Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/crypto/aead.h
49240 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/*
3
* AEAD: Authenticated Encryption with Associated Data
4
*
5
* Copyright (c) 2007-2015 Herbert Xu <[email protected]>
6
*/
7
8
#ifndef _CRYPTO_AEAD_H
9
#define _CRYPTO_AEAD_H
10
11
#include <linux/atomic.h>
12
#include <linux/container_of.h>
13
#include <linux/crypto.h>
14
#include <linux/slab.h>
15
#include <linux/types.h>
16
17
/**
18
* DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
19
*
20
* The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
21
* (listed as type "aead" in /proc/crypto)
22
*
23
* The most prominent examples for this type of encryption is GCM and CCM.
24
* However, the kernel supports other types of AEAD ciphers which are defined
25
* with the following cipher string:
26
*
27
* authenc(keyed message digest, block cipher)
28
*
29
* For example: authenc(hmac(sha256), cbc(aes))
30
*
31
* The example code provided for the symmetric key cipher operation applies
32
* here as well. Naturally all *skcipher* symbols must be exchanged the *aead*
33
* pendants discussed in the following. In addition, for the AEAD operation,
34
* the aead_request_set_ad function must be used to set the pointer to the
35
* associated data memory location before performing the encryption or
36
* decryption operation. Another deviation from the asynchronous block cipher
37
* operation is that the caller should explicitly check for -EBADMSG of the
38
* crypto_aead_decrypt. That error indicates an authentication error, i.e.
39
* a breach in the integrity of the message. In essence, that -EBADMSG error
40
* code is the key bonus an AEAD cipher has over "standard" block chaining
41
* modes.
42
*
43
* Memory Structure:
44
*
45
* The source scatterlist must contain the concatenation of
46
* associated data || plaintext or ciphertext.
47
*
48
* The destination scatterlist has the same layout, except that the plaintext
49
* (resp. ciphertext) will grow (resp. shrink) by the authentication tag size
50
* during encryption (resp. decryption). The authentication tag is generated
51
* during the encryption operation and appended to the ciphertext. During
52
* decryption, the authentication tag is consumed along with the ciphertext and
53
* used to verify the integrity of the plaintext and the associated data.
54
*
55
* In-place encryption/decryption is enabled by using the same scatterlist
56
* pointer for both the source and destination.
57
*
58
* Even in the out-of-place case, space must be reserved in the destination for
59
* the associated data, even though it won't be written to. This makes the
60
* in-place and out-of-place cases more consistent. It is permissible for the
61
* "destination" associated data to alias the "source" associated data.
62
*
63
* As with the other scatterlist crypto APIs, zero-length scatterlist elements
64
* are not allowed in the used part of the scatterlist. Thus, if there is no
65
* associated data, the first element must point to the plaintext/ciphertext.
66
*
67
* To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309,
68
* rfc4543, and rfc7539esp ciphers. For these ciphers, the final 'ivsize' bytes
69
* of the associated data buffer must contain a second copy of the IV. This is
70
* in addition to the copy passed to aead_request_set_crypt(). These two IV
71
* copies must not differ; different implementations of the same algorithm may
72
* behave differently in that case. Note that the algorithm might not actually
73
* treat the IV as associated data; nevertheless the length passed to
74
* aead_request_set_ad() must include it.
75
*/
76
77
struct crypto_aead;
78
struct scatterlist;
79
80
/**
81
* struct aead_request - AEAD request
82
* @base: Common attributes for async crypto requests
83
* @assoclen: Length in bytes of associated data for authentication
84
* @cryptlen: Length of data to be encrypted or decrypted
85
* @iv: Initialisation vector
86
* @src: Source data
87
* @dst: Destination data
88
* @__ctx: Start of private context data
89
*/
90
struct aead_request {
91
struct crypto_async_request base;
92
93
unsigned int assoclen;
94
unsigned int cryptlen;
95
96
u8 *iv;
97
98
struct scatterlist *src;
99
struct scatterlist *dst;
100
101
void *__ctx[] CRYPTO_MINALIGN_ATTR;
102
};
103
104
/**
105
* struct aead_alg - AEAD cipher definition
106
* @maxauthsize: Set the maximum authentication tag size supported by the
107
* transformation. A transformation may support smaller tag sizes.
108
* As the authentication tag is a message digest to ensure the
109
* integrity of the encrypted data, a consumer typically wants the
110
* largest authentication tag possible as defined by this
111
* variable.
112
* @setauthsize: Set authentication size for the AEAD transformation. This
113
* function is used to specify the consumer requested size of the
114
* authentication tag to be either generated by the transformation
115
* during encryption or the size of the authentication tag to be
116
* supplied during the decryption operation. This function is also
117
* responsible for checking the authentication tag size for
118
* validity.
119
* @setkey: see struct skcipher_alg
120
* @encrypt: see struct skcipher_alg
121
* @decrypt: see struct skcipher_alg
122
* @ivsize: see struct skcipher_alg
123
* @chunksize: see struct skcipher_alg
124
* @init: Initialize the cryptographic transformation object. This function
125
* is used to initialize the cryptographic transformation object.
126
* This function is called only once at the instantiation time, right
127
* after the transformation context was allocated. In case the
128
* cryptographic hardware has some special requirements which need to
129
* be handled by software, this function shall check for the precise
130
* requirement of the transformation and put any software fallbacks
131
* in place.
132
* @exit: Deinitialize the cryptographic transformation object. This is a
133
* counterpart to @init, used to remove various changes set in
134
* @init.
135
* @base: Definition of a generic crypto cipher algorithm.
136
*
137
* All fields except @ivsize is mandatory and must be filled.
138
*/
139
struct aead_alg {
140
int (*setkey)(struct crypto_aead *tfm, const u8 *key,
141
unsigned int keylen);
142
int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
143
int (*encrypt)(struct aead_request *req);
144
int (*decrypt)(struct aead_request *req);
145
int (*init)(struct crypto_aead *tfm);
146
void (*exit)(struct crypto_aead *tfm);
147
148
unsigned int ivsize;
149
unsigned int maxauthsize;
150
unsigned int chunksize;
151
152
struct crypto_alg base;
153
};
154
155
struct crypto_aead {
156
unsigned int authsize;
157
unsigned int reqsize;
158
159
struct crypto_tfm base;
160
};
161
162
struct crypto_sync_aead {
163
struct crypto_aead base;
164
};
165
166
#define MAX_SYNC_AEAD_REQSIZE 384
167
168
#define SYNC_AEAD_REQUEST_ON_STACK(name, _tfm) \
169
char __##name##_desc[sizeof(struct aead_request) + \
170
MAX_SYNC_AEAD_REQSIZE \
171
] CRYPTO_MINALIGN_ATTR; \
172
struct aead_request *name = \
173
(((struct aead_request *)__##name##_desc)->base.tfm = \
174
crypto_sync_aead_tfm((_tfm)), \
175
(void *)__##name##_desc)
176
177
static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
178
{
179
return container_of(tfm, struct crypto_aead, base);
180
}
181
182
/**
183
* crypto_alloc_aead() - allocate AEAD cipher handle
184
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
185
* AEAD cipher
186
* @type: specifies the type of the cipher
187
* @mask: specifies the mask for the cipher
188
*
189
* Allocate a cipher handle for an AEAD. The returned struct
190
* crypto_aead is the cipher handle that is required for any subsequent
191
* API invocation for that AEAD.
192
*
193
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
194
* of an error, PTR_ERR() returns the error code.
195
*/
196
struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
197
198
struct crypto_sync_aead *crypto_alloc_sync_aead(const char *alg_name, u32 type, u32 mask);
199
200
static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
201
{
202
return &tfm->base;
203
}
204
205
static inline struct crypto_tfm *crypto_sync_aead_tfm(struct crypto_sync_aead *tfm)
206
{
207
return crypto_aead_tfm(&tfm->base);
208
}
209
210
/**
211
* crypto_free_aead() - zeroize and free aead handle
212
* @tfm: cipher handle to be freed
213
*
214
* If @tfm is a NULL or error pointer, this function does nothing.
215
*/
216
static inline void crypto_free_aead(struct crypto_aead *tfm)
217
{
218
crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
219
}
220
221
static inline void crypto_free_sync_aead(struct crypto_sync_aead *tfm)
222
{
223
crypto_free_aead(&tfm->base);
224
}
225
226
/**
227
* crypto_has_aead() - Search for the availability of an aead.
228
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
229
* aead
230
* @type: specifies the type of the aead
231
* @mask: specifies the mask for the aead
232
*
233
* Return: true when the aead is known to the kernel crypto API; false
234
* otherwise
235
*/
236
int crypto_has_aead(const char *alg_name, u32 type, u32 mask);
237
238
static inline const char *crypto_aead_driver_name(struct crypto_aead *tfm)
239
{
240
return crypto_tfm_alg_driver_name(crypto_aead_tfm(tfm));
241
}
242
243
static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
244
{
245
return container_of(crypto_aead_tfm(tfm)->__crt_alg,
246
struct aead_alg, base);
247
}
248
249
static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
250
{
251
return alg->ivsize;
252
}
253
254
/**
255
* crypto_aead_ivsize() - obtain IV size
256
* @tfm: cipher handle
257
*
258
* The size of the IV for the aead referenced by the cipher handle is
259
* returned. This IV size may be zero if the cipher does not need an IV.
260
*
261
* Return: IV size in bytes
262
*/
263
static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
264
{
265
return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
266
}
267
268
static inline unsigned int crypto_sync_aead_ivsize(struct crypto_sync_aead *tfm)
269
{
270
return crypto_aead_ivsize(&tfm->base);
271
}
272
273
/**
274
* crypto_aead_authsize() - obtain maximum authentication data size
275
* @tfm: cipher handle
276
*
277
* The maximum size of the authentication data for the AEAD cipher referenced
278
* by the AEAD cipher handle is returned. The authentication data size may be
279
* zero if the cipher implements a hard-coded maximum.
280
*
281
* The authentication data may also be known as "tag value".
282
*
283
* Return: authentication data size / tag size in bytes
284
*/
285
static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
286
{
287
return tfm->authsize;
288
}
289
290
static inline unsigned int crypto_sync_aead_authsize(struct crypto_sync_aead *tfm)
291
{
292
return crypto_aead_authsize(&tfm->base);
293
}
294
295
static inline unsigned int crypto_aead_alg_maxauthsize(struct aead_alg *alg)
296
{
297
return alg->maxauthsize;
298
}
299
300
static inline unsigned int crypto_aead_maxauthsize(struct crypto_aead *aead)
301
{
302
return crypto_aead_alg_maxauthsize(crypto_aead_alg(aead));
303
}
304
305
static inline unsigned int crypto_sync_aead_maxauthsize(struct crypto_sync_aead *tfm)
306
{
307
return crypto_aead_maxauthsize(&tfm->base);
308
}
309
310
/**
311
* crypto_aead_blocksize() - obtain block size of cipher
312
* @tfm: cipher handle
313
*
314
* The block size for the AEAD referenced with the cipher handle is returned.
315
* The caller may use that information to allocate appropriate memory for the
316
* data returned by the encryption or decryption operation
317
*
318
* Return: block size of cipher
319
*/
320
static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
321
{
322
return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
323
}
324
325
static inline unsigned int crypto_sync_aead_blocksize(struct crypto_sync_aead *tfm)
326
{
327
return crypto_aead_blocksize(&tfm->base);
328
}
329
330
static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
331
{
332
return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
333
}
334
335
static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
336
{
337
return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
338
}
339
340
static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
341
{
342
crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
343
}
344
345
static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
346
{
347
crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
348
}
349
350
static inline u32 crypto_sync_aead_get_flags(struct crypto_sync_aead *tfm)
351
{
352
return crypto_aead_get_flags(&tfm->base);
353
}
354
355
static inline void crypto_sync_aead_set_flags(struct crypto_sync_aead *tfm, u32 flags)
356
{
357
crypto_aead_set_flags(&tfm->base, flags);
358
}
359
360
static inline void crypto_sync_aead_clear_flags(struct crypto_sync_aead *tfm, u32 flags)
361
{
362
crypto_aead_clear_flags(&tfm->base, flags);
363
}
364
365
/**
366
* crypto_aead_setkey() - set key for cipher
367
* @tfm: cipher handle
368
* @key: buffer holding the key
369
* @keylen: length of the key in bytes
370
*
371
* The caller provided key is set for the AEAD referenced by the cipher
372
* handle.
373
*
374
* Note, the key length determines the cipher type. Many block ciphers implement
375
* different cipher modes depending on the key size, such as AES-128 vs AES-192
376
* vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
377
* is performed.
378
*
379
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
380
*/
381
int crypto_aead_setkey(struct crypto_aead *tfm,
382
const u8 *key, unsigned int keylen);
383
384
static inline int crypto_sync_aead_setkey(struct crypto_sync_aead *tfm,
385
const u8 *key, unsigned int keylen)
386
{
387
return crypto_aead_setkey(&tfm->base, key, keylen);
388
}
389
390
/**
391
* crypto_aead_setauthsize() - set authentication data size
392
* @tfm: cipher handle
393
* @authsize: size of the authentication data / tag in bytes
394
*
395
* Set the authentication data size / tag size. AEAD requires an authentication
396
* tag (or MAC) in addition to the associated data.
397
*
398
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
399
*/
400
int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
401
402
static inline int crypto_sync_aead_setauthsize(struct crypto_sync_aead *tfm,
403
unsigned int authsize)
404
{
405
return crypto_aead_setauthsize(&tfm->base, authsize);
406
}
407
408
static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
409
{
410
return __crypto_aead_cast(req->base.tfm);
411
}
412
413
static inline struct crypto_sync_aead *crypto_sync_aead_reqtfm(struct aead_request *req)
414
{
415
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
416
417
return container_of(tfm, struct crypto_sync_aead, base);
418
}
419
420
/**
421
* crypto_aead_encrypt() - encrypt plaintext
422
* @req: reference to the aead_request handle that holds all information
423
* needed to perform the cipher operation
424
*
425
* Encrypt plaintext data using the aead_request handle. That data structure
426
* and how it is filled with data is discussed with the aead_request_*
427
* functions.
428
*
429
* IMPORTANT NOTE The encryption operation creates the authentication data /
430
* tag. That data is concatenated with the created ciphertext.
431
* The ciphertext memory size is therefore the given number of
432
* block cipher blocks + the size defined by the
433
* crypto_aead_setauthsize invocation. The caller must ensure
434
* that sufficient memory is available for the ciphertext and
435
* the authentication tag.
436
*
437
* Return: 0 if the cipher operation was successful; < 0 if an error occurred
438
*/
439
int crypto_aead_encrypt(struct aead_request *req);
440
441
/**
442
* crypto_aead_decrypt() - decrypt ciphertext
443
* @req: reference to the aead_request handle that holds all information
444
* needed to perform the cipher operation
445
*
446
* Decrypt ciphertext data using the aead_request handle. That data structure
447
* and how it is filled with data is discussed with the aead_request_*
448
* functions.
449
*
450
* IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
451
* authentication data / tag. That authentication data / tag
452
* must have the size defined by the crypto_aead_setauthsize
453
* invocation.
454
*
455
*
456
* Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
457
* cipher operation performs the authentication of the data during the
458
* decryption operation. Therefore, the function returns this error if
459
* the authentication of the ciphertext was unsuccessful (i.e. the
460
* integrity of the ciphertext or the associated data was violated);
461
* < 0 if an error occurred.
462
*/
463
int crypto_aead_decrypt(struct aead_request *req);
464
465
/**
466
* DOC: Asynchronous AEAD Request Handle
467
*
468
* The aead_request data structure contains all pointers to data required for
469
* the AEAD cipher operation. This includes the cipher handle (which can be
470
* used by multiple aead_request instances), pointer to plaintext and
471
* ciphertext, asynchronous callback function, etc. It acts as a handle to the
472
* aead_request_* API calls in a similar way as AEAD handle to the
473
* crypto_aead_* API calls.
474
*/
475
476
/**
477
* crypto_aead_reqsize() - obtain size of the request data structure
478
* @tfm: cipher handle
479
*
480
* Return: number of bytes
481
*/
482
static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
483
{
484
return tfm->reqsize;
485
}
486
487
/**
488
* aead_request_set_tfm() - update cipher handle reference in request
489
* @req: request handle to be modified
490
* @tfm: cipher handle that shall be added to the request handle
491
*
492
* Allow the caller to replace the existing aead handle in the request
493
* data structure with a different one.
494
*/
495
static inline void aead_request_set_tfm(struct aead_request *req,
496
struct crypto_aead *tfm)
497
{
498
req->base.tfm = crypto_aead_tfm(tfm);
499
}
500
501
static inline void aead_request_set_sync_tfm(struct aead_request *req,
502
struct crypto_sync_aead *tfm)
503
{
504
aead_request_set_tfm(req, &tfm->base);
505
}
506
507
/**
508
* aead_request_alloc() - allocate request data structure
509
* @tfm: cipher handle to be registered with the request
510
* @gfp: memory allocation flag that is handed to kmalloc by the API call.
511
*
512
* Allocate the request data structure that must be used with the AEAD
513
* encrypt and decrypt API calls. During the allocation, the provided aead
514
* handle is registered in the request data structure.
515
*
516
* Return: allocated request handle in case of success, or NULL if out of memory
517
*/
518
static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
519
gfp_t gfp)
520
{
521
struct aead_request *req;
522
523
req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
524
525
if (likely(req))
526
aead_request_set_tfm(req, tfm);
527
528
return req;
529
}
530
531
/**
532
* aead_request_free() - zeroize and free request data structure
533
* @req: request data structure cipher handle to be freed
534
*/
535
static inline void aead_request_free(struct aead_request *req)
536
{
537
kfree_sensitive(req);
538
}
539
540
/**
541
* aead_request_set_callback() - set asynchronous callback function
542
* @req: request handle
543
* @flags: specify zero or an ORing of the flags
544
* CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
545
* increase the wait queue beyond the initial maximum size;
546
* CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
547
* @compl: callback function pointer to be registered with the request handle
548
* @data: The data pointer refers to memory that is not used by the kernel
549
* crypto API, but provided to the callback function for it to use. Here,
550
* the caller can provide a reference to memory the callback function can
551
* operate on. As the callback function is invoked asynchronously to the
552
* related functionality, it may need to access data structures of the
553
* related functionality which can be referenced using this pointer. The
554
* callback function can access the memory via the "data" field in the
555
* crypto_async_request data structure provided to the callback function.
556
*
557
* Setting the callback function that is triggered once the cipher operation
558
* completes
559
*
560
* The callback function is registered with the aead_request handle and
561
* must comply with the following template::
562
*
563
* void callback_function(struct crypto_async_request *req, int error)
564
*/
565
static inline void aead_request_set_callback(struct aead_request *req,
566
u32 flags,
567
crypto_completion_t compl,
568
void *data)
569
{
570
req->base.complete = compl;
571
req->base.data = data;
572
req->base.flags = flags;
573
}
574
575
/**
576
* aead_request_set_crypt - set data buffers
577
* @req: request handle
578
* @src: source scatter / gather list
579
* @dst: destination scatter / gather list
580
* @cryptlen: number of bytes to process from @src
581
* @iv: IV for the cipher operation which must comply with the IV size defined
582
* by crypto_aead_ivsize()
583
*
584
* Setting the source data and destination data scatter / gather lists which
585
* hold the associated data concatenated with the plaintext or ciphertext. See
586
* below for the authentication tag.
587
*
588
* For encryption, the source is treated as the plaintext and the
589
* destination is the ciphertext. For a decryption operation, the use is
590
* reversed - the source is the ciphertext and the destination is the plaintext.
591
*
592
* The memory structure for cipher operation has the following structure:
593
*
594
* - AEAD encryption input: assoc data || plaintext
595
* - AEAD encryption output: assoc data || ciphertext || auth tag
596
* - AEAD decryption input: assoc data || ciphertext || auth tag
597
* - AEAD decryption output: assoc data || plaintext
598
*
599
* Albeit the kernel requires the presence of the AAD buffer, however,
600
* the kernel does not fill the AAD buffer in the output case. If the
601
* caller wants to have that data buffer filled, the caller must either
602
* use an in-place cipher operation (i.e. same memory location for
603
* input/output memory location).
604
*/
605
static inline void aead_request_set_crypt(struct aead_request *req,
606
struct scatterlist *src,
607
struct scatterlist *dst,
608
unsigned int cryptlen, u8 *iv)
609
{
610
req->src = src;
611
req->dst = dst;
612
req->cryptlen = cryptlen;
613
req->iv = iv;
614
}
615
616
/**
617
* aead_request_set_ad - set associated data information
618
* @req: request handle
619
* @assoclen: number of bytes in associated data
620
*
621
* Setting the AD information. This function sets the length of
622
* the associated data.
623
*/
624
static inline void aead_request_set_ad(struct aead_request *req,
625
unsigned int assoclen)
626
{
627
req->assoclen = assoclen;
628
}
629
630
#endif /* _CRYPTO_AEAD_H */
631
632