Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/asm-generic/div64.h
26285 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef _ASM_GENERIC_DIV64_H
3
#define _ASM_GENERIC_DIV64_H
4
/*
5
* Copyright (C) 2003 Bernardo Innocenti <[email protected]>
6
* Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
7
*
8
* Optimization for constant divisors on 32-bit machines:
9
* Copyright (C) 2006-2015 Nicolas Pitre
10
*
11
* The semantics of do_div() is, in C++ notation, observing that the name
12
* is a function-like macro and the n parameter has the semantics of a C++
13
* reference:
14
*
15
* uint32_t do_div(uint64_t &n, uint32_t base)
16
* {
17
* uint32_t remainder = n % base;
18
* n = n / base;
19
* return remainder;
20
* }
21
*
22
* NOTE: macro parameter n is evaluated multiple times,
23
* beware of side effects!
24
*/
25
26
#include <linux/types.h>
27
#include <linux/compiler.h>
28
29
#if BITS_PER_LONG == 64
30
31
/**
32
* do_div - returns 2 values: calculate remainder and update new dividend
33
* @n: uint64_t dividend (will be updated)
34
* @base: uint32_t divisor
35
*
36
* Summary:
37
* ``uint32_t remainder = n % base;``
38
* ``n = n / base;``
39
*
40
* Return: (uint32_t)remainder
41
*
42
* NOTE: macro parameter @n is evaluated multiple times,
43
* beware of side effects!
44
*/
45
# define do_div(n,base) ({ \
46
uint32_t __base = (base); \
47
uint32_t __rem; \
48
__rem = ((uint64_t)(n)) % __base; \
49
(n) = ((uint64_t)(n)) / __base; \
50
__rem; \
51
})
52
53
#elif BITS_PER_LONG == 32
54
55
#include <linux/log2.h>
56
57
/*
58
* If the divisor happens to be constant, we determine the appropriate
59
* inverse at compile time to turn the division into a few inline
60
* multiplications which ought to be much faster.
61
*
62
* (It is unfortunate that gcc doesn't perform all this internally.)
63
*/
64
65
#define __div64_const32(n, ___b) \
66
({ \
67
/* \
68
* Multiplication by reciprocal of b: n / b = n * (p / b) / p \
69
* \
70
* We rely on the fact that most of this code gets optimized \
71
* away at compile time due to constant propagation and only \
72
* a few multiplication instructions should remain. \
73
* Hence this monstrous macro (static inline doesn't always \
74
* do the trick here). \
75
*/ \
76
uint64_t ___res, ___x, ___t, ___m, ___n = (n); \
77
uint32_t ___p; \
78
bool ___bias = false; \
79
\
80
/* determine MSB of b */ \
81
___p = 1 << ilog2(___b); \
82
\
83
/* compute m = ((p << 64) + b - 1) / b */ \
84
___m = (~0ULL / ___b) * ___p; \
85
___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b; \
86
\
87
/* one less than the dividend with highest result */ \
88
___x = ~0ULL / ___b * ___b - 1; \
89
\
90
/* test our ___m with res = m * x / (p << 64) */ \
91
___res = (___m & 0xffffffff) * (___x & 0xffffffff); \
92
___t = (___m & 0xffffffff) * (___x >> 32) + (___res >> 32); \
93
___res = (___m >> 32) * (___x >> 32) + (___t >> 32); \
94
___t = (___m >> 32) * (___x & 0xffffffff) + (___t & 0xffffffff);\
95
___res = (___res + (___t >> 32)) / ___p; \
96
\
97
/* Now validate what we've got. */ \
98
if (___res != ___x / ___b) { \
99
/* \
100
* We can't get away without a bias to compensate \
101
* for bit truncation errors. To avoid it we'd need an \
102
* additional bit to represent m which would overflow \
103
* a 64-bit variable. \
104
* \
105
* Instead we do m = p / b and n / b = (n * m + m) / p. \
106
*/ \
107
___bias = true; \
108
/* Compute m = (p << 64) / b */ \
109
___m = (~0ULL / ___b) * ___p; \
110
___m += ((~0ULL % ___b + 1) * ___p) / ___b; \
111
} \
112
\
113
/* Reduce m / p to help avoid overflow handling later. */ \
114
___p /= (___m & -___m); \
115
___m /= (___m & -___m); \
116
\
117
/* \
118
* Perform (m_bias + m * n) / (1 << 64). \
119
* From now on there will be actual runtime code generated. \
120
*/ \
121
___res = __arch_xprod_64(___m, ___n, ___bias); \
122
\
123
___res /= ___p; \
124
})
125
126
#ifndef __arch_xprod_64
127
/*
128
* Default C implementation for __arch_xprod_64()
129
*
130
* Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
131
* Semantic: retval = ((bias ? m : 0) + m * n) >> 64
132
*
133
* The product is a 128-bit value, scaled down to 64 bits.
134
* Hoping for compile-time optimization of conditional code.
135
* Architectures may provide their own optimized assembly implementation.
136
*/
137
#ifdef CONFIG_CC_OPTIMIZE_FOR_PERFORMANCE
138
static __always_inline
139
#else
140
static inline
141
#endif
142
uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
143
{
144
uint32_t m_lo = m;
145
uint32_t m_hi = m >> 32;
146
uint32_t n_lo = n;
147
uint32_t n_hi = n >> 32;
148
uint64_t x, y;
149
150
/* Determine if overflow handling can be dispensed with. */
151
bool no_ovf = __builtin_constant_p(m) &&
152
((m >> 32) + (m & 0xffffffff) < 0x100000000);
153
154
if (no_ovf) {
155
x = (uint64_t)m_lo * n_lo + (bias ? m : 0);
156
x >>= 32;
157
x += (uint64_t)m_lo * n_hi;
158
x += (uint64_t)m_hi * n_lo;
159
x >>= 32;
160
x += (uint64_t)m_hi * n_hi;
161
} else {
162
x = (uint64_t)m_lo * n_lo + (bias ? m_lo : 0);
163
y = (uint64_t)m_lo * n_hi + (uint32_t)(x >> 32) + (bias ? m_hi : 0);
164
x = (uint64_t)m_hi * n_hi + (uint32_t)(y >> 32);
165
y = (uint64_t)m_hi * n_lo + (uint32_t)y;
166
x += (uint32_t)(y >> 32);
167
}
168
169
return x;
170
}
171
#endif
172
173
#ifndef __div64_32
174
extern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
175
#endif
176
177
/* The unnecessary pointer compare is there
178
* to check for type safety (n must be 64bit)
179
*/
180
# define do_div(n,base) ({ \
181
uint32_t __base = (base); \
182
uint32_t __rem; \
183
(void)(((typeof((n)) *)0) == ((uint64_t *)0)); \
184
if (__builtin_constant_p(__base) && \
185
is_power_of_2(__base)) { \
186
__rem = (n) & (__base - 1); \
187
(n) >>= ilog2(__base); \
188
} else if (__builtin_constant_p(__base) && \
189
__base != 0) { \
190
uint32_t __res_lo, __n_lo = (n); \
191
(n) = __div64_const32(n, __base); \
192
/* the remainder can be computed with 32-bit regs */ \
193
__res_lo = (n); \
194
__rem = __n_lo - __res_lo * __base; \
195
} else if (likely(((n) >> 32) == 0)) { \
196
__rem = (uint32_t)(n) % __base; \
197
(n) = (uint32_t)(n) / __base; \
198
} else { \
199
__rem = __div64_32(&(n), __base); \
200
} \
201
__rem; \
202
})
203
204
#else /* BITS_PER_LONG == ?? */
205
206
# error do_div() does not yet support the C64
207
208
#endif /* BITS_PER_LONG */
209
210
#endif /* _ASM_GENERIC_DIV64_H */
211
212