Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/ecryptfs/crypto.c
49147 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* eCryptfs: Linux filesystem encryption layer
4
*
5
* Copyright (C) 1997-2004 Erez Zadok
6
* Copyright (C) 2001-2004 Stony Brook University
7
* Copyright (C) 2004-2007 International Business Machines Corp.
8
* Author(s): Michael A. Halcrow <[email protected]>
9
* Michael C. Thompson <[email protected]>
10
*/
11
12
#include <crypto/skcipher.h>
13
#include <linux/fs.h>
14
#include <linux/mount.h>
15
#include <linux/pagemap.h>
16
#include <linux/random.h>
17
#include <linux/compiler.h>
18
#include <linux/key.h>
19
#include <linux/namei.h>
20
#include <linux/file.h>
21
#include <linux/scatterlist.h>
22
#include <linux/slab.h>
23
#include <linux/unaligned.h>
24
#include <linux/kernel.h>
25
#include <linux/xattr.h>
26
#include "ecryptfs_kernel.h"
27
28
#define DECRYPT 0
29
#define ENCRYPT 1
30
31
/**
32
* ecryptfs_from_hex
33
* @dst: Buffer to take the bytes from src hex; must be at least of
34
* size (src_size / 2)
35
* @src: Buffer to be converted from a hex string representation to raw value
36
* @dst_size: size of dst buffer, or number of hex characters pairs to convert
37
*/
38
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
39
{
40
int x;
41
char tmp[3] = { 0, };
42
43
for (x = 0; x < dst_size; x++) {
44
tmp[0] = src[x * 2];
45
tmp[1] = src[x * 2 + 1];
46
dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
47
}
48
}
49
50
static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
51
char *cipher_name,
52
char *chaining_modifier)
53
{
54
int cipher_name_len = strlen(cipher_name);
55
int chaining_modifier_len = strlen(chaining_modifier);
56
int algified_name_len;
57
int rc;
58
59
algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
60
(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
61
if (!(*algified_name)) {
62
rc = -ENOMEM;
63
goto out;
64
}
65
snprintf((*algified_name), algified_name_len, "%s(%s)",
66
chaining_modifier, cipher_name);
67
rc = 0;
68
out:
69
return rc;
70
}
71
72
/**
73
* ecryptfs_derive_iv
74
* @iv: destination for the derived iv vale
75
* @crypt_stat: Pointer to crypt_stat struct for the current inode
76
* @offset: Offset of the extent whose IV we are to derive
77
*
78
* Generate the initialization vector from the given root IV and page
79
* offset.
80
*/
81
void ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
82
loff_t offset)
83
{
84
char dst[MD5_DIGEST_SIZE];
85
char src[ECRYPTFS_MAX_IV_BYTES + 16];
86
87
if (unlikely(ecryptfs_verbosity > 0)) {
88
ecryptfs_printk(KERN_DEBUG, "root iv:\n");
89
ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
90
}
91
/* TODO: It is probably secure to just cast the least
92
* significant bits of the root IV into an unsigned long and
93
* add the offset to that rather than go through all this
94
* hashing business. -Halcrow */
95
memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
96
memset((src + crypt_stat->iv_bytes), 0, 16);
97
snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
98
if (unlikely(ecryptfs_verbosity > 0)) {
99
ecryptfs_printk(KERN_DEBUG, "source:\n");
100
ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
101
}
102
md5(src, crypt_stat->iv_bytes + 16, dst);
103
memcpy(iv, dst, crypt_stat->iv_bytes);
104
if (unlikely(ecryptfs_verbosity > 0)) {
105
ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
106
ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
107
}
108
}
109
110
/**
111
* ecryptfs_init_crypt_stat
112
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
113
*
114
* Initialize the crypt_stat structure.
115
*/
116
void ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
117
{
118
memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
119
INIT_LIST_HEAD(&crypt_stat->keysig_list);
120
mutex_init(&crypt_stat->keysig_list_mutex);
121
mutex_init(&crypt_stat->cs_mutex);
122
mutex_init(&crypt_stat->cs_tfm_mutex);
123
crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
124
}
125
126
/**
127
* ecryptfs_destroy_crypt_stat
128
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
129
*
130
* Releases all memory associated with a crypt_stat struct.
131
*/
132
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
133
{
134
struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
135
136
crypto_free_skcipher(crypt_stat->tfm);
137
list_for_each_entry_safe(key_sig, key_sig_tmp,
138
&crypt_stat->keysig_list, crypt_stat_list) {
139
list_del(&key_sig->crypt_stat_list);
140
kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
141
}
142
memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
143
}
144
145
void ecryptfs_destroy_mount_crypt_stat(
146
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
147
{
148
struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
149
150
if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
151
return;
152
mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
153
list_for_each_entry_safe(auth_tok, auth_tok_tmp,
154
&mount_crypt_stat->global_auth_tok_list,
155
mount_crypt_stat_list) {
156
list_del(&auth_tok->mount_crypt_stat_list);
157
if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
158
key_put(auth_tok->global_auth_tok_key);
159
kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
160
}
161
mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
162
memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
163
}
164
165
/**
166
* virt_to_scatterlist
167
* @addr: Virtual address
168
* @size: Size of data; should be an even multiple of the block size
169
* @sg: Pointer to scatterlist array; set to NULL to obtain only
170
* the number of scatterlist structs required in array
171
* @sg_size: Max array size
172
*
173
* Fills in a scatterlist array with page references for a passed
174
* virtual address.
175
*
176
* Returns the number of scatterlist structs in array used
177
*/
178
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
179
int sg_size)
180
{
181
int i = 0;
182
struct page *pg;
183
int offset;
184
int remainder_of_page;
185
186
sg_init_table(sg, sg_size);
187
188
while (size > 0 && i < sg_size) {
189
pg = virt_to_page(addr);
190
offset = offset_in_page(addr);
191
sg_set_page(&sg[i], pg, 0, offset);
192
remainder_of_page = PAGE_SIZE - offset;
193
if (size >= remainder_of_page) {
194
sg[i].length = remainder_of_page;
195
addr += remainder_of_page;
196
size -= remainder_of_page;
197
} else {
198
sg[i].length = size;
199
addr += size;
200
size = 0;
201
}
202
i++;
203
}
204
if (size > 0)
205
return -ENOMEM;
206
return i;
207
}
208
209
/**
210
* crypt_scatterlist
211
* @crypt_stat: Pointer to the crypt_stat struct to initialize.
212
* @dst_sg: Destination of the data after performing the crypto operation
213
* @src_sg: Data to be encrypted or decrypted
214
* @size: Length of data
215
* @iv: IV to use
216
* @op: ENCRYPT or DECRYPT to indicate the desired operation
217
*
218
* Returns the number of bytes encrypted or decrypted; negative value on error
219
*/
220
static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
221
struct scatterlist *dst_sg,
222
struct scatterlist *src_sg, int size,
223
unsigned char *iv, int op)
224
{
225
struct skcipher_request *req = NULL;
226
DECLARE_CRYPTO_WAIT(ecr);
227
int rc = 0;
228
229
if (unlikely(ecryptfs_verbosity > 0)) {
230
ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
231
crypt_stat->key_size);
232
ecryptfs_dump_hex(crypt_stat->key,
233
crypt_stat->key_size);
234
}
235
236
mutex_lock(&crypt_stat->cs_tfm_mutex);
237
req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
238
if (!req) {
239
mutex_unlock(&crypt_stat->cs_tfm_mutex);
240
rc = -ENOMEM;
241
goto out;
242
}
243
244
skcipher_request_set_callback(req,
245
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
246
crypto_req_done, &ecr);
247
/* Consider doing this once, when the file is opened */
248
if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
249
rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
250
crypt_stat->key_size);
251
if (rc) {
252
ecryptfs_printk(KERN_ERR,
253
"Error setting key; rc = [%d]\n",
254
rc);
255
mutex_unlock(&crypt_stat->cs_tfm_mutex);
256
rc = -EINVAL;
257
goto out;
258
}
259
crypt_stat->flags |= ECRYPTFS_KEY_SET;
260
}
261
mutex_unlock(&crypt_stat->cs_tfm_mutex);
262
skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
263
rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
264
crypto_skcipher_decrypt(req);
265
rc = crypto_wait_req(rc, &ecr);
266
out:
267
skcipher_request_free(req);
268
return rc;
269
}
270
271
/*
272
* lower_offset_for_page
273
*
274
* Convert an eCryptfs page index into a lower byte offset
275
*/
276
static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
277
struct folio *folio)
278
{
279
return ecryptfs_lower_header_size(crypt_stat) +
280
(loff_t)folio->index * PAGE_SIZE;
281
}
282
283
/**
284
* crypt_extent
285
* @crypt_stat: crypt_stat containing cryptographic context for the
286
* encryption operation
287
* @dst_page: The page to write the result into
288
* @src_page: The page to read from
289
* @page_index: The offset in the file (in units of PAGE_SIZE)
290
* @extent_offset: Page extent offset for use in generating IV
291
* @op: ENCRYPT or DECRYPT to indicate the desired operation
292
*
293
* Encrypts or decrypts one extent of data.
294
*
295
* Return zero on success; non-zero otherwise
296
*/
297
static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
298
struct page *dst_page,
299
struct page *src_page,
300
pgoff_t page_index,
301
unsigned long extent_offset, int op)
302
{
303
loff_t extent_base;
304
char extent_iv[ECRYPTFS_MAX_IV_BYTES];
305
struct scatterlist src_sg, dst_sg;
306
size_t extent_size = crypt_stat->extent_size;
307
int rc;
308
309
extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
310
ecryptfs_derive_iv(extent_iv, crypt_stat, extent_base + extent_offset);
311
312
sg_init_table(&src_sg, 1);
313
sg_init_table(&dst_sg, 1);
314
315
sg_set_page(&src_sg, src_page, extent_size,
316
extent_offset * extent_size);
317
sg_set_page(&dst_sg, dst_page, extent_size,
318
extent_offset * extent_size);
319
320
rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
321
extent_iv, op);
322
if (rc < 0) {
323
printk(KERN_ERR "%s: Error attempting to crypt page with "
324
"page_index = [%ld], extent_offset = [%ld]; "
325
"rc = [%d]\n", __func__, page_index, extent_offset, rc);
326
goto out;
327
}
328
rc = 0;
329
out:
330
return rc;
331
}
332
333
/**
334
* ecryptfs_encrypt_page
335
* @folio: Folio mapped from the eCryptfs inode for the file; contains
336
* decrypted content that needs to be encrypted (to a temporary
337
* page; not in place) and written out to the lower file
338
*
339
* Encrypt an eCryptfs page. This is done on a per-extent basis. Note
340
* that eCryptfs pages may straddle the lower pages -- for instance,
341
* if the file was created on a machine with an 8K page size
342
* (resulting in an 8K header), and then the file is copied onto a
343
* host with a 32K page size, then when reading page 0 of the eCryptfs
344
* file, 24K of page 0 of the lower file will be read and decrypted,
345
* and then 8K of page 1 of the lower file will be read and decrypted.
346
*
347
* Returns zero on success; negative on error
348
*/
349
int ecryptfs_encrypt_page(struct folio *folio)
350
{
351
struct inode *ecryptfs_inode;
352
struct ecryptfs_crypt_stat *crypt_stat;
353
char *enc_extent_virt;
354
struct page *enc_extent_page = NULL;
355
loff_t extent_offset;
356
loff_t lower_offset;
357
int rc = 0;
358
359
ecryptfs_inode = folio->mapping->host;
360
crypt_stat =
361
&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
362
BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
363
enc_extent_page = alloc_page(GFP_USER);
364
if (!enc_extent_page) {
365
rc = -ENOMEM;
366
ecryptfs_printk(KERN_ERR, "Error allocating memory for "
367
"encrypted extent\n");
368
goto out;
369
}
370
371
for (extent_offset = 0;
372
extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
373
extent_offset++) {
374
rc = crypt_extent(crypt_stat, enc_extent_page,
375
folio_page(folio, 0), folio->index,
376
extent_offset, ENCRYPT);
377
if (rc) {
378
printk(KERN_ERR "%s: Error encrypting extent; "
379
"rc = [%d]\n", __func__, rc);
380
goto out;
381
}
382
}
383
384
lower_offset = lower_offset_for_page(crypt_stat, folio);
385
enc_extent_virt = kmap_local_page(enc_extent_page);
386
rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
387
PAGE_SIZE);
388
kunmap_local(enc_extent_virt);
389
if (rc < 0) {
390
ecryptfs_printk(KERN_ERR,
391
"Error attempting to write lower page; rc = [%d]\n",
392
rc);
393
goto out;
394
}
395
rc = 0;
396
out:
397
if (enc_extent_page) {
398
__free_page(enc_extent_page);
399
}
400
return rc;
401
}
402
403
/**
404
* ecryptfs_decrypt_page
405
* @folio: Folio mapped from the eCryptfs inode for the file; data read
406
* and decrypted from the lower file will be written into this
407
* page
408
*
409
* Decrypt an eCryptfs page. This is done on a per-extent basis. Note
410
* that eCryptfs pages may straddle the lower pages -- for instance,
411
* if the file was created on a machine with an 8K page size
412
* (resulting in an 8K header), and then the file is copied onto a
413
* host with a 32K page size, then when reading page 0 of the eCryptfs
414
* file, 24K of page 0 of the lower file will be read and decrypted,
415
* and then 8K of page 1 of the lower file will be read and decrypted.
416
*
417
* Returns zero on success; negative on error
418
*/
419
int ecryptfs_decrypt_page(struct folio *folio)
420
{
421
struct inode *ecryptfs_inode;
422
struct ecryptfs_crypt_stat *crypt_stat;
423
char *page_virt;
424
unsigned long extent_offset;
425
loff_t lower_offset;
426
int rc = 0;
427
428
ecryptfs_inode = folio->mapping->host;
429
crypt_stat =
430
&(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
431
BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
432
433
lower_offset = lower_offset_for_page(crypt_stat, folio);
434
page_virt = kmap_local_folio(folio, 0);
435
rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
436
ecryptfs_inode);
437
kunmap_local(page_virt);
438
if (rc < 0) {
439
ecryptfs_printk(KERN_ERR,
440
"Error attempting to read lower page; rc = [%d]\n",
441
rc);
442
goto out;
443
}
444
445
for (extent_offset = 0;
446
extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
447
extent_offset++) {
448
struct page *page = folio_page(folio, 0);
449
rc = crypt_extent(crypt_stat, page, page, folio->index,
450
extent_offset, DECRYPT);
451
if (rc) {
452
printk(KERN_ERR "%s: Error decrypting extent; "
453
"rc = [%d]\n", __func__, rc);
454
goto out;
455
}
456
}
457
out:
458
return rc;
459
}
460
461
#define ECRYPTFS_MAX_SCATTERLIST_LEN 4
462
463
/**
464
* ecryptfs_init_crypt_ctx
465
* @crypt_stat: Uninitialized crypt stats structure
466
*
467
* Initialize the crypto context.
468
*
469
* TODO: Performance: Keep a cache of initialized cipher contexts;
470
* only init if needed
471
*/
472
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
473
{
474
char *full_alg_name;
475
int rc = -EINVAL;
476
477
ecryptfs_printk(KERN_DEBUG,
478
"Initializing cipher [%s]; strlen = [%d]; "
479
"key_size_bits = [%zd]\n",
480
crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
481
crypt_stat->key_size << 3);
482
mutex_lock(&crypt_stat->cs_tfm_mutex);
483
if (crypt_stat->tfm) {
484
rc = 0;
485
goto out_unlock;
486
}
487
rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
488
crypt_stat->cipher, "cbc");
489
if (rc)
490
goto out_unlock;
491
crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
492
if (IS_ERR(crypt_stat->tfm)) {
493
rc = PTR_ERR(crypt_stat->tfm);
494
crypt_stat->tfm = NULL;
495
ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
496
"Error initializing cipher [%s]\n",
497
full_alg_name);
498
goto out_free;
499
}
500
crypto_skcipher_set_flags(crypt_stat->tfm,
501
CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
502
rc = 0;
503
out_free:
504
kfree(full_alg_name);
505
out_unlock:
506
mutex_unlock(&crypt_stat->cs_tfm_mutex);
507
return rc;
508
}
509
510
static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
511
{
512
int extent_size_tmp;
513
514
crypt_stat->extent_mask = 0xFFFFFFFF;
515
crypt_stat->extent_shift = 0;
516
if (crypt_stat->extent_size == 0)
517
return;
518
extent_size_tmp = crypt_stat->extent_size;
519
while ((extent_size_tmp & 0x01) == 0) {
520
extent_size_tmp >>= 1;
521
crypt_stat->extent_mask <<= 1;
522
crypt_stat->extent_shift++;
523
}
524
}
525
526
void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
527
{
528
/* Default values; may be overwritten as we are parsing the
529
* packets. */
530
crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
531
set_extent_mask_and_shift(crypt_stat);
532
crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
533
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
534
crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
535
else {
536
if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
537
crypt_stat->metadata_size =
538
ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
539
else
540
crypt_stat->metadata_size = PAGE_SIZE;
541
}
542
}
543
544
/*
545
* ecryptfs_compute_root_iv
546
*
547
* On error, sets the root IV to all 0's.
548
*/
549
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
550
{
551
char dst[MD5_DIGEST_SIZE];
552
553
BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
554
BUG_ON(crypt_stat->iv_bytes <= 0);
555
if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
556
ecryptfs_printk(KERN_WARNING, "Session key not valid; "
557
"cannot generate root IV\n");
558
memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
559
crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
560
return -EINVAL;
561
}
562
md5(crypt_stat->key, crypt_stat->key_size, dst);
563
memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
564
return 0;
565
}
566
567
static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
568
{
569
get_random_bytes(crypt_stat->key, crypt_stat->key_size);
570
crypt_stat->flags |= ECRYPTFS_KEY_VALID;
571
ecryptfs_compute_root_iv(crypt_stat);
572
if (unlikely(ecryptfs_verbosity > 0)) {
573
ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
574
ecryptfs_dump_hex(crypt_stat->key,
575
crypt_stat->key_size);
576
}
577
}
578
579
/**
580
* ecryptfs_copy_mount_wide_flags_to_inode_flags
581
* @crypt_stat: The inode's cryptographic context
582
* @mount_crypt_stat: The mount point's cryptographic context
583
*
584
* This function propagates the mount-wide flags to individual inode
585
* flags.
586
*/
587
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
588
struct ecryptfs_crypt_stat *crypt_stat,
589
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
590
{
591
if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
592
crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
593
if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
594
crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
595
if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
596
crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
597
if (mount_crypt_stat->flags
598
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
599
crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
600
else if (mount_crypt_stat->flags
601
& ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
602
crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
603
}
604
}
605
606
static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
607
struct ecryptfs_crypt_stat *crypt_stat,
608
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
609
{
610
struct ecryptfs_global_auth_tok *global_auth_tok;
611
int rc = 0;
612
613
mutex_lock(&crypt_stat->keysig_list_mutex);
614
mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
615
616
list_for_each_entry(global_auth_tok,
617
&mount_crypt_stat->global_auth_tok_list,
618
mount_crypt_stat_list) {
619
if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
620
continue;
621
rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
622
if (rc) {
623
printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
624
goto out;
625
}
626
}
627
628
out:
629
mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
630
mutex_unlock(&crypt_stat->keysig_list_mutex);
631
return rc;
632
}
633
634
/**
635
* ecryptfs_set_default_crypt_stat_vals
636
* @crypt_stat: The inode's cryptographic context
637
* @mount_crypt_stat: The mount point's cryptographic context
638
*
639
* Default values in the event that policy does not override them.
640
*/
641
static void ecryptfs_set_default_crypt_stat_vals(
642
struct ecryptfs_crypt_stat *crypt_stat,
643
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
644
{
645
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
646
mount_crypt_stat);
647
ecryptfs_set_default_sizes(crypt_stat);
648
strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
649
crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
650
crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
651
crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
652
crypt_stat->mount_crypt_stat = mount_crypt_stat;
653
}
654
655
/**
656
* ecryptfs_new_file_context
657
* @ecryptfs_inode: The eCryptfs inode
658
*
659
* If the crypto context for the file has not yet been established,
660
* this is where we do that. Establishing a new crypto context
661
* involves the following decisions:
662
* - What cipher to use?
663
* - What set of authentication tokens to use?
664
* Here we just worry about getting enough information into the
665
* authentication tokens so that we know that they are available.
666
* We associate the available authentication tokens with the new file
667
* via the set of signatures in the crypt_stat struct. Later, when
668
* the headers are actually written out, we may again defer to
669
* userspace to perform the encryption of the session key; for the
670
* foreseeable future, this will be the case with public key packets.
671
*
672
* Returns zero on success; non-zero otherwise
673
*/
674
int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
675
{
676
struct ecryptfs_crypt_stat *crypt_stat =
677
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
678
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
679
&ecryptfs_superblock_to_private(
680
ecryptfs_inode->i_sb)->mount_crypt_stat;
681
int cipher_name_len;
682
int rc = 0;
683
684
ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
685
crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
686
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
687
mount_crypt_stat);
688
rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
689
mount_crypt_stat);
690
if (rc) {
691
printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
692
"to the inode key sigs; rc = [%d]\n", rc);
693
goto out;
694
}
695
cipher_name_len =
696
strlen(mount_crypt_stat->global_default_cipher_name);
697
memcpy(crypt_stat->cipher,
698
mount_crypt_stat->global_default_cipher_name,
699
cipher_name_len);
700
crypt_stat->cipher[cipher_name_len] = '\0';
701
crypt_stat->key_size =
702
mount_crypt_stat->global_default_cipher_key_size;
703
ecryptfs_generate_new_key(crypt_stat);
704
rc = ecryptfs_init_crypt_ctx(crypt_stat);
705
if (rc)
706
ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
707
"context for cipher [%s]: rc = [%d]\n",
708
crypt_stat->cipher, rc);
709
out:
710
return rc;
711
}
712
713
/**
714
* ecryptfs_validate_marker - check for the ecryptfs marker
715
* @data: The data block in which to check
716
*
717
* Returns zero if marker found; -EINVAL if not found
718
*/
719
static int ecryptfs_validate_marker(char *data)
720
{
721
u32 m_1, m_2;
722
723
m_1 = get_unaligned_be32(data);
724
m_2 = get_unaligned_be32(data + 4);
725
if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
726
return 0;
727
ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
728
"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
729
MAGIC_ECRYPTFS_MARKER);
730
ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
731
"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
732
return -EINVAL;
733
}
734
735
struct ecryptfs_flag_map_elem {
736
u32 file_flag;
737
u32 local_flag;
738
};
739
740
/* Add support for additional flags by adding elements here. */
741
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
742
{0x00000001, ECRYPTFS_ENABLE_HMAC},
743
{0x00000002, ECRYPTFS_ENCRYPTED},
744
{0x00000004, ECRYPTFS_METADATA_IN_XATTR},
745
{0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
746
};
747
748
/**
749
* ecryptfs_process_flags
750
* @crypt_stat: The cryptographic context
751
* @page_virt: Source data to be parsed
752
* @bytes_read: Updated with the number of bytes read
753
*/
754
static void ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
755
char *page_virt, int *bytes_read)
756
{
757
int i;
758
u32 flags;
759
760
flags = get_unaligned_be32(page_virt);
761
for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
762
if (flags & ecryptfs_flag_map[i].file_flag) {
763
crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
764
} else
765
crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
766
/* Version is in top 8 bits of the 32-bit flag vector */
767
crypt_stat->file_version = ((flags >> 24) & 0xFF);
768
(*bytes_read) = 4;
769
}
770
771
/**
772
* write_ecryptfs_marker
773
* @page_virt: The pointer to in a page to begin writing the marker
774
* @written: Number of bytes written
775
*
776
* Marker = 0x3c81b7f5
777
*/
778
static void write_ecryptfs_marker(char *page_virt, size_t *written)
779
{
780
u32 m_1, m_2;
781
782
get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
783
m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
784
put_unaligned_be32(m_1, page_virt);
785
page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
786
put_unaligned_be32(m_2, page_virt);
787
(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
788
}
789
790
void ecryptfs_write_crypt_stat_flags(char *page_virt,
791
struct ecryptfs_crypt_stat *crypt_stat,
792
size_t *written)
793
{
794
u32 flags = 0;
795
int i;
796
797
for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
798
if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
799
flags |= ecryptfs_flag_map[i].file_flag;
800
/* Version is in top 8 bits of the 32-bit flag vector */
801
flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
802
put_unaligned_be32(flags, page_virt);
803
(*written) = 4;
804
}
805
806
struct ecryptfs_cipher_code_str_map_elem {
807
char cipher_str[16];
808
u8 cipher_code;
809
};
810
811
/* Add support for additional ciphers by adding elements here. The
812
* cipher_code is whatever OpenPGP applications use to identify the
813
* ciphers. List in order of probability. */
814
static struct ecryptfs_cipher_code_str_map_elem
815
ecryptfs_cipher_code_str_map[] = {
816
{"aes",RFC2440_CIPHER_AES_128 },
817
{"blowfish", RFC2440_CIPHER_BLOWFISH},
818
{"des3_ede", RFC2440_CIPHER_DES3_EDE},
819
{"cast5", RFC2440_CIPHER_CAST_5},
820
{"twofish", RFC2440_CIPHER_TWOFISH},
821
{"cast6", RFC2440_CIPHER_CAST_6},
822
{"aes", RFC2440_CIPHER_AES_192},
823
{"aes", RFC2440_CIPHER_AES_256}
824
};
825
826
/**
827
* ecryptfs_code_for_cipher_string
828
* @cipher_name: The string alias for the cipher
829
* @key_bytes: Length of key in bytes; used for AES code selection
830
*
831
* Returns zero on no match, or the cipher code on match
832
*/
833
u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
834
{
835
int i;
836
u8 code = 0;
837
struct ecryptfs_cipher_code_str_map_elem *map =
838
ecryptfs_cipher_code_str_map;
839
840
if (strcmp(cipher_name, "aes") == 0) {
841
switch (key_bytes) {
842
case 16:
843
code = RFC2440_CIPHER_AES_128;
844
break;
845
case 24:
846
code = RFC2440_CIPHER_AES_192;
847
break;
848
case 32:
849
code = RFC2440_CIPHER_AES_256;
850
}
851
} else {
852
for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
853
if (strcmp(cipher_name, map[i].cipher_str) == 0) {
854
code = map[i].cipher_code;
855
break;
856
}
857
}
858
return code;
859
}
860
861
/**
862
* ecryptfs_cipher_code_to_string
863
* @str: Destination to write out the cipher name
864
* @cipher_code: The code to convert to cipher name string
865
*
866
* Returns zero on success
867
*/
868
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
869
{
870
int rc = 0;
871
int i;
872
873
str[0] = '\0';
874
for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
875
if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
876
strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
877
if (str[0] == '\0') {
878
ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
879
"[%d]\n", cipher_code);
880
rc = -EINVAL;
881
}
882
return rc;
883
}
884
885
int ecryptfs_read_and_validate_header_region(struct inode *inode)
886
{
887
u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
888
u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
889
int rc;
890
891
rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
892
inode);
893
if (rc < 0)
894
return rc;
895
else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
896
return -EINVAL;
897
rc = ecryptfs_validate_marker(marker);
898
if (!rc)
899
ecryptfs_i_size_init(file_size, inode);
900
return rc;
901
}
902
903
void
904
ecryptfs_write_header_metadata(char *virt,
905
struct ecryptfs_crypt_stat *crypt_stat,
906
size_t *written)
907
{
908
u32 header_extent_size;
909
u16 num_header_extents_at_front;
910
911
header_extent_size = (u32)crypt_stat->extent_size;
912
num_header_extents_at_front =
913
(u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
914
put_unaligned_be32(header_extent_size, virt);
915
virt += 4;
916
put_unaligned_be16(num_header_extents_at_front, virt);
917
(*written) = 6;
918
}
919
920
struct kmem_cache *ecryptfs_header_cache;
921
922
/**
923
* ecryptfs_write_headers_virt
924
* @page_virt: The virtual address to write the headers to
925
* @max: The size of memory allocated at page_virt
926
* @size: Set to the number of bytes written by this function
927
* @crypt_stat: The cryptographic context
928
* @ecryptfs_dentry: The eCryptfs dentry
929
*
930
* Format version: 1
931
*
932
* Header Extent:
933
* Octets 0-7: Unencrypted file size (big-endian)
934
* Octets 8-15: eCryptfs special marker
935
* Octets 16-19: Flags
936
* Octet 16: File format version number (between 0 and 255)
937
* Octets 17-18: Reserved
938
* Octet 19: Bit 1 (lsb): Reserved
939
* Bit 2: Encrypted?
940
* Bits 3-8: Reserved
941
* Octets 20-23: Header extent size (big-endian)
942
* Octets 24-25: Number of header extents at front of file
943
* (big-endian)
944
* Octet 26: Begin RFC 2440 authentication token packet set
945
* Data Extent 0:
946
* Lower data (CBC encrypted)
947
* Data Extent 1:
948
* Lower data (CBC encrypted)
949
* ...
950
*
951
* Returns zero on success
952
*/
953
static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
954
size_t *size,
955
struct ecryptfs_crypt_stat *crypt_stat,
956
struct dentry *ecryptfs_dentry)
957
{
958
int rc;
959
size_t written;
960
size_t offset;
961
962
offset = ECRYPTFS_FILE_SIZE_BYTES;
963
write_ecryptfs_marker((page_virt + offset), &written);
964
offset += written;
965
ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
966
&written);
967
offset += written;
968
ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
969
&written);
970
offset += written;
971
rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
972
ecryptfs_dentry, &written,
973
max - offset);
974
if (rc)
975
ecryptfs_printk(KERN_WARNING, "Error generating key packet "
976
"set; rc = [%d]\n", rc);
977
if (size) {
978
offset += written;
979
*size = offset;
980
}
981
return rc;
982
}
983
984
static int
985
ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
986
char *virt, size_t virt_len)
987
{
988
int rc;
989
990
rc = ecryptfs_write_lower(ecryptfs_inode, virt,
991
0, virt_len);
992
if (rc < 0)
993
printk(KERN_ERR "%s: Error attempting to write header "
994
"information to lower file; rc = [%d]\n", __func__, rc);
995
else
996
rc = 0;
997
return rc;
998
}
999
1000
static int
1001
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1002
struct inode *ecryptfs_inode,
1003
char *page_virt, size_t size)
1004
{
1005
int rc;
1006
struct dentry *lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
1007
struct inode *lower_inode = d_inode(lower_dentry);
1008
1009
if (!(lower_inode->i_opflags & IOP_XATTR)) {
1010
rc = -EOPNOTSUPP;
1011
goto out;
1012
}
1013
1014
inode_lock(lower_inode);
1015
rc = __vfs_setxattr(&nop_mnt_idmap, lower_dentry, lower_inode,
1016
ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1017
if (!rc && ecryptfs_inode)
1018
fsstack_copy_attr_all(ecryptfs_inode, lower_inode);
1019
inode_unlock(lower_inode);
1020
out:
1021
return rc;
1022
}
1023
1024
static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1025
unsigned int order)
1026
{
1027
struct page *page;
1028
1029
page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1030
if (page)
1031
return (unsigned long) page_address(page);
1032
return 0;
1033
}
1034
1035
/**
1036
* ecryptfs_write_metadata
1037
* @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1038
* @ecryptfs_inode: The newly created eCryptfs inode
1039
*
1040
* Write the file headers out. This will likely involve a userspace
1041
* callout, in which the session key is encrypted with one or more
1042
* public keys and/or the passphrase necessary to do the encryption is
1043
* retrieved via a prompt. Exactly what happens at this point should
1044
* be policy-dependent.
1045
*
1046
* Returns zero on success; non-zero on error
1047
*/
1048
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1049
struct inode *ecryptfs_inode)
1050
{
1051
struct ecryptfs_crypt_stat *crypt_stat =
1052
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1053
unsigned int order;
1054
char *virt;
1055
size_t virt_len;
1056
size_t size = 0;
1057
int rc = 0;
1058
1059
if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1060
if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1061
printk(KERN_ERR "Key is invalid; bailing out\n");
1062
rc = -EINVAL;
1063
goto out;
1064
}
1065
} else {
1066
printk(KERN_WARNING "%s: Encrypted flag not set\n",
1067
__func__);
1068
rc = -EINVAL;
1069
goto out;
1070
}
1071
virt_len = crypt_stat->metadata_size;
1072
order = get_order(virt_len);
1073
/* Released in this function */
1074
virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1075
if (!virt) {
1076
printk(KERN_ERR "%s: Out of memory\n", __func__);
1077
rc = -ENOMEM;
1078
goto out;
1079
}
1080
/* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1081
rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1082
ecryptfs_dentry);
1083
if (unlikely(rc)) {
1084
printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1085
__func__, rc);
1086
goto out_free;
1087
}
1088
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1089
rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1090
virt, size);
1091
else
1092
rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1093
virt_len);
1094
if (rc) {
1095
printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1096
"rc = [%d]\n", __func__, rc);
1097
goto out_free;
1098
}
1099
out_free:
1100
free_pages((unsigned long)virt, order);
1101
out:
1102
return rc;
1103
}
1104
1105
#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1106
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1107
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1108
char *virt, int *bytes_read,
1109
int validate_header_size)
1110
{
1111
int rc = 0;
1112
u32 header_extent_size;
1113
u16 num_header_extents_at_front;
1114
1115
header_extent_size = get_unaligned_be32(virt);
1116
virt += sizeof(__be32);
1117
num_header_extents_at_front = get_unaligned_be16(virt);
1118
crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1119
* (size_t)header_extent_size));
1120
(*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1121
if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1122
&& (crypt_stat->metadata_size
1123
< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1124
rc = -EINVAL;
1125
printk(KERN_WARNING "Invalid header size: [%zd]\n",
1126
crypt_stat->metadata_size);
1127
}
1128
return rc;
1129
}
1130
1131
/**
1132
* set_default_header_data
1133
* @crypt_stat: The cryptographic context
1134
*
1135
* For version 0 file format; this function is only for backwards
1136
* compatibility for files created with the prior versions of
1137
* eCryptfs.
1138
*/
1139
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1140
{
1141
crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1142
}
1143
1144
void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1145
{
1146
struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1147
struct ecryptfs_crypt_stat *crypt_stat;
1148
u64 file_size;
1149
1150
crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1151
mount_crypt_stat =
1152
&ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1153
if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1154
file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1155
if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1156
file_size += crypt_stat->metadata_size;
1157
} else
1158
file_size = get_unaligned_be64(page_virt);
1159
i_size_write(inode, (loff_t)file_size);
1160
crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1161
}
1162
1163
/**
1164
* ecryptfs_read_headers_virt
1165
* @page_virt: The virtual address into which to read the headers
1166
* @crypt_stat: The cryptographic context
1167
* @ecryptfs_dentry: The eCryptfs dentry
1168
* @validate_header_size: Whether to validate the header size while reading
1169
*
1170
* Read/parse the header data. The header format is detailed in the
1171
* comment block for the ecryptfs_write_headers_virt() function.
1172
*
1173
* Returns zero on success
1174
*/
1175
static int ecryptfs_read_headers_virt(char *page_virt,
1176
struct ecryptfs_crypt_stat *crypt_stat,
1177
struct dentry *ecryptfs_dentry,
1178
int validate_header_size)
1179
{
1180
int rc = 0;
1181
int offset;
1182
int bytes_read;
1183
1184
ecryptfs_set_default_sizes(crypt_stat);
1185
crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1186
ecryptfs_dentry->d_sb)->mount_crypt_stat;
1187
offset = ECRYPTFS_FILE_SIZE_BYTES;
1188
rc = ecryptfs_validate_marker(page_virt + offset);
1189
if (rc)
1190
goto out;
1191
if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1192
ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1193
offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1194
ecryptfs_process_flags(crypt_stat, (page_virt + offset), &bytes_read);
1195
if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1196
ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1197
"file version [%d] is supported by this "
1198
"version of eCryptfs\n",
1199
crypt_stat->file_version,
1200
ECRYPTFS_SUPPORTED_FILE_VERSION);
1201
rc = -EINVAL;
1202
goto out;
1203
}
1204
offset += bytes_read;
1205
if (crypt_stat->file_version >= 1) {
1206
rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1207
&bytes_read, validate_header_size);
1208
if (rc) {
1209
ecryptfs_printk(KERN_WARNING, "Error reading header "
1210
"metadata; rc = [%d]\n", rc);
1211
}
1212
offset += bytes_read;
1213
} else
1214
set_default_header_data(crypt_stat);
1215
rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1216
ecryptfs_dentry);
1217
out:
1218
return rc;
1219
}
1220
1221
/**
1222
* ecryptfs_read_xattr_region
1223
* @page_virt: The vitual address into which to read the xattr data
1224
* @ecryptfs_inode: The eCryptfs inode
1225
*
1226
* Attempts to read the crypto metadata from the extended attribute
1227
* region of the lower file.
1228
*
1229
* Returns zero on success; non-zero on error
1230
*/
1231
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1232
{
1233
struct dentry *lower_dentry =
1234
ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1235
ssize_t size;
1236
int rc = 0;
1237
1238
size = ecryptfs_getxattr_lower(lower_dentry,
1239
ecryptfs_inode_to_lower(ecryptfs_inode),
1240
ECRYPTFS_XATTR_NAME,
1241
page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1242
if (size < 0) {
1243
if (unlikely(ecryptfs_verbosity > 0))
1244
printk(KERN_INFO "Error attempting to read the [%s] "
1245
"xattr from the lower file; return value = "
1246
"[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1247
rc = -EINVAL;
1248
goto out;
1249
}
1250
out:
1251
return rc;
1252
}
1253
1254
int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1255
struct inode *inode)
1256
{
1257
u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1258
u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1259
int rc;
1260
1261
rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1262
ecryptfs_inode_to_lower(inode),
1263
ECRYPTFS_XATTR_NAME, file_size,
1264
ECRYPTFS_SIZE_AND_MARKER_BYTES);
1265
if (rc < 0)
1266
return rc;
1267
else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1268
return -EINVAL;
1269
rc = ecryptfs_validate_marker(marker);
1270
if (!rc)
1271
ecryptfs_i_size_init(file_size, inode);
1272
return rc;
1273
}
1274
1275
/*
1276
* ecryptfs_read_metadata
1277
*
1278
* Common entry point for reading file metadata. From here, we could
1279
* retrieve the header information from the header region of the file,
1280
* the xattr region of the file, or some other repository that is
1281
* stored separately from the file itself. The current implementation
1282
* supports retrieving the metadata information from the file contents
1283
* and from the xattr region.
1284
*
1285
* Returns zero if valid headers found and parsed; non-zero otherwise
1286
*/
1287
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1288
{
1289
int rc;
1290
char *page_virt;
1291
struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1292
struct ecryptfs_crypt_stat *crypt_stat =
1293
&ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1294
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1295
&ecryptfs_superblock_to_private(
1296
ecryptfs_dentry->d_sb)->mount_crypt_stat;
1297
1298
ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1299
mount_crypt_stat);
1300
/* Read the first page from the underlying file */
1301
page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1302
if (!page_virt) {
1303
rc = -ENOMEM;
1304
goto out;
1305
}
1306
rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1307
ecryptfs_inode);
1308
if (rc >= 0)
1309
rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1310
ecryptfs_dentry,
1311
ECRYPTFS_VALIDATE_HEADER_SIZE);
1312
if (rc) {
1313
/* metadata is not in the file header, so try xattrs */
1314
memset(page_virt, 0, PAGE_SIZE);
1315
rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1316
if (rc) {
1317
printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1318
"file header region or xattr region, inode %lu\n",
1319
ecryptfs_inode->i_ino);
1320
rc = -EINVAL;
1321
goto out;
1322
}
1323
rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1324
ecryptfs_dentry,
1325
ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1326
if (rc) {
1327
printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1328
"file xattr region either, inode %lu\n",
1329
ecryptfs_inode->i_ino);
1330
rc = -EINVAL;
1331
}
1332
if (crypt_stat->mount_crypt_stat->flags
1333
& ECRYPTFS_XATTR_METADATA_ENABLED) {
1334
crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1335
} else {
1336
printk(KERN_WARNING "Attempt to access file with "
1337
"crypto metadata only in the extended attribute "
1338
"region, but eCryptfs was mounted without "
1339
"xattr support enabled. eCryptfs will not treat "
1340
"this like an encrypted file, inode %lu\n",
1341
ecryptfs_inode->i_ino);
1342
rc = -EINVAL;
1343
}
1344
}
1345
out:
1346
if (page_virt) {
1347
memset(page_virt, 0, PAGE_SIZE);
1348
kmem_cache_free(ecryptfs_header_cache, page_virt);
1349
}
1350
return rc;
1351
}
1352
1353
/*
1354
* ecryptfs_encrypt_filename - encrypt filename
1355
*
1356
* CBC-encrypts the filename. We do not want to encrypt the same
1357
* filename with the same key and IV, which may happen with hard
1358
* links, so we prepend random bits to each filename.
1359
*
1360
* Returns zero on success; non-zero otherwise
1361
*/
1362
static int
1363
ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1364
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1365
{
1366
int rc = 0;
1367
1368
filename->encrypted_filename = NULL;
1369
filename->encrypted_filename_size = 0;
1370
if (mount_crypt_stat && (mount_crypt_stat->flags
1371
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1372
size_t packet_size;
1373
size_t remaining_bytes;
1374
1375
rc = ecryptfs_write_tag_70_packet(
1376
NULL, NULL,
1377
&filename->encrypted_filename_size,
1378
mount_crypt_stat, NULL,
1379
filename->filename_size);
1380
if (rc) {
1381
printk(KERN_ERR "%s: Error attempting to get packet "
1382
"size for tag 72; rc = [%d]\n", __func__,
1383
rc);
1384
filename->encrypted_filename_size = 0;
1385
goto out;
1386
}
1387
filename->encrypted_filename =
1388
kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1389
if (!filename->encrypted_filename) {
1390
rc = -ENOMEM;
1391
goto out;
1392
}
1393
remaining_bytes = filename->encrypted_filename_size;
1394
rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1395
&remaining_bytes,
1396
&packet_size,
1397
mount_crypt_stat,
1398
filename->filename,
1399
filename->filename_size);
1400
if (rc) {
1401
printk(KERN_ERR "%s: Error attempting to generate "
1402
"tag 70 packet; rc = [%d]\n", __func__,
1403
rc);
1404
kfree(filename->encrypted_filename);
1405
filename->encrypted_filename = NULL;
1406
filename->encrypted_filename_size = 0;
1407
goto out;
1408
}
1409
filename->encrypted_filename_size = packet_size;
1410
} else {
1411
printk(KERN_ERR "%s: No support for requested filename "
1412
"encryption method in this release\n", __func__);
1413
rc = -EOPNOTSUPP;
1414
goto out;
1415
}
1416
out:
1417
return rc;
1418
}
1419
1420
static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1421
const char *name, size_t name_size)
1422
{
1423
int rc = 0;
1424
1425
(*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1426
if (!(*copied_name)) {
1427
rc = -ENOMEM;
1428
goto out;
1429
}
1430
memcpy((void *)(*copied_name), (void *)name, name_size);
1431
(*copied_name)[(name_size)] = '\0'; /* Only for convenience
1432
* in printing out the
1433
* string in debug
1434
* messages */
1435
(*copied_name_size) = name_size;
1436
out:
1437
return rc;
1438
}
1439
1440
/**
1441
* ecryptfs_process_key_cipher - Perform key cipher initialization.
1442
* @key_tfm: Crypto context for key material, set by this function
1443
* @cipher_name: Name of the cipher
1444
* @key_size: Size of the key in bytes
1445
*
1446
* Returns zero on success. Any crypto_tfm structs allocated here
1447
* should be released by other functions, such as on a superblock put
1448
* event, regardless of whether this function succeeds for fails.
1449
*/
1450
static int
1451
ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1452
char *cipher_name, size_t *key_size)
1453
{
1454
char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1455
char *full_alg_name = NULL;
1456
int rc;
1457
1458
*key_tfm = NULL;
1459
if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1460
rc = -EINVAL;
1461
printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1462
"allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1463
goto out;
1464
}
1465
rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1466
"ecb");
1467
if (rc)
1468
goto out;
1469
*key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1470
if (IS_ERR(*key_tfm)) {
1471
rc = PTR_ERR(*key_tfm);
1472
printk(KERN_ERR "Unable to allocate crypto cipher with name "
1473
"[%s]; rc = [%d]\n", full_alg_name, rc);
1474
goto out;
1475
}
1476
crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1477
if (*key_size == 0)
1478
*key_size = crypto_skcipher_max_keysize(*key_tfm);
1479
get_random_bytes(dummy_key, *key_size);
1480
rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1481
if (rc) {
1482
printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1483
"cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1484
rc);
1485
rc = -EINVAL;
1486
goto out;
1487
}
1488
out:
1489
kfree(full_alg_name);
1490
return rc;
1491
}
1492
1493
struct kmem_cache *ecryptfs_key_tfm_cache;
1494
static struct list_head key_tfm_list;
1495
DEFINE_MUTEX(key_tfm_list_mutex);
1496
1497
int __init ecryptfs_init_crypto(void)
1498
{
1499
INIT_LIST_HEAD(&key_tfm_list);
1500
return 0;
1501
}
1502
1503
/**
1504
* ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1505
*
1506
* Called only at module unload time
1507
*/
1508
int ecryptfs_destroy_crypto(void)
1509
{
1510
struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1511
1512
mutex_lock(&key_tfm_list_mutex);
1513
list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1514
key_tfm_list) {
1515
list_del(&key_tfm->key_tfm_list);
1516
crypto_free_skcipher(key_tfm->key_tfm);
1517
kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1518
}
1519
mutex_unlock(&key_tfm_list_mutex);
1520
return 0;
1521
}
1522
1523
int
1524
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1525
size_t key_size)
1526
{
1527
struct ecryptfs_key_tfm *tmp_tfm;
1528
int rc = 0;
1529
1530
BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1531
1532
tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1533
if (key_tfm)
1534
(*key_tfm) = tmp_tfm;
1535
if (!tmp_tfm) {
1536
rc = -ENOMEM;
1537
goto out;
1538
}
1539
mutex_init(&tmp_tfm->key_tfm_mutex);
1540
strscpy(tmp_tfm->cipher_name, cipher_name);
1541
tmp_tfm->key_size = key_size;
1542
rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1543
tmp_tfm->cipher_name,
1544
&tmp_tfm->key_size);
1545
if (rc) {
1546
printk(KERN_ERR "Error attempting to initialize key TFM "
1547
"cipher with name = [%s]; rc = [%d]\n",
1548
tmp_tfm->cipher_name, rc);
1549
kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1550
if (key_tfm)
1551
(*key_tfm) = NULL;
1552
goto out;
1553
}
1554
list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1555
out:
1556
return rc;
1557
}
1558
1559
/**
1560
* ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1561
* @cipher_name: the name of the cipher to search for
1562
* @key_tfm: set to corresponding tfm if found
1563
*
1564
* Searches for cached key_tfm matching @cipher_name
1565
* Must be called with &key_tfm_list_mutex held
1566
* Returns 1 if found, with @key_tfm set
1567
* Returns 0 if not found, with @key_tfm set to NULL
1568
*/
1569
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1570
{
1571
struct ecryptfs_key_tfm *tmp_key_tfm;
1572
1573
BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1574
1575
list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1576
if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1577
if (key_tfm)
1578
(*key_tfm) = tmp_key_tfm;
1579
return 1;
1580
}
1581
}
1582
if (key_tfm)
1583
(*key_tfm) = NULL;
1584
return 0;
1585
}
1586
1587
/**
1588
* ecryptfs_get_tfm_and_mutex_for_cipher_name
1589
*
1590
* @tfm: set to cached tfm found, or new tfm created
1591
* @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1592
* @cipher_name: the name of the cipher to search for and/or add
1593
*
1594
* Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1595
* Searches for cached item first, and creates new if not found.
1596
* Returns 0 on success, non-zero if adding new cipher failed
1597
*/
1598
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1599
struct mutex **tfm_mutex,
1600
char *cipher_name)
1601
{
1602
struct ecryptfs_key_tfm *key_tfm;
1603
int rc = 0;
1604
1605
(*tfm) = NULL;
1606
(*tfm_mutex) = NULL;
1607
1608
mutex_lock(&key_tfm_list_mutex);
1609
if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1610
rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1611
if (rc) {
1612
printk(KERN_ERR "Error adding new key_tfm to list; "
1613
"rc = [%d]\n", rc);
1614
goto out;
1615
}
1616
}
1617
(*tfm) = key_tfm->key_tfm;
1618
(*tfm_mutex) = &key_tfm->key_tfm_mutex;
1619
out:
1620
mutex_unlock(&key_tfm_list_mutex);
1621
return rc;
1622
}
1623
1624
/* 64 characters forming a 6-bit target field */
1625
static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1626
"EFGHIJKLMNOPQRST"
1627
"UVWXYZabcdefghij"
1628
"klmnopqrstuvwxyz");
1629
1630
/* We could either offset on every reverse map or just pad some 0x00's
1631
* at the front here */
1632
static const unsigned char filename_rev_map[256] = {
1633
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1634
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1635
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1636
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1637
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1638
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1639
0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1640
0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1641
0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1642
0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1643
0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1644
0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1645
0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1646
0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1647
0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1648
0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1649
};
1650
1651
/**
1652
* ecryptfs_encode_for_filename
1653
* @dst: Destination location for encoded filename
1654
* @dst_size: Size of the encoded filename in bytes
1655
* @src: Source location for the filename to encode
1656
* @src_size: Size of the source in bytes
1657
*/
1658
static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1659
unsigned char *src, size_t src_size)
1660
{
1661
size_t num_blocks;
1662
size_t block_num = 0;
1663
size_t dst_offset = 0;
1664
unsigned char last_block[3];
1665
1666
if (src_size == 0) {
1667
(*dst_size) = 0;
1668
goto out;
1669
}
1670
num_blocks = (src_size / 3);
1671
if ((src_size % 3) == 0) {
1672
memcpy(last_block, (&src[src_size - 3]), 3);
1673
} else {
1674
num_blocks++;
1675
last_block[2] = 0x00;
1676
switch (src_size % 3) {
1677
case 1:
1678
last_block[0] = src[src_size - 1];
1679
last_block[1] = 0x00;
1680
break;
1681
case 2:
1682
last_block[0] = src[src_size - 2];
1683
last_block[1] = src[src_size - 1];
1684
}
1685
}
1686
(*dst_size) = (num_blocks * 4);
1687
if (!dst)
1688
goto out;
1689
while (block_num < num_blocks) {
1690
unsigned char *src_block;
1691
unsigned char dst_block[4];
1692
1693
if (block_num == (num_blocks - 1))
1694
src_block = last_block;
1695
else
1696
src_block = &src[block_num * 3];
1697
dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1698
dst_block[1] = (((src_block[0] << 4) & 0x30)
1699
| ((src_block[1] >> 4) & 0x0F));
1700
dst_block[2] = (((src_block[1] << 2) & 0x3C)
1701
| ((src_block[2] >> 6) & 0x03));
1702
dst_block[3] = (src_block[2] & 0x3F);
1703
dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1704
dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1705
dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1706
dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1707
block_num++;
1708
}
1709
out:
1710
return;
1711
}
1712
1713
static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1714
{
1715
/* Not exact; conservatively long. Every block of 4
1716
* encoded characters decodes into a block of 3
1717
* decoded characters. This segment of code provides
1718
* the caller with the maximum amount of allocated
1719
* space that @dst will need to point to in a
1720
* subsequent call. */
1721
return ((encoded_size + 1) * 3) / 4;
1722
}
1723
1724
/**
1725
* ecryptfs_decode_from_filename
1726
* @dst: If NULL, this function only sets @dst_size and returns. If
1727
* non-NULL, this function decodes the encoded octets in @src
1728
* into the memory that @dst points to.
1729
* @dst_size: Set to the size of the decoded string.
1730
* @src: The encoded set of octets to decode.
1731
* @src_size: The size of the encoded set of octets to decode.
1732
*/
1733
static void
1734
ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1735
const unsigned char *src, size_t src_size)
1736
{
1737
u8 current_bit_offset = 0;
1738
size_t src_byte_offset = 0;
1739
size_t dst_byte_offset = 0;
1740
1741
if (!dst) {
1742
(*dst_size) = ecryptfs_max_decoded_size(src_size);
1743
goto out;
1744
}
1745
while (src_byte_offset < src_size) {
1746
unsigned char src_byte =
1747
filename_rev_map[(int)src[src_byte_offset]];
1748
1749
switch (current_bit_offset) {
1750
case 0:
1751
dst[dst_byte_offset] = (src_byte << 2);
1752
current_bit_offset = 6;
1753
break;
1754
case 6:
1755
dst[dst_byte_offset++] |= (src_byte >> 4);
1756
dst[dst_byte_offset] = ((src_byte & 0xF)
1757
<< 4);
1758
current_bit_offset = 4;
1759
break;
1760
case 4:
1761
dst[dst_byte_offset++] |= (src_byte >> 2);
1762
dst[dst_byte_offset] = (src_byte << 6);
1763
current_bit_offset = 2;
1764
break;
1765
case 2:
1766
dst[dst_byte_offset++] |= (src_byte);
1767
current_bit_offset = 0;
1768
break;
1769
}
1770
src_byte_offset++;
1771
}
1772
(*dst_size) = dst_byte_offset;
1773
out:
1774
return;
1775
}
1776
1777
/**
1778
* ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1779
* @encoded_name: The encrypted name
1780
* @encoded_name_size: Length of the encrypted name
1781
* @mount_crypt_stat: The crypt_stat struct associated with the file name to encode
1782
* @name: The plaintext name
1783
* @name_size: The length of the plaintext name
1784
*
1785
* Encrypts and encodes a filename into something that constitutes a
1786
* valid filename for a filesystem, with printable characters.
1787
*
1788
* We assume that we have a properly initialized crypto context,
1789
* pointed to by crypt_stat->tfm.
1790
*
1791
* Returns zero on success; non-zero on otherwise
1792
*/
1793
int ecryptfs_encrypt_and_encode_filename(
1794
char **encoded_name,
1795
size_t *encoded_name_size,
1796
struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1797
const char *name, size_t name_size)
1798
{
1799
size_t encoded_name_no_prefix_size;
1800
int rc = 0;
1801
1802
(*encoded_name) = NULL;
1803
(*encoded_name_size) = 0;
1804
if (mount_crypt_stat && (mount_crypt_stat->flags
1805
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1806
struct ecryptfs_filename *filename;
1807
1808
filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1809
if (!filename) {
1810
rc = -ENOMEM;
1811
goto out;
1812
}
1813
filename->filename = (char *)name;
1814
filename->filename_size = name_size;
1815
rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1816
if (rc) {
1817
printk(KERN_ERR "%s: Error attempting to encrypt "
1818
"filename; rc = [%d]\n", __func__, rc);
1819
kfree(filename);
1820
goto out;
1821
}
1822
ecryptfs_encode_for_filename(
1823
NULL, &encoded_name_no_prefix_size,
1824
filename->encrypted_filename,
1825
filename->encrypted_filename_size);
1826
if (mount_crypt_stat
1827
&& (mount_crypt_stat->flags
1828
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1829
(*encoded_name_size) =
1830
(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1831
+ encoded_name_no_prefix_size);
1832
else
1833
(*encoded_name_size) =
1834
(ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1835
+ encoded_name_no_prefix_size);
1836
(*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1837
if (!(*encoded_name)) {
1838
rc = -ENOMEM;
1839
kfree(filename->encrypted_filename);
1840
kfree(filename);
1841
goto out;
1842
}
1843
if (mount_crypt_stat
1844
&& (mount_crypt_stat->flags
1845
& ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1846
memcpy((*encoded_name),
1847
ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1848
ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1849
ecryptfs_encode_for_filename(
1850
((*encoded_name)
1851
+ ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1852
&encoded_name_no_prefix_size,
1853
filename->encrypted_filename,
1854
filename->encrypted_filename_size);
1855
(*encoded_name_size) =
1856
(ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1857
+ encoded_name_no_prefix_size);
1858
(*encoded_name)[(*encoded_name_size)] = '\0';
1859
} else {
1860
rc = -EOPNOTSUPP;
1861
}
1862
if (rc) {
1863
printk(KERN_ERR "%s: Error attempting to encode "
1864
"encrypted filename; rc = [%d]\n", __func__,
1865
rc);
1866
kfree((*encoded_name));
1867
(*encoded_name) = NULL;
1868
(*encoded_name_size) = 0;
1869
}
1870
kfree(filename->encrypted_filename);
1871
kfree(filename);
1872
} else {
1873
rc = ecryptfs_copy_filename(encoded_name,
1874
encoded_name_size,
1875
name, name_size);
1876
}
1877
out:
1878
return rc;
1879
}
1880
1881
/**
1882
* ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1883
* @plaintext_name: The plaintext name
1884
* @plaintext_name_size: The plaintext name size
1885
* @sb: Ecryptfs's super_block
1886
* @name: The filename in cipher text
1887
* @name_size: The cipher text name size
1888
*
1889
* Decrypts and decodes the filename.
1890
*
1891
* Returns zero on error; non-zero otherwise
1892
*/
1893
int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
1894
size_t *plaintext_name_size,
1895
struct super_block *sb,
1896
const char *name, size_t name_size)
1897
{
1898
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1899
&ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
1900
char *decoded_name;
1901
size_t decoded_name_size;
1902
size_t packet_size;
1903
int rc = 0;
1904
1905
if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
1906
!(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
1907
if (is_dot_dotdot(name, name_size)) {
1908
rc = ecryptfs_copy_filename(plaintext_name,
1909
plaintext_name_size,
1910
name, name_size);
1911
goto out;
1912
}
1913
1914
if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
1915
strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1916
ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
1917
rc = -EINVAL;
1918
goto out;
1919
}
1920
1921
name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1922
name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1923
ecryptfs_decode_from_filename(NULL, &decoded_name_size,
1924
name, name_size);
1925
decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
1926
if (!decoded_name) {
1927
rc = -ENOMEM;
1928
goto out;
1929
}
1930
ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
1931
name, name_size);
1932
rc = ecryptfs_parse_tag_70_packet(plaintext_name,
1933
plaintext_name_size,
1934
&packet_size,
1935
mount_crypt_stat,
1936
decoded_name,
1937
decoded_name_size);
1938
if (rc) {
1939
ecryptfs_printk(KERN_DEBUG,
1940
"%s: Could not parse tag 70 packet from filename\n",
1941
__func__);
1942
goto out_free;
1943
}
1944
} else {
1945
rc = ecryptfs_copy_filename(plaintext_name,
1946
plaintext_name_size,
1947
name, name_size);
1948
goto out;
1949
}
1950
out_free:
1951
kfree(decoded_name);
1952
out:
1953
return rc;
1954
}
1955
1956
#define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
1957
1958
int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
1959
struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1960
{
1961
struct crypto_skcipher *tfm;
1962
struct mutex *tfm_mutex;
1963
size_t cipher_blocksize;
1964
int rc;
1965
1966
if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1967
(*namelen) = lower_namelen;
1968
return 0;
1969
}
1970
1971
rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1972
mount_crypt_stat->global_default_fn_cipher_name);
1973
if (unlikely(rc)) {
1974
(*namelen) = 0;
1975
return rc;
1976
}
1977
1978
mutex_lock(tfm_mutex);
1979
cipher_blocksize = crypto_skcipher_blocksize(tfm);
1980
mutex_unlock(tfm_mutex);
1981
1982
/* Return an exact amount for the common cases */
1983
if (lower_namelen == NAME_MAX
1984
&& (cipher_blocksize == 8 || cipher_blocksize == 16)) {
1985
(*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
1986
return 0;
1987
}
1988
1989
/* Return a safe estimate for the uncommon cases */
1990
(*namelen) = lower_namelen;
1991
(*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
1992
/* Since this is the max decoded size, subtract 1 "decoded block" len */
1993
(*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
1994
(*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
1995
(*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
1996
/* Worst case is that the filename is padded nearly a full block size */
1997
(*namelen) -= cipher_blocksize - 1;
1998
1999
if ((*namelen) < 0)
2000
(*namelen) = 0;
2001
2002
return 0;
2003
}
2004
2005