Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/ecryptfs/keystore.c
26278 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* eCryptfs: Linux filesystem encryption layer
4
* In-kernel key management code. Includes functions to parse and
5
* write authentication token-related packets with the underlying
6
* file.
7
*
8
* Copyright (C) 2004-2006 International Business Machines Corp.
9
* Author(s): Michael A. Halcrow <[email protected]>
10
* Michael C. Thompson <[email protected]>
11
* Trevor S. Highland <[email protected]>
12
*/
13
14
#include <crypto/hash.h>
15
#include <crypto/skcipher.h>
16
#include <linux/string.h>
17
#include <linux/pagemap.h>
18
#include <linux/key.h>
19
#include <linux/random.h>
20
#include <linux/scatterlist.h>
21
#include <linux/slab.h>
22
#include "ecryptfs_kernel.h"
23
24
/*
25
* request_key returned an error instead of a valid key address;
26
* determine the type of error, make appropriate log entries, and
27
* return an error code.
28
*/
29
static int process_request_key_err(long err_code)
30
{
31
int rc = 0;
32
33
switch (err_code) {
34
case -ENOKEY:
35
ecryptfs_printk(KERN_WARNING, "No key\n");
36
rc = -ENOENT;
37
break;
38
case -EKEYEXPIRED:
39
ecryptfs_printk(KERN_WARNING, "Key expired\n");
40
rc = -ETIME;
41
break;
42
case -EKEYREVOKED:
43
ecryptfs_printk(KERN_WARNING, "Key revoked\n");
44
rc = -EINVAL;
45
break;
46
default:
47
ecryptfs_printk(KERN_WARNING, "Unknown error code: "
48
"[0x%.16lx]\n", err_code);
49
rc = -EINVAL;
50
}
51
return rc;
52
}
53
54
static int process_find_global_auth_tok_for_sig_err(int err_code)
55
{
56
int rc = err_code;
57
58
switch (err_code) {
59
case -ENOENT:
60
ecryptfs_printk(KERN_WARNING, "Missing auth tok\n");
61
break;
62
case -EINVAL:
63
ecryptfs_printk(KERN_WARNING, "Invalid auth tok\n");
64
break;
65
default:
66
rc = process_request_key_err(err_code);
67
break;
68
}
69
return rc;
70
}
71
72
/**
73
* ecryptfs_parse_packet_length
74
* @data: Pointer to memory containing length at offset
75
* @size: This function writes the decoded size to this memory
76
* address; zero on error
77
* @length_size: The number of bytes occupied by the encoded length
78
*
79
* Returns zero on success; non-zero on error
80
*/
81
int ecryptfs_parse_packet_length(unsigned char *data, size_t *size,
82
size_t *length_size)
83
{
84
int rc = 0;
85
86
(*length_size) = 0;
87
(*size) = 0;
88
if (data[0] < 192) {
89
/* One-byte length */
90
(*size) = data[0];
91
(*length_size) = 1;
92
} else if (data[0] < 224) {
93
/* Two-byte length */
94
(*size) = (data[0] - 192) * 256;
95
(*size) += data[1] + 192;
96
(*length_size) = 2;
97
} else if (data[0] == 255) {
98
/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
99
ecryptfs_printk(KERN_ERR, "Five-byte packet length not "
100
"supported\n");
101
rc = -EINVAL;
102
goto out;
103
} else {
104
ecryptfs_printk(KERN_ERR, "Error parsing packet length\n");
105
rc = -EINVAL;
106
goto out;
107
}
108
out:
109
return rc;
110
}
111
112
/**
113
* ecryptfs_write_packet_length
114
* @dest: The byte array target into which to write the length. Must
115
* have at least ECRYPTFS_MAX_PKT_LEN_SIZE bytes allocated.
116
* @size: The length to write.
117
* @packet_size_length: The number of bytes used to encode the packet
118
* length is written to this address.
119
*
120
* Returns zero on success; non-zero on error.
121
*/
122
int ecryptfs_write_packet_length(char *dest, size_t size,
123
size_t *packet_size_length)
124
{
125
int rc = 0;
126
127
if (size < 192) {
128
dest[0] = size;
129
(*packet_size_length) = 1;
130
} else if (size < 65536) {
131
dest[0] = (((size - 192) / 256) + 192);
132
dest[1] = ((size - 192) % 256);
133
(*packet_size_length) = 2;
134
} else {
135
/* If support is added, adjust ECRYPTFS_MAX_PKT_LEN_SIZE */
136
rc = -EINVAL;
137
ecryptfs_printk(KERN_WARNING,
138
"Unsupported packet size: [%zd]\n", size);
139
}
140
return rc;
141
}
142
143
static int
144
write_tag_64_packet(char *signature, struct ecryptfs_session_key *session_key,
145
char **packet, size_t *packet_len)
146
{
147
size_t i = 0;
148
size_t data_len;
149
size_t packet_size_len;
150
char *message;
151
int rc;
152
153
/*
154
* ***** TAG 64 Packet Format *****
155
* | Content Type | 1 byte |
156
* | Key Identifier Size | 1 or 2 bytes |
157
* | Key Identifier | arbitrary |
158
* | Encrypted File Encryption Key Size | 1 or 2 bytes |
159
* | Encrypted File Encryption Key | arbitrary |
160
*/
161
data_len = (5 + ECRYPTFS_SIG_SIZE_HEX
162
+ session_key->encrypted_key_size);
163
*packet = kmalloc(data_len, GFP_KERNEL);
164
message = *packet;
165
if (!message) {
166
ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
167
rc = -ENOMEM;
168
goto out;
169
}
170
message[i++] = ECRYPTFS_TAG_64_PACKET_TYPE;
171
rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
172
&packet_size_len);
173
if (rc) {
174
ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
175
"header; cannot generate packet length\n");
176
goto out;
177
}
178
i += packet_size_len;
179
memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
180
i += ECRYPTFS_SIG_SIZE_HEX;
181
rc = ecryptfs_write_packet_length(&message[i],
182
session_key->encrypted_key_size,
183
&packet_size_len);
184
if (rc) {
185
ecryptfs_printk(KERN_ERR, "Error generating tag 64 packet "
186
"header; cannot generate packet length\n");
187
goto out;
188
}
189
i += packet_size_len;
190
memcpy(&message[i], session_key->encrypted_key,
191
session_key->encrypted_key_size);
192
i += session_key->encrypted_key_size;
193
*packet_len = i;
194
out:
195
return rc;
196
}
197
198
static int
199
parse_tag_65_packet(struct ecryptfs_session_key *session_key, u8 *cipher_code,
200
struct ecryptfs_message *msg)
201
{
202
size_t i = 0;
203
char *data;
204
size_t data_len;
205
size_t m_size;
206
size_t message_len;
207
u16 checksum = 0;
208
u16 expected_checksum = 0;
209
int rc;
210
211
/*
212
* ***** TAG 65 Packet Format *****
213
* | Content Type | 1 byte |
214
* | Status Indicator | 1 byte |
215
* | File Encryption Key Size | 1 or 2 bytes |
216
* | File Encryption Key | arbitrary |
217
*/
218
message_len = msg->data_len;
219
data = msg->data;
220
if (message_len < 4) {
221
rc = -EIO;
222
goto out;
223
}
224
if (data[i++] != ECRYPTFS_TAG_65_PACKET_TYPE) {
225
ecryptfs_printk(KERN_ERR, "Type should be ECRYPTFS_TAG_65\n");
226
rc = -EIO;
227
goto out;
228
}
229
if (data[i++]) {
230
ecryptfs_printk(KERN_ERR, "Status indicator has non-zero value "
231
"[%d]\n", data[i-1]);
232
rc = -EIO;
233
goto out;
234
}
235
rc = ecryptfs_parse_packet_length(&data[i], &m_size, &data_len);
236
if (rc) {
237
ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
238
"rc = [%d]\n", rc);
239
goto out;
240
}
241
i += data_len;
242
if (message_len < (i + m_size)) {
243
ecryptfs_printk(KERN_ERR, "The message received from ecryptfsd "
244
"is shorter than expected\n");
245
rc = -EIO;
246
goto out;
247
}
248
if (m_size < 3) {
249
ecryptfs_printk(KERN_ERR,
250
"The decrypted key is not long enough to "
251
"include a cipher code and checksum\n");
252
rc = -EIO;
253
goto out;
254
}
255
*cipher_code = data[i++];
256
/* The decrypted key includes 1 byte cipher code and 2 byte checksum */
257
session_key->decrypted_key_size = m_size - 3;
258
if (session_key->decrypted_key_size > ECRYPTFS_MAX_KEY_BYTES) {
259
ecryptfs_printk(KERN_ERR, "key_size [%d] larger than "
260
"the maximum key size [%d]\n",
261
session_key->decrypted_key_size,
262
ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
263
rc = -EIO;
264
goto out;
265
}
266
memcpy(session_key->decrypted_key, &data[i],
267
session_key->decrypted_key_size);
268
i += session_key->decrypted_key_size;
269
expected_checksum += (unsigned char)(data[i++]) << 8;
270
expected_checksum += (unsigned char)(data[i++]);
271
for (i = 0; i < session_key->decrypted_key_size; i++)
272
checksum += session_key->decrypted_key[i];
273
if (expected_checksum != checksum) {
274
ecryptfs_printk(KERN_ERR, "Invalid checksum for file "
275
"encryption key; expected [%x]; calculated "
276
"[%x]\n", expected_checksum, checksum);
277
rc = -EIO;
278
}
279
out:
280
return rc;
281
}
282
283
284
static int
285
write_tag_66_packet(char *signature, u8 cipher_code,
286
struct ecryptfs_crypt_stat *crypt_stat, char **packet,
287
size_t *packet_len)
288
{
289
size_t i = 0;
290
size_t j;
291
size_t data_len;
292
size_t checksum = 0;
293
size_t packet_size_len;
294
char *message;
295
int rc;
296
297
/*
298
* ***** TAG 66 Packet Format *****
299
* | Content Type | 1 byte |
300
* | Key Identifier Size | 1 or 2 bytes |
301
* | Key Identifier | arbitrary |
302
* | File Encryption Key Size | 1 or 2 bytes |
303
* | Cipher Code | 1 byte |
304
* | File Encryption Key | arbitrary |
305
* | Checksum | 2 bytes |
306
*/
307
data_len = (8 + ECRYPTFS_SIG_SIZE_HEX + crypt_stat->key_size);
308
*packet = kmalloc(data_len, GFP_KERNEL);
309
message = *packet;
310
if (!message) {
311
ecryptfs_printk(KERN_ERR, "Unable to allocate memory\n");
312
rc = -ENOMEM;
313
goto out;
314
}
315
message[i++] = ECRYPTFS_TAG_66_PACKET_TYPE;
316
rc = ecryptfs_write_packet_length(&message[i], ECRYPTFS_SIG_SIZE_HEX,
317
&packet_size_len);
318
if (rc) {
319
ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
320
"header; cannot generate packet length\n");
321
goto out;
322
}
323
i += packet_size_len;
324
memcpy(&message[i], signature, ECRYPTFS_SIG_SIZE_HEX);
325
i += ECRYPTFS_SIG_SIZE_HEX;
326
/* The encrypted key includes 1 byte cipher code and 2 byte checksum */
327
rc = ecryptfs_write_packet_length(&message[i], crypt_stat->key_size + 3,
328
&packet_size_len);
329
if (rc) {
330
ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet "
331
"header; cannot generate packet length\n");
332
goto out;
333
}
334
i += packet_size_len;
335
message[i++] = cipher_code;
336
memcpy(&message[i], crypt_stat->key, crypt_stat->key_size);
337
i += crypt_stat->key_size;
338
for (j = 0; j < crypt_stat->key_size; j++)
339
checksum += crypt_stat->key[j];
340
message[i++] = (checksum / 256) % 256;
341
message[i++] = (checksum % 256);
342
*packet_len = i;
343
out:
344
return rc;
345
}
346
347
static int
348
parse_tag_67_packet(struct ecryptfs_key_record *key_rec,
349
struct ecryptfs_message *msg)
350
{
351
size_t i = 0;
352
char *data;
353
size_t data_len;
354
size_t message_len;
355
int rc;
356
357
/*
358
* ***** TAG 65 Packet Format *****
359
* | Content Type | 1 byte |
360
* | Status Indicator | 1 byte |
361
* | Encrypted File Encryption Key Size | 1 or 2 bytes |
362
* | Encrypted File Encryption Key | arbitrary |
363
*/
364
message_len = msg->data_len;
365
data = msg->data;
366
/* verify that everything through the encrypted FEK size is present */
367
if (message_len < 4) {
368
rc = -EIO;
369
printk(KERN_ERR "%s: message_len is [%zd]; minimum acceptable "
370
"message length is [%d]\n", __func__, message_len, 4);
371
goto out;
372
}
373
if (data[i++] != ECRYPTFS_TAG_67_PACKET_TYPE) {
374
rc = -EIO;
375
printk(KERN_ERR "%s: Type should be ECRYPTFS_TAG_67\n",
376
__func__);
377
goto out;
378
}
379
if (data[i++]) {
380
rc = -EIO;
381
printk(KERN_ERR "%s: Status indicator has non zero "
382
"value [%d]\n", __func__, data[i-1]);
383
384
goto out;
385
}
386
rc = ecryptfs_parse_packet_length(&data[i], &key_rec->enc_key_size,
387
&data_len);
388
if (rc) {
389
ecryptfs_printk(KERN_WARNING, "Error parsing packet length; "
390
"rc = [%d]\n", rc);
391
goto out;
392
}
393
i += data_len;
394
if (message_len < (i + key_rec->enc_key_size)) {
395
rc = -EIO;
396
printk(KERN_ERR "%s: message_len [%zd]; max len is [%zd]\n",
397
__func__, message_len, (i + key_rec->enc_key_size));
398
goto out;
399
}
400
if (key_rec->enc_key_size > ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
401
rc = -EIO;
402
printk(KERN_ERR "%s: Encrypted key_size [%zd] larger than "
403
"the maximum key size [%d]\n", __func__,
404
key_rec->enc_key_size,
405
ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES);
406
goto out;
407
}
408
memcpy(key_rec->enc_key, &data[i], key_rec->enc_key_size);
409
out:
410
return rc;
411
}
412
413
/**
414
* ecryptfs_verify_version
415
* @version: The version number to confirm
416
*
417
* Returns zero on good version; non-zero otherwise
418
*/
419
static int ecryptfs_verify_version(u16 version)
420
{
421
int rc = 0;
422
unsigned char major;
423
unsigned char minor;
424
425
major = ((version >> 8) & 0xFF);
426
minor = (version & 0xFF);
427
if (major != ECRYPTFS_VERSION_MAJOR) {
428
ecryptfs_printk(KERN_ERR, "Major version number mismatch. "
429
"Expected [%d]; got [%d]\n",
430
ECRYPTFS_VERSION_MAJOR, major);
431
rc = -EINVAL;
432
goto out;
433
}
434
if (minor != ECRYPTFS_VERSION_MINOR) {
435
ecryptfs_printk(KERN_ERR, "Minor version number mismatch. "
436
"Expected [%d]; got [%d]\n",
437
ECRYPTFS_VERSION_MINOR, minor);
438
rc = -EINVAL;
439
goto out;
440
}
441
out:
442
return rc;
443
}
444
445
/**
446
* ecryptfs_verify_auth_tok_from_key
447
* @auth_tok_key: key containing the authentication token
448
* @auth_tok: authentication token
449
*
450
* Returns zero on valid auth tok; -EINVAL if the payload is invalid; or
451
* -EKEYREVOKED if the key was revoked before we acquired its semaphore.
452
*/
453
static int
454
ecryptfs_verify_auth_tok_from_key(struct key *auth_tok_key,
455
struct ecryptfs_auth_tok **auth_tok)
456
{
457
int rc = 0;
458
459
(*auth_tok) = ecryptfs_get_key_payload_data(auth_tok_key);
460
if (IS_ERR(*auth_tok)) {
461
rc = PTR_ERR(*auth_tok);
462
*auth_tok = NULL;
463
goto out;
464
}
465
466
if (ecryptfs_verify_version((*auth_tok)->version)) {
467
printk(KERN_ERR "Data structure version mismatch. Userspace "
468
"tools must match eCryptfs kernel module with major "
469
"version [%d] and minor version [%d]\n",
470
ECRYPTFS_VERSION_MAJOR, ECRYPTFS_VERSION_MINOR);
471
rc = -EINVAL;
472
goto out;
473
}
474
if ((*auth_tok)->token_type != ECRYPTFS_PASSWORD
475
&& (*auth_tok)->token_type != ECRYPTFS_PRIVATE_KEY) {
476
printk(KERN_ERR "Invalid auth_tok structure "
477
"returned from key query\n");
478
rc = -EINVAL;
479
goto out;
480
}
481
out:
482
return rc;
483
}
484
485
static int
486
ecryptfs_find_global_auth_tok_for_sig(
487
struct key **auth_tok_key,
488
struct ecryptfs_auth_tok **auth_tok,
489
struct ecryptfs_mount_crypt_stat *mount_crypt_stat, char *sig)
490
{
491
struct ecryptfs_global_auth_tok *walker;
492
int rc = 0;
493
494
(*auth_tok_key) = NULL;
495
(*auth_tok) = NULL;
496
mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
497
list_for_each_entry(walker,
498
&mount_crypt_stat->global_auth_tok_list,
499
mount_crypt_stat_list) {
500
if (memcmp(walker->sig, sig, ECRYPTFS_SIG_SIZE_HEX))
501
continue;
502
503
if (walker->flags & ECRYPTFS_AUTH_TOK_INVALID) {
504
rc = -EINVAL;
505
goto out;
506
}
507
508
rc = key_validate(walker->global_auth_tok_key);
509
if (rc) {
510
if (rc == -EKEYEXPIRED)
511
goto out;
512
goto out_invalid_auth_tok;
513
}
514
515
down_write(&(walker->global_auth_tok_key->sem));
516
rc = ecryptfs_verify_auth_tok_from_key(
517
walker->global_auth_tok_key, auth_tok);
518
if (rc)
519
goto out_invalid_auth_tok_unlock;
520
521
(*auth_tok_key) = walker->global_auth_tok_key;
522
key_get(*auth_tok_key);
523
goto out;
524
}
525
rc = -ENOENT;
526
goto out;
527
out_invalid_auth_tok_unlock:
528
up_write(&(walker->global_auth_tok_key->sem));
529
out_invalid_auth_tok:
530
printk(KERN_WARNING "Invalidating auth tok with sig = [%s]\n", sig);
531
walker->flags |= ECRYPTFS_AUTH_TOK_INVALID;
532
key_put(walker->global_auth_tok_key);
533
walker->global_auth_tok_key = NULL;
534
out:
535
mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
536
return rc;
537
}
538
539
/**
540
* ecryptfs_find_auth_tok_for_sig
541
* @auth_tok_key: key containing the authentication token
542
* @auth_tok: Set to the matching auth_tok; NULL if not found
543
* @mount_crypt_stat: inode crypt_stat crypto context
544
* @sig: Sig of auth_tok to find
545
*
546
* For now, this function simply looks at the registered auth_tok's
547
* linked off the mount_crypt_stat, so all the auth_toks that can be
548
* used must be registered at mount time. This function could
549
* potentially try a lot harder to find auth_tok's (e.g., by calling
550
* out to ecryptfsd to dynamically retrieve an auth_tok object) so
551
* that static registration of auth_tok's will no longer be necessary.
552
*
553
* Returns zero on no error; non-zero on error
554
*/
555
static int
556
ecryptfs_find_auth_tok_for_sig(
557
struct key **auth_tok_key,
558
struct ecryptfs_auth_tok **auth_tok,
559
struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
560
char *sig)
561
{
562
int rc = 0;
563
564
rc = ecryptfs_find_global_auth_tok_for_sig(auth_tok_key, auth_tok,
565
mount_crypt_stat, sig);
566
if (rc == -ENOENT) {
567
/* if the flag ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY is set in the
568
* mount_crypt_stat structure, we prevent to use auth toks that
569
* are not inserted through the ecryptfs_add_global_auth_tok
570
* function.
571
*/
572
if (mount_crypt_stat->flags
573
& ECRYPTFS_GLOBAL_MOUNT_AUTH_TOK_ONLY)
574
return -EINVAL;
575
576
rc = ecryptfs_keyring_auth_tok_for_sig(auth_tok_key, auth_tok,
577
sig);
578
}
579
return rc;
580
}
581
582
/*
583
* write_tag_70_packet can gobble a lot of stack space. We stuff most
584
* of the function's parameters in a kmalloc'd struct to help reduce
585
* eCryptfs' overall stack usage.
586
*/
587
struct ecryptfs_write_tag_70_packet_silly_stack {
588
u8 cipher_code;
589
size_t max_packet_size;
590
size_t packet_size_len;
591
size_t block_aligned_filename_size;
592
size_t block_size;
593
size_t i;
594
size_t j;
595
size_t num_rand_bytes;
596
struct mutex *tfm_mutex;
597
char *block_aligned_filename;
598
struct ecryptfs_auth_tok *auth_tok;
599
struct scatterlist src_sg[2];
600
struct scatterlist dst_sg[2];
601
struct crypto_skcipher *skcipher_tfm;
602
struct skcipher_request *skcipher_req;
603
char iv[ECRYPTFS_MAX_IV_BYTES];
604
char hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
605
char tmp_hash[ECRYPTFS_TAG_70_DIGEST_SIZE];
606
struct crypto_shash *hash_tfm;
607
struct shash_desc *hash_desc;
608
};
609
610
/*
611
* write_tag_70_packet - Write encrypted filename (EFN) packet against FNEK
612
* @filename: NULL-terminated filename string
613
*
614
* This is the simplest mechanism for achieving filename encryption in
615
* eCryptfs. It encrypts the given filename with the mount-wide
616
* filename encryption key (FNEK) and stores it in a packet to @dest,
617
* which the callee will encode and write directly into the dentry
618
* name.
619
*/
620
int
621
ecryptfs_write_tag_70_packet(char *dest, size_t *remaining_bytes,
622
size_t *packet_size,
623
struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
624
char *filename, size_t filename_size)
625
{
626
struct ecryptfs_write_tag_70_packet_silly_stack *s;
627
struct key *auth_tok_key = NULL;
628
int rc = 0;
629
630
s = kzalloc(sizeof(*s), GFP_KERNEL);
631
if (!s)
632
return -ENOMEM;
633
634
(*packet_size) = 0;
635
rc = ecryptfs_find_auth_tok_for_sig(
636
&auth_tok_key,
637
&s->auth_tok, mount_crypt_stat,
638
mount_crypt_stat->global_default_fnek_sig);
639
if (rc) {
640
printk(KERN_ERR "%s: Error attempting to find auth tok for "
641
"fnek sig [%s]; rc = [%d]\n", __func__,
642
mount_crypt_stat->global_default_fnek_sig, rc);
643
goto out;
644
}
645
rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(
646
&s->skcipher_tfm,
647
&s->tfm_mutex, mount_crypt_stat->global_default_fn_cipher_name);
648
if (unlikely(rc)) {
649
printk(KERN_ERR "Internal error whilst attempting to get "
650
"tfm and mutex for cipher name [%s]; rc = [%d]\n",
651
mount_crypt_stat->global_default_fn_cipher_name, rc);
652
goto out;
653
}
654
mutex_lock(s->tfm_mutex);
655
s->block_size = crypto_skcipher_blocksize(s->skcipher_tfm);
656
/* Plus one for the \0 separator between the random prefix
657
* and the plaintext filename */
658
s->num_rand_bytes = (ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES + 1);
659
s->block_aligned_filename_size = (s->num_rand_bytes + filename_size);
660
if ((s->block_aligned_filename_size % s->block_size) != 0) {
661
s->num_rand_bytes += (s->block_size
662
- (s->block_aligned_filename_size
663
% s->block_size));
664
s->block_aligned_filename_size = (s->num_rand_bytes
665
+ filename_size);
666
}
667
/* Octet 0: Tag 70 identifier
668
* Octets 1-N1: Tag 70 packet size (includes cipher identifier
669
* and block-aligned encrypted filename size)
670
* Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
671
* Octet N2-N3: Cipher identifier (1 octet)
672
* Octets N3-N4: Block-aligned encrypted filename
673
* - Consists of a minimum number of random characters, a \0
674
* separator, and then the filename */
675
s->max_packet_size = (ECRYPTFS_TAG_70_MAX_METADATA_SIZE
676
+ s->block_aligned_filename_size);
677
if (!dest) {
678
(*packet_size) = s->max_packet_size;
679
goto out_unlock;
680
}
681
if (s->max_packet_size > (*remaining_bytes)) {
682
printk(KERN_WARNING "%s: Require [%zd] bytes to write; only "
683
"[%zd] available\n", __func__, s->max_packet_size,
684
(*remaining_bytes));
685
rc = -EINVAL;
686
goto out_unlock;
687
}
688
689
s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
690
if (!s->skcipher_req) {
691
printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
692
"skcipher_request_alloc for %s\n", __func__,
693
crypto_skcipher_driver_name(s->skcipher_tfm));
694
rc = -ENOMEM;
695
goto out_unlock;
696
}
697
698
skcipher_request_set_callback(s->skcipher_req,
699
CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
700
701
s->block_aligned_filename = kzalloc(s->block_aligned_filename_size,
702
GFP_KERNEL);
703
if (!s->block_aligned_filename) {
704
rc = -ENOMEM;
705
goto out_unlock;
706
}
707
dest[s->i++] = ECRYPTFS_TAG_70_PACKET_TYPE;
708
rc = ecryptfs_write_packet_length(&dest[s->i],
709
(ECRYPTFS_SIG_SIZE
710
+ 1 /* Cipher code */
711
+ s->block_aligned_filename_size),
712
&s->packet_size_len);
713
if (rc) {
714
printk(KERN_ERR "%s: Error generating tag 70 packet "
715
"header; cannot generate packet length; rc = [%d]\n",
716
__func__, rc);
717
goto out_free_unlock;
718
}
719
s->i += s->packet_size_len;
720
ecryptfs_from_hex(&dest[s->i],
721
mount_crypt_stat->global_default_fnek_sig,
722
ECRYPTFS_SIG_SIZE);
723
s->i += ECRYPTFS_SIG_SIZE;
724
s->cipher_code = ecryptfs_code_for_cipher_string(
725
mount_crypt_stat->global_default_fn_cipher_name,
726
mount_crypt_stat->global_default_fn_cipher_key_bytes);
727
if (s->cipher_code == 0) {
728
printk(KERN_WARNING "%s: Unable to generate code for "
729
"cipher [%s] with key bytes [%zd]\n", __func__,
730
mount_crypt_stat->global_default_fn_cipher_name,
731
mount_crypt_stat->global_default_fn_cipher_key_bytes);
732
rc = -EINVAL;
733
goto out_free_unlock;
734
}
735
dest[s->i++] = s->cipher_code;
736
/* TODO: Support other key modules than passphrase for
737
* filename encryption */
738
if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
739
rc = -EOPNOTSUPP;
740
printk(KERN_INFO "%s: Filename encryption only supports "
741
"password tokens\n", __func__);
742
goto out_free_unlock;
743
}
744
s->hash_tfm = crypto_alloc_shash(ECRYPTFS_TAG_70_DIGEST, 0, 0);
745
if (IS_ERR(s->hash_tfm)) {
746
rc = PTR_ERR(s->hash_tfm);
747
printk(KERN_ERR "%s: Error attempting to "
748
"allocate hash crypto context; rc = [%d]\n",
749
__func__, rc);
750
goto out_free_unlock;
751
}
752
753
s->hash_desc = kmalloc(sizeof(*s->hash_desc) +
754
crypto_shash_descsize(s->hash_tfm), GFP_KERNEL);
755
if (!s->hash_desc) {
756
rc = -ENOMEM;
757
goto out_release_free_unlock;
758
}
759
760
s->hash_desc->tfm = s->hash_tfm;
761
762
rc = crypto_shash_digest(s->hash_desc,
763
(u8 *)s->auth_tok->token.password.session_key_encryption_key,
764
s->auth_tok->token.password.session_key_encryption_key_bytes,
765
s->hash);
766
if (rc) {
767
printk(KERN_ERR
768
"%s: Error computing crypto hash; rc = [%d]\n",
769
__func__, rc);
770
goto out_release_free_unlock;
771
}
772
for (s->j = 0; s->j < (s->num_rand_bytes - 1); s->j++) {
773
s->block_aligned_filename[s->j] =
774
s->hash[(s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)];
775
if ((s->j % ECRYPTFS_TAG_70_DIGEST_SIZE)
776
== (ECRYPTFS_TAG_70_DIGEST_SIZE - 1)) {
777
rc = crypto_shash_digest(s->hash_desc, (u8 *)s->hash,
778
ECRYPTFS_TAG_70_DIGEST_SIZE,
779
s->tmp_hash);
780
if (rc) {
781
printk(KERN_ERR
782
"%s: Error computing crypto hash; "
783
"rc = [%d]\n", __func__, rc);
784
goto out_release_free_unlock;
785
}
786
memcpy(s->hash, s->tmp_hash,
787
ECRYPTFS_TAG_70_DIGEST_SIZE);
788
}
789
if (s->block_aligned_filename[s->j] == '\0')
790
s->block_aligned_filename[s->j] = ECRYPTFS_NON_NULL;
791
}
792
memcpy(&s->block_aligned_filename[s->num_rand_bytes], filename,
793
filename_size);
794
rc = virt_to_scatterlist(s->block_aligned_filename,
795
s->block_aligned_filename_size, s->src_sg, 2);
796
if (rc < 1) {
797
printk(KERN_ERR "%s: Internal error whilst attempting to "
798
"convert filename memory to scatterlist; rc = [%d]. "
799
"block_aligned_filename_size = [%zd]\n", __func__, rc,
800
s->block_aligned_filename_size);
801
goto out_release_free_unlock;
802
}
803
rc = virt_to_scatterlist(&dest[s->i], s->block_aligned_filename_size,
804
s->dst_sg, 2);
805
if (rc < 1) {
806
printk(KERN_ERR "%s: Internal error whilst attempting to "
807
"convert encrypted filename memory to scatterlist; "
808
"rc = [%d]. block_aligned_filename_size = [%zd]\n",
809
__func__, rc, s->block_aligned_filename_size);
810
goto out_release_free_unlock;
811
}
812
/* The characters in the first block effectively do the job
813
* of the IV here, so we just use 0's for the IV. Note the
814
* constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
815
* >= ECRYPTFS_MAX_IV_BYTES. */
816
rc = crypto_skcipher_setkey(
817
s->skcipher_tfm,
818
s->auth_tok->token.password.session_key_encryption_key,
819
mount_crypt_stat->global_default_fn_cipher_key_bytes);
820
if (rc < 0) {
821
printk(KERN_ERR "%s: Error setting key for crypto context; "
822
"rc = [%d]. s->auth_tok->token.password.session_key_"
823
"encryption_key = [0x%p]; mount_crypt_stat->"
824
"global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
825
rc,
826
s->auth_tok->token.password.session_key_encryption_key,
827
mount_crypt_stat->global_default_fn_cipher_key_bytes);
828
goto out_release_free_unlock;
829
}
830
skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
831
s->block_aligned_filename_size, s->iv);
832
rc = crypto_skcipher_encrypt(s->skcipher_req);
833
if (rc) {
834
printk(KERN_ERR "%s: Error attempting to encrypt filename; "
835
"rc = [%d]\n", __func__, rc);
836
goto out_release_free_unlock;
837
}
838
s->i += s->block_aligned_filename_size;
839
(*packet_size) = s->i;
840
(*remaining_bytes) -= (*packet_size);
841
out_release_free_unlock:
842
crypto_free_shash(s->hash_tfm);
843
out_free_unlock:
844
kfree_sensitive(s->block_aligned_filename);
845
out_unlock:
846
mutex_unlock(s->tfm_mutex);
847
out:
848
if (auth_tok_key) {
849
up_write(&(auth_tok_key->sem));
850
key_put(auth_tok_key);
851
}
852
skcipher_request_free(s->skcipher_req);
853
kfree_sensitive(s->hash_desc);
854
kfree(s);
855
return rc;
856
}
857
858
struct ecryptfs_parse_tag_70_packet_silly_stack {
859
u8 cipher_code;
860
size_t max_packet_size;
861
size_t packet_size_len;
862
size_t parsed_tag_70_packet_size;
863
size_t block_aligned_filename_size;
864
size_t block_size;
865
size_t i;
866
struct mutex *tfm_mutex;
867
char *decrypted_filename;
868
struct ecryptfs_auth_tok *auth_tok;
869
struct scatterlist src_sg[2];
870
struct scatterlist dst_sg[2];
871
struct crypto_skcipher *skcipher_tfm;
872
struct skcipher_request *skcipher_req;
873
char fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX + 1];
874
char iv[ECRYPTFS_MAX_IV_BYTES];
875
char cipher_string[ECRYPTFS_MAX_CIPHER_NAME_SIZE + 1];
876
};
877
878
/**
879
* ecryptfs_parse_tag_70_packet - Parse and process FNEK-encrypted passphrase packet
880
* @filename: This function kmalloc's the memory for the filename
881
* @filename_size: This function sets this to the amount of memory
882
* kmalloc'd for the filename
883
* @packet_size: This function sets this to the the number of octets
884
* in the packet parsed
885
* @mount_crypt_stat: The mount-wide cryptographic context
886
* @data: The memory location containing the start of the tag 70
887
* packet
888
* @max_packet_size: The maximum legal size of the packet to be parsed
889
* from @data
890
*
891
* Returns zero on success; non-zero otherwise
892
*/
893
int
894
ecryptfs_parse_tag_70_packet(char **filename, size_t *filename_size,
895
size_t *packet_size,
896
struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
897
char *data, size_t max_packet_size)
898
{
899
struct ecryptfs_parse_tag_70_packet_silly_stack *s;
900
struct key *auth_tok_key = NULL;
901
int rc = 0;
902
903
(*packet_size) = 0;
904
(*filename_size) = 0;
905
(*filename) = NULL;
906
s = kzalloc(sizeof(*s), GFP_KERNEL);
907
if (!s)
908
return -ENOMEM;
909
910
if (max_packet_size < ECRYPTFS_TAG_70_MIN_METADATA_SIZE) {
911
printk(KERN_WARNING "%s: max_packet_size is [%zd]; it must be "
912
"at least [%d]\n", __func__, max_packet_size,
913
ECRYPTFS_TAG_70_MIN_METADATA_SIZE);
914
rc = -EINVAL;
915
goto out;
916
}
917
/* Octet 0: Tag 70 identifier
918
* Octets 1-N1: Tag 70 packet size (includes cipher identifier
919
* and block-aligned encrypted filename size)
920
* Octets N1-N2: FNEK sig (ECRYPTFS_SIG_SIZE)
921
* Octet N2-N3: Cipher identifier (1 octet)
922
* Octets N3-N4: Block-aligned encrypted filename
923
* - Consists of a minimum number of random numbers, a \0
924
* separator, and then the filename */
925
if (data[(*packet_size)++] != ECRYPTFS_TAG_70_PACKET_TYPE) {
926
printk(KERN_WARNING "%s: Invalid packet tag [0x%.2x]; must be "
927
"tag [0x%.2x]\n", __func__,
928
data[((*packet_size) - 1)], ECRYPTFS_TAG_70_PACKET_TYPE);
929
rc = -EINVAL;
930
goto out;
931
}
932
rc = ecryptfs_parse_packet_length(&data[(*packet_size)],
933
&s->parsed_tag_70_packet_size,
934
&s->packet_size_len);
935
if (rc) {
936
printk(KERN_WARNING "%s: Error parsing packet length; "
937
"rc = [%d]\n", __func__, rc);
938
goto out;
939
}
940
s->block_aligned_filename_size = (s->parsed_tag_70_packet_size
941
- ECRYPTFS_SIG_SIZE - 1);
942
if ((1 + s->packet_size_len + s->parsed_tag_70_packet_size)
943
> max_packet_size) {
944
printk(KERN_WARNING "%s: max_packet_size is [%zd]; real packet "
945
"size is [%zd]\n", __func__, max_packet_size,
946
(1 + s->packet_size_len + 1
947
+ s->block_aligned_filename_size));
948
rc = -EINVAL;
949
goto out;
950
}
951
(*packet_size) += s->packet_size_len;
952
ecryptfs_to_hex(s->fnek_sig_hex, &data[(*packet_size)],
953
ECRYPTFS_SIG_SIZE);
954
s->fnek_sig_hex[ECRYPTFS_SIG_SIZE_HEX] = '\0';
955
(*packet_size) += ECRYPTFS_SIG_SIZE;
956
s->cipher_code = data[(*packet_size)++];
957
rc = ecryptfs_cipher_code_to_string(s->cipher_string, s->cipher_code);
958
if (rc) {
959
printk(KERN_WARNING "%s: Cipher code [%d] is invalid\n",
960
__func__, s->cipher_code);
961
goto out;
962
}
963
rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
964
&s->auth_tok, mount_crypt_stat,
965
s->fnek_sig_hex);
966
if (rc) {
967
printk(KERN_ERR "%s: Error attempting to find auth tok for "
968
"fnek sig [%s]; rc = [%d]\n", __func__, s->fnek_sig_hex,
969
rc);
970
goto out;
971
}
972
rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&s->skcipher_tfm,
973
&s->tfm_mutex,
974
s->cipher_string);
975
if (unlikely(rc)) {
976
printk(KERN_ERR "Internal error whilst attempting to get "
977
"tfm and mutex for cipher name [%s]; rc = [%d]\n",
978
s->cipher_string, rc);
979
goto out;
980
}
981
mutex_lock(s->tfm_mutex);
982
rc = virt_to_scatterlist(&data[(*packet_size)],
983
s->block_aligned_filename_size, s->src_sg, 2);
984
if (rc < 1) {
985
printk(KERN_ERR "%s: Internal error whilst attempting to "
986
"convert encrypted filename memory to scatterlist; "
987
"rc = [%d]. block_aligned_filename_size = [%zd]\n",
988
__func__, rc, s->block_aligned_filename_size);
989
goto out_unlock;
990
}
991
(*packet_size) += s->block_aligned_filename_size;
992
s->decrypted_filename = kmalloc(s->block_aligned_filename_size,
993
GFP_KERNEL);
994
if (!s->decrypted_filename) {
995
rc = -ENOMEM;
996
goto out_unlock;
997
}
998
rc = virt_to_scatterlist(s->decrypted_filename,
999
s->block_aligned_filename_size, s->dst_sg, 2);
1000
if (rc < 1) {
1001
printk(KERN_ERR "%s: Internal error whilst attempting to "
1002
"convert decrypted filename memory to scatterlist; "
1003
"rc = [%d]. block_aligned_filename_size = [%zd]\n",
1004
__func__, rc, s->block_aligned_filename_size);
1005
goto out_free_unlock;
1006
}
1007
1008
s->skcipher_req = skcipher_request_alloc(s->skcipher_tfm, GFP_KERNEL);
1009
if (!s->skcipher_req) {
1010
printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1011
"skcipher_request_alloc for %s\n", __func__,
1012
crypto_skcipher_driver_name(s->skcipher_tfm));
1013
rc = -ENOMEM;
1014
goto out_free_unlock;
1015
}
1016
1017
skcipher_request_set_callback(s->skcipher_req,
1018
CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
1019
1020
/* The characters in the first block effectively do the job of
1021
* the IV here, so we just use 0's for the IV. Note the
1022
* constraint that ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
1023
* >= ECRYPTFS_MAX_IV_BYTES. */
1024
/* TODO: Support other key modules than passphrase for
1025
* filename encryption */
1026
if (s->auth_tok->token_type != ECRYPTFS_PASSWORD) {
1027
rc = -EOPNOTSUPP;
1028
printk(KERN_INFO "%s: Filename encryption only supports "
1029
"password tokens\n", __func__);
1030
goto out_free_unlock;
1031
}
1032
rc = crypto_skcipher_setkey(
1033
s->skcipher_tfm,
1034
s->auth_tok->token.password.session_key_encryption_key,
1035
mount_crypt_stat->global_default_fn_cipher_key_bytes);
1036
if (rc < 0) {
1037
printk(KERN_ERR "%s: Error setting key for crypto context; "
1038
"rc = [%d]. s->auth_tok->token.password.session_key_"
1039
"encryption_key = [0x%p]; mount_crypt_stat->"
1040
"global_default_fn_cipher_key_bytes = [%zd]\n", __func__,
1041
rc,
1042
s->auth_tok->token.password.session_key_encryption_key,
1043
mount_crypt_stat->global_default_fn_cipher_key_bytes);
1044
goto out_free_unlock;
1045
}
1046
skcipher_request_set_crypt(s->skcipher_req, s->src_sg, s->dst_sg,
1047
s->block_aligned_filename_size, s->iv);
1048
rc = crypto_skcipher_decrypt(s->skcipher_req);
1049
if (rc) {
1050
printk(KERN_ERR "%s: Error attempting to decrypt filename; "
1051
"rc = [%d]\n", __func__, rc);
1052
goto out_free_unlock;
1053
}
1054
1055
while (s->i < s->block_aligned_filename_size &&
1056
s->decrypted_filename[s->i] != '\0')
1057
s->i++;
1058
if (s->i == s->block_aligned_filename_size) {
1059
printk(KERN_WARNING "%s: Invalid tag 70 packet; could not "
1060
"find valid separator between random characters and "
1061
"the filename\n", __func__);
1062
rc = -EINVAL;
1063
goto out_free_unlock;
1064
}
1065
s->i++;
1066
(*filename_size) = (s->block_aligned_filename_size - s->i);
1067
if (!((*filename_size) > 0 && (*filename_size < PATH_MAX))) {
1068
printk(KERN_WARNING "%s: Filename size is [%zd], which is "
1069
"invalid\n", __func__, (*filename_size));
1070
rc = -EINVAL;
1071
goto out_free_unlock;
1072
}
1073
(*filename) = kmalloc(((*filename_size) + 1), GFP_KERNEL);
1074
if (!(*filename)) {
1075
rc = -ENOMEM;
1076
goto out_free_unlock;
1077
}
1078
memcpy((*filename), &s->decrypted_filename[s->i], (*filename_size));
1079
(*filename)[(*filename_size)] = '\0';
1080
out_free_unlock:
1081
kfree(s->decrypted_filename);
1082
out_unlock:
1083
mutex_unlock(s->tfm_mutex);
1084
out:
1085
if (rc) {
1086
(*packet_size) = 0;
1087
(*filename_size) = 0;
1088
(*filename) = NULL;
1089
}
1090
if (auth_tok_key) {
1091
up_write(&(auth_tok_key->sem));
1092
key_put(auth_tok_key);
1093
}
1094
skcipher_request_free(s->skcipher_req);
1095
kfree(s);
1096
return rc;
1097
}
1098
1099
static int
1100
ecryptfs_get_auth_tok_sig(char **sig, struct ecryptfs_auth_tok *auth_tok)
1101
{
1102
int rc = 0;
1103
1104
(*sig) = NULL;
1105
switch (auth_tok->token_type) {
1106
case ECRYPTFS_PASSWORD:
1107
(*sig) = auth_tok->token.password.signature;
1108
break;
1109
case ECRYPTFS_PRIVATE_KEY:
1110
(*sig) = auth_tok->token.private_key.signature;
1111
break;
1112
default:
1113
printk(KERN_ERR "Cannot get sig for auth_tok of type [%d]\n",
1114
auth_tok->token_type);
1115
rc = -EINVAL;
1116
}
1117
return rc;
1118
}
1119
1120
/**
1121
* decrypt_pki_encrypted_session_key - Decrypt the session key with the given auth_tok.
1122
* @auth_tok: The key authentication token used to decrypt the session key
1123
* @crypt_stat: The cryptographic context
1124
*
1125
* Returns zero on success; non-zero error otherwise.
1126
*/
1127
static int
1128
decrypt_pki_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1129
struct ecryptfs_crypt_stat *crypt_stat)
1130
{
1131
u8 cipher_code = 0;
1132
struct ecryptfs_msg_ctx *msg_ctx;
1133
struct ecryptfs_message *msg = NULL;
1134
char *auth_tok_sig;
1135
char *payload = NULL;
1136
size_t payload_len = 0;
1137
int rc;
1138
1139
rc = ecryptfs_get_auth_tok_sig(&auth_tok_sig, auth_tok);
1140
if (rc) {
1141
printk(KERN_ERR "Unrecognized auth tok type: [%d]\n",
1142
auth_tok->token_type);
1143
goto out;
1144
}
1145
rc = write_tag_64_packet(auth_tok_sig, &(auth_tok->session_key),
1146
&payload, &payload_len);
1147
if (rc) {
1148
ecryptfs_printk(KERN_ERR, "Failed to write tag 64 packet\n");
1149
goto out;
1150
}
1151
rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1152
if (rc) {
1153
ecryptfs_printk(KERN_ERR, "Error sending message to "
1154
"ecryptfsd: %d\n", rc);
1155
goto out;
1156
}
1157
rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1158
if (rc) {
1159
ecryptfs_printk(KERN_ERR, "Failed to receive tag 65 packet "
1160
"from the user space daemon\n");
1161
rc = -EIO;
1162
goto out;
1163
}
1164
rc = parse_tag_65_packet(&(auth_tok->session_key),
1165
&cipher_code, msg);
1166
if (rc) {
1167
printk(KERN_ERR "Failed to parse tag 65 packet; rc = [%d]\n",
1168
rc);
1169
goto out;
1170
}
1171
auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1172
memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1173
auth_tok->session_key.decrypted_key_size);
1174
crypt_stat->key_size = auth_tok->session_key.decrypted_key_size;
1175
rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher, cipher_code);
1176
if (rc) {
1177
ecryptfs_printk(KERN_ERR, "Cipher code [%d] is invalid\n",
1178
cipher_code);
1179
goto out;
1180
}
1181
crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1182
if (ecryptfs_verbosity > 0) {
1183
ecryptfs_printk(KERN_DEBUG, "Decrypted session key:\n");
1184
ecryptfs_dump_hex(crypt_stat->key,
1185
crypt_stat->key_size);
1186
}
1187
out:
1188
kfree(msg);
1189
kfree(payload);
1190
return rc;
1191
}
1192
1193
static void wipe_auth_tok_list(struct list_head *auth_tok_list_head)
1194
{
1195
struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1196
struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1197
1198
list_for_each_entry_safe(auth_tok_list_item, auth_tok_list_item_tmp,
1199
auth_tok_list_head, list) {
1200
list_del(&auth_tok_list_item->list);
1201
kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1202
auth_tok_list_item);
1203
}
1204
}
1205
1206
struct kmem_cache *ecryptfs_auth_tok_list_item_cache;
1207
1208
/**
1209
* parse_tag_1_packet
1210
* @crypt_stat: The cryptographic context to modify based on packet contents
1211
* @data: The raw bytes of the packet.
1212
* @auth_tok_list: eCryptfs parses packets into authentication tokens;
1213
* a new authentication token will be placed at the
1214
* end of this list for this packet.
1215
* @new_auth_tok: Pointer to a pointer to memory that this function
1216
* allocates; sets the memory address of the pointer to
1217
* NULL on error. This object is added to the
1218
* auth_tok_list.
1219
* @packet_size: This function writes the size of the parsed packet
1220
* into this memory location; zero on error.
1221
* @max_packet_size: The maximum allowable packet size
1222
*
1223
* Returns zero on success; non-zero on error.
1224
*/
1225
static int
1226
parse_tag_1_packet(struct ecryptfs_crypt_stat *crypt_stat,
1227
unsigned char *data, struct list_head *auth_tok_list,
1228
struct ecryptfs_auth_tok **new_auth_tok,
1229
size_t *packet_size, size_t max_packet_size)
1230
{
1231
size_t body_size;
1232
struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1233
size_t length_size;
1234
int rc = 0;
1235
1236
(*packet_size) = 0;
1237
(*new_auth_tok) = NULL;
1238
/**
1239
* This format is inspired by OpenPGP; see RFC 2440
1240
* packet tag 1
1241
*
1242
* Tag 1 identifier (1 byte)
1243
* Max Tag 1 packet size (max 3 bytes)
1244
* Version (1 byte)
1245
* Key identifier (8 bytes; ECRYPTFS_SIG_SIZE)
1246
* Cipher identifier (1 byte)
1247
* Encrypted key size (arbitrary)
1248
*
1249
* 12 bytes minimum packet size
1250
*/
1251
if (unlikely(max_packet_size < 12)) {
1252
printk(KERN_ERR "Invalid max packet size; must be >=12\n");
1253
rc = -EINVAL;
1254
goto out;
1255
}
1256
if (data[(*packet_size)++] != ECRYPTFS_TAG_1_PACKET_TYPE) {
1257
printk(KERN_ERR "Enter w/ first byte != 0x%.2x\n",
1258
ECRYPTFS_TAG_1_PACKET_TYPE);
1259
rc = -EINVAL;
1260
goto out;
1261
}
1262
/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1263
* at end of function upon failure */
1264
auth_tok_list_item =
1265
kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache,
1266
GFP_KERNEL);
1267
if (!auth_tok_list_item) {
1268
printk(KERN_ERR "Unable to allocate memory\n");
1269
rc = -ENOMEM;
1270
goto out;
1271
}
1272
(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1273
rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1274
&length_size);
1275
if (rc) {
1276
printk(KERN_WARNING "Error parsing packet length; "
1277
"rc = [%d]\n", rc);
1278
goto out_free;
1279
}
1280
if (unlikely(body_size < (ECRYPTFS_SIG_SIZE + 2))) {
1281
printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1282
rc = -EINVAL;
1283
goto out_free;
1284
}
1285
(*packet_size) += length_size;
1286
if (unlikely((*packet_size) + body_size > max_packet_size)) {
1287
printk(KERN_WARNING "Packet size exceeds max\n");
1288
rc = -EINVAL;
1289
goto out_free;
1290
}
1291
if (unlikely(data[(*packet_size)++] != 0x03)) {
1292
printk(KERN_WARNING "Unknown version number [%d]\n",
1293
data[(*packet_size) - 1]);
1294
rc = -EINVAL;
1295
goto out_free;
1296
}
1297
ecryptfs_to_hex((*new_auth_tok)->token.private_key.signature,
1298
&data[(*packet_size)], ECRYPTFS_SIG_SIZE);
1299
*packet_size += ECRYPTFS_SIG_SIZE;
1300
/* This byte is skipped because the kernel does not need to
1301
* know which public key encryption algorithm was used */
1302
(*packet_size)++;
1303
(*new_auth_tok)->session_key.encrypted_key_size =
1304
body_size - (ECRYPTFS_SIG_SIZE + 2);
1305
if ((*new_auth_tok)->session_key.encrypted_key_size
1306
> ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1307
printk(KERN_WARNING "Tag 1 packet contains key larger "
1308
"than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1309
rc = -EINVAL;
1310
goto out_free;
1311
}
1312
memcpy((*new_auth_tok)->session_key.encrypted_key,
1313
&data[(*packet_size)], (body_size - (ECRYPTFS_SIG_SIZE + 2)));
1314
(*packet_size) += (*new_auth_tok)->session_key.encrypted_key_size;
1315
(*new_auth_tok)->session_key.flags &=
1316
~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1317
(*new_auth_tok)->session_key.flags |=
1318
ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1319
(*new_auth_tok)->token_type = ECRYPTFS_PRIVATE_KEY;
1320
(*new_auth_tok)->flags = 0;
1321
(*new_auth_tok)->session_key.flags &=
1322
~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1323
(*new_auth_tok)->session_key.flags &=
1324
~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1325
list_add(&auth_tok_list_item->list, auth_tok_list);
1326
goto out;
1327
out_free:
1328
(*new_auth_tok) = NULL;
1329
memset(auth_tok_list_item, 0,
1330
sizeof(struct ecryptfs_auth_tok_list_item));
1331
kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1332
auth_tok_list_item);
1333
out:
1334
if (rc)
1335
(*packet_size) = 0;
1336
return rc;
1337
}
1338
1339
/**
1340
* parse_tag_3_packet
1341
* @crypt_stat: The cryptographic context to modify based on packet
1342
* contents.
1343
* @data: The raw bytes of the packet.
1344
* @auth_tok_list: eCryptfs parses packets into authentication tokens;
1345
* a new authentication token will be placed at the end
1346
* of this list for this packet.
1347
* @new_auth_tok: Pointer to a pointer to memory that this function
1348
* allocates; sets the memory address of the pointer to
1349
* NULL on error. This object is added to the
1350
* auth_tok_list.
1351
* @packet_size: This function writes the size of the parsed packet
1352
* into this memory location; zero on error.
1353
* @max_packet_size: maximum number of bytes to parse
1354
*
1355
* Returns zero on success; non-zero on error.
1356
*/
1357
static int
1358
parse_tag_3_packet(struct ecryptfs_crypt_stat *crypt_stat,
1359
unsigned char *data, struct list_head *auth_tok_list,
1360
struct ecryptfs_auth_tok **new_auth_tok,
1361
size_t *packet_size, size_t max_packet_size)
1362
{
1363
size_t body_size;
1364
struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1365
size_t length_size;
1366
int rc = 0;
1367
1368
(*packet_size) = 0;
1369
(*new_auth_tok) = NULL;
1370
/**
1371
*This format is inspired by OpenPGP; see RFC 2440
1372
* packet tag 3
1373
*
1374
* Tag 3 identifier (1 byte)
1375
* Max Tag 3 packet size (max 3 bytes)
1376
* Version (1 byte)
1377
* Cipher code (1 byte)
1378
* S2K specifier (1 byte)
1379
* Hash identifier (1 byte)
1380
* Salt (ECRYPTFS_SALT_SIZE)
1381
* Hash iterations (1 byte)
1382
* Encrypted key (arbitrary)
1383
*
1384
* (ECRYPTFS_SALT_SIZE + 7) minimum packet size
1385
*/
1386
if (max_packet_size < (ECRYPTFS_SALT_SIZE + 7)) {
1387
printk(KERN_ERR "Max packet size too large\n");
1388
rc = -EINVAL;
1389
goto out;
1390
}
1391
if (data[(*packet_size)++] != ECRYPTFS_TAG_3_PACKET_TYPE) {
1392
printk(KERN_ERR "First byte != 0x%.2x; invalid packet\n",
1393
ECRYPTFS_TAG_3_PACKET_TYPE);
1394
rc = -EINVAL;
1395
goto out;
1396
}
1397
/* Released: wipe_auth_tok_list called in ecryptfs_parse_packet_set or
1398
* at end of function upon failure */
1399
auth_tok_list_item =
1400
kmem_cache_zalloc(ecryptfs_auth_tok_list_item_cache, GFP_KERNEL);
1401
if (!auth_tok_list_item) {
1402
printk(KERN_ERR "Unable to allocate memory\n");
1403
rc = -ENOMEM;
1404
goto out;
1405
}
1406
(*new_auth_tok) = &auth_tok_list_item->auth_tok;
1407
rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1408
&length_size);
1409
if (rc) {
1410
printk(KERN_WARNING "Error parsing packet length; rc = [%d]\n",
1411
rc);
1412
goto out_free;
1413
}
1414
if (unlikely(body_size < (ECRYPTFS_SALT_SIZE + 5))) {
1415
printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1416
rc = -EINVAL;
1417
goto out_free;
1418
}
1419
(*packet_size) += length_size;
1420
if (unlikely((*packet_size) + body_size > max_packet_size)) {
1421
printk(KERN_ERR "Packet size exceeds max\n");
1422
rc = -EINVAL;
1423
goto out_free;
1424
}
1425
(*new_auth_tok)->session_key.encrypted_key_size =
1426
(body_size - (ECRYPTFS_SALT_SIZE + 5));
1427
if ((*new_auth_tok)->session_key.encrypted_key_size
1428
> ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES) {
1429
printk(KERN_WARNING "Tag 3 packet contains key larger "
1430
"than ECRYPTFS_MAX_ENCRYPTED_KEY_BYTES\n");
1431
rc = -EINVAL;
1432
goto out_free;
1433
}
1434
if (unlikely(data[(*packet_size)++] != 0x04)) {
1435
printk(KERN_WARNING "Unknown version number [%d]\n",
1436
data[(*packet_size) - 1]);
1437
rc = -EINVAL;
1438
goto out_free;
1439
}
1440
rc = ecryptfs_cipher_code_to_string(crypt_stat->cipher,
1441
(u16)data[(*packet_size)]);
1442
if (rc)
1443
goto out_free;
1444
/* A little extra work to differentiate among the AES key
1445
* sizes; see RFC2440 */
1446
switch(data[(*packet_size)++]) {
1447
case RFC2440_CIPHER_AES_192:
1448
crypt_stat->key_size = 24;
1449
break;
1450
default:
1451
crypt_stat->key_size =
1452
(*new_auth_tok)->session_key.encrypted_key_size;
1453
}
1454
rc = ecryptfs_init_crypt_ctx(crypt_stat);
1455
if (rc)
1456
goto out_free;
1457
if (unlikely(data[(*packet_size)++] != 0x03)) {
1458
printk(KERN_WARNING "Only S2K ID 3 is currently supported\n");
1459
rc = -ENOSYS;
1460
goto out_free;
1461
}
1462
/* TODO: finish the hash mapping */
1463
switch (data[(*packet_size)++]) {
1464
case 0x01: /* See RFC2440 for these numbers and their mappings */
1465
/* Choose MD5 */
1466
memcpy((*new_auth_tok)->token.password.salt,
1467
&data[(*packet_size)], ECRYPTFS_SALT_SIZE);
1468
(*packet_size) += ECRYPTFS_SALT_SIZE;
1469
/* This conversion was taken straight from RFC2440 */
1470
(*new_auth_tok)->token.password.hash_iterations =
1471
((u32) 16 + (data[(*packet_size)] & 15))
1472
<< ((data[(*packet_size)] >> 4) + 6);
1473
(*packet_size)++;
1474
/* Friendly reminder:
1475
* (*new_auth_tok)->session_key.encrypted_key_size =
1476
* (body_size - (ECRYPTFS_SALT_SIZE + 5)); */
1477
memcpy((*new_auth_tok)->session_key.encrypted_key,
1478
&data[(*packet_size)],
1479
(*new_auth_tok)->session_key.encrypted_key_size);
1480
(*packet_size) +=
1481
(*new_auth_tok)->session_key.encrypted_key_size;
1482
(*new_auth_tok)->session_key.flags &=
1483
~ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1484
(*new_auth_tok)->session_key.flags |=
1485
ECRYPTFS_CONTAINS_ENCRYPTED_KEY;
1486
(*new_auth_tok)->token.password.hash_algo = 0x01; /* MD5 */
1487
break;
1488
default:
1489
ecryptfs_printk(KERN_ERR, "Unsupported hash algorithm: "
1490
"[%d]\n", data[(*packet_size) - 1]);
1491
rc = -ENOSYS;
1492
goto out_free;
1493
}
1494
(*new_auth_tok)->token_type = ECRYPTFS_PASSWORD;
1495
/* TODO: Parametarize; we might actually want userspace to
1496
* decrypt the session key. */
1497
(*new_auth_tok)->session_key.flags &=
1498
~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_DECRYPT);
1499
(*new_auth_tok)->session_key.flags &=
1500
~(ECRYPTFS_USERSPACE_SHOULD_TRY_TO_ENCRYPT);
1501
list_add(&auth_tok_list_item->list, auth_tok_list);
1502
goto out;
1503
out_free:
1504
(*new_auth_tok) = NULL;
1505
memset(auth_tok_list_item, 0,
1506
sizeof(struct ecryptfs_auth_tok_list_item));
1507
kmem_cache_free(ecryptfs_auth_tok_list_item_cache,
1508
auth_tok_list_item);
1509
out:
1510
if (rc)
1511
(*packet_size) = 0;
1512
return rc;
1513
}
1514
1515
/**
1516
* parse_tag_11_packet
1517
* @data: The raw bytes of the packet
1518
* @contents: This function writes the data contents of the literal
1519
* packet into this memory location
1520
* @max_contents_bytes: The maximum number of bytes that this function
1521
* is allowed to write into contents
1522
* @tag_11_contents_size: This function writes the size of the parsed
1523
* contents into this memory location; zero on
1524
* error
1525
* @packet_size: This function writes the size of the parsed packet
1526
* into this memory location; zero on error
1527
* @max_packet_size: maximum number of bytes to parse
1528
*
1529
* Returns zero on success; non-zero on error.
1530
*/
1531
static int
1532
parse_tag_11_packet(unsigned char *data, unsigned char *contents,
1533
size_t max_contents_bytes, size_t *tag_11_contents_size,
1534
size_t *packet_size, size_t max_packet_size)
1535
{
1536
size_t body_size;
1537
size_t length_size;
1538
int rc = 0;
1539
1540
(*packet_size) = 0;
1541
(*tag_11_contents_size) = 0;
1542
/* This format is inspired by OpenPGP; see RFC 2440
1543
* packet tag 11
1544
*
1545
* Tag 11 identifier (1 byte)
1546
* Max Tag 11 packet size (max 3 bytes)
1547
* Binary format specifier (1 byte)
1548
* Filename length (1 byte)
1549
* Filename ("_CONSOLE") (8 bytes)
1550
* Modification date (4 bytes)
1551
* Literal data (arbitrary)
1552
*
1553
* We need at least 16 bytes of data for the packet to even be
1554
* valid.
1555
*/
1556
if (max_packet_size < 16) {
1557
printk(KERN_ERR "Maximum packet size too small\n");
1558
rc = -EINVAL;
1559
goto out;
1560
}
1561
if (data[(*packet_size)++] != ECRYPTFS_TAG_11_PACKET_TYPE) {
1562
printk(KERN_WARNING "Invalid tag 11 packet format\n");
1563
rc = -EINVAL;
1564
goto out;
1565
}
1566
rc = ecryptfs_parse_packet_length(&data[(*packet_size)], &body_size,
1567
&length_size);
1568
if (rc) {
1569
printk(KERN_WARNING "Invalid tag 11 packet format\n");
1570
goto out;
1571
}
1572
if (body_size < 14) {
1573
printk(KERN_WARNING "Invalid body size ([%td])\n", body_size);
1574
rc = -EINVAL;
1575
goto out;
1576
}
1577
(*packet_size) += length_size;
1578
(*tag_11_contents_size) = (body_size - 14);
1579
if (unlikely((*packet_size) + body_size + 1 > max_packet_size)) {
1580
printk(KERN_ERR "Packet size exceeds max\n");
1581
rc = -EINVAL;
1582
goto out;
1583
}
1584
if (unlikely((*tag_11_contents_size) > max_contents_bytes)) {
1585
printk(KERN_ERR "Literal data section in tag 11 packet exceeds "
1586
"expected size\n");
1587
rc = -EINVAL;
1588
goto out;
1589
}
1590
if (data[(*packet_size)++] != 0x62) {
1591
printk(KERN_WARNING "Unrecognizable packet\n");
1592
rc = -EINVAL;
1593
goto out;
1594
}
1595
if (data[(*packet_size)++] != 0x08) {
1596
printk(KERN_WARNING "Unrecognizable packet\n");
1597
rc = -EINVAL;
1598
goto out;
1599
}
1600
(*packet_size) += 12; /* Ignore filename and modification date */
1601
memcpy(contents, &data[(*packet_size)], (*tag_11_contents_size));
1602
(*packet_size) += (*tag_11_contents_size);
1603
out:
1604
if (rc) {
1605
(*packet_size) = 0;
1606
(*tag_11_contents_size) = 0;
1607
}
1608
return rc;
1609
}
1610
1611
int ecryptfs_keyring_auth_tok_for_sig(struct key **auth_tok_key,
1612
struct ecryptfs_auth_tok **auth_tok,
1613
char *sig)
1614
{
1615
int rc = 0;
1616
1617
(*auth_tok_key) = request_key(&key_type_user, sig, NULL);
1618
if (IS_ERR(*auth_tok_key)) {
1619
(*auth_tok_key) = ecryptfs_get_encrypted_key(sig);
1620
if (IS_ERR(*auth_tok_key)) {
1621
printk(KERN_ERR "Could not find key with description: [%s]\n",
1622
sig);
1623
rc = process_request_key_err(PTR_ERR(*auth_tok_key));
1624
(*auth_tok_key) = NULL;
1625
goto out;
1626
}
1627
}
1628
down_write(&(*auth_tok_key)->sem);
1629
rc = ecryptfs_verify_auth_tok_from_key(*auth_tok_key, auth_tok);
1630
if (rc) {
1631
up_write(&(*auth_tok_key)->sem);
1632
key_put(*auth_tok_key);
1633
(*auth_tok_key) = NULL;
1634
goto out;
1635
}
1636
out:
1637
return rc;
1638
}
1639
1640
/**
1641
* decrypt_passphrase_encrypted_session_key - Decrypt the session key with the given auth_tok.
1642
* @auth_tok: The passphrase authentication token to use to encrypt the FEK
1643
* @crypt_stat: The cryptographic context
1644
*
1645
* Returns zero on success; non-zero error otherwise
1646
*/
1647
static int
1648
decrypt_passphrase_encrypted_session_key(struct ecryptfs_auth_tok *auth_tok,
1649
struct ecryptfs_crypt_stat *crypt_stat)
1650
{
1651
struct scatterlist dst_sg[2];
1652
struct scatterlist src_sg[2];
1653
struct mutex *tfm_mutex;
1654
struct crypto_skcipher *tfm;
1655
struct skcipher_request *req = NULL;
1656
int rc = 0;
1657
1658
if (unlikely(ecryptfs_verbosity > 0)) {
1659
ecryptfs_printk(
1660
KERN_DEBUG, "Session key encryption key (size [%d]):\n",
1661
auth_tok->token.password.session_key_encryption_key_bytes);
1662
ecryptfs_dump_hex(
1663
auth_tok->token.password.session_key_encryption_key,
1664
auth_tok->token.password.session_key_encryption_key_bytes);
1665
}
1666
rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
1667
crypt_stat->cipher);
1668
if (unlikely(rc)) {
1669
printk(KERN_ERR "Internal error whilst attempting to get "
1670
"tfm and mutex for cipher name [%s]; rc = [%d]\n",
1671
crypt_stat->cipher, rc);
1672
goto out;
1673
}
1674
rc = virt_to_scatterlist(auth_tok->session_key.encrypted_key,
1675
auth_tok->session_key.encrypted_key_size,
1676
src_sg, 2);
1677
if (rc < 1 || rc > 2) {
1678
printk(KERN_ERR "Internal error whilst attempting to convert "
1679
"auth_tok->session_key.encrypted_key to scatterlist; "
1680
"expected rc = 1; got rc = [%d]. "
1681
"auth_tok->session_key.encrypted_key_size = [%d]\n", rc,
1682
auth_tok->session_key.encrypted_key_size);
1683
goto out;
1684
}
1685
auth_tok->session_key.decrypted_key_size =
1686
auth_tok->session_key.encrypted_key_size;
1687
rc = virt_to_scatterlist(auth_tok->session_key.decrypted_key,
1688
auth_tok->session_key.decrypted_key_size,
1689
dst_sg, 2);
1690
if (rc < 1 || rc > 2) {
1691
printk(KERN_ERR "Internal error whilst attempting to convert "
1692
"auth_tok->session_key.decrypted_key to scatterlist; "
1693
"expected rc = 1; got rc = [%d]\n", rc);
1694
goto out;
1695
}
1696
mutex_lock(tfm_mutex);
1697
req = skcipher_request_alloc(tfm, GFP_KERNEL);
1698
if (!req) {
1699
mutex_unlock(tfm_mutex);
1700
printk(KERN_ERR "%s: Out of kernel memory whilst attempting to "
1701
"skcipher_request_alloc for %s\n", __func__,
1702
crypto_skcipher_driver_name(tfm));
1703
rc = -ENOMEM;
1704
goto out;
1705
}
1706
1707
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
1708
NULL, NULL);
1709
rc = crypto_skcipher_setkey(
1710
tfm, auth_tok->token.password.session_key_encryption_key,
1711
crypt_stat->key_size);
1712
if (unlikely(rc < 0)) {
1713
mutex_unlock(tfm_mutex);
1714
printk(KERN_ERR "Error setting key for crypto context\n");
1715
rc = -EINVAL;
1716
goto out;
1717
}
1718
skcipher_request_set_crypt(req, src_sg, dst_sg,
1719
auth_tok->session_key.encrypted_key_size,
1720
NULL);
1721
rc = crypto_skcipher_decrypt(req);
1722
mutex_unlock(tfm_mutex);
1723
if (unlikely(rc)) {
1724
printk(KERN_ERR "Error decrypting; rc = [%d]\n", rc);
1725
goto out;
1726
}
1727
auth_tok->session_key.flags |= ECRYPTFS_CONTAINS_DECRYPTED_KEY;
1728
memcpy(crypt_stat->key, auth_tok->session_key.decrypted_key,
1729
auth_tok->session_key.decrypted_key_size);
1730
crypt_stat->flags |= ECRYPTFS_KEY_VALID;
1731
if (unlikely(ecryptfs_verbosity > 0)) {
1732
ecryptfs_printk(KERN_DEBUG, "FEK of size [%zd]:\n",
1733
crypt_stat->key_size);
1734
ecryptfs_dump_hex(crypt_stat->key,
1735
crypt_stat->key_size);
1736
}
1737
out:
1738
skcipher_request_free(req);
1739
return rc;
1740
}
1741
1742
/**
1743
* ecryptfs_parse_packet_set
1744
* @crypt_stat: The cryptographic context
1745
* @src: Virtual address of region of memory containing the packets
1746
* @ecryptfs_dentry: The eCryptfs dentry associated with the packet set
1747
*
1748
* Get crypt_stat to have the file's session key if the requisite key
1749
* is available to decrypt the session key.
1750
*
1751
* Returns Zero if a valid authentication token was retrieved and
1752
* processed; negative value for file not encrypted or for error
1753
* conditions.
1754
*/
1755
int ecryptfs_parse_packet_set(struct ecryptfs_crypt_stat *crypt_stat,
1756
unsigned char *src,
1757
struct dentry *ecryptfs_dentry)
1758
{
1759
size_t i = 0;
1760
size_t found_auth_tok;
1761
size_t next_packet_is_auth_tok_packet;
1762
struct list_head auth_tok_list;
1763
struct ecryptfs_auth_tok *matching_auth_tok;
1764
struct ecryptfs_auth_tok *candidate_auth_tok;
1765
char *candidate_auth_tok_sig;
1766
size_t packet_size;
1767
struct ecryptfs_auth_tok *new_auth_tok;
1768
unsigned char sig_tmp_space[ECRYPTFS_SIG_SIZE];
1769
struct ecryptfs_auth_tok_list_item *auth_tok_list_item;
1770
size_t tag_11_contents_size;
1771
size_t tag_11_packet_size;
1772
struct key *auth_tok_key = NULL;
1773
int rc = 0;
1774
1775
INIT_LIST_HEAD(&auth_tok_list);
1776
/* Parse the header to find as many packets as we can; these will be
1777
* added the our &auth_tok_list */
1778
next_packet_is_auth_tok_packet = 1;
1779
while (next_packet_is_auth_tok_packet) {
1780
size_t max_packet_size = ((PAGE_SIZE - 8) - i);
1781
1782
switch (src[i]) {
1783
case ECRYPTFS_TAG_3_PACKET_TYPE:
1784
rc = parse_tag_3_packet(crypt_stat,
1785
(unsigned char *)&src[i],
1786
&auth_tok_list, &new_auth_tok,
1787
&packet_size, max_packet_size);
1788
if (rc) {
1789
ecryptfs_printk(KERN_ERR, "Error parsing "
1790
"tag 3 packet\n");
1791
rc = -EIO;
1792
goto out_wipe_list;
1793
}
1794
i += packet_size;
1795
rc = parse_tag_11_packet((unsigned char *)&src[i],
1796
sig_tmp_space,
1797
ECRYPTFS_SIG_SIZE,
1798
&tag_11_contents_size,
1799
&tag_11_packet_size,
1800
max_packet_size);
1801
if (rc) {
1802
ecryptfs_printk(KERN_ERR, "No valid "
1803
"(ecryptfs-specific) literal "
1804
"packet containing "
1805
"authentication token "
1806
"signature found after "
1807
"tag 3 packet\n");
1808
rc = -EIO;
1809
goto out_wipe_list;
1810
}
1811
i += tag_11_packet_size;
1812
if (ECRYPTFS_SIG_SIZE != tag_11_contents_size) {
1813
ecryptfs_printk(KERN_ERR, "Expected "
1814
"signature of size [%d]; "
1815
"read size [%zd]\n",
1816
ECRYPTFS_SIG_SIZE,
1817
tag_11_contents_size);
1818
rc = -EIO;
1819
goto out_wipe_list;
1820
}
1821
ecryptfs_to_hex(new_auth_tok->token.password.signature,
1822
sig_tmp_space, tag_11_contents_size);
1823
new_auth_tok->token.password.signature[
1824
ECRYPTFS_PASSWORD_SIG_SIZE] = '\0';
1825
crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1826
break;
1827
case ECRYPTFS_TAG_1_PACKET_TYPE:
1828
rc = parse_tag_1_packet(crypt_stat,
1829
(unsigned char *)&src[i],
1830
&auth_tok_list, &new_auth_tok,
1831
&packet_size, max_packet_size);
1832
if (rc) {
1833
ecryptfs_printk(KERN_ERR, "Error parsing "
1834
"tag 1 packet\n");
1835
rc = -EIO;
1836
goto out_wipe_list;
1837
}
1838
i += packet_size;
1839
crypt_stat->flags |= ECRYPTFS_ENCRYPTED;
1840
break;
1841
case ECRYPTFS_TAG_11_PACKET_TYPE:
1842
ecryptfs_printk(KERN_WARNING, "Invalid packet set "
1843
"(Tag 11 not allowed by itself)\n");
1844
rc = -EIO;
1845
goto out_wipe_list;
1846
default:
1847
ecryptfs_printk(KERN_DEBUG, "No packet at offset [%zd] "
1848
"of the file header; hex value of "
1849
"character is [0x%.2x]\n", i, src[i]);
1850
next_packet_is_auth_tok_packet = 0;
1851
}
1852
}
1853
if (list_empty(&auth_tok_list)) {
1854
printk(KERN_ERR "The lower file appears to be a non-encrypted "
1855
"eCryptfs file; this is not supported in this version "
1856
"of the eCryptfs kernel module\n");
1857
rc = -EINVAL;
1858
goto out;
1859
}
1860
/* auth_tok_list contains the set of authentication tokens
1861
* parsed from the metadata. We need to find a matching
1862
* authentication token that has the secret component(s)
1863
* necessary to decrypt the EFEK in the auth_tok parsed from
1864
* the metadata. There may be several potential matches, but
1865
* just one will be sufficient to decrypt to get the FEK. */
1866
find_next_matching_auth_tok:
1867
found_auth_tok = 0;
1868
list_for_each_entry(auth_tok_list_item, &auth_tok_list, list) {
1869
candidate_auth_tok = &auth_tok_list_item->auth_tok;
1870
if (unlikely(ecryptfs_verbosity > 0)) {
1871
ecryptfs_printk(KERN_DEBUG,
1872
"Considering candidate auth tok:\n");
1873
ecryptfs_dump_auth_tok(candidate_auth_tok);
1874
}
1875
rc = ecryptfs_get_auth_tok_sig(&candidate_auth_tok_sig,
1876
candidate_auth_tok);
1877
if (rc) {
1878
printk(KERN_ERR
1879
"Unrecognized candidate auth tok type: [%d]\n",
1880
candidate_auth_tok->token_type);
1881
rc = -EINVAL;
1882
goto out_wipe_list;
1883
}
1884
rc = ecryptfs_find_auth_tok_for_sig(&auth_tok_key,
1885
&matching_auth_tok,
1886
crypt_stat->mount_crypt_stat,
1887
candidate_auth_tok_sig);
1888
if (!rc) {
1889
found_auth_tok = 1;
1890
goto found_matching_auth_tok;
1891
}
1892
}
1893
if (!found_auth_tok) {
1894
ecryptfs_printk(KERN_ERR, "Could not find a usable "
1895
"authentication token\n");
1896
rc = -EIO;
1897
goto out_wipe_list;
1898
}
1899
found_matching_auth_tok:
1900
if (candidate_auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
1901
memcpy(&(candidate_auth_tok->token.private_key),
1902
&(matching_auth_tok->token.private_key),
1903
sizeof(struct ecryptfs_private_key));
1904
up_write(&(auth_tok_key->sem));
1905
key_put(auth_tok_key);
1906
rc = decrypt_pki_encrypted_session_key(candidate_auth_tok,
1907
crypt_stat);
1908
} else if (candidate_auth_tok->token_type == ECRYPTFS_PASSWORD) {
1909
memcpy(&(candidate_auth_tok->token.password),
1910
&(matching_auth_tok->token.password),
1911
sizeof(struct ecryptfs_password));
1912
up_write(&(auth_tok_key->sem));
1913
key_put(auth_tok_key);
1914
rc = decrypt_passphrase_encrypted_session_key(
1915
candidate_auth_tok, crypt_stat);
1916
} else {
1917
up_write(&(auth_tok_key->sem));
1918
key_put(auth_tok_key);
1919
rc = -EINVAL;
1920
}
1921
if (rc) {
1922
struct ecryptfs_auth_tok_list_item *auth_tok_list_item_tmp;
1923
1924
ecryptfs_printk(KERN_WARNING, "Error decrypting the "
1925
"session key for authentication token with sig "
1926
"[%.*s]; rc = [%d]. Removing auth tok "
1927
"candidate from the list and searching for "
1928
"the next match.\n", ECRYPTFS_SIG_SIZE_HEX,
1929
candidate_auth_tok_sig, rc);
1930
list_for_each_entry_safe(auth_tok_list_item,
1931
auth_tok_list_item_tmp,
1932
&auth_tok_list, list) {
1933
if (candidate_auth_tok
1934
== &auth_tok_list_item->auth_tok) {
1935
list_del(&auth_tok_list_item->list);
1936
kmem_cache_free(
1937
ecryptfs_auth_tok_list_item_cache,
1938
auth_tok_list_item);
1939
goto find_next_matching_auth_tok;
1940
}
1941
}
1942
BUG();
1943
}
1944
rc = ecryptfs_compute_root_iv(crypt_stat);
1945
if (rc) {
1946
ecryptfs_printk(KERN_ERR, "Error computing "
1947
"the root IV\n");
1948
goto out_wipe_list;
1949
}
1950
rc = ecryptfs_init_crypt_ctx(crypt_stat);
1951
if (rc) {
1952
ecryptfs_printk(KERN_ERR, "Error initializing crypto "
1953
"context for cipher [%s]; rc = [%d]\n",
1954
crypt_stat->cipher, rc);
1955
}
1956
out_wipe_list:
1957
wipe_auth_tok_list(&auth_tok_list);
1958
out:
1959
return rc;
1960
}
1961
1962
static int
1963
pki_encrypt_session_key(struct key *auth_tok_key,
1964
struct ecryptfs_auth_tok *auth_tok,
1965
struct ecryptfs_crypt_stat *crypt_stat,
1966
struct ecryptfs_key_record *key_rec)
1967
{
1968
struct ecryptfs_msg_ctx *msg_ctx = NULL;
1969
char *payload = NULL;
1970
size_t payload_len = 0;
1971
struct ecryptfs_message *msg;
1972
int rc;
1973
1974
rc = write_tag_66_packet(auth_tok->token.private_key.signature,
1975
ecryptfs_code_for_cipher_string(
1976
crypt_stat->cipher,
1977
crypt_stat->key_size),
1978
crypt_stat, &payload, &payload_len);
1979
up_write(&(auth_tok_key->sem));
1980
key_put(auth_tok_key);
1981
if (rc) {
1982
ecryptfs_printk(KERN_ERR, "Error generating tag 66 packet\n");
1983
goto out;
1984
}
1985
rc = ecryptfs_send_message(payload, payload_len, &msg_ctx);
1986
if (rc) {
1987
ecryptfs_printk(KERN_ERR, "Error sending message to "
1988
"ecryptfsd: %d\n", rc);
1989
goto out;
1990
}
1991
rc = ecryptfs_wait_for_response(msg_ctx, &msg);
1992
if (rc) {
1993
ecryptfs_printk(KERN_ERR, "Failed to receive tag 67 packet "
1994
"from the user space daemon\n");
1995
rc = -EIO;
1996
goto out;
1997
}
1998
rc = parse_tag_67_packet(key_rec, msg);
1999
if (rc)
2000
ecryptfs_printk(KERN_ERR, "Error parsing tag 67 packet\n");
2001
kfree(msg);
2002
out:
2003
kfree(payload);
2004
return rc;
2005
}
2006
/**
2007
* write_tag_1_packet - Write an RFC2440-compatible tag 1 (public key) packet
2008
* @dest: Buffer into which to write the packet
2009
* @remaining_bytes: Maximum number of bytes that can be writtn
2010
* @auth_tok_key: The authentication token key to unlock and put when done with
2011
* @auth_tok
2012
* @auth_tok: The authentication token used for generating the tag 1 packet
2013
* @crypt_stat: The cryptographic context
2014
* @key_rec: The key record struct for the tag 1 packet
2015
* @packet_size: This function will write the number of bytes that end
2016
* up constituting the packet; set to zero on error
2017
*
2018
* Returns zero on success; non-zero on error.
2019
*/
2020
static int
2021
write_tag_1_packet(char *dest, size_t *remaining_bytes,
2022
struct key *auth_tok_key, struct ecryptfs_auth_tok *auth_tok,
2023
struct ecryptfs_crypt_stat *crypt_stat,
2024
struct ecryptfs_key_record *key_rec, size_t *packet_size)
2025
{
2026
size_t i;
2027
size_t encrypted_session_key_valid = 0;
2028
size_t packet_size_length;
2029
size_t max_packet_size;
2030
int rc = 0;
2031
2032
(*packet_size) = 0;
2033
ecryptfs_from_hex(key_rec->sig, auth_tok->token.private_key.signature,
2034
ECRYPTFS_SIG_SIZE);
2035
encrypted_session_key_valid = 0;
2036
for (i = 0; i < crypt_stat->key_size; i++)
2037
encrypted_session_key_valid |=
2038
auth_tok->session_key.encrypted_key[i];
2039
if (encrypted_session_key_valid) {
2040
memcpy(key_rec->enc_key,
2041
auth_tok->session_key.encrypted_key,
2042
auth_tok->session_key.encrypted_key_size);
2043
up_write(&(auth_tok_key->sem));
2044
key_put(auth_tok_key);
2045
goto encrypted_session_key_set;
2046
}
2047
if (auth_tok->session_key.encrypted_key_size == 0)
2048
auth_tok->session_key.encrypted_key_size =
2049
auth_tok->token.private_key.key_size;
2050
rc = pki_encrypt_session_key(auth_tok_key, auth_tok, crypt_stat,
2051
key_rec);
2052
if (rc) {
2053
printk(KERN_ERR "Failed to encrypt session key via a key "
2054
"module; rc = [%d]\n", rc);
2055
goto out;
2056
}
2057
if (ecryptfs_verbosity > 0) {
2058
ecryptfs_printk(KERN_DEBUG, "Encrypted key:\n");
2059
ecryptfs_dump_hex(key_rec->enc_key, key_rec->enc_key_size);
2060
}
2061
encrypted_session_key_set:
2062
/* This format is inspired by OpenPGP; see RFC 2440
2063
* packet tag 1 */
2064
max_packet_size = (1 /* Tag 1 identifier */
2065
+ 3 /* Max Tag 1 packet size */
2066
+ 1 /* Version */
2067
+ ECRYPTFS_SIG_SIZE /* Key identifier */
2068
+ 1 /* Cipher identifier */
2069
+ key_rec->enc_key_size); /* Encrypted key size */
2070
if (max_packet_size > (*remaining_bytes)) {
2071
printk(KERN_ERR "Packet length larger than maximum allowable; "
2072
"need up to [%td] bytes, but there are only [%td] "
2073
"available\n", max_packet_size, (*remaining_bytes));
2074
rc = -EINVAL;
2075
goto out;
2076
}
2077
dest[(*packet_size)++] = ECRYPTFS_TAG_1_PACKET_TYPE;
2078
rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2079
(max_packet_size - 4),
2080
&packet_size_length);
2081
if (rc) {
2082
ecryptfs_printk(KERN_ERR, "Error generating tag 1 packet "
2083
"header; cannot generate packet length\n");
2084
goto out;
2085
}
2086
(*packet_size) += packet_size_length;
2087
dest[(*packet_size)++] = 0x03; /* version 3 */
2088
memcpy(&dest[(*packet_size)], key_rec->sig, ECRYPTFS_SIG_SIZE);
2089
(*packet_size) += ECRYPTFS_SIG_SIZE;
2090
dest[(*packet_size)++] = RFC2440_CIPHER_RSA;
2091
memcpy(&dest[(*packet_size)], key_rec->enc_key,
2092
key_rec->enc_key_size);
2093
(*packet_size) += key_rec->enc_key_size;
2094
out:
2095
if (rc)
2096
(*packet_size) = 0;
2097
else
2098
(*remaining_bytes) -= (*packet_size);
2099
return rc;
2100
}
2101
2102
/**
2103
* write_tag_11_packet
2104
* @dest: Target into which Tag 11 packet is to be written
2105
* @remaining_bytes: Maximum packet length
2106
* @contents: Byte array of contents to copy in
2107
* @contents_length: Number of bytes in contents
2108
* @packet_length: Length of the Tag 11 packet written; zero on error
2109
*
2110
* Returns zero on success; non-zero on error.
2111
*/
2112
static int
2113
write_tag_11_packet(char *dest, size_t *remaining_bytes, char *contents,
2114
size_t contents_length, size_t *packet_length)
2115
{
2116
size_t packet_size_length;
2117
size_t max_packet_size;
2118
int rc = 0;
2119
2120
(*packet_length) = 0;
2121
/* This format is inspired by OpenPGP; see RFC 2440
2122
* packet tag 11 */
2123
max_packet_size = (1 /* Tag 11 identifier */
2124
+ 3 /* Max Tag 11 packet size */
2125
+ 1 /* Binary format specifier */
2126
+ 1 /* Filename length */
2127
+ 8 /* Filename ("_CONSOLE") */
2128
+ 4 /* Modification date */
2129
+ contents_length); /* Literal data */
2130
if (max_packet_size > (*remaining_bytes)) {
2131
printk(KERN_ERR "Packet length larger than maximum allowable; "
2132
"need up to [%td] bytes, but there are only [%td] "
2133
"available\n", max_packet_size, (*remaining_bytes));
2134
rc = -EINVAL;
2135
goto out;
2136
}
2137
dest[(*packet_length)++] = ECRYPTFS_TAG_11_PACKET_TYPE;
2138
rc = ecryptfs_write_packet_length(&dest[(*packet_length)],
2139
(max_packet_size - 4),
2140
&packet_size_length);
2141
if (rc) {
2142
printk(KERN_ERR "Error generating tag 11 packet header; cannot "
2143
"generate packet length. rc = [%d]\n", rc);
2144
goto out;
2145
}
2146
(*packet_length) += packet_size_length;
2147
dest[(*packet_length)++] = 0x62; /* binary data format specifier */
2148
dest[(*packet_length)++] = 8;
2149
memcpy(&dest[(*packet_length)], "_CONSOLE", 8);
2150
(*packet_length) += 8;
2151
memset(&dest[(*packet_length)], 0x00, 4);
2152
(*packet_length) += 4;
2153
memcpy(&dest[(*packet_length)], contents, contents_length);
2154
(*packet_length) += contents_length;
2155
out:
2156
if (rc)
2157
(*packet_length) = 0;
2158
else
2159
(*remaining_bytes) -= (*packet_length);
2160
return rc;
2161
}
2162
2163
/**
2164
* write_tag_3_packet
2165
* @dest: Buffer into which to write the packet
2166
* @remaining_bytes: Maximum number of bytes that can be written
2167
* @auth_tok: Authentication token
2168
* @crypt_stat: The cryptographic context
2169
* @key_rec: encrypted key
2170
* @packet_size: This function will write the number of bytes that end
2171
* up constituting the packet; set to zero on error
2172
*
2173
* Returns zero on success; non-zero on error.
2174
*/
2175
static int
2176
write_tag_3_packet(char *dest, size_t *remaining_bytes,
2177
struct ecryptfs_auth_tok *auth_tok,
2178
struct ecryptfs_crypt_stat *crypt_stat,
2179
struct ecryptfs_key_record *key_rec, size_t *packet_size)
2180
{
2181
size_t i;
2182
size_t encrypted_session_key_valid = 0;
2183
char session_key_encryption_key[ECRYPTFS_MAX_KEY_BYTES];
2184
struct scatterlist dst_sg[2];
2185
struct scatterlist src_sg[2];
2186
struct mutex *tfm_mutex = NULL;
2187
u8 cipher_code;
2188
size_t packet_size_length;
2189
size_t max_packet_size;
2190
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2191
crypt_stat->mount_crypt_stat;
2192
struct crypto_skcipher *tfm;
2193
struct skcipher_request *req;
2194
int rc = 0;
2195
2196
(*packet_size) = 0;
2197
ecryptfs_from_hex(key_rec->sig, auth_tok->token.password.signature,
2198
ECRYPTFS_SIG_SIZE);
2199
rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2200
crypt_stat->cipher);
2201
if (unlikely(rc)) {
2202
printk(KERN_ERR "Internal error whilst attempting to get "
2203
"tfm and mutex for cipher name [%s]; rc = [%d]\n",
2204
crypt_stat->cipher, rc);
2205
goto out;
2206
}
2207
if (mount_crypt_stat->global_default_cipher_key_size == 0) {
2208
printk(KERN_WARNING "No key size specified at mount; "
2209
"defaulting to [%d]\n",
2210
crypto_skcipher_max_keysize(tfm));
2211
mount_crypt_stat->global_default_cipher_key_size =
2212
crypto_skcipher_max_keysize(tfm);
2213
}
2214
if (crypt_stat->key_size == 0)
2215
crypt_stat->key_size =
2216
mount_crypt_stat->global_default_cipher_key_size;
2217
if (auth_tok->session_key.encrypted_key_size == 0)
2218
auth_tok->session_key.encrypted_key_size =
2219
crypt_stat->key_size;
2220
if (crypt_stat->key_size == 24
2221
&& strcmp("aes", crypt_stat->cipher) == 0) {
2222
memset((crypt_stat->key + 24), 0, 8);
2223
auth_tok->session_key.encrypted_key_size = 32;
2224
} else
2225
auth_tok->session_key.encrypted_key_size = crypt_stat->key_size;
2226
key_rec->enc_key_size =
2227
auth_tok->session_key.encrypted_key_size;
2228
encrypted_session_key_valid = 0;
2229
for (i = 0; i < auth_tok->session_key.encrypted_key_size; i++)
2230
encrypted_session_key_valid |=
2231
auth_tok->session_key.encrypted_key[i];
2232
if (encrypted_session_key_valid) {
2233
ecryptfs_printk(KERN_DEBUG, "encrypted_session_key_valid != 0; "
2234
"using auth_tok->session_key.encrypted_key, "
2235
"where key_rec->enc_key_size = [%zd]\n",
2236
key_rec->enc_key_size);
2237
memcpy(key_rec->enc_key,
2238
auth_tok->session_key.encrypted_key,
2239
key_rec->enc_key_size);
2240
goto encrypted_session_key_set;
2241
}
2242
if (auth_tok->token.password.flags &
2243
ECRYPTFS_SESSION_KEY_ENCRYPTION_KEY_SET) {
2244
ecryptfs_printk(KERN_DEBUG, "Using previously generated "
2245
"session key encryption key of size [%d]\n",
2246
auth_tok->token.password.
2247
session_key_encryption_key_bytes);
2248
memcpy(session_key_encryption_key,
2249
auth_tok->token.password.session_key_encryption_key,
2250
crypt_stat->key_size);
2251
ecryptfs_printk(KERN_DEBUG,
2252
"Cached session key encryption key:\n");
2253
if (ecryptfs_verbosity > 0)
2254
ecryptfs_dump_hex(session_key_encryption_key, 16);
2255
}
2256
if (unlikely(ecryptfs_verbosity > 0)) {
2257
ecryptfs_printk(KERN_DEBUG, "Session key encryption key:\n");
2258
ecryptfs_dump_hex(session_key_encryption_key, 16);
2259
}
2260
rc = virt_to_scatterlist(crypt_stat->key, key_rec->enc_key_size,
2261
src_sg, 2);
2262
if (rc < 1 || rc > 2) {
2263
ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2264
"for crypt_stat session key; expected rc = 1; "
2265
"got rc = [%d]. key_rec->enc_key_size = [%zd]\n",
2266
rc, key_rec->enc_key_size);
2267
rc = -ENOMEM;
2268
goto out;
2269
}
2270
rc = virt_to_scatterlist(key_rec->enc_key, key_rec->enc_key_size,
2271
dst_sg, 2);
2272
if (rc < 1 || rc > 2) {
2273
ecryptfs_printk(KERN_ERR, "Error generating scatterlist "
2274
"for crypt_stat encrypted session key; "
2275
"expected rc = 1; got rc = [%d]. "
2276
"key_rec->enc_key_size = [%zd]\n", rc,
2277
key_rec->enc_key_size);
2278
rc = -ENOMEM;
2279
goto out;
2280
}
2281
mutex_lock(tfm_mutex);
2282
rc = crypto_skcipher_setkey(tfm, session_key_encryption_key,
2283
crypt_stat->key_size);
2284
if (rc < 0) {
2285
mutex_unlock(tfm_mutex);
2286
ecryptfs_printk(KERN_ERR, "Error setting key for crypto "
2287
"context; rc = [%d]\n", rc);
2288
goto out;
2289
}
2290
2291
req = skcipher_request_alloc(tfm, GFP_KERNEL);
2292
if (!req) {
2293
mutex_unlock(tfm_mutex);
2294
ecryptfs_printk(KERN_ERR, "Out of kernel memory whilst "
2295
"attempting to skcipher_request_alloc for "
2296
"%s\n", crypto_skcipher_driver_name(tfm));
2297
rc = -ENOMEM;
2298
goto out;
2299
}
2300
2301
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
2302
NULL, NULL);
2303
2304
rc = 0;
2305
ecryptfs_printk(KERN_DEBUG, "Encrypting [%zd] bytes of the key\n",
2306
crypt_stat->key_size);
2307
skcipher_request_set_crypt(req, src_sg, dst_sg,
2308
(*key_rec).enc_key_size, NULL);
2309
rc = crypto_skcipher_encrypt(req);
2310
mutex_unlock(tfm_mutex);
2311
skcipher_request_free(req);
2312
if (rc) {
2313
printk(KERN_ERR "Error encrypting; rc = [%d]\n", rc);
2314
goto out;
2315
}
2316
ecryptfs_printk(KERN_DEBUG, "This should be the encrypted key:\n");
2317
if (ecryptfs_verbosity > 0) {
2318
ecryptfs_printk(KERN_DEBUG, "EFEK of size [%zd]:\n",
2319
key_rec->enc_key_size);
2320
ecryptfs_dump_hex(key_rec->enc_key,
2321
key_rec->enc_key_size);
2322
}
2323
encrypted_session_key_set:
2324
/* This format is inspired by OpenPGP; see RFC 2440
2325
* packet tag 3 */
2326
max_packet_size = (1 /* Tag 3 identifier */
2327
+ 3 /* Max Tag 3 packet size */
2328
+ 1 /* Version */
2329
+ 1 /* Cipher code */
2330
+ 1 /* S2K specifier */
2331
+ 1 /* Hash identifier */
2332
+ ECRYPTFS_SALT_SIZE /* Salt */
2333
+ 1 /* Hash iterations */
2334
+ key_rec->enc_key_size); /* Encrypted key size */
2335
if (max_packet_size > (*remaining_bytes)) {
2336
printk(KERN_ERR "Packet too large; need up to [%td] bytes, but "
2337
"there are only [%td] available\n", max_packet_size,
2338
(*remaining_bytes));
2339
rc = -EINVAL;
2340
goto out;
2341
}
2342
dest[(*packet_size)++] = ECRYPTFS_TAG_3_PACKET_TYPE;
2343
/* Chop off the Tag 3 identifier(1) and Tag 3 packet size(3)
2344
* to get the number of octets in the actual Tag 3 packet */
2345
rc = ecryptfs_write_packet_length(&dest[(*packet_size)],
2346
(max_packet_size - 4),
2347
&packet_size_length);
2348
if (rc) {
2349
printk(KERN_ERR "Error generating tag 3 packet header; cannot "
2350
"generate packet length. rc = [%d]\n", rc);
2351
goto out;
2352
}
2353
(*packet_size) += packet_size_length;
2354
dest[(*packet_size)++] = 0x04; /* version 4 */
2355
/* TODO: Break from RFC2440 so that arbitrary ciphers can be
2356
* specified with strings */
2357
cipher_code = ecryptfs_code_for_cipher_string(crypt_stat->cipher,
2358
crypt_stat->key_size);
2359
if (cipher_code == 0) {
2360
ecryptfs_printk(KERN_WARNING, "Unable to generate code for "
2361
"cipher [%s]\n", crypt_stat->cipher);
2362
rc = -EINVAL;
2363
goto out;
2364
}
2365
dest[(*packet_size)++] = cipher_code;
2366
dest[(*packet_size)++] = 0x03; /* S2K */
2367
dest[(*packet_size)++] = 0x01; /* MD5 (TODO: parameterize) */
2368
memcpy(&dest[(*packet_size)], auth_tok->token.password.salt,
2369
ECRYPTFS_SALT_SIZE);
2370
(*packet_size) += ECRYPTFS_SALT_SIZE; /* salt */
2371
dest[(*packet_size)++] = 0x60; /* hash iterations (65536) */
2372
memcpy(&dest[(*packet_size)], key_rec->enc_key,
2373
key_rec->enc_key_size);
2374
(*packet_size) += key_rec->enc_key_size;
2375
out:
2376
if (rc)
2377
(*packet_size) = 0;
2378
else
2379
(*remaining_bytes) -= (*packet_size);
2380
return rc;
2381
}
2382
2383
struct kmem_cache *ecryptfs_key_record_cache;
2384
2385
/**
2386
* ecryptfs_generate_key_packet_set
2387
* @dest_base: Virtual address from which to write the key record set
2388
* @crypt_stat: The cryptographic context from which the
2389
* authentication tokens will be retrieved
2390
* @ecryptfs_dentry: The dentry, used to retrieve the mount crypt stat
2391
* for the global parameters
2392
* @len: The amount written
2393
* @max: The maximum amount of data allowed to be written
2394
*
2395
* Generates a key packet set and writes it to the virtual address
2396
* passed in.
2397
*
2398
* Returns zero on success; non-zero on error.
2399
*/
2400
int
2401
ecryptfs_generate_key_packet_set(char *dest_base,
2402
struct ecryptfs_crypt_stat *crypt_stat,
2403
struct dentry *ecryptfs_dentry, size_t *len,
2404
size_t max)
2405
{
2406
struct ecryptfs_auth_tok *auth_tok;
2407
struct key *auth_tok_key = NULL;
2408
struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2409
&ecryptfs_superblock_to_private(
2410
ecryptfs_dentry->d_sb)->mount_crypt_stat;
2411
size_t written;
2412
struct ecryptfs_key_record *key_rec;
2413
struct ecryptfs_key_sig *key_sig;
2414
int rc = 0;
2415
2416
(*len) = 0;
2417
mutex_lock(&crypt_stat->keysig_list_mutex);
2418
key_rec = kmem_cache_alloc(ecryptfs_key_record_cache, GFP_KERNEL);
2419
if (!key_rec) {
2420
rc = -ENOMEM;
2421
goto out;
2422
}
2423
list_for_each_entry(key_sig, &crypt_stat->keysig_list,
2424
crypt_stat_list) {
2425
memset(key_rec, 0, sizeof(*key_rec));
2426
rc = ecryptfs_find_global_auth_tok_for_sig(&auth_tok_key,
2427
&auth_tok,
2428
mount_crypt_stat,
2429
key_sig->keysig);
2430
if (rc) {
2431
printk(KERN_WARNING "Unable to retrieve auth tok with "
2432
"sig = [%s]\n", key_sig->keysig);
2433
rc = process_find_global_auth_tok_for_sig_err(rc);
2434
goto out_free;
2435
}
2436
if (auth_tok->token_type == ECRYPTFS_PASSWORD) {
2437
rc = write_tag_3_packet((dest_base + (*len)),
2438
&max, auth_tok,
2439
crypt_stat, key_rec,
2440
&written);
2441
up_write(&(auth_tok_key->sem));
2442
key_put(auth_tok_key);
2443
if (rc) {
2444
ecryptfs_printk(KERN_WARNING, "Error "
2445
"writing tag 3 packet\n");
2446
goto out_free;
2447
}
2448
(*len) += written;
2449
/* Write auth tok signature packet */
2450
rc = write_tag_11_packet((dest_base + (*len)), &max,
2451
key_rec->sig,
2452
ECRYPTFS_SIG_SIZE, &written);
2453
if (rc) {
2454
ecryptfs_printk(KERN_ERR, "Error writing "
2455
"auth tok signature packet\n");
2456
goto out_free;
2457
}
2458
(*len) += written;
2459
} else if (auth_tok->token_type == ECRYPTFS_PRIVATE_KEY) {
2460
rc = write_tag_1_packet(dest_base + (*len), &max,
2461
auth_tok_key, auth_tok,
2462
crypt_stat, key_rec, &written);
2463
if (rc) {
2464
ecryptfs_printk(KERN_WARNING, "Error "
2465
"writing tag 1 packet\n");
2466
goto out_free;
2467
}
2468
(*len) += written;
2469
} else {
2470
up_write(&(auth_tok_key->sem));
2471
key_put(auth_tok_key);
2472
ecryptfs_printk(KERN_WARNING, "Unsupported "
2473
"authentication token type\n");
2474
rc = -EINVAL;
2475
goto out_free;
2476
}
2477
}
2478
if (likely(max > 0)) {
2479
dest_base[(*len)] = 0x00;
2480
} else {
2481
ecryptfs_printk(KERN_ERR, "Error writing boundary byte\n");
2482
rc = -EIO;
2483
}
2484
out_free:
2485
kmem_cache_free(ecryptfs_key_record_cache, key_rec);
2486
out:
2487
if (rc)
2488
(*len) = 0;
2489
mutex_unlock(&crypt_stat->keysig_list_mutex);
2490
return rc;
2491
}
2492
2493
struct kmem_cache *ecryptfs_key_sig_cache;
2494
2495
int ecryptfs_add_keysig(struct ecryptfs_crypt_stat *crypt_stat, char *sig)
2496
{
2497
struct ecryptfs_key_sig *new_key_sig;
2498
2499
new_key_sig = kmem_cache_alloc(ecryptfs_key_sig_cache, GFP_KERNEL);
2500
if (!new_key_sig)
2501
return -ENOMEM;
2502
2503
memcpy(new_key_sig->keysig, sig, ECRYPTFS_SIG_SIZE_HEX);
2504
new_key_sig->keysig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2505
/* Caller must hold keysig_list_mutex */
2506
list_add(&new_key_sig->crypt_stat_list, &crypt_stat->keysig_list);
2507
2508
return 0;
2509
}
2510
2511
struct kmem_cache *ecryptfs_global_auth_tok_cache;
2512
2513
int
2514
ecryptfs_add_global_auth_tok(struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2515
char *sig, u32 global_auth_tok_flags)
2516
{
2517
struct ecryptfs_global_auth_tok *new_auth_tok;
2518
2519
new_auth_tok = kmem_cache_zalloc(ecryptfs_global_auth_tok_cache,
2520
GFP_KERNEL);
2521
if (!new_auth_tok)
2522
return -ENOMEM;
2523
2524
memcpy(new_auth_tok->sig, sig, ECRYPTFS_SIG_SIZE_HEX);
2525
new_auth_tok->flags = global_auth_tok_flags;
2526
new_auth_tok->sig[ECRYPTFS_SIG_SIZE_HEX] = '\0';
2527
mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
2528
list_add(&new_auth_tok->mount_crypt_stat_list,
2529
&mount_crypt_stat->global_auth_tok_list);
2530
mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
2531
return 0;
2532
}
2533
2534
2535