs_inode)
1122
{
1123
struct ecryptfs_crypt_stat *crypt_stat =
1124
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1125
unsigned int order;
1126
char *virt;
1127
size_t virt_len;
1128
size_t size = 0;
1129
int rc = 0;
1130
1131
if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1132
if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1133
printk(KERN_ERR "Key is invalid; bailing out\n");
1134
rc = -EINVAL;
1135
goto out;
1136
}
1137
} else {
1138
printk(KERN_WARNING "%s: Encrypted flag not set\n",
1139
__func__);
1140
rc = -EINVAL;
1141
goto out;
1142
}
1143
virt_len = crypt_stat->metadata_size;
1144
order = get_order(virt_len);
1145
/* Released in this function */
1146
virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1147
if (!virt) {
1148
printk(KERN_ERR "%s: Out of memory\n", __func__);
1149
rc = -ENOMEM;
1150
goto out;
1151
}
1152
/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1153
rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1154
ecryptfs_dentry);
1155
if (unlikely(rc)) {
1156
printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1157
__func__, rc);
1158
goto out_free;
1159
}
1160
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1161
rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1162
virt, size);
1163
else
1164
rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1165
virt_len);
1166
if (rc) {
1167
printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1168
"rc = [%d]\n", __func__, rc);
1169
goto out_free;
1170
}
1171
out_free:
1172
free_pages((unsigned long)virt, order);
1173
out:
1174
return rc;
1175
}
1176
1177
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1178
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1179
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1180
char *virt, int *bytes_read,
1181
int validate_header_size)
1182
{
1183
int rc = 0;
1184
u32 header_extent_size;
1185
u16 num_header_extents_at_front;
1186
1187
header_extent_size = get_unaligned_be32(virt);
1188
virt += sizeof(__be32);
1189
num_header_extents_at_front = get_unaligned_be16(virt);
1190
crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1191
* (size_t)header_extent_size));
1192
(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1193
if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1194
&& (crypt_stat->metadata_size
1195
< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1196
rc = -EINVAL;
1197
printk(KERN_WARNING "Invalid header size: [%zd]\n",
1198
crypt_stat->metadata_size);
1199
}
1200
return rc;
1201
}
1202
1203
/**
1204
* set_default_header_data
1205
* @crypt_stat: The cryptographic context
1206
*
1207
* For version 0 file format; this function is only for backwards
1208
* compatibility for files created with the prior versions of
1209
* eCryptfs.
1210
*/
1211
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1212
{
1213
crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1214
}
1215
1216
void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1217
{
1218
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1219
struct ecryptfs_crypt_stat *crypt_stat;
1220
u64 file_size;
1221
1222
crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1223
mount_crypt_stat =
1224
&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1225
if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1226
file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1227
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1228
file_size += crypt_stat->metadata_size;
1229
} else
1230
file_size = get_unaligned_be64(page_virt);
1231
i_size_write(inode, (loff_t)file_size);
1232
crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1233
}
1234
1235
/**
1236
* ecryptfs_read_headers_virt
1237
* @page_virt: The virtual address into which to read the headers
1238
* @crypt_stat: The cryptographic context
1239
* @ecryptfs_dentry: The eCryptfs dentry
1240
* @validate_header_size: Whether to validate the header size while reading
1241
*
1242
* Read/parse the header data. The header format is detailed in the
1243
* comment block for the ecryptfs_write_headers_virt() function.
1244
*
1245
* Returns zero on success
1246
*/
1247
static int ecryptfs_read_headers_virt(char *page_virt,
1248
struct ecryptfs_crypt_stat *crypt_stat,
1249
struct dentry *ecryptfs_dentry,
1250
int validate_header_size)
1251
{
1252
int rc = 0;
1253
int offset;
1254
int bytes_read;
1255
1256
ecryptfs_set_default_sizes(crypt_stat);
1257
crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1258
ecryptfs_dentry->d_sb)->mount_crypt_stat;
1259
offset = ECRYPTFS_FILE_SIZE_BYTES;
1260
rc = ecryptfs_validate_marker(page_virt + offset);
1261
if (rc)
1262
goto out;
1263
if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1264
ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1265
offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1266
ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1267
if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1268
ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1269
"file version [%d] is supported by this "
1270
"version of eCryptfs\n",
1271
crypt_stat->file_version,
1272
ECRYPTFS_SUPPORTED_FILE_VERSION);
1273
rc = -EINVAL;
1274
goto out;
1275
}
1276
offset += bytes_read;
1277
if (crypt_stat->file_version >= 1) {
1278
rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1279
&bytes_read, validate_header_size);
1280
if (rc) {
1281
ecryptfs_printk(KERN_WARNING, "Error reading header "
1282
"metadata; rc = [%d]\n", rc);
1283
}
1284
offset += bytes_read;
1285
} else
1286
set_default_header_data(crypt_stat);
1287
rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1288
ecryptfs_dentry);
1289
out:
1290
return rc;
1291
}
1292
1293
/**
1294
* ecryptfs_read_xattr_region
1295
* @page_virt: The vitual address into which to read the xattr data
1296
* @ecryptfs_inode: The eCryptfs inode
1297
*
1298
* Attempts to read the crypto metadata from the extended attribute
1299
* region of the lower file.
1300
*
1301
* Returns zero on success; non-zero on error
1302
*/
1303
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1304
{
1305
struct dentry *lower_dentry =
1306
ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1307
ssize_t size;
1308
int rc = 0;
1309
1310
size = ecryptfs_getxattr_lower(lower_dentry,
1311
ecryptfs_inode_to_lower(ecryptfs_inode),
1312
ECRYPTFS_XATTR_NAME,
1313
page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1314
if (size < 0) {
1315
if (unlikely(ecryptfs_verbosity > 0))
1316
printk(KERN_INFO "Error attempting to read the [%s] "
1317
"xattr from the lower file; return value = "
1318
"[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1319
rc = -EINVAL;
1320
goto out;
1321
}
1322
out:
1323
return rc;
1324
}
1325
1326
int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1327
struct inode *inode)
1328
{
1329
u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1330
u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1331
int rc;
1332
1333
rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1334
ecryptfs_inode_to_lower(inode),
1335
ECRYPTFS_XATTR_NAME, file_size,
1336
ECRYPTFS_SIZE_AND_MARKER_BYTES);
1337
if (rc < 0)
1338
return rc;
1339
else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1340
return -EINVAL;
1341
rc = ecryptfs_validate_marker(marker);
1342
if (!rc)
1343
ecryptfs_i_size_init(file_size, inode);
1344
return rc;
1345
}
1346
1347
/*
1348
* ecryptfs_read_metadata
1349
*
1350
* Common entry point for reading file metadata. From here, we could
1351
* retrieve the header information from the header region of the file,
1352
* the xattr region of the file, or some other repository that is
1353
* stored separately from the file itself. The current implementation
1354
* supports retrieving the metadata information from the file contents
1355
* and from the xattr region.
1356
*
1357
* Returns zero if valid headers found and parsed; non-zero otherwise
1358
*/
1359
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1360
{
1361
int rc;
1362
char *page_virt;
1363
struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1364
struct ecryptfs_crypt_stat *crypt_stat =
1365
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1366
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1367
&ecryptfs_superblock_to_private(
1368
ecryptfs_dentry->d_sb)->mount_crypt_stat;
1369
1370
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1371
mount_crypt_stat);
1372
/* Read the first page from the underlying file */
1373
page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1374
if (!page_virt) {
1375
rc = -ENOMEM;
1376
goto out;
1377
}
1378
rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1379
ecryptfs_inode);
1380
if (rc >= 0)
1381
rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1382
ecryptfs_dentry,
1383
ECRYPTFS_VALIDATE_HEADER_SIZE);
1384
if (rc) {
1385
/* metadata is not in the file header, so try xattrs */
1386
memset(page_virt, 0, PAGE_SIZE);
1387
rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1388
if (rc) {
1389
printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1390
"file header region or xattr region, inode %lu\n",
1391
ecryptfs_inode->i_ino);
1392
rc = -EINVAL;
1393
goto out;
1394
}
1395
rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1396
ecryptfs_dentry,
1397
ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1398
if (rc) {
1399
printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1400
"file xattr region either, inode %lu\n",
1401
ecryptfs_inode->i_ino);
1402
rc = -EINVAL;
1403
}
1404
if (crypt_stat->mount_crypt_stat->flags
1405
& ECRYPTFS_XATTR_METADATA_ENABLED) {
1406
crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1407
} else {
1408
printk(KERN_WARNING "Attempt to access file with "
1409
"crypto metadata only in the extended attribute "
1410
"region, but eCryptfs was mounted without "
1411
"xattr support enabled. eCryptfs will not treat "
1412
"this like an encrypted file, inode %lu\n",
1413
ecryptfs_inode->i_ino);
1414
rc = -EINVAL;
1415
}
1416
}
1417
out:
1418
if (page_virt) {
1419
memset(page_virt, 0, PAGE_SIZE);
1420
kmem_cache_free(ecryptfs_header_cache, page_virt);
1421
}
1422
return rc;
1423
}
1424
1425
/*
1426
* ecryptfs_encrypt_filename - encrypt filename
1427
*
1428
* CBC-encrypts the filename. We do not want to encrypt the same
1429
* filename with the same key and IV, which may happen with hard
1430
* links, so we prepend random bits to each filename.
1431
*
1432
* Returns zero on success; non-zero otherwise
1433
*/
1434
static int
1435
ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1436
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1437
{
1438
int rc = 0;
1439
1440
filename->encrypted_filename = NULL;
1441
filename->encrypted_filename_size = 0;
1442
if (mount_crypt_stat && (mount_crypt_stat->flags
1443
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1444
size_t packet_size;
1445
size_t remaining_bytes;
1446
1447
rc = ecryptfs_write_tag_70_packet(
1448
NULL, NULL,
1449
&filename->encrypted_filename_size,
1450
mount_crypt_stat, NULL,
1451
filename->filename_size);
1452
if (rc) {
1453
printk(KERN_ERR "%s: Error attempting to get packet "
1454
"size for tag 72; rc = [%d]\n", __func__,
1455
rc);
1456
filename->encrypted_filename_size = 0;
1457
goto out;
1458
}
1459
filename->encrypted_filename =
1460
kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1461
if (!filename->encrypted_filename) {
1462
rc = -ENOMEM;
1463
goto out;
1464
}
1465
remaining_bytes = filename->encrypted_filename_size;
1466
rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1467
&remaining_bytes,
1468
&packet_size,
1469
mount_crypt_stat,
1470
filename->filename,
1471
filename->filename_size);
1472
if (rc) {
1473
printk(KERN_ERR "%s: Error attempting to generate "
1474
"tag 70 packet; rc = [%d]\n", __func__,
1475
rc);
1476
kfree(filename->encrypted_filename);
1477
filename->encrypted_filename = NULL;
1478
filename->encrypted_filename_size = 0;
1479
goto out;
1480
}
1481
filename->encrypted_filename_size = packet_size;
1482
} else {
1483
printk(KERN_ERR "%s: No support for requested filename "
1484
"encryption method in this release\n", __func__);
1485
rc = -EOPNOTSUPP;
1486
goto out;
1487
}
1488
out:
1489
return rc;
1490
}
1491
1492
static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1493
const char *name, size_t name_size)
1494
{
1495
int rc = 0;
1496
1497
(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1498
if (!(*copied_name)) {
1499
rc = -ENOMEM;
1500
goto out;
1501
}
1502
memcpy((void *)(*copied_name), (void *)name, name_size);
1503
(*copied_name)[(name_size)] = '\0'; /* Only for convenience
1504
* in printing out the
1505
* string in debug
1506
* messages */
1507
(*copied_name_size) = name_size;
1508
out:
1509
return rc;
1510
}
1511
1512
/**
1513
* ecryptfs_process_key_cipher - Perform key cipher initialization.
1514
* @key_tfm: Crypto context for key material, set by this function
1515
* @cipher_name: Name of the cipher
1516
* @key_size: Size of the key in bytes
1517
*
1518
* Returns zero on success. Any crypto_tfm structs allocated here
1519
* should be released by other functions, such as on a superblock put
1520
* event, regardless of whether this function succeeds for fails.
1521
*/
1522
static int
1523
ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1524
char *cipher_name, size_t *key_size)
1525
{
1526
char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1527
char *full_alg_name = NULL;
1528
int rc;
1529
1530
*key_tfm = NULL;
1531
if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1532
rc = -EINVAL;
1533
printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1534
"allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1535
goto out;
1536
}
1537
rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1538
"ecb");
1539
if (rc)
1540
goto out;
1541
*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1542
if (IS_ERR(*key_tfm)) {
1543
rc = PTR_ERR(*key_tfm);
1544
printk(KERN_ERR "Unable to allocate crypto cipher with name "
1545
"[%s]; rc = [%d]\n", full_alg_name, rc);
1546
goto out;
1547
}
1548
crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1549
if (*key_size == 0)
1550
*key_size = crypto_skcipher_max_keysize(*key_tfm);
1551
get_random_bytes(dummy_key, *key_size);
1552
rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1553
if (rc) {
1554
printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1555
"cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1556
rc);
1557
rc = -EINVAL;
1558
goto out;
1559
}
1560
out:
1561
kfree(full_alg_name);
1562
return rc;
1563
}
1564
1565
struct kmem_cache *ecryptfs_key_tfm_cache;
1566
static struct list_head key_tfm_list;
1567
DEFINE_MUTEX(key_tfm_list_mutex);
1568
1569
int __init ecryptfs_init_crypto(void)
1570
{
1571
INIT_LIST_HEAD(&key_tfm_list);
1572
return 0;
1573
}
1574
1575
/**
1576
* ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1577
*
1578
* Called only at module unload time
1579
*/
1580
int ecryptfs_destroy_crypto(void)
1581
{
1582
struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1583
1584
mutex_lock(&key_tfm_list_mutex);
1585
list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1586
key_tfm_list) {
1587
list_del(&key_tfm->key_tfm_list);
1588
crypto_free_skcipher(key_tfm->key_tfm);
1589
kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1590
}
1591
mutex_unlock(&key_tfm_list_mutex);
1592
return 0;
1593
}
1594
1595
int
1596
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1597
size_t key_size)
1598
{
1599
struct ecryptfs_key_tfm *tmp_tfm;
1600
int rc = 0;
1601
1602
BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1603
1604
tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1605
if (key_tfm)
1606
(*key_tfm) = tmp_tfm;
1607
if (!tmp_tfm) {
1608
rc = -ENOMEM;
1609
goto out;
1610
}
1611
mutex_init(&tmp_tfm->key_tfm_mutex);
1612
strscpy(tmp_tfm->cipher_name, cipher_name);
1613
tmp_tfm->key_size = key_size;
1614
rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1615
tmp_tfm->cipher_name,
1616
&tmp_tfm->key_size);
1617
if (rc) {
1618
printk(KERN_ERR "Error attempting to initialize key TFM "
1619
"cipher with name = [%s]; rc = [%d]\n",
1620
tmp_tfm->cipher_name, rc);
1621
kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1622
if (key_tfm)
1623
(*key_tfm) = NULL;
1624
goto out;
1625
}
1626
list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1627
out:
1628
return rc;
1629
}
1630
1631
/**
1632
* ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1633
* @cipher_name: the name of the cipher to search for
1634
* @key_tfm: set to corresponding tfm if found
1635
*
1636
* Searches for cached key_tfm matching @cipher_name
1637
* Must be called with &key_tfm_list_mutex held
1638
* Returns 1 if found, with @key_tfm set
1639
* Returns 0 if not found, with @key_tfm set to NULL
1640
*/
1641
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1642
{
1643
struct ecryptfs_key_tfm *tmp_key_tfm;
1644
1645
BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1646
1647
list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1648
if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1649
if (key_tfm)
1650
(*key_tfm) = tmp_key_tfm;
1651
return 1;
1652
}
1653
}
1654
if (key_tfm)
1655
(*key_tfm) = NULL;
1656
return 0;
1657
}
1658
1659
/**
1660
* ecryptfs_get_tfm_and_mutex_for_cipher_name
1661
*
1662
* @tfm: set to cached tfm found, or new tfm created
1663
* @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1664
* @cipher_name: the name of the cipher to search for and/or add
1665
*
1666
* Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1667
* Searches for cached item first, and creates new if not found.
1668
* Returns 0 on success, non-zero if adding new cipher failed
1669
*/
1670
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1671
struct mutex **tfm_mutex,
1672
char *cipher_name)
1673
{
1674
struct ecryptfs_key_tfm *key_tfm;
1675
int rc = 0;
1676
1677
(*tfm) = NULL;
1678
(*tfm_mutex) = NULL;
1679
1680
mutex_lock(&key_tfm_list_mutex);
1681
if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1682
rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1683
if (rc) {
1684
printk(KERN_ERR "Error adding new key_tfm to list; "
1685
"rc = [%d]\n", rc);
1686
goto out;
1687
}
1688
}
1689
(*tfm) = key_tfm->key_tfm;
1690
(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1691
out:
1692
mutex_unlock(&key_tfm_list_mutex);
1693
return rc;
1694
}
1695
1696
/* 64 characters forming a 6-bit target field */
1697
static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1698
"EFGHIJKLMNOPQRST"
1699
"UVWXYZabcdefghij"
1700
"klmnopqrstuvwxyz");
1701
1702
/* We could either offset on every reverse map or just pad some 0x00's
1703
* at the front here */
1704
static const unsigned char filename_rev_map[256] = {
1705
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1706
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1707
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1708
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1709
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1710
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1711
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1712
0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1713
0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1714
0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1715
0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1716
0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1717
0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1718
0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1719
0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1720
0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1721
};
1722
1723
/**
1724
* ecryptfs_encode_for_filename
1725
* @dst: Destination location for encoded filename
1726
* @dst_size: Size of the encoded filename in bytes
1727
* @src: Source location for the filename to encode
1728
* @src_size: Size of the source in bytes
1729
*/
1730
static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1731
unsigned char *src, size_t src_size)
1732
{
1733
size_t num_blocks;
1734
size_t block_num = 0;
1735
size_t dst_offset = 0;
1736
unsigned char last_block[3];
1737
1738
if (src_size == 0) {
1739
(*dst_size) = 0;
1740
goto out;
1741
}
1742
num_blocks = (src_size / 3);
1743
if ((src_size % 3) == 0) {
1744
memcpy(last_block, (&src[src_size - 3]), 3);
1745
} else {
1746
num_blocks++;
1747
last_block[2] = 0x00;
1748
switch (src_size % 3) {
1749
case 1:
1750
last_block[0] = src[src_size - 1];
1751
last_block[1] = 0x00;
1752
break;
1753
case 2:
1754
last_block[0] = src[src_size - 2];
1755
last_block[1] = src[src_size - 1];
1756
}
1757
}
1758
(*dst_size) = (num_blocks * 4);
1759
if (!dst)
1760
goto out;
1761
while (block_num < num_blocks) {
1762
unsigned char *src_block;
1763
unsigned char dst_block[4];
1764
1765
if (block_num == (num_blocks - 1))
1766
src_block = last_block;
1767
else
1768
src_block = &src[block_num * 3];
1769
dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1770
dst_block[1] = (((src_block[0] << 4) & 0x30)
1771
| ((src_block[1] >> 4) & 0x0F));
1772
dst_block[2] = (((src_block[1] << 2) & 0x3C)
1773
| ((src_block[2] >> 6) & 0x03));
1774
dst_block[3] = (src_block[2] & 0x3F);
1775
dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1776
dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1777
dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1778
dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1779
block_num++;
1780
}
1781
out:
1782
return;
1783
}
1784
1785
static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1786
{
1787
/* Not exact; conservatively long. Every block of 4
1788
* encoded characters decodes into a block of 3
1789
* decoded characters. This segment of code provides
1790
* the caller with the maximum amount of allocated
1791
* space that @dst will need to point to in a
1792
* subsequent call. */
1793
return ((encoded_size + 1) * 3) / 4;
1794
}
1795
1796
/**
1797
* ecryptfs_decode_from_filename
1798
* @dst: If NULL, this function only sets @dst_size and returns. If
1799
* non-NULL, this function decodes the encoded octets in @src
1800
* into the memory that @dst points to.
1801
* @dst_size: Set to the size of the decoded string.
1802
* @src: The encoded set of octets to decode.
1803
* @src_size: The size of the encoded set of octets to decode.
1804
*/
1805
static void
1806
ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1807
const unsigned char *src, size_t src_size)
1808
{
1809
u8 current_bit_offset = 0;
1810
size_t src_byte_offset = 0;
1811
size_t dst_byte_offset = 0;
1812
1813
if (!dst) {
1814
(*dst_size) = ecryptfs_max_decoded_size(src_size);
1815
goto out;
1816
}
1817
while (src_byte_offset < src_size) {
1818
unsigned char src_byte =
1819
filename_rev_map[(int)src[src_byte_offset]];
1820
1821
switch (current_bit_offset) {
1822
case 0:
1823
dst[dst_byte_offset] = (src_byte << 2);
1824
current_bit_offset = 6;
1825
break;
1826
case 6:
1827
dst[dst_byte_offset++] |= (src_byte >> 4);
1828
dst[dst_byte_offset] = ((src_byte & 0xF)
1829
<< 4);
1830
current_bit_offset = 4;
1831
break;
1832
case 4:
1833
dst[dst_byte_offset++] |= (src_byte >> 2);
1834
dst[dst_byte_offset] = (src_byte << 6);
1835
current_bit_offset = 2;
1836
break;
1837
case 2:
1838
dst[dst_byte_offset++] |= (src_byte);
1839
current_bit_offset = 0;
1840
break;
1841
}
1842
src_byte_offset++;
1843
}
1844
(*dst_size) = dst_byte_offset;
1845
out:
1846
return;
1847
}
1848
1849
/**
1850
* ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1851
* @encoded_name: The encrypted name
1852
* @encoded_name_size: Length of the encrypted name
1853
* @mount_crypt_stat: The crypt_stat struct associated with the file name to encode
1854
* @name: The plaintext name
1855
* @name_size: The length of the plaintext name
1856
*
1857
* Encrypts and encodes a filename into something that constitutes a
1858
* valid filename for a filesystem, with printable characters.
1859
*
1860
* We assume that we have a properly initialized crypto context,
1861
* pointed to by crypt_stat->tfm.
1862
*
1863
* Returns zero on success; non-zero on otherwise
1864
*/
1865
int ecryptfs_encrypt_and_encode_filename(
1866
char **encoded_name,
1867
size_t *encoded_name_size,
1868
struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1869
const char *name, size_t name_size)
1870
{
1871
size_t encoded_name_no_prefix_size;
1872
int rc = 0;
1873
1874
(*encoded_name) = NULL;
1875
(*encoded_name_size) = 0;
1876
if (mount_crypt_stat && (mount_crypt_stat->flags
1877
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1878
struct ecryptfs_filename *filename;
1879
1880
filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1881
if (!filename) {
1882
rc = -ENOMEM;
1883
goto out;
1884
}
1885
filename->filename = (char *)name;
1886
filename->filename_size = name_size;
1887
rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1888
if (rc) {
1889
printk(KERN_ERR "%s: Error attempting to encrypt "
1890
"filename; rc = [%d]\n", __func__, rc);
1891
kfree(filename);
1892
goto out;
1893
}
1894
ecryptfs_encode_for_filename(
1895
NULL, &encoded_name_no_prefix_size,
1896
filename->encrypted_filename,
1897
filename->encrypted_filename_size);
1898
if (mount_crypt_stat
1899
&& (mount_crypt_stat->flags
1900
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1901
(*encoded_name_size) =
1902
(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1903
+ encoded_name_no_prefix_size);
1904
else
1905
(*encoded_name_size) =
1906
(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1907
+ encoded_name_no_prefix_size);
1908
(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1909
if (!(*encoded_name)) {
1910
rc = -ENOMEM;
1911
kfree(filename->encrypted_filename);
1912
kfree(filename);
1913
goto out;
1914
}
1915
if (mount_crypt_stat
1916
&& (mount_crypt_stat->flags
1917
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1918
memcpy((*encoded_name),
1919
ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1920
ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1921
ecryptfs_encode_for_filename(
1922
((*encoded_name)
1923
+ ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1924
&encoded_name_no_prefix_size,
1925
filename->encrypted_filename,
1926
filename->encrypted_filename_size);
1927
(*encoded_name_size) =
1928
(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1929
+ encoded_name_no_prefix_size);
1930
(*encoded_name)[(*encoded_name_size)] = '\0';
1931
} else {
1932
rc = -EOPNOTSUPP;
1933
}
1934
if (rc) {
1935
printk(KERN_ERR "%s: Error attempting to encode "
1936
"encrypted filename; rc = [%d]\n", __func__,
1937
rc);
1938
kfree((*encoded_name));
1939
(*encoded_name) = NULL;
1940
(*encoded_name_size) = 0;
1941
}
1942
kfree(filename->encrypted_filename);
1943
kfree(filename);
1944
} else {
1945
rc = ecryptfs_copy_filename(encoded_name,
1946
encoded_name_size,
1947
name, name_size);
1948
}
1949
out:
1950
return rc;
1951
}
1952
1953
/**
1954
* ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1955
* @plaintext_name: The plaintext name
1956
* @plaintext_name_size: The plaintext name size
1957
* @sb: Ecryptfs's super_block
1958
* @name: The filename in cipher text
1959
* @name_size: The cipher text name size
1960
*
1961
* Decrypts and decodes the filename.
1962
*
1963
* Returns zero on error; non-zero otherwise
1964
*/
1965
int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
1966
size_t *plaintext_name_size,
1967
struct super_block *sb,
1968
const char *name, size_t name_size)
1969
{
1970
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1971
&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
1972
char *decoded_name;
1973
size_t decoded_name_size;
1974
size_t packet_size;
1975
int rc = 0;
1976
1977
if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
1978
!(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
1979
if (is_dot_dotdot(name, name_size)) {
1980
rc = ecryptfs_copy_filename(plaintext_name,
1981
plaintext_name_size,
1982
name, name_size);
1983
goto out;
1984
}
1985
1986
if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
1987
strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1988
ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
1989
rc = -EINVAL;
1990
goto out;
1991
}
1992
1993
name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1994
name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1995
ecryptfs_decode_from_filename(NULL, &decoded_name_size,
1996
name, name_size);
1997
decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
1998
if (!decoded_name) {
1999
rc = -ENOMEM;
2000
goto out;
2001
}
2002
ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2003
name, name_size);
2004
rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2005
plaintext_name_size,
2006
&packet_size,
2007
mount_crypt_stat,
2008
decoded_name,
2009
decoded_name_size);
2010
if (rc) {
2011
ecryptfs_printk(KERN_DEBUG,
2012
"%s: Could not parse tag 70 packet from filename\n",
2013
__func__);
2014
goto out_free;
2015
}
2016
} else {
2017
rc = ecryptfs_copy_filename(plaintext_name,
2018
plaintext_name_size,
2019
name, name_size);
2020
goto out;
2021
}
2022
out_free:
2023
kfree(decoded_name);
2024
out:
2025
return rc;
2026
}
2027
2028
#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2029
2030
int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2031
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2032
{
2033
struct crypto_skcipher *tfm;
2034
struct mutex *tfm_mutex;
2035
size_t cipher_blocksize;
2036
int rc;
2037
2038
if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2039
(*namelen) = lower_namelen;
2040
return 0;
2041
}
2042
2043
rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2044
mount_crypt_stat->global_default_fn_cipher_name);
2045
if (unlikely(rc)) {
2046
(*namelen) = 0;
2047
return rc;
2048
}
2049
2050
mutex_lock(tfm_mutex);
2051
cipher_blocksize = crypto_skcipher_blocksize(tfm);
2052
mutex_unlock(tfm_mutex);
2053
2054
/* Return an exact amount for the common cases */
2055
if (lower_namelen == NAME_MAX
2056
&& (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2057
(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2058
return 0;
2059
}
2060
2061
/* Return a safe estimate for the uncommon cases */
2062
(*namelen) = lower_namelen;
2063
(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2064
/* Since this is the max decoded size, subtract 1 "decoded block" len */
2065
(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2066
(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2067
(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2068
/* Worst case is that the filename is padded nearly a full block size */
2069
(*namelen) -= cipher_blocksize - 1;
2070
2071
if ((*namelen) < 0)
2072
(*namelen) = 0;
2073
2074
return 0;
2075
}
2076
2077