Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/fs/eventpoll.c
26131 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* fs/eventpoll.c (Efficient event retrieval implementation)
4
* Copyright (C) 2001,...,2009 Davide Libenzi
5
*
6
* Davide Libenzi <[email protected]>
7
*/
8
9
#include <linux/init.h>
10
#include <linux/kernel.h>
11
#include <linux/sched/signal.h>
12
#include <linux/fs.h>
13
#include <linux/file.h>
14
#include <linux/signal.h>
15
#include <linux/errno.h>
16
#include <linux/mm.h>
17
#include <linux/slab.h>
18
#include <linux/poll.h>
19
#include <linux/string.h>
20
#include <linux/list.h>
21
#include <linux/hash.h>
22
#include <linux/spinlock.h>
23
#include <linux/syscalls.h>
24
#include <linux/rbtree.h>
25
#include <linux/wait.h>
26
#include <linux/eventpoll.h>
27
#include <linux/mount.h>
28
#include <linux/bitops.h>
29
#include <linux/mutex.h>
30
#include <linux/anon_inodes.h>
31
#include <linux/device.h>
32
#include <linux/uaccess.h>
33
#include <asm/io.h>
34
#include <asm/mman.h>
35
#include <linux/atomic.h>
36
#include <linux/proc_fs.h>
37
#include <linux/seq_file.h>
38
#include <linux/compat.h>
39
#include <linux/rculist.h>
40
#include <linux/capability.h>
41
#include <net/busy_poll.h>
42
43
/*
44
* LOCKING:
45
* There are three level of locking required by epoll :
46
*
47
* 1) epnested_mutex (mutex)
48
* 2) ep->mtx (mutex)
49
* 3) ep->lock (rwlock)
50
*
51
* The acquire order is the one listed above, from 1 to 3.
52
* We need a rwlock (ep->lock) because we manipulate objects
53
* from inside the poll callback, that might be triggered from
54
* a wake_up() that in turn might be called from IRQ context.
55
* So we can't sleep inside the poll callback and hence we need
56
* a spinlock. During the event transfer loop (from kernel to
57
* user space) we could end up sleeping due a copy_to_user(), so
58
* we need a lock that will allow us to sleep. This lock is a
59
* mutex (ep->mtx). It is acquired during the event transfer loop,
60
* during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61
* The epnested_mutex is acquired when inserting an epoll fd onto another
62
* epoll fd. We do this so that we walk the epoll tree and ensure that this
63
* insertion does not create a cycle of epoll file descriptors, which
64
* could lead to deadlock. We need a global mutex to prevent two
65
* simultaneous inserts (A into B and B into A) from racing and
66
* constructing a cycle without either insert observing that it is
67
* going to.
68
* It is necessary to acquire multiple "ep->mtx"es at once in the
69
* case when one epoll fd is added to another. In this case, we
70
* always acquire the locks in the order of nesting (i.e. after
71
* epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72
* before e2->mtx). Since we disallow cycles of epoll file
73
* descriptors, this ensures that the mutexes are well-ordered. In
74
* order to communicate this nesting to lockdep, when walking a tree
75
* of epoll file descriptors, we use the current recursion depth as
76
* the lockdep subkey.
77
* It is possible to drop the "ep->mtx" and to use the global
78
* mutex "epnested_mutex" (together with "ep->lock") to have it working,
79
* but having "ep->mtx" will make the interface more scalable.
80
* Events that require holding "epnested_mutex" are very rare, while for
81
* normal operations the epoll private "ep->mtx" will guarantee
82
* a better scalability.
83
*/
84
85
/* Epoll private bits inside the event mask */
86
#define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87
88
#define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89
90
#define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91
EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92
93
/* Maximum number of nesting allowed inside epoll sets */
94
#define EP_MAX_NESTS 4
95
96
#define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97
98
#define EP_UNACTIVE_PTR ((void *) -1L)
99
100
#define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101
102
struct epoll_filefd {
103
struct file *file;
104
int fd;
105
} __packed;
106
107
/* Wait structure used by the poll hooks */
108
struct eppoll_entry {
109
/* List header used to link this structure to the "struct epitem" */
110
struct eppoll_entry *next;
111
112
/* The "base" pointer is set to the container "struct epitem" */
113
struct epitem *base;
114
115
/*
116
* Wait queue item that will be linked to the target file wait
117
* queue head.
118
*/
119
wait_queue_entry_t wait;
120
121
/* The wait queue head that linked the "wait" wait queue item */
122
wait_queue_head_t *whead;
123
};
124
125
/*
126
* Each file descriptor added to the eventpoll interface will
127
* have an entry of this type linked to the "rbr" RB tree.
128
* Avoid increasing the size of this struct, there can be many thousands
129
* of these on a server and we do not want this to take another cache line.
130
*/
131
struct epitem {
132
union {
133
/* RB tree node links this structure to the eventpoll RB tree */
134
struct rb_node rbn;
135
/* Used to free the struct epitem */
136
struct rcu_head rcu;
137
};
138
139
/* List header used to link this structure to the eventpoll ready list */
140
struct list_head rdllink;
141
142
/*
143
* Works together "struct eventpoll"->ovflist in keeping the
144
* single linked chain of items.
145
*/
146
struct epitem *next;
147
148
/* The file descriptor information this item refers to */
149
struct epoll_filefd ffd;
150
151
/*
152
* Protected by file->f_lock, true for to-be-released epitem already
153
* removed from the "struct file" items list; together with
154
* eventpoll->refcount orchestrates "struct eventpoll" disposal
155
*/
156
bool dying;
157
158
/* List containing poll wait queues */
159
struct eppoll_entry *pwqlist;
160
161
/* The "container" of this item */
162
struct eventpoll *ep;
163
164
/* List header used to link this item to the "struct file" items list */
165
struct hlist_node fllink;
166
167
/* wakeup_source used when EPOLLWAKEUP is set */
168
struct wakeup_source __rcu *ws;
169
170
/* The structure that describe the interested events and the source fd */
171
struct epoll_event event;
172
};
173
174
/*
175
* This structure is stored inside the "private_data" member of the file
176
* structure and represents the main data structure for the eventpoll
177
* interface.
178
*/
179
struct eventpoll {
180
/*
181
* This mutex is used to ensure that files are not removed
182
* while epoll is using them. This is held during the event
183
* collection loop, the file cleanup path, the epoll file exit
184
* code and the ctl operations.
185
*/
186
struct mutex mtx;
187
188
/* Wait queue used by sys_epoll_wait() */
189
wait_queue_head_t wq;
190
191
/* Wait queue used by file->poll() */
192
wait_queue_head_t poll_wait;
193
194
/* List of ready file descriptors */
195
struct list_head rdllist;
196
197
/* Lock which protects rdllist and ovflist */
198
rwlock_t lock;
199
200
/* RB tree root used to store monitored fd structs */
201
struct rb_root_cached rbr;
202
203
/*
204
* This is a single linked list that chains all the "struct epitem" that
205
* happened while transferring ready events to userspace w/out
206
* holding ->lock.
207
*/
208
struct epitem *ovflist;
209
210
/* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211
struct wakeup_source *ws;
212
213
/* The user that created the eventpoll descriptor */
214
struct user_struct *user;
215
216
struct file *file;
217
218
/* used to optimize loop detection check */
219
u64 gen;
220
struct hlist_head refs;
221
u8 loop_check_depth;
222
223
/*
224
* usage count, used together with epitem->dying to
225
* orchestrate the disposal of this struct
226
*/
227
refcount_t refcount;
228
229
#ifdef CONFIG_NET_RX_BUSY_POLL
230
/* used to track busy poll napi_id */
231
unsigned int napi_id;
232
/* busy poll timeout */
233
u32 busy_poll_usecs;
234
/* busy poll packet budget */
235
u16 busy_poll_budget;
236
bool prefer_busy_poll;
237
#endif
238
239
#ifdef CONFIG_DEBUG_LOCK_ALLOC
240
/* tracks wakeup nests for lockdep validation */
241
u8 nests;
242
#endif
243
};
244
245
/* Wrapper struct used by poll queueing */
246
struct ep_pqueue {
247
poll_table pt;
248
struct epitem *epi;
249
};
250
251
/*
252
* Configuration options available inside /proc/sys/fs/epoll/
253
*/
254
/* Maximum number of epoll watched descriptors, per user */
255
static long max_user_watches __read_mostly;
256
257
/* Used for cycles detection */
258
static DEFINE_MUTEX(epnested_mutex);
259
260
static u64 loop_check_gen = 0;
261
262
/* Used to check for epoll file descriptor inclusion loops */
263
static struct eventpoll *inserting_into;
264
265
/* Slab cache used to allocate "struct epitem" */
266
static struct kmem_cache *epi_cache __ro_after_init;
267
268
/* Slab cache used to allocate "struct eppoll_entry" */
269
static struct kmem_cache *pwq_cache __ro_after_init;
270
271
/*
272
* List of files with newly added links, where we may need to limit the number
273
* of emanating paths. Protected by the epnested_mutex.
274
*/
275
struct epitems_head {
276
struct hlist_head epitems;
277
struct epitems_head *next;
278
};
279
static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
280
281
static struct kmem_cache *ephead_cache __ro_after_init;
282
283
static inline void free_ephead(struct epitems_head *head)
284
{
285
if (head)
286
kmem_cache_free(ephead_cache, head);
287
}
288
289
static void list_file(struct file *file)
290
{
291
struct epitems_head *head;
292
293
head = container_of(file->f_ep, struct epitems_head, epitems);
294
if (!head->next) {
295
head->next = tfile_check_list;
296
tfile_check_list = head;
297
}
298
}
299
300
static void unlist_file(struct epitems_head *head)
301
{
302
struct epitems_head *to_free = head;
303
struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
304
if (p) {
305
struct epitem *epi= container_of(p, struct epitem, fllink);
306
spin_lock(&epi->ffd.file->f_lock);
307
if (!hlist_empty(&head->epitems))
308
to_free = NULL;
309
head->next = NULL;
310
spin_unlock(&epi->ffd.file->f_lock);
311
}
312
free_ephead(to_free);
313
}
314
315
#ifdef CONFIG_SYSCTL
316
317
#include <linux/sysctl.h>
318
319
static long long_zero;
320
static long long_max = LONG_MAX;
321
322
static const struct ctl_table epoll_table[] = {
323
{
324
.procname = "max_user_watches",
325
.data = &max_user_watches,
326
.maxlen = sizeof(max_user_watches),
327
.mode = 0644,
328
.proc_handler = proc_doulongvec_minmax,
329
.extra1 = &long_zero,
330
.extra2 = &long_max,
331
},
332
};
333
334
static void __init epoll_sysctls_init(void)
335
{
336
register_sysctl("fs/epoll", epoll_table);
337
}
338
#else
339
#define epoll_sysctls_init() do { } while (0)
340
#endif /* CONFIG_SYSCTL */
341
342
static const struct file_operations eventpoll_fops;
343
344
static inline int is_file_epoll(struct file *f)
345
{
346
return f->f_op == &eventpoll_fops;
347
}
348
349
/* Setup the structure that is used as key for the RB tree */
350
static inline void ep_set_ffd(struct epoll_filefd *ffd,
351
struct file *file, int fd)
352
{
353
ffd->file = file;
354
ffd->fd = fd;
355
}
356
357
/* Compare RB tree keys */
358
static inline int ep_cmp_ffd(struct epoll_filefd *p1,
359
struct epoll_filefd *p2)
360
{
361
return (p1->file > p2->file ? +1:
362
(p1->file < p2->file ? -1 : p1->fd - p2->fd));
363
}
364
365
/* Tells us if the item is currently linked */
366
static inline int ep_is_linked(struct epitem *epi)
367
{
368
return !list_empty(&epi->rdllink);
369
}
370
371
static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
372
{
373
return container_of(p, struct eppoll_entry, wait);
374
}
375
376
/* Get the "struct epitem" from a wait queue pointer */
377
static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
378
{
379
return container_of(p, struct eppoll_entry, wait)->base;
380
}
381
382
/**
383
* ep_events_available - Checks if ready events might be available.
384
*
385
* @ep: Pointer to the eventpoll context.
386
*
387
* Return: a value different than %zero if ready events are available,
388
* or %zero otherwise.
389
*/
390
static inline int ep_events_available(struct eventpoll *ep)
391
{
392
return !list_empty_careful(&ep->rdllist) ||
393
READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
394
}
395
396
#ifdef CONFIG_NET_RX_BUSY_POLL
397
/**
398
* busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
399
* from the epoll instance ep is preferred, but if it is not set fallback to
400
* the system-wide global via busy_loop_timeout.
401
*
402
* @start_time: The start time used to compute the remaining time until timeout.
403
* @ep: Pointer to the eventpoll context.
404
*
405
* Return: true if the timeout has expired, false otherwise.
406
*/
407
static bool busy_loop_ep_timeout(unsigned long start_time,
408
struct eventpoll *ep)
409
{
410
unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
411
412
if (bp_usec) {
413
unsigned long end_time = start_time + bp_usec;
414
unsigned long now = busy_loop_current_time();
415
416
return time_after(now, end_time);
417
} else {
418
return busy_loop_timeout(start_time);
419
}
420
}
421
422
static bool ep_busy_loop_on(struct eventpoll *ep)
423
{
424
return !!READ_ONCE(ep->busy_poll_usecs) ||
425
READ_ONCE(ep->prefer_busy_poll) ||
426
net_busy_loop_on();
427
}
428
429
static bool ep_busy_loop_end(void *p, unsigned long start_time)
430
{
431
struct eventpoll *ep = p;
432
433
return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
434
}
435
436
/*
437
* Busy poll if globally on and supporting sockets found && no events,
438
* busy loop will return if need_resched or ep_events_available.
439
*
440
* we must do our busy polling with irqs enabled
441
*/
442
static bool ep_busy_loop(struct eventpoll *ep)
443
{
444
unsigned int napi_id = READ_ONCE(ep->napi_id);
445
u16 budget = READ_ONCE(ep->busy_poll_budget);
446
bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
447
448
if (!budget)
449
budget = BUSY_POLL_BUDGET;
450
451
if (napi_id_valid(napi_id) && ep_busy_loop_on(ep)) {
452
napi_busy_loop(napi_id, ep_busy_loop_end,
453
ep, prefer_busy_poll, budget);
454
if (ep_events_available(ep))
455
return true;
456
/*
457
* Busy poll timed out. Drop NAPI ID for now, we can add
458
* it back in when we have moved a socket with a valid NAPI
459
* ID onto the ready list.
460
*/
461
if (prefer_busy_poll)
462
napi_resume_irqs(napi_id);
463
ep->napi_id = 0;
464
return false;
465
}
466
return false;
467
}
468
469
/*
470
* Set epoll busy poll NAPI ID from sk.
471
*/
472
static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
473
{
474
struct eventpoll *ep = epi->ep;
475
unsigned int napi_id;
476
struct socket *sock;
477
struct sock *sk;
478
479
if (!ep_busy_loop_on(ep))
480
return;
481
482
sock = sock_from_file(epi->ffd.file);
483
if (!sock)
484
return;
485
486
sk = sock->sk;
487
if (!sk)
488
return;
489
490
napi_id = READ_ONCE(sk->sk_napi_id);
491
492
/* Non-NAPI IDs can be rejected
493
* or
494
* Nothing to do if we already have this ID
495
*/
496
if (!napi_id_valid(napi_id) || napi_id == ep->napi_id)
497
return;
498
499
/* record NAPI ID for use in next busy poll */
500
ep->napi_id = napi_id;
501
}
502
503
static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
504
unsigned long arg)
505
{
506
struct eventpoll *ep = file->private_data;
507
void __user *uarg = (void __user *)arg;
508
struct epoll_params epoll_params;
509
510
switch (cmd) {
511
case EPIOCSPARAMS:
512
if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
513
return -EFAULT;
514
515
/* pad byte must be zero */
516
if (epoll_params.__pad)
517
return -EINVAL;
518
519
if (epoll_params.busy_poll_usecs > S32_MAX)
520
return -EINVAL;
521
522
if (epoll_params.prefer_busy_poll > 1)
523
return -EINVAL;
524
525
if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
526
!capable(CAP_NET_ADMIN))
527
return -EPERM;
528
529
WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
530
WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
531
WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
532
return 0;
533
case EPIOCGPARAMS:
534
memset(&epoll_params, 0, sizeof(epoll_params));
535
epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
536
epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
537
epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
538
if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
539
return -EFAULT;
540
return 0;
541
default:
542
return -ENOIOCTLCMD;
543
}
544
}
545
546
static void ep_suspend_napi_irqs(struct eventpoll *ep)
547
{
548
unsigned int napi_id = READ_ONCE(ep->napi_id);
549
550
if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll))
551
napi_suspend_irqs(napi_id);
552
}
553
554
static void ep_resume_napi_irqs(struct eventpoll *ep)
555
{
556
unsigned int napi_id = READ_ONCE(ep->napi_id);
557
558
if (napi_id_valid(napi_id) && READ_ONCE(ep->prefer_busy_poll))
559
napi_resume_irqs(napi_id);
560
}
561
562
#else
563
564
static inline bool ep_busy_loop(struct eventpoll *ep)
565
{
566
return false;
567
}
568
569
static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
570
{
571
}
572
573
static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
574
unsigned long arg)
575
{
576
return -EOPNOTSUPP;
577
}
578
579
static void ep_suspend_napi_irqs(struct eventpoll *ep)
580
{
581
}
582
583
static void ep_resume_napi_irqs(struct eventpoll *ep)
584
{
585
}
586
587
#endif /* CONFIG_NET_RX_BUSY_POLL */
588
589
/*
590
* As described in commit 0ccf831cb lockdep: annotate epoll
591
* the use of wait queues used by epoll is done in a very controlled
592
* manner. Wake ups can nest inside each other, but are never done
593
* with the same locking. For example:
594
*
595
* dfd = socket(...);
596
* efd1 = epoll_create();
597
* efd2 = epoll_create();
598
* epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
599
* epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
600
*
601
* When a packet arrives to the device underneath "dfd", the net code will
602
* issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
603
* callback wakeup entry on that queue, and the wake_up() performed by the
604
* "dfd" net code will end up in ep_poll_callback(). At this point epoll
605
* (efd1) notices that it may have some event ready, so it needs to wake up
606
* the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
607
* that ends up in another wake_up(), after having checked about the
608
* recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
609
* stack blasting.
610
*
611
* When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
612
* this special case of epoll.
613
*/
614
#ifdef CONFIG_DEBUG_LOCK_ALLOC
615
616
static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
617
unsigned pollflags)
618
{
619
struct eventpoll *ep_src;
620
unsigned long flags;
621
u8 nests = 0;
622
623
/*
624
* To set the subclass or nesting level for spin_lock_irqsave_nested()
625
* it might be natural to create a per-cpu nest count. However, since
626
* we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
627
* schedule() in the -rt kernel, the per-cpu variable are no longer
628
* protected. Thus, we are introducing a per eventpoll nest field.
629
* If we are not being call from ep_poll_callback(), epi is NULL and
630
* we are at the first level of nesting, 0. Otherwise, we are being
631
* called from ep_poll_callback() and if a previous wakeup source is
632
* not an epoll file itself, we are at depth 1 since the wakeup source
633
* is depth 0. If the wakeup source is a previous epoll file in the
634
* wakeup chain then we use its nests value and record ours as
635
* nests + 1. The previous epoll file nests value is stable since its
636
* already holding its own poll_wait.lock.
637
*/
638
if (epi) {
639
if ((is_file_epoll(epi->ffd.file))) {
640
ep_src = epi->ffd.file->private_data;
641
nests = ep_src->nests;
642
} else {
643
nests = 1;
644
}
645
}
646
spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
647
ep->nests = nests + 1;
648
wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
649
ep->nests = 0;
650
spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
651
}
652
653
#else
654
655
static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
656
__poll_t pollflags)
657
{
658
wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
659
}
660
661
#endif
662
663
static void ep_remove_wait_queue(struct eppoll_entry *pwq)
664
{
665
wait_queue_head_t *whead;
666
667
rcu_read_lock();
668
/*
669
* If it is cleared by POLLFREE, it should be rcu-safe.
670
* If we read NULL we need a barrier paired with
671
* smp_store_release() in ep_poll_callback(), otherwise
672
* we rely on whead->lock.
673
*/
674
whead = smp_load_acquire(&pwq->whead);
675
if (whead)
676
remove_wait_queue(whead, &pwq->wait);
677
rcu_read_unlock();
678
}
679
680
/*
681
* This function unregisters poll callbacks from the associated file
682
* descriptor. Must be called with "mtx" held.
683
*/
684
static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
685
{
686
struct eppoll_entry **p = &epi->pwqlist;
687
struct eppoll_entry *pwq;
688
689
while ((pwq = *p) != NULL) {
690
*p = pwq->next;
691
ep_remove_wait_queue(pwq);
692
kmem_cache_free(pwq_cache, pwq);
693
}
694
}
695
696
/* call only when ep->mtx is held */
697
static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
698
{
699
return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
700
}
701
702
/* call only when ep->mtx is held */
703
static inline void ep_pm_stay_awake(struct epitem *epi)
704
{
705
struct wakeup_source *ws = ep_wakeup_source(epi);
706
707
if (ws)
708
__pm_stay_awake(ws);
709
}
710
711
static inline bool ep_has_wakeup_source(struct epitem *epi)
712
{
713
return rcu_access_pointer(epi->ws) ? true : false;
714
}
715
716
/* call when ep->mtx cannot be held (ep_poll_callback) */
717
static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
718
{
719
struct wakeup_source *ws;
720
721
rcu_read_lock();
722
ws = rcu_dereference(epi->ws);
723
if (ws)
724
__pm_stay_awake(ws);
725
rcu_read_unlock();
726
}
727
728
729
/*
730
* ep->mutex needs to be held because we could be hit by
731
* eventpoll_release_file() and epoll_ctl().
732
*/
733
static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
734
{
735
/*
736
* Steal the ready list, and re-init the original one to the
737
* empty list. Also, set ep->ovflist to NULL so that events
738
* happening while looping w/out locks, are not lost. We cannot
739
* have the poll callback to queue directly on ep->rdllist,
740
* because we want the "sproc" callback to be able to do it
741
* in a lockless way.
742
*/
743
lockdep_assert_irqs_enabled();
744
write_lock_irq(&ep->lock);
745
list_splice_init(&ep->rdllist, txlist);
746
WRITE_ONCE(ep->ovflist, NULL);
747
write_unlock_irq(&ep->lock);
748
}
749
750
static void ep_done_scan(struct eventpoll *ep,
751
struct list_head *txlist)
752
{
753
struct epitem *epi, *nepi;
754
755
write_lock_irq(&ep->lock);
756
/*
757
* During the time we spent inside the "sproc" callback, some
758
* other events might have been queued by the poll callback.
759
* We re-insert them inside the main ready-list here.
760
*/
761
for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
762
nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
763
/*
764
* We need to check if the item is already in the list.
765
* During the "sproc" callback execution time, items are
766
* queued into ->ovflist but the "txlist" might already
767
* contain them, and the list_splice() below takes care of them.
768
*/
769
if (!ep_is_linked(epi)) {
770
/*
771
* ->ovflist is LIFO, so we have to reverse it in order
772
* to keep in FIFO.
773
*/
774
list_add(&epi->rdllink, &ep->rdllist);
775
ep_pm_stay_awake(epi);
776
}
777
}
778
/*
779
* We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
780
* releasing the lock, events will be queued in the normal way inside
781
* ep->rdllist.
782
*/
783
WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
784
785
/*
786
* Quickly re-inject items left on "txlist".
787
*/
788
list_splice(txlist, &ep->rdllist);
789
__pm_relax(ep->ws);
790
791
if (!list_empty(&ep->rdllist)) {
792
if (waitqueue_active(&ep->wq))
793
wake_up(&ep->wq);
794
}
795
796
write_unlock_irq(&ep->lock);
797
}
798
799
static void ep_get(struct eventpoll *ep)
800
{
801
refcount_inc(&ep->refcount);
802
}
803
804
/*
805
* Returns true if the event poll can be disposed
806
*/
807
static bool ep_refcount_dec_and_test(struct eventpoll *ep)
808
{
809
if (!refcount_dec_and_test(&ep->refcount))
810
return false;
811
812
WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
813
return true;
814
}
815
816
static void ep_free(struct eventpoll *ep)
817
{
818
ep_resume_napi_irqs(ep);
819
mutex_destroy(&ep->mtx);
820
free_uid(ep->user);
821
wakeup_source_unregister(ep->ws);
822
kfree(ep);
823
}
824
825
/*
826
* Removes a "struct epitem" from the eventpoll RB tree and deallocates
827
* all the associated resources. Must be called with "mtx" held.
828
* If the dying flag is set, do the removal only if force is true.
829
* This prevents ep_clear_and_put() from dropping all the ep references
830
* while running concurrently with eventpoll_release_file().
831
* Returns true if the eventpoll can be disposed.
832
*/
833
static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
834
{
835
struct file *file = epi->ffd.file;
836
struct epitems_head *to_free;
837
struct hlist_head *head;
838
839
lockdep_assert_irqs_enabled();
840
841
/*
842
* Removes poll wait queue hooks.
843
*/
844
ep_unregister_pollwait(ep, epi);
845
846
/* Remove the current item from the list of epoll hooks */
847
spin_lock(&file->f_lock);
848
if (epi->dying && !force) {
849
spin_unlock(&file->f_lock);
850
return false;
851
}
852
853
to_free = NULL;
854
head = file->f_ep;
855
if (head->first == &epi->fllink && !epi->fllink.next) {
856
/* See eventpoll_release() for details. */
857
WRITE_ONCE(file->f_ep, NULL);
858
if (!is_file_epoll(file)) {
859
struct epitems_head *v;
860
v = container_of(head, struct epitems_head, epitems);
861
if (!smp_load_acquire(&v->next))
862
to_free = v;
863
}
864
}
865
hlist_del_rcu(&epi->fllink);
866
spin_unlock(&file->f_lock);
867
free_ephead(to_free);
868
869
rb_erase_cached(&epi->rbn, &ep->rbr);
870
871
write_lock_irq(&ep->lock);
872
if (ep_is_linked(epi))
873
list_del_init(&epi->rdllink);
874
write_unlock_irq(&ep->lock);
875
876
wakeup_source_unregister(ep_wakeup_source(epi));
877
/*
878
* At this point it is safe to free the eventpoll item. Use the union
879
* field epi->rcu, since we are trying to minimize the size of
880
* 'struct epitem'. The 'rbn' field is no longer in use. Protected by
881
* ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
882
* use of the rbn field.
883
*/
884
kfree_rcu(epi, rcu);
885
886
percpu_counter_dec(&ep->user->epoll_watches);
887
return true;
888
}
889
890
/*
891
* ep_remove variant for callers owing an additional reference to the ep
892
*/
893
static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
894
{
895
if (__ep_remove(ep, epi, false))
896
WARN_ON_ONCE(ep_refcount_dec_and_test(ep));
897
}
898
899
static void ep_clear_and_put(struct eventpoll *ep)
900
{
901
struct rb_node *rbp, *next;
902
struct epitem *epi;
903
904
/* We need to release all tasks waiting for these file */
905
if (waitqueue_active(&ep->poll_wait))
906
ep_poll_safewake(ep, NULL, 0);
907
908
mutex_lock(&ep->mtx);
909
910
/*
911
* Walks through the whole tree by unregistering poll callbacks.
912
*/
913
for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
914
epi = rb_entry(rbp, struct epitem, rbn);
915
916
ep_unregister_pollwait(ep, epi);
917
cond_resched();
918
}
919
920
/*
921
* Walks through the whole tree and try to free each "struct epitem".
922
* Note that ep_remove_safe() will not remove the epitem in case of a
923
* racing eventpoll_release_file(); the latter will do the removal.
924
* At this point we are sure no poll callbacks will be lingering around.
925
* Since we still own a reference to the eventpoll struct, the loop can't
926
* dispose it.
927
*/
928
for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
929
next = rb_next(rbp);
930
epi = rb_entry(rbp, struct epitem, rbn);
931
ep_remove_safe(ep, epi);
932
cond_resched();
933
}
934
935
mutex_unlock(&ep->mtx);
936
if (ep_refcount_dec_and_test(ep))
937
ep_free(ep);
938
}
939
940
static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
941
unsigned long arg)
942
{
943
int ret;
944
945
if (!is_file_epoll(file))
946
return -EINVAL;
947
948
switch (cmd) {
949
case EPIOCSPARAMS:
950
case EPIOCGPARAMS:
951
ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
952
break;
953
default:
954
ret = -EINVAL;
955
break;
956
}
957
958
return ret;
959
}
960
961
static int ep_eventpoll_release(struct inode *inode, struct file *file)
962
{
963
struct eventpoll *ep = file->private_data;
964
965
if (ep)
966
ep_clear_and_put(ep);
967
968
return 0;
969
}
970
971
static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
972
973
static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
974
{
975
struct eventpoll *ep = file->private_data;
976
LIST_HEAD(txlist);
977
struct epitem *epi, *tmp;
978
poll_table pt;
979
__poll_t res = 0;
980
981
init_poll_funcptr(&pt, NULL);
982
983
/* Insert inside our poll wait queue */
984
poll_wait(file, &ep->poll_wait, wait);
985
986
/*
987
* Proceed to find out if wanted events are really available inside
988
* the ready list.
989
*/
990
mutex_lock_nested(&ep->mtx, depth);
991
ep_start_scan(ep, &txlist);
992
list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
993
if (ep_item_poll(epi, &pt, depth + 1)) {
994
res = EPOLLIN | EPOLLRDNORM;
995
break;
996
} else {
997
/*
998
* Item has been dropped into the ready list by the poll
999
* callback, but it's not actually ready, as far as
1000
* caller requested events goes. We can remove it here.
1001
*/
1002
__pm_relax(ep_wakeup_source(epi));
1003
list_del_init(&epi->rdllink);
1004
}
1005
}
1006
ep_done_scan(ep, &txlist);
1007
mutex_unlock(&ep->mtx);
1008
return res;
1009
}
1010
1011
/*
1012
* The ffd.file pointer may be in the process of being torn down due to
1013
* being closed, but we may not have finished eventpoll_release() yet.
1014
*
1015
* Normally, even with the atomic_long_inc_not_zero, the file may have
1016
* been free'd and then gotten re-allocated to something else (since
1017
* files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
1018
*
1019
* But for epoll, users hold the ep->mtx mutex, and as such any file in
1020
* the process of being free'd will block in eventpoll_release_file()
1021
* and thus the underlying file allocation will not be free'd, and the
1022
* file re-use cannot happen.
1023
*
1024
* For the same reason we can avoid a rcu_read_lock() around the
1025
* operation - 'ffd.file' cannot go away even if the refcount has
1026
* reached zero (but we must still not call out to ->poll() functions
1027
* etc).
1028
*/
1029
static struct file *epi_fget(const struct epitem *epi)
1030
{
1031
struct file *file;
1032
1033
file = epi->ffd.file;
1034
if (!file_ref_get(&file->f_ref))
1035
file = NULL;
1036
return file;
1037
}
1038
1039
/*
1040
* Differs from ep_eventpoll_poll() in that internal callers already have
1041
* the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1042
* is correctly annotated.
1043
*/
1044
static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
1045
int depth)
1046
{
1047
struct file *file = epi_fget(epi);
1048
__poll_t res;
1049
1050
/*
1051
* We could return EPOLLERR | EPOLLHUP or something, but let's
1052
* treat this more as "file doesn't exist, poll didn't happen".
1053
*/
1054
if (!file)
1055
return 0;
1056
1057
pt->_key = epi->event.events;
1058
if (!is_file_epoll(file))
1059
res = vfs_poll(file, pt);
1060
else
1061
res = __ep_eventpoll_poll(file, pt, depth);
1062
fput(file);
1063
return res & epi->event.events;
1064
}
1065
1066
static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1067
{
1068
return __ep_eventpoll_poll(file, wait, 0);
1069
}
1070
1071
#ifdef CONFIG_PROC_FS
1072
static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1073
{
1074
struct eventpoll *ep = f->private_data;
1075
struct rb_node *rbp;
1076
1077
mutex_lock(&ep->mtx);
1078
for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1079
struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1080
struct inode *inode = file_inode(epi->ffd.file);
1081
1082
seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1083
" pos:%lli ino:%lx sdev:%x\n",
1084
epi->ffd.fd, epi->event.events,
1085
(long long)epi->event.data,
1086
(long long)epi->ffd.file->f_pos,
1087
inode->i_ino, inode->i_sb->s_dev);
1088
if (seq_has_overflowed(m))
1089
break;
1090
}
1091
mutex_unlock(&ep->mtx);
1092
}
1093
#endif
1094
1095
/* File callbacks that implement the eventpoll file behaviour */
1096
static const struct file_operations eventpoll_fops = {
1097
#ifdef CONFIG_PROC_FS
1098
.show_fdinfo = ep_show_fdinfo,
1099
#endif
1100
.release = ep_eventpoll_release,
1101
.poll = ep_eventpoll_poll,
1102
.llseek = noop_llseek,
1103
.unlocked_ioctl = ep_eventpoll_ioctl,
1104
.compat_ioctl = compat_ptr_ioctl,
1105
};
1106
1107
/*
1108
* This is called from eventpoll_release() to unlink files from the eventpoll
1109
* interface. We need to have this facility to cleanup correctly files that are
1110
* closed without being removed from the eventpoll interface.
1111
*/
1112
void eventpoll_release_file(struct file *file)
1113
{
1114
struct eventpoll *ep;
1115
struct epitem *epi;
1116
bool dispose;
1117
1118
/*
1119
* Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1120
* touching the epitems list before eventpoll_release_file() can access
1121
* the ep->mtx.
1122
*/
1123
again:
1124
spin_lock(&file->f_lock);
1125
if (file->f_ep && file->f_ep->first) {
1126
epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1127
epi->dying = true;
1128
spin_unlock(&file->f_lock);
1129
1130
/*
1131
* ep access is safe as we still own a reference to the ep
1132
* struct
1133
*/
1134
ep = epi->ep;
1135
mutex_lock(&ep->mtx);
1136
dispose = __ep_remove(ep, epi, true);
1137
mutex_unlock(&ep->mtx);
1138
1139
if (dispose && ep_refcount_dec_and_test(ep))
1140
ep_free(ep);
1141
goto again;
1142
}
1143
spin_unlock(&file->f_lock);
1144
}
1145
1146
static int ep_alloc(struct eventpoll **pep)
1147
{
1148
struct eventpoll *ep;
1149
1150
ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1151
if (unlikely(!ep))
1152
return -ENOMEM;
1153
1154
mutex_init(&ep->mtx);
1155
rwlock_init(&ep->lock);
1156
init_waitqueue_head(&ep->wq);
1157
init_waitqueue_head(&ep->poll_wait);
1158
INIT_LIST_HEAD(&ep->rdllist);
1159
ep->rbr = RB_ROOT_CACHED;
1160
ep->ovflist = EP_UNACTIVE_PTR;
1161
ep->user = get_current_user();
1162
refcount_set(&ep->refcount, 1);
1163
1164
*pep = ep;
1165
1166
return 0;
1167
}
1168
1169
/*
1170
* Search the file inside the eventpoll tree. The RB tree operations
1171
* are protected by the "mtx" mutex, and ep_find() must be called with
1172
* "mtx" held.
1173
*/
1174
static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1175
{
1176
int kcmp;
1177
struct rb_node *rbp;
1178
struct epitem *epi, *epir = NULL;
1179
struct epoll_filefd ffd;
1180
1181
ep_set_ffd(&ffd, file, fd);
1182
for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1183
epi = rb_entry(rbp, struct epitem, rbn);
1184
kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1185
if (kcmp > 0)
1186
rbp = rbp->rb_right;
1187
else if (kcmp < 0)
1188
rbp = rbp->rb_left;
1189
else {
1190
epir = epi;
1191
break;
1192
}
1193
}
1194
1195
return epir;
1196
}
1197
1198
#ifdef CONFIG_KCMP
1199
static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1200
{
1201
struct rb_node *rbp;
1202
struct epitem *epi;
1203
1204
for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1205
epi = rb_entry(rbp, struct epitem, rbn);
1206
if (epi->ffd.fd == tfd) {
1207
if (toff == 0)
1208
return epi;
1209
else
1210
toff--;
1211
}
1212
cond_resched();
1213
}
1214
1215
return NULL;
1216
}
1217
1218
struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1219
unsigned long toff)
1220
{
1221
struct file *file_raw;
1222
struct eventpoll *ep;
1223
struct epitem *epi;
1224
1225
if (!is_file_epoll(file))
1226
return ERR_PTR(-EINVAL);
1227
1228
ep = file->private_data;
1229
1230
mutex_lock(&ep->mtx);
1231
epi = ep_find_tfd(ep, tfd, toff);
1232
if (epi)
1233
file_raw = epi->ffd.file;
1234
else
1235
file_raw = ERR_PTR(-ENOENT);
1236
mutex_unlock(&ep->mtx);
1237
1238
return file_raw;
1239
}
1240
#endif /* CONFIG_KCMP */
1241
1242
/*
1243
* Adds a new entry to the tail of the list in a lockless way, i.e.
1244
* multiple CPUs are allowed to call this function concurrently.
1245
*
1246
* Beware: it is necessary to prevent any other modifications of the
1247
* existing list until all changes are completed, in other words
1248
* concurrent list_add_tail_lockless() calls should be protected
1249
* with a read lock, where write lock acts as a barrier which
1250
* makes sure all list_add_tail_lockless() calls are fully
1251
* completed.
1252
*
1253
* Also an element can be locklessly added to the list only in one
1254
* direction i.e. either to the tail or to the head, otherwise
1255
* concurrent access will corrupt the list.
1256
*
1257
* Return: %false if element has been already added to the list, %true
1258
* otherwise.
1259
*/
1260
static inline bool list_add_tail_lockless(struct list_head *new,
1261
struct list_head *head)
1262
{
1263
struct list_head *prev;
1264
1265
/*
1266
* This is simple 'new->next = head' operation, but cmpxchg()
1267
* is used in order to detect that same element has been just
1268
* added to the list from another CPU: the winner observes
1269
* new->next == new.
1270
*/
1271
if (!try_cmpxchg(&new->next, &new, head))
1272
return false;
1273
1274
/*
1275
* Initially ->next of a new element must be updated with the head
1276
* (we are inserting to the tail) and only then pointers are atomically
1277
* exchanged. XCHG guarantees memory ordering, thus ->next should be
1278
* updated before pointers are actually swapped and pointers are
1279
* swapped before prev->next is updated.
1280
*/
1281
1282
prev = xchg(&head->prev, new);
1283
1284
/*
1285
* It is safe to modify prev->next and new->prev, because a new element
1286
* is added only to the tail and new->next is updated before XCHG.
1287
*/
1288
1289
prev->next = new;
1290
new->prev = prev;
1291
1292
return true;
1293
}
1294
1295
/*
1296
* Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1297
* i.e. multiple CPUs are allowed to call this function concurrently.
1298
*
1299
* Return: %false if epi element has been already chained, %true otherwise.
1300
*/
1301
static inline bool chain_epi_lockless(struct epitem *epi)
1302
{
1303
struct eventpoll *ep = epi->ep;
1304
1305
/* Fast preliminary check */
1306
if (epi->next != EP_UNACTIVE_PTR)
1307
return false;
1308
1309
/* Check that the same epi has not been just chained from another CPU */
1310
if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1311
return false;
1312
1313
/* Atomically exchange tail */
1314
epi->next = xchg(&ep->ovflist, epi);
1315
1316
return true;
1317
}
1318
1319
/*
1320
* This is the callback that is passed to the wait queue wakeup
1321
* mechanism. It is called by the stored file descriptors when they
1322
* have events to report.
1323
*
1324
* This callback takes a read lock in order not to contend with concurrent
1325
* events from another file descriptor, thus all modifications to ->rdllist
1326
* or ->ovflist are lockless. Read lock is paired with the write lock from
1327
* ep_start/done_scan(), which stops all list modifications and guarantees
1328
* that lists state is seen correctly.
1329
*
1330
* Another thing worth to mention is that ep_poll_callback() can be called
1331
* concurrently for the same @epi from different CPUs if poll table was inited
1332
* with several wait queues entries. Plural wakeup from different CPUs of a
1333
* single wait queue is serialized by wq.lock, but the case when multiple wait
1334
* queues are used should be detected accordingly. This is detected using
1335
* cmpxchg() operation.
1336
*/
1337
static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1338
{
1339
int pwake = 0;
1340
struct epitem *epi = ep_item_from_wait(wait);
1341
struct eventpoll *ep = epi->ep;
1342
__poll_t pollflags = key_to_poll(key);
1343
unsigned long flags;
1344
int ewake = 0;
1345
1346
read_lock_irqsave(&ep->lock, flags);
1347
1348
ep_set_busy_poll_napi_id(epi);
1349
1350
/*
1351
* If the event mask does not contain any poll(2) event, we consider the
1352
* descriptor to be disabled. This condition is likely the effect of the
1353
* EPOLLONESHOT bit that disables the descriptor when an event is received,
1354
* until the next EPOLL_CTL_MOD will be issued.
1355
*/
1356
if (!(epi->event.events & ~EP_PRIVATE_BITS))
1357
goto out_unlock;
1358
1359
/*
1360
* Check the events coming with the callback. At this stage, not
1361
* every device reports the events in the "key" parameter of the
1362
* callback. We need to be able to handle both cases here, hence the
1363
* test for "key" != NULL before the event match test.
1364
*/
1365
if (pollflags && !(pollflags & epi->event.events))
1366
goto out_unlock;
1367
1368
/*
1369
* If we are transferring events to userspace, we can hold no locks
1370
* (because we're accessing user memory, and because of linux f_op->poll()
1371
* semantics). All the events that happen during that period of time are
1372
* chained in ep->ovflist and requeued later on.
1373
*/
1374
if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1375
if (chain_epi_lockless(epi))
1376
ep_pm_stay_awake_rcu(epi);
1377
} else if (!ep_is_linked(epi)) {
1378
/* In the usual case, add event to ready list. */
1379
if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1380
ep_pm_stay_awake_rcu(epi);
1381
}
1382
1383
/*
1384
* Wake up ( if active ) both the eventpoll wait list and the ->poll()
1385
* wait list.
1386
*/
1387
if (waitqueue_active(&ep->wq)) {
1388
if ((epi->event.events & EPOLLEXCLUSIVE) &&
1389
!(pollflags & POLLFREE)) {
1390
switch (pollflags & EPOLLINOUT_BITS) {
1391
case EPOLLIN:
1392
if (epi->event.events & EPOLLIN)
1393
ewake = 1;
1394
break;
1395
case EPOLLOUT:
1396
if (epi->event.events & EPOLLOUT)
1397
ewake = 1;
1398
break;
1399
case 0:
1400
ewake = 1;
1401
break;
1402
}
1403
}
1404
if (sync)
1405
wake_up_sync(&ep->wq);
1406
else
1407
wake_up(&ep->wq);
1408
}
1409
if (waitqueue_active(&ep->poll_wait))
1410
pwake++;
1411
1412
out_unlock:
1413
read_unlock_irqrestore(&ep->lock, flags);
1414
1415
/* We have to call this outside the lock */
1416
if (pwake)
1417
ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1418
1419
if (!(epi->event.events & EPOLLEXCLUSIVE))
1420
ewake = 1;
1421
1422
if (pollflags & POLLFREE) {
1423
/*
1424
* If we race with ep_remove_wait_queue() it can miss
1425
* ->whead = NULL and do another remove_wait_queue() after
1426
* us, so we can't use __remove_wait_queue().
1427
*/
1428
list_del_init(&wait->entry);
1429
/*
1430
* ->whead != NULL protects us from the race with
1431
* ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1432
* takes whead->lock held by the caller. Once we nullify it,
1433
* nothing protects ep/epi or even wait.
1434
*/
1435
smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1436
}
1437
1438
return ewake;
1439
}
1440
1441
/*
1442
* This is the callback that is used to add our wait queue to the
1443
* target file wakeup lists.
1444
*/
1445
static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1446
poll_table *pt)
1447
{
1448
struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1449
struct epitem *epi = epq->epi;
1450
struct eppoll_entry *pwq;
1451
1452
if (unlikely(!epi)) // an earlier allocation has failed
1453
return;
1454
1455
pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1456
if (unlikely(!pwq)) {
1457
epq->epi = NULL;
1458
return;
1459
}
1460
1461
init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1462
pwq->whead = whead;
1463
pwq->base = epi;
1464
if (epi->event.events & EPOLLEXCLUSIVE)
1465
add_wait_queue_exclusive(whead, &pwq->wait);
1466
else
1467
add_wait_queue(whead, &pwq->wait);
1468
pwq->next = epi->pwqlist;
1469
epi->pwqlist = pwq;
1470
}
1471
1472
static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1473
{
1474
int kcmp;
1475
struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1476
struct epitem *epic;
1477
bool leftmost = true;
1478
1479
while (*p) {
1480
parent = *p;
1481
epic = rb_entry(parent, struct epitem, rbn);
1482
kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1483
if (kcmp > 0) {
1484
p = &parent->rb_right;
1485
leftmost = false;
1486
} else
1487
p = &parent->rb_left;
1488
}
1489
rb_link_node(&epi->rbn, parent, p);
1490
rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1491
}
1492
1493
1494
1495
#define PATH_ARR_SIZE 5
1496
/*
1497
* These are the number paths of length 1 to 5, that we are allowing to emanate
1498
* from a single file of interest. For example, we allow 1000 paths of length
1499
* 1, to emanate from each file of interest. This essentially represents the
1500
* potential wakeup paths, which need to be limited in order to avoid massive
1501
* uncontrolled wakeup storms. The common use case should be a single ep which
1502
* is connected to n file sources. In this case each file source has 1 path
1503
* of length 1. Thus, the numbers below should be more than sufficient. These
1504
* path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1505
* and delete can't add additional paths. Protected by the epnested_mutex.
1506
*/
1507
static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1508
static int path_count[PATH_ARR_SIZE];
1509
1510
static int path_count_inc(int nests)
1511
{
1512
/* Allow an arbitrary number of depth 1 paths */
1513
if (nests == 0)
1514
return 0;
1515
1516
if (++path_count[nests] > path_limits[nests])
1517
return -1;
1518
return 0;
1519
}
1520
1521
static void path_count_init(void)
1522
{
1523
int i;
1524
1525
for (i = 0; i < PATH_ARR_SIZE; i++)
1526
path_count[i] = 0;
1527
}
1528
1529
static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1530
{
1531
int error = 0;
1532
struct epitem *epi;
1533
1534
if (depth > EP_MAX_NESTS) /* too deep nesting */
1535
return -1;
1536
1537
/* CTL_DEL can remove links here, but that can't increase our count */
1538
hlist_for_each_entry_rcu(epi, refs, fllink) {
1539
struct hlist_head *refs = &epi->ep->refs;
1540
if (hlist_empty(refs))
1541
error = path_count_inc(depth);
1542
else
1543
error = reverse_path_check_proc(refs, depth + 1);
1544
if (error != 0)
1545
break;
1546
}
1547
return error;
1548
}
1549
1550
/**
1551
* reverse_path_check - The tfile_check_list is list of epitem_head, which have
1552
* links that are proposed to be newly added. We need to
1553
* make sure that those added links don't add too many
1554
* paths such that we will spend all our time waking up
1555
* eventpoll objects.
1556
*
1557
* Return: %zero if the proposed links don't create too many paths,
1558
* %-1 otherwise.
1559
*/
1560
static int reverse_path_check(void)
1561
{
1562
struct epitems_head *p;
1563
1564
for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1565
int error;
1566
path_count_init();
1567
rcu_read_lock();
1568
error = reverse_path_check_proc(&p->epitems, 0);
1569
rcu_read_unlock();
1570
if (error)
1571
return error;
1572
}
1573
return 0;
1574
}
1575
1576
static int ep_create_wakeup_source(struct epitem *epi)
1577
{
1578
struct name_snapshot n;
1579
struct wakeup_source *ws;
1580
1581
if (!epi->ep->ws) {
1582
epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1583
if (!epi->ep->ws)
1584
return -ENOMEM;
1585
}
1586
1587
take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1588
ws = wakeup_source_register(NULL, n.name.name);
1589
release_dentry_name_snapshot(&n);
1590
1591
if (!ws)
1592
return -ENOMEM;
1593
rcu_assign_pointer(epi->ws, ws);
1594
1595
return 0;
1596
}
1597
1598
/* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1599
static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1600
{
1601
struct wakeup_source *ws = ep_wakeup_source(epi);
1602
1603
RCU_INIT_POINTER(epi->ws, NULL);
1604
1605
/*
1606
* wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1607
* used internally by wakeup_source_remove, too (called by
1608
* wakeup_source_unregister), so we cannot use call_rcu
1609
*/
1610
synchronize_rcu();
1611
wakeup_source_unregister(ws);
1612
}
1613
1614
static int attach_epitem(struct file *file, struct epitem *epi)
1615
{
1616
struct epitems_head *to_free = NULL;
1617
struct hlist_head *head = NULL;
1618
struct eventpoll *ep = NULL;
1619
1620
if (is_file_epoll(file))
1621
ep = file->private_data;
1622
1623
if (ep) {
1624
head = &ep->refs;
1625
} else if (!READ_ONCE(file->f_ep)) {
1626
allocate:
1627
to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1628
if (!to_free)
1629
return -ENOMEM;
1630
head = &to_free->epitems;
1631
}
1632
spin_lock(&file->f_lock);
1633
if (!file->f_ep) {
1634
if (unlikely(!head)) {
1635
spin_unlock(&file->f_lock);
1636
goto allocate;
1637
}
1638
/* See eventpoll_release() for details. */
1639
WRITE_ONCE(file->f_ep, head);
1640
to_free = NULL;
1641
}
1642
hlist_add_head_rcu(&epi->fllink, file->f_ep);
1643
spin_unlock(&file->f_lock);
1644
free_ephead(to_free);
1645
return 0;
1646
}
1647
1648
/*
1649
* Must be called with "mtx" held.
1650
*/
1651
static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1652
struct file *tfile, int fd, int full_check)
1653
{
1654
int error, pwake = 0;
1655
__poll_t revents;
1656
struct epitem *epi;
1657
struct ep_pqueue epq;
1658
struct eventpoll *tep = NULL;
1659
1660
if (is_file_epoll(tfile))
1661
tep = tfile->private_data;
1662
1663
lockdep_assert_irqs_enabled();
1664
1665
if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1666
max_user_watches) >= 0))
1667
return -ENOSPC;
1668
percpu_counter_inc(&ep->user->epoll_watches);
1669
1670
if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1671
percpu_counter_dec(&ep->user->epoll_watches);
1672
return -ENOMEM;
1673
}
1674
1675
/* Item initialization follow here ... */
1676
INIT_LIST_HEAD(&epi->rdllink);
1677
epi->ep = ep;
1678
ep_set_ffd(&epi->ffd, tfile, fd);
1679
epi->event = *event;
1680
epi->next = EP_UNACTIVE_PTR;
1681
1682
if (tep)
1683
mutex_lock_nested(&tep->mtx, 1);
1684
/* Add the current item to the list of active epoll hook for this file */
1685
if (unlikely(attach_epitem(tfile, epi) < 0)) {
1686
if (tep)
1687
mutex_unlock(&tep->mtx);
1688
kmem_cache_free(epi_cache, epi);
1689
percpu_counter_dec(&ep->user->epoll_watches);
1690
return -ENOMEM;
1691
}
1692
1693
if (full_check && !tep)
1694
list_file(tfile);
1695
1696
/*
1697
* Add the current item to the RB tree. All RB tree operations are
1698
* protected by "mtx", and ep_insert() is called with "mtx" held.
1699
*/
1700
ep_rbtree_insert(ep, epi);
1701
if (tep)
1702
mutex_unlock(&tep->mtx);
1703
1704
/*
1705
* ep_remove_safe() calls in the later error paths can't lead to
1706
* ep_free() as the ep file itself still holds an ep reference.
1707
*/
1708
ep_get(ep);
1709
1710
/* now check if we've created too many backpaths */
1711
if (unlikely(full_check && reverse_path_check())) {
1712
ep_remove_safe(ep, epi);
1713
return -EINVAL;
1714
}
1715
1716
if (epi->event.events & EPOLLWAKEUP) {
1717
error = ep_create_wakeup_source(epi);
1718
if (error) {
1719
ep_remove_safe(ep, epi);
1720
return error;
1721
}
1722
}
1723
1724
/* Initialize the poll table using the queue callback */
1725
epq.epi = epi;
1726
init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1727
1728
/*
1729
* Attach the item to the poll hooks and get current event bits.
1730
* We can safely use the file* here because its usage count has
1731
* been increased by the caller of this function. Note that after
1732
* this operation completes, the poll callback can start hitting
1733
* the new item.
1734
*/
1735
revents = ep_item_poll(epi, &epq.pt, 1);
1736
1737
/*
1738
* We have to check if something went wrong during the poll wait queue
1739
* install process. Namely an allocation for a wait queue failed due
1740
* high memory pressure.
1741
*/
1742
if (unlikely(!epq.epi)) {
1743
ep_remove_safe(ep, epi);
1744
return -ENOMEM;
1745
}
1746
1747
/* We have to drop the new item inside our item list to keep track of it */
1748
write_lock_irq(&ep->lock);
1749
1750
/* record NAPI ID of new item if present */
1751
ep_set_busy_poll_napi_id(epi);
1752
1753
/* If the file is already "ready" we drop it inside the ready list */
1754
if (revents && !ep_is_linked(epi)) {
1755
list_add_tail(&epi->rdllink, &ep->rdllist);
1756
ep_pm_stay_awake(epi);
1757
1758
/* Notify waiting tasks that events are available */
1759
if (waitqueue_active(&ep->wq))
1760
wake_up(&ep->wq);
1761
if (waitqueue_active(&ep->poll_wait))
1762
pwake++;
1763
}
1764
1765
write_unlock_irq(&ep->lock);
1766
1767
/* We have to call this outside the lock */
1768
if (pwake)
1769
ep_poll_safewake(ep, NULL, 0);
1770
1771
return 0;
1772
}
1773
1774
/*
1775
* Modify the interest event mask by dropping an event if the new mask
1776
* has a match in the current file status. Must be called with "mtx" held.
1777
*/
1778
static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1779
const struct epoll_event *event)
1780
{
1781
int pwake = 0;
1782
poll_table pt;
1783
1784
lockdep_assert_irqs_enabled();
1785
1786
init_poll_funcptr(&pt, NULL);
1787
1788
/*
1789
* Set the new event interest mask before calling f_op->poll();
1790
* otherwise we might miss an event that happens between the
1791
* f_op->poll() call and the new event set registering.
1792
*/
1793
epi->event.events = event->events; /* need barrier below */
1794
epi->event.data = event->data; /* protected by mtx */
1795
if (epi->event.events & EPOLLWAKEUP) {
1796
if (!ep_has_wakeup_source(epi))
1797
ep_create_wakeup_source(epi);
1798
} else if (ep_has_wakeup_source(epi)) {
1799
ep_destroy_wakeup_source(epi);
1800
}
1801
1802
/*
1803
* The following barrier has two effects:
1804
*
1805
* 1) Flush epi changes above to other CPUs. This ensures
1806
* we do not miss events from ep_poll_callback if an
1807
* event occurs immediately after we call f_op->poll().
1808
* We need this because we did not take ep->lock while
1809
* changing epi above (but ep_poll_callback does take
1810
* ep->lock).
1811
*
1812
* 2) We also need to ensure we do not miss _past_ events
1813
* when calling f_op->poll(). This barrier also
1814
* pairs with the barrier in wq_has_sleeper (see
1815
* comments for wq_has_sleeper).
1816
*
1817
* This barrier will now guarantee ep_poll_callback or f_op->poll
1818
* (or both) will notice the readiness of an item.
1819
*/
1820
smp_mb();
1821
1822
/*
1823
* Get current event bits. We can safely use the file* here because
1824
* its usage count has been increased by the caller of this function.
1825
* If the item is "hot" and it is not registered inside the ready
1826
* list, push it inside.
1827
*/
1828
if (ep_item_poll(epi, &pt, 1)) {
1829
write_lock_irq(&ep->lock);
1830
if (!ep_is_linked(epi)) {
1831
list_add_tail(&epi->rdllink, &ep->rdllist);
1832
ep_pm_stay_awake(epi);
1833
1834
/* Notify waiting tasks that events are available */
1835
if (waitqueue_active(&ep->wq))
1836
wake_up(&ep->wq);
1837
if (waitqueue_active(&ep->poll_wait))
1838
pwake++;
1839
}
1840
write_unlock_irq(&ep->lock);
1841
}
1842
1843
/* We have to call this outside the lock */
1844
if (pwake)
1845
ep_poll_safewake(ep, NULL, 0);
1846
1847
return 0;
1848
}
1849
1850
static int ep_send_events(struct eventpoll *ep,
1851
struct epoll_event __user *events, int maxevents)
1852
{
1853
struct epitem *epi, *tmp;
1854
LIST_HEAD(txlist);
1855
poll_table pt;
1856
int res = 0;
1857
1858
/*
1859
* Always short-circuit for fatal signals to allow threads to make a
1860
* timely exit without the chance of finding more events available and
1861
* fetching repeatedly.
1862
*/
1863
if (fatal_signal_pending(current))
1864
return -EINTR;
1865
1866
init_poll_funcptr(&pt, NULL);
1867
1868
mutex_lock(&ep->mtx);
1869
ep_start_scan(ep, &txlist);
1870
1871
/*
1872
* We can loop without lock because we are passed a task private list.
1873
* Items cannot vanish during the loop we are holding ep->mtx.
1874
*/
1875
list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1876
struct wakeup_source *ws;
1877
__poll_t revents;
1878
1879
if (res >= maxevents)
1880
break;
1881
1882
/*
1883
* Activate ep->ws before deactivating epi->ws to prevent
1884
* triggering auto-suspend here (in case we reactive epi->ws
1885
* below).
1886
*
1887
* This could be rearranged to delay the deactivation of epi->ws
1888
* instead, but then epi->ws would temporarily be out of sync
1889
* with ep_is_linked().
1890
*/
1891
ws = ep_wakeup_source(epi);
1892
if (ws) {
1893
if (ws->active)
1894
__pm_stay_awake(ep->ws);
1895
__pm_relax(ws);
1896
}
1897
1898
list_del_init(&epi->rdllink);
1899
1900
/*
1901
* If the event mask intersect the caller-requested one,
1902
* deliver the event to userspace. Again, we are holding ep->mtx,
1903
* so no operations coming from userspace can change the item.
1904
*/
1905
revents = ep_item_poll(epi, &pt, 1);
1906
if (!revents)
1907
continue;
1908
1909
events = epoll_put_uevent(revents, epi->event.data, events);
1910
if (!events) {
1911
list_add(&epi->rdllink, &txlist);
1912
ep_pm_stay_awake(epi);
1913
if (!res)
1914
res = -EFAULT;
1915
break;
1916
}
1917
res++;
1918
if (epi->event.events & EPOLLONESHOT)
1919
epi->event.events &= EP_PRIVATE_BITS;
1920
else if (!(epi->event.events & EPOLLET)) {
1921
/*
1922
* If this file has been added with Level
1923
* Trigger mode, we need to insert back inside
1924
* the ready list, so that the next call to
1925
* epoll_wait() will check again the events
1926
* availability. At this point, no one can insert
1927
* into ep->rdllist besides us. The epoll_ctl()
1928
* callers are locked out by
1929
* ep_send_events() holding "mtx" and the
1930
* poll callback will queue them in ep->ovflist.
1931
*/
1932
list_add_tail(&epi->rdllink, &ep->rdllist);
1933
ep_pm_stay_awake(epi);
1934
}
1935
}
1936
ep_done_scan(ep, &txlist);
1937
mutex_unlock(&ep->mtx);
1938
1939
return res;
1940
}
1941
1942
static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1943
{
1944
struct timespec64 now;
1945
1946
if (ms < 0)
1947
return NULL;
1948
1949
if (!ms) {
1950
to->tv_sec = 0;
1951
to->tv_nsec = 0;
1952
return to;
1953
}
1954
1955
to->tv_sec = ms / MSEC_PER_SEC;
1956
to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1957
1958
ktime_get_ts64(&now);
1959
*to = timespec64_add_safe(now, *to);
1960
return to;
1961
}
1962
1963
/*
1964
* autoremove_wake_function, but remove even on failure to wake up, because we
1965
* know that default_wake_function/ttwu will only fail if the thread is already
1966
* woken, and in that case the ep_poll loop will remove the entry anyways, not
1967
* try to reuse it.
1968
*/
1969
static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1970
unsigned int mode, int sync, void *key)
1971
{
1972
int ret = default_wake_function(wq_entry, mode, sync, key);
1973
1974
/*
1975
* Pairs with list_empty_careful in ep_poll, and ensures future loop
1976
* iterations see the cause of this wakeup.
1977
*/
1978
list_del_init_careful(&wq_entry->entry);
1979
return ret;
1980
}
1981
1982
static int ep_try_send_events(struct eventpoll *ep,
1983
struct epoll_event __user *events, int maxevents)
1984
{
1985
int res;
1986
1987
/*
1988
* Try to transfer events to user space. In case we get 0 events and
1989
* there's still timeout left over, we go trying again in search of
1990
* more luck.
1991
*/
1992
res = ep_send_events(ep, events, maxevents);
1993
if (res > 0)
1994
ep_suspend_napi_irqs(ep);
1995
return res;
1996
}
1997
1998
static int ep_schedule_timeout(ktime_t *to)
1999
{
2000
if (to)
2001
return ktime_after(*to, ktime_get());
2002
else
2003
return 1;
2004
}
2005
2006
/**
2007
* ep_poll - Retrieves ready events, and delivers them to the caller-supplied
2008
* event buffer.
2009
*
2010
* @ep: Pointer to the eventpoll context.
2011
* @events: Pointer to the userspace buffer where the ready events should be
2012
* stored.
2013
* @maxevents: Size (in terms of number of events) of the caller event buffer.
2014
* @timeout: Maximum timeout for the ready events fetch operation, in
2015
* timespec. If the timeout is zero, the function will not block,
2016
* while if the @timeout ptr is NULL, the function will block
2017
* until at least one event has been retrieved (or an error
2018
* occurred).
2019
*
2020
* Return: the number of ready events which have been fetched, or an
2021
* error code, in case of error.
2022
*/
2023
static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
2024
int maxevents, struct timespec64 *timeout)
2025
{
2026
int res, eavail, timed_out = 0;
2027
u64 slack = 0;
2028
wait_queue_entry_t wait;
2029
ktime_t expires, *to = NULL;
2030
2031
lockdep_assert_irqs_enabled();
2032
2033
if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
2034
slack = select_estimate_accuracy(timeout);
2035
to = &expires;
2036
*to = timespec64_to_ktime(*timeout);
2037
} else if (timeout) {
2038
/*
2039
* Avoid the unnecessary trip to the wait queue loop, if the
2040
* caller specified a non blocking operation.
2041
*/
2042
timed_out = 1;
2043
}
2044
2045
/*
2046
* This call is racy: We may or may not see events that are being added
2047
* to the ready list under the lock (e.g., in IRQ callbacks). For cases
2048
* with a non-zero timeout, this thread will check the ready list under
2049
* lock and will add to the wait queue. For cases with a zero
2050
* timeout, the user by definition should not care and will have to
2051
* recheck again.
2052
*/
2053
eavail = ep_events_available(ep);
2054
2055
while (1) {
2056
if (eavail) {
2057
res = ep_try_send_events(ep, events, maxevents);
2058
if (res)
2059
return res;
2060
}
2061
2062
if (timed_out)
2063
return 0;
2064
2065
eavail = ep_busy_loop(ep);
2066
if (eavail)
2067
continue;
2068
2069
if (signal_pending(current))
2070
return -EINTR;
2071
2072
/*
2073
* Internally init_wait() uses autoremove_wake_function(),
2074
* thus wait entry is removed from the wait queue on each
2075
* wakeup. Why it is important? In case of several waiters
2076
* each new wakeup will hit the next waiter, giving it the
2077
* chance to harvest new event. Otherwise wakeup can be
2078
* lost. This is also good performance-wise, because on
2079
* normal wakeup path no need to call __remove_wait_queue()
2080
* explicitly, thus ep->lock is not taken, which halts the
2081
* event delivery.
2082
*
2083
* In fact, we now use an even more aggressive function that
2084
* unconditionally removes, because we don't reuse the wait
2085
* entry between loop iterations. This lets us also avoid the
2086
* performance issue if a process is killed, causing all of its
2087
* threads to wake up without being removed normally.
2088
*/
2089
init_wait(&wait);
2090
wait.func = ep_autoremove_wake_function;
2091
2092
write_lock_irq(&ep->lock);
2093
/*
2094
* Barrierless variant, waitqueue_active() is called under
2095
* the same lock on wakeup ep_poll_callback() side, so it
2096
* is safe to avoid an explicit barrier.
2097
*/
2098
__set_current_state(TASK_INTERRUPTIBLE);
2099
2100
/*
2101
* Do the final check under the lock. ep_start/done_scan()
2102
* plays with two lists (->rdllist and ->ovflist) and there
2103
* is always a race when both lists are empty for short
2104
* period of time although events are pending, so lock is
2105
* important.
2106
*/
2107
eavail = ep_events_available(ep);
2108
if (!eavail)
2109
__add_wait_queue_exclusive(&ep->wq, &wait);
2110
2111
write_unlock_irq(&ep->lock);
2112
2113
if (!eavail)
2114
timed_out = !ep_schedule_timeout(to) ||
2115
!schedule_hrtimeout_range(to, slack,
2116
HRTIMER_MODE_ABS);
2117
__set_current_state(TASK_RUNNING);
2118
2119
/*
2120
* We were woken up, thus go and try to harvest some events.
2121
* If timed out and still on the wait queue, recheck eavail
2122
* carefully under lock, below.
2123
*/
2124
eavail = 1;
2125
2126
if (!list_empty_careful(&wait.entry)) {
2127
write_lock_irq(&ep->lock);
2128
/*
2129
* If the thread timed out and is not on the wait queue,
2130
* it means that the thread was woken up after its
2131
* timeout expired before it could reacquire the lock.
2132
* Thus, when wait.entry is empty, it needs to harvest
2133
* events.
2134
*/
2135
if (timed_out)
2136
eavail = list_empty(&wait.entry);
2137
__remove_wait_queue(&ep->wq, &wait);
2138
write_unlock_irq(&ep->lock);
2139
}
2140
}
2141
}
2142
2143
/**
2144
* ep_loop_check_proc - verify that adding an epoll file @ep inside another
2145
* epoll file does not create closed loops, and
2146
* determine the depth of the subtree starting at @ep
2147
*
2148
* @ep: the &struct eventpoll to be currently checked.
2149
* @depth: Current depth of the path being checked.
2150
*
2151
* Return: depth of the subtree, or INT_MAX if we found a loop or went too deep.
2152
*/
2153
static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2154
{
2155
int result = 0;
2156
struct rb_node *rbp;
2157
struct epitem *epi;
2158
2159
if (ep->gen == loop_check_gen)
2160
return ep->loop_check_depth;
2161
2162
mutex_lock_nested(&ep->mtx, depth + 1);
2163
ep->gen = loop_check_gen;
2164
for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2165
epi = rb_entry(rbp, struct epitem, rbn);
2166
if (unlikely(is_file_epoll(epi->ffd.file))) {
2167
struct eventpoll *ep_tovisit;
2168
ep_tovisit = epi->ffd.file->private_data;
2169
if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2170
result = INT_MAX;
2171
else
2172
result = max(result, ep_loop_check_proc(ep_tovisit, depth + 1) + 1);
2173
if (result > EP_MAX_NESTS)
2174
break;
2175
} else {
2176
/*
2177
* If we've reached a file that is not associated with
2178
* an ep, then we need to check if the newly added
2179
* links are going to add too many wakeup paths. We do
2180
* this by adding it to the tfile_check_list, if it's
2181
* not already there, and calling reverse_path_check()
2182
* during ep_insert().
2183
*/
2184
list_file(epi->ffd.file);
2185
}
2186
}
2187
ep->loop_check_depth = result;
2188
mutex_unlock(&ep->mtx);
2189
2190
return result;
2191
}
2192
2193
/* ep_get_upwards_depth_proc - determine depth of @ep when traversed upwards */
2194
static int ep_get_upwards_depth_proc(struct eventpoll *ep, int depth)
2195
{
2196
int result = 0;
2197
struct epitem *epi;
2198
2199
if (ep->gen == loop_check_gen)
2200
return ep->loop_check_depth;
2201
hlist_for_each_entry_rcu(epi, &ep->refs, fllink)
2202
result = max(result, ep_get_upwards_depth_proc(epi->ep, depth + 1) + 1);
2203
ep->gen = loop_check_gen;
2204
ep->loop_check_depth = result;
2205
return result;
2206
}
2207
2208
/**
2209
* ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2210
* into another epoll file (represented by @ep) does not create
2211
* closed loops or too deep chains.
2212
*
2213
* @ep: Pointer to the epoll we are inserting into.
2214
* @to: Pointer to the epoll to be inserted.
2215
*
2216
* Return: %zero if adding the epoll @to inside the epoll @from
2217
* does not violate the constraints, or %-1 otherwise.
2218
*/
2219
static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2220
{
2221
int depth, upwards_depth;
2222
2223
inserting_into = ep;
2224
/*
2225
* Check how deep down we can get from @to, and whether it is possible
2226
* to loop up to @ep.
2227
*/
2228
depth = ep_loop_check_proc(to, 0);
2229
if (depth > EP_MAX_NESTS)
2230
return -1;
2231
/* Check how far up we can go from @ep. */
2232
rcu_read_lock();
2233
upwards_depth = ep_get_upwards_depth_proc(ep, 0);
2234
rcu_read_unlock();
2235
2236
return (depth+1+upwards_depth > EP_MAX_NESTS) ? -1 : 0;
2237
}
2238
2239
static void clear_tfile_check_list(void)
2240
{
2241
rcu_read_lock();
2242
while (tfile_check_list != EP_UNACTIVE_PTR) {
2243
struct epitems_head *head = tfile_check_list;
2244
tfile_check_list = head->next;
2245
unlist_file(head);
2246
}
2247
rcu_read_unlock();
2248
}
2249
2250
/*
2251
* Open an eventpoll file descriptor.
2252
*/
2253
static int do_epoll_create(int flags)
2254
{
2255
int error, fd;
2256
struct eventpoll *ep = NULL;
2257
struct file *file;
2258
2259
/* Check the EPOLL_* constant for consistency. */
2260
BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2261
2262
if (flags & ~EPOLL_CLOEXEC)
2263
return -EINVAL;
2264
/*
2265
* Create the internal data structure ("struct eventpoll").
2266
*/
2267
error = ep_alloc(&ep);
2268
if (error < 0)
2269
return error;
2270
/*
2271
* Creates all the items needed to setup an eventpoll file. That is,
2272
* a file structure and a free file descriptor.
2273
*/
2274
fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2275
if (fd < 0) {
2276
error = fd;
2277
goto out_free_ep;
2278
}
2279
file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2280
O_RDWR | (flags & O_CLOEXEC));
2281
if (IS_ERR(file)) {
2282
error = PTR_ERR(file);
2283
goto out_free_fd;
2284
}
2285
ep->file = file;
2286
fd_install(fd, file);
2287
return fd;
2288
2289
out_free_fd:
2290
put_unused_fd(fd);
2291
out_free_ep:
2292
ep_clear_and_put(ep);
2293
return error;
2294
}
2295
2296
SYSCALL_DEFINE1(epoll_create1, int, flags)
2297
{
2298
return do_epoll_create(flags);
2299
}
2300
2301
SYSCALL_DEFINE1(epoll_create, int, size)
2302
{
2303
if (size <= 0)
2304
return -EINVAL;
2305
2306
return do_epoll_create(0);
2307
}
2308
2309
#ifdef CONFIG_PM_SLEEP
2310
static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2311
{
2312
if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2313
epev->events &= ~EPOLLWAKEUP;
2314
}
2315
#else
2316
static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2317
{
2318
epev->events &= ~EPOLLWAKEUP;
2319
}
2320
#endif
2321
2322
static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2323
bool nonblock)
2324
{
2325
if (!nonblock) {
2326
mutex_lock_nested(mutex, depth);
2327
return 0;
2328
}
2329
if (mutex_trylock(mutex))
2330
return 0;
2331
return -EAGAIN;
2332
}
2333
2334
int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2335
bool nonblock)
2336
{
2337
int error;
2338
int full_check = 0;
2339
struct eventpoll *ep;
2340
struct epitem *epi;
2341
struct eventpoll *tep = NULL;
2342
2343
CLASS(fd, f)(epfd);
2344
if (fd_empty(f))
2345
return -EBADF;
2346
2347
/* Get the "struct file *" for the target file */
2348
CLASS(fd, tf)(fd);
2349
if (fd_empty(tf))
2350
return -EBADF;
2351
2352
/* The target file descriptor must support poll */
2353
if (!file_can_poll(fd_file(tf)))
2354
return -EPERM;
2355
2356
/* Check if EPOLLWAKEUP is allowed */
2357
if (ep_op_has_event(op))
2358
ep_take_care_of_epollwakeup(epds);
2359
2360
/*
2361
* We have to check that the file structure underneath the file descriptor
2362
* the user passed to us _is_ an eventpoll file. And also we do not permit
2363
* adding an epoll file descriptor inside itself.
2364
*/
2365
error = -EINVAL;
2366
if (fd_file(f) == fd_file(tf) || !is_file_epoll(fd_file(f)))
2367
goto error_tgt_fput;
2368
2369
/*
2370
* epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2371
* so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2372
* Also, we do not currently supported nested exclusive wakeups.
2373
*/
2374
if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2375
if (op == EPOLL_CTL_MOD)
2376
goto error_tgt_fput;
2377
if (op == EPOLL_CTL_ADD && (is_file_epoll(fd_file(tf)) ||
2378
(epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2379
goto error_tgt_fput;
2380
}
2381
2382
/*
2383
* At this point it is safe to assume that the "private_data" contains
2384
* our own data structure.
2385
*/
2386
ep = fd_file(f)->private_data;
2387
2388
/*
2389
* When we insert an epoll file descriptor inside another epoll file
2390
* descriptor, there is the chance of creating closed loops, which are
2391
* better be handled here, than in more critical paths. While we are
2392
* checking for loops we also determine the list of files reachable
2393
* and hang them on the tfile_check_list, so we can check that we
2394
* haven't created too many possible wakeup paths.
2395
*
2396
* We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2397
* the epoll file descriptor is attaching directly to a wakeup source,
2398
* unless the epoll file descriptor is nested. The purpose of taking the
2399
* 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2400
* deep wakeup paths from forming in parallel through multiple
2401
* EPOLL_CTL_ADD operations.
2402
*/
2403
error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2404
if (error)
2405
goto error_tgt_fput;
2406
if (op == EPOLL_CTL_ADD) {
2407
if (READ_ONCE(fd_file(f)->f_ep) || ep->gen == loop_check_gen ||
2408
is_file_epoll(fd_file(tf))) {
2409
mutex_unlock(&ep->mtx);
2410
error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2411
if (error)
2412
goto error_tgt_fput;
2413
loop_check_gen++;
2414
full_check = 1;
2415
if (is_file_epoll(fd_file(tf))) {
2416
tep = fd_file(tf)->private_data;
2417
error = -ELOOP;
2418
if (ep_loop_check(ep, tep) != 0)
2419
goto error_tgt_fput;
2420
}
2421
error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2422
if (error)
2423
goto error_tgt_fput;
2424
}
2425
}
2426
2427
/*
2428
* Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2429
* above, we can be sure to be able to use the item looked up by
2430
* ep_find() till we release the mutex.
2431
*/
2432
epi = ep_find(ep, fd_file(tf), fd);
2433
2434
error = -EINVAL;
2435
switch (op) {
2436
case EPOLL_CTL_ADD:
2437
if (!epi) {
2438
epds->events |= EPOLLERR | EPOLLHUP;
2439
error = ep_insert(ep, epds, fd_file(tf), fd, full_check);
2440
} else
2441
error = -EEXIST;
2442
break;
2443
case EPOLL_CTL_DEL:
2444
if (epi) {
2445
/*
2446
* The eventpoll itself is still alive: the refcount
2447
* can't go to zero here.
2448
*/
2449
ep_remove_safe(ep, epi);
2450
error = 0;
2451
} else {
2452
error = -ENOENT;
2453
}
2454
break;
2455
case EPOLL_CTL_MOD:
2456
if (epi) {
2457
if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2458
epds->events |= EPOLLERR | EPOLLHUP;
2459
error = ep_modify(ep, epi, epds);
2460
}
2461
} else
2462
error = -ENOENT;
2463
break;
2464
}
2465
mutex_unlock(&ep->mtx);
2466
2467
error_tgt_fput:
2468
if (full_check) {
2469
clear_tfile_check_list();
2470
loop_check_gen++;
2471
mutex_unlock(&epnested_mutex);
2472
}
2473
return error;
2474
}
2475
2476
/*
2477
* The following function implements the controller interface for
2478
* the eventpoll file that enables the insertion/removal/change of
2479
* file descriptors inside the interest set.
2480
*/
2481
SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2482
struct epoll_event __user *, event)
2483
{
2484
struct epoll_event epds;
2485
2486
if (ep_op_has_event(op) &&
2487
copy_from_user(&epds, event, sizeof(struct epoll_event)))
2488
return -EFAULT;
2489
2490
return do_epoll_ctl(epfd, op, fd, &epds, false);
2491
}
2492
2493
static int ep_check_params(struct file *file, struct epoll_event __user *evs,
2494
int maxevents)
2495
{
2496
/* The maximum number of event must be greater than zero */
2497
if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2498
return -EINVAL;
2499
2500
/* Verify that the area passed by the user is writeable */
2501
if (!access_ok(evs, maxevents * sizeof(struct epoll_event)))
2502
return -EFAULT;
2503
2504
/*
2505
* We have to check that the file structure underneath the fd
2506
* the user passed to us _is_ an eventpoll file.
2507
*/
2508
if (!is_file_epoll(file))
2509
return -EINVAL;
2510
2511
return 0;
2512
}
2513
2514
int epoll_sendevents(struct file *file, struct epoll_event __user *events,
2515
int maxevents)
2516
{
2517
struct eventpoll *ep;
2518
int ret;
2519
2520
ret = ep_check_params(file, events, maxevents);
2521
if (unlikely(ret))
2522
return ret;
2523
2524
ep = file->private_data;
2525
/*
2526
* Racy call, but that's ok - it should get retried based on
2527
* poll readiness anyway.
2528
*/
2529
if (ep_events_available(ep))
2530
return ep_try_send_events(ep, events, maxevents);
2531
return 0;
2532
}
2533
2534
/*
2535
* Implement the event wait interface for the eventpoll file. It is the kernel
2536
* part of the user space epoll_wait(2).
2537
*/
2538
static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2539
int maxevents, struct timespec64 *to)
2540
{
2541
struct eventpoll *ep;
2542
int ret;
2543
2544
/* Get the "struct file *" for the eventpoll file */
2545
CLASS(fd, f)(epfd);
2546
if (fd_empty(f))
2547
return -EBADF;
2548
2549
ret = ep_check_params(fd_file(f), events, maxevents);
2550
if (unlikely(ret))
2551
return ret;
2552
2553
/*
2554
* At this point it is safe to assume that the "private_data" contains
2555
* our own data structure.
2556
*/
2557
ep = fd_file(f)->private_data;
2558
2559
/* Time to fish for events ... */
2560
return ep_poll(ep, events, maxevents, to);
2561
}
2562
2563
SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2564
int, maxevents, int, timeout)
2565
{
2566
struct timespec64 to;
2567
2568
return do_epoll_wait(epfd, events, maxevents,
2569
ep_timeout_to_timespec(&to, timeout));
2570
}
2571
2572
/*
2573
* Implement the event wait interface for the eventpoll file. It is the kernel
2574
* part of the user space epoll_pwait(2).
2575
*/
2576
static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2577
int maxevents, struct timespec64 *to,
2578
const sigset_t __user *sigmask, size_t sigsetsize)
2579
{
2580
int error;
2581
2582
/*
2583
* If the caller wants a certain signal mask to be set during the wait,
2584
* we apply it here.
2585
*/
2586
error = set_user_sigmask(sigmask, sigsetsize);
2587
if (error)
2588
return error;
2589
2590
error = do_epoll_wait(epfd, events, maxevents, to);
2591
2592
restore_saved_sigmask_unless(error == -EINTR);
2593
2594
return error;
2595
}
2596
2597
SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2598
int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2599
size_t, sigsetsize)
2600
{
2601
struct timespec64 to;
2602
2603
return do_epoll_pwait(epfd, events, maxevents,
2604
ep_timeout_to_timespec(&to, timeout),
2605
sigmask, sigsetsize);
2606
}
2607
2608
SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2609
int, maxevents, const struct __kernel_timespec __user *, timeout,
2610
const sigset_t __user *, sigmask, size_t, sigsetsize)
2611
{
2612
struct timespec64 ts, *to = NULL;
2613
2614
if (timeout) {
2615
if (get_timespec64(&ts, timeout))
2616
return -EFAULT;
2617
to = &ts;
2618
if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2619
return -EINVAL;
2620
}
2621
2622
return do_epoll_pwait(epfd, events, maxevents, to,
2623
sigmask, sigsetsize);
2624
}
2625
2626
#ifdef CONFIG_COMPAT
2627
static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2628
int maxevents, struct timespec64 *timeout,
2629
const compat_sigset_t __user *sigmask,
2630
compat_size_t sigsetsize)
2631
{
2632
long err;
2633
2634
/*
2635
* If the caller wants a certain signal mask to be set during the wait,
2636
* we apply it here.
2637
*/
2638
err = set_compat_user_sigmask(sigmask, sigsetsize);
2639
if (err)
2640
return err;
2641
2642
err = do_epoll_wait(epfd, events, maxevents, timeout);
2643
2644
restore_saved_sigmask_unless(err == -EINTR);
2645
2646
return err;
2647
}
2648
2649
COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2650
struct epoll_event __user *, events,
2651
int, maxevents, int, timeout,
2652
const compat_sigset_t __user *, sigmask,
2653
compat_size_t, sigsetsize)
2654
{
2655
struct timespec64 to;
2656
2657
return do_compat_epoll_pwait(epfd, events, maxevents,
2658
ep_timeout_to_timespec(&to, timeout),
2659
sigmask, sigsetsize);
2660
}
2661
2662
COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2663
struct epoll_event __user *, events,
2664
int, maxevents,
2665
const struct __kernel_timespec __user *, timeout,
2666
const compat_sigset_t __user *, sigmask,
2667
compat_size_t, sigsetsize)
2668
{
2669
struct timespec64 ts, *to = NULL;
2670
2671
if (timeout) {
2672
if (get_timespec64(&ts, timeout))
2673
return -EFAULT;
2674
to = &ts;
2675
if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2676
return -EINVAL;
2677
}
2678
2679
return do_compat_epoll_pwait(epfd, events, maxevents, to,
2680
sigmask, sigsetsize);
2681
}
2682
2683
#endif
2684
2685
static int __init eventpoll_init(void)
2686
{
2687
struct sysinfo si;
2688
2689
si_meminfo(&si);
2690
/*
2691
* Allows top 4% of lomem to be allocated for epoll watches (per user).
2692
*/
2693
max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2694
EP_ITEM_COST;
2695
BUG_ON(max_user_watches < 0);
2696
2697
/*
2698
* We can have many thousands of epitems, so prevent this from
2699
* using an extra cache line on 64-bit (and smaller) CPUs
2700
*/
2701
BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2702
2703
/* Allocates slab cache used to allocate "struct epitem" items */
2704
epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2705
0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2706
2707
/* Allocates slab cache used to allocate "struct eppoll_entry" */
2708
pwq_cache = kmem_cache_create("eventpoll_pwq",
2709
sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2710
epoll_sysctls_init();
2711
2712
ephead_cache = kmem_cache_create("ep_head",
2713
sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2714
2715
return 0;
2716
}
2717
fs_initcall(eventpoll_init);
2718
2719