Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/crypto/hash.h
26278 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/*
3
* Hash: Hash algorithms under the crypto API
4
*
5
* Copyright (c) 2008 Herbert Xu <[email protected]>
6
*/
7
8
#ifndef _CRYPTO_HASH_H
9
#define _CRYPTO_HASH_H
10
11
#include <linux/crypto.h>
12
#include <linux/scatterlist.h>
13
#include <linux/slab.h>
14
#include <linux/string.h>
15
16
/* Set this bit for virtual address instead of SG list. */
17
#define CRYPTO_AHASH_REQ_VIRT 0x00000001
18
19
#define CRYPTO_AHASH_REQ_PRIVATE \
20
CRYPTO_AHASH_REQ_VIRT
21
22
struct crypto_ahash;
23
24
/**
25
* DOC: Message Digest Algorithm Definitions
26
*
27
* These data structures define modular message digest algorithm
28
* implementations, managed via crypto_register_ahash(),
29
* crypto_register_shash(), crypto_unregister_ahash() and
30
* crypto_unregister_shash().
31
*/
32
33
/*
34
* struct hash_alg_common - define properties of message digest
35
* @digestsize: Size of the result of the transformation. A buffer of this size
36
* must be available to the @final and @finup calls, so they can
37
* store the resulting hash into it. For various predefined sizes,
38
* search include/crypto/ using
39
* git grep _DIGEST_SIZE include/crypto.
40
* @statesize: Size of the block for partial state of the transformation. A
41
* buffer of this size must be passed to the @export function as it
42
* will save the partial state of the transformation into it. On the
43
* other side, the @import function will load the state from a
44
* buffer of this size as well.
45
* @base: Start of data structure of cipher algorithm. The common data
46
* structure of crypto_alg contains information common to all ciphers.
47
* The hash_alg_common data structure now adds the hash-specific
48
* information.
49
*/
50
#define HASH_ALG_COMMON { \
51
unsigned int digestsize; \
52
unsigned int statesize; \
53
\
54
struct crypto_alg base; \
55
}
56
struct hash_alg_common HASH_ALG_COMMON;
57
58
struct ahash_request {
59
struct crypto_async_request base;
60
61
unsigned int nbytes;
62
union {
63
struct scatterlist *src;
64
const u8 *svirt;
65
};
66
u8 *result;
67
68
struct scatterlist sg_head[2];
69
crypto_completion_t saved_complete;
70
void *saved_data;
71
72
void *__ctx[] CRYPTO_MINALIGN_ATTR;
73
};
74
75
/**
76
* struct ahash_alg - asynchronous message digest definition
77
* @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
78
* state of the HASH transformation at the beginning. This shall fill in
79
* the internal structures used during the entire duration of the whole
80
* transformation. No data processing happens at this point. Driver code
81
* implementation must not use req->result.
82
* @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
83
* function actually pushes blocks of data from upper layers into the
84
* driver, which then passes those to the hardware as seen fit. This
85
* function must not finalize the HASH transformation by calculating the
86
* final message digest as this only adds more data into the
87
* transformation. This function shall not modify the transformation
88
* context, as this function may be called in parallel with the same
89
* transformation object. Data processing can happen synchronously
90
* [SHASH] or asynchronously [AHASH] at this point. Driver must not use
91
* req->result.
92
* For block-only algorithms, @update must return the number
93
* of bytes to store in the API partial block buffer.
94
* @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
95
* transformation and retrieves the resulting hash from the driver and
96
* pushes it back to upper layers. No data processing happens at this
97
* point unless hardware requires it to finish the transformation
98
* (then the data buffered by the device driver is processed).
99
* @finup: **[optional]** Combination of @update and @final. This function is effectively a
100
* combination of @update and @final calls issued in sequence. As some
101
* hardware cannot do @update and @final separately, this callback was
102
* added to allow such hardware to be used at least by IPsec. Data
103
* processing can happen synchronously [SHASH] or asynchronously [AHASH]
104
* at this point.
105
* @digest: Combination of @init and @update and @final. This function
106
* effectively behaves as the entire chain of operations, @init,
107
* @update and @final issued in sequence. Just like @finup, this was
108
* added for hardware which cannot do even the @finup, but can only do
109
* the whole transformation in one run. Data processing can happen
110
* synchronously [SHASH] or asynchronously [AHASH] at this point.
111
* @setkey: Set optional key used by the hashing algorithm. Intended to push
112
* optional key used by the hashing algorithm from upper layers into
113
* the driver. This function can store the key in the transformation
114
* context or can outright program it into the hardware. In the former
115
* case, one must be careful to program the key into the hardware at
116
* appropriate time and one must be careful that .setkey() can be
117
* called multiple times during the existence of the transformation
118
* object. Not all hashing algorithms do implement this function as it
119
* is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
120
* implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
121
* this function. This function must be called before any other of the
122
* @init, @update, @final, @finup, @digest is called. No data
123
* processing happens at this point.
124
* @export: Export partial state of the transformation. This function dumps the
125
* entire state of the ongoing transformation into a provided block of
126
* data so it can be @import 'ed back later on. This is useful in case
127
* you want to save partial result of the transformation after
128
* processing certain amount of data and reload this partial result
129
* multiple times later on for multiple re-use. No data processing
130
* happens at this point. Driver must not use req->result.
131
* @import: Import partial state of the transformation. This function loads the
132
* entire state of the ongoing transformation from a provided block of
133
* data so the transformation can continue from this point onward. No
134
* data processing happens at this point. Driver must not use
135
* req->result.
136
* @export_core: Export partial state without partial block. Only defined
137
* for algorithms that are not block-only.
138
* @import_core: Import partial state without partial block. Only defined
139
* for algorithms that are not block-only.
140
* @init_tfm: Initialize the cryptographic transformation object.
141
* This function is called only once at the instantiation
142
* time, right after the transformation context was
143
* allocated. In case the cryptographic hardware has
144
* some special requirements which need to be handled
145
* by software, this function shall check for the precise
146
* requirement of the transformation and put any software
147
* fallbacks in place.
148
* @exit_tfm: Deinitialize the cryptographic transformation object.
149
* This is a counterpart to @init_tfm, used to remove
150
* various changes set in @init_tfm.
151
* @clone_tfm: Copy transform into new object, may allocate memory.
152
* @halg: see struct hash_alg_common
153
*/
154
struct ahash_alg {
155
int (*init)(struct ahash_request *req);
156
int (*update)(struct ahash_request *req);
157
int (*final)(struct ahash_request *req);
158
int (*finup)(struct ahash_request *req);
159
int (*digest)(struct ahash_request *req);
160
int (*export)(struct ahash_request *req, void *out);
161
int (*import)(struct ahash_request *req, const void *in);
162
int (*export_core)(struct ahash_request *req, void *out);
163
int (*import_core)(struct ahash_request *req, const void *in);
164
int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
165
unsigned int keylen);
166
int (*init_tfm)(struct crypto_ahash *tfm);
167
void (*exit_tfm)(struct crypto_ahash *tfm);
168
int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
169
170
struct hash_alg_common halg;
171
};
172
173
struct shash_desc {
174
struct crypto_shash *tfm;
175
void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
176
};
177
178
#define HASH_MAX_DIGESTSIZE 64
179
180
/* Worst case is sha3-224. */
181
#define HASH_MAX_STATESIZE 200 + 144 + 1
182
183
/*
184
* Worst case is hmac(sha3-224-s390). Its context is a nested 'shash_desc'
185
* containing a 'struct s390_sha_ctx'.
186
*/
187
#define HASH_MAX_DESCSIZE (sizeof(struct shash_desc) + 361)
188
#define MAX_SYNC_HASH_REQSIZE (sizeof(struct ahash_request) + \
189
HASH_MAX_DESCSIZE)
190
191
#define SHASH_DESC_ON_STACK(shash, ctx) \
192
char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
193
__aligned(__alignof__(struct shash_desc)); \
194
struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
195
196
#define HASH_REQUEST_ON_STACK(name, _tfm) \
197
char __##name##_req[sizeof(struct ahash_request) + \
198
MAX_SYNC_HASH_REQSIZE] CRYPTO_MINALIGN_ATTR; \
199
struct ahash_request *name = \
200
ahash_request_on_stack_init(__##name##_req, (_tfm))
201
202
#define HASH_REQUEST_CLONE(name, gfp) \
203
hash_request_clone(name, sizeof(__##name##_req), gfp)
204
205
#define CRYPTO_HASH_STATESIZE(coresize, blocksize) (coresize + blocksize + 1)
206
207
/**
208
* struct shash_alg - synchronous message digest definition
209
* @init: see struct ahash_alg
210
* @update: see struct ahash_alg
211
* @final: see struct ahash_alg
212
* @finup: see struct ahash_alg
213
* @digest: see struct ahash_alg
214
* @export: see struct ahash_alg
215
* @import: see struct ahash_alg
216
* @export_core: see struct ahash_alg
217
* @import_core: see struct ahash_alg
218
* @setkey: see struct ahash_alg
219
* @init_tfm: Initialize the cryptographic transformation object.
220
* This function is called only once at the instantiation
221
* time, right after the transformation context was
222
* allocated. In case the cryptographic hardware has
223
* some special requirements which need to be handled
224
* by software, this function shall check for the precise
225
* requirement of the transformation and put any software
226
* fallbacks in place.
227
* @exit_tfm: Deinitialize the cryptographic transformation object.
228
* This is a counterpart to @init_tfm, used to remove
229
* various changes set in @init_tfm.
230
* @clone_tfm: Copy transform into new object, may allocate memory.
231
* @descsize: Size of the operational state for the message digest. This state
232
* size is the memory size that needs to be allocated for
233
* shash_desc.__ctx
234
* @halg: see struct hash_alg_common
235
* @HASH_ALG_COMMON: see struct hash_alg_common
236
*/
237
struct shash_alg {
238
int (*init)(struct shash_desc *desc);
239
int (*update)(struct shash_desc *desc, const u8 *data,
240
unsigned int len);
241
int (*final)(struct shash_desc *desc, u8 *out);
242
int (*finup)(struct shash_desc *desc, const u8 *data,
243
unsigned int len, u8 *out);
244
int (*digest)(struct shash_desc *desc, const u8 *data,
245
unsigned int len, u8 *out);
246
int (*export)(struct shash_desc *desc, void *out);
247
int (*import)(struct shash_desc *desc, const void *in);
248
int (*export_core)(struct shash_desc *desc, void *out);
249
int (*import_core)(struct shash_desc *desc, const void *in);
250
int (*setkey)(struct crypto_shash *tfm, const u8 *key,
251
unsigned int keylen);
252
int (*init_tfm)(struct crypto_shash *tfm);
253
void (*exit_tfm)(struct crypto_shash *tfm);
254
int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
255
256
unsigned int descsize;
257
258
union {
259
struct HASH_ALG_COMMON;
260
struct hash_alg_common halg;
261
};
262
};
263
#undef HASH_ALG_COMMON
264
265
struct crypto_ahash {
266
bool using_shash; /* Underlying algorithm is shash, not ahash */
267
unsigned int statesize;
268
unsigned int reqsize;
269
struct crypto_tfm base;
270
};
271
272
struct crypto_shash {
273
struct crypto_tfm base;
274
};
275
276
/**
277
* DOC: Asynchronous Message Digest API
278
*
279
* The asynchronous message digest API is used with the ciphers of type
280
* CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
281
*
282
* The asynchronous cipher operation discussion provided for the
283
* CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
284
*/
285
286
static inline bool ahash_req_on_stack(struct ahash_request *req)
287
{
288
return crypto_req_on_stack(&req->base);
289
}
290
291
static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
292
{
293
return container_of(tfm, struct crypto_ahash, base);
294
}
295
296
/**
297
* crypto_alloc_ahash() - allocate ahash cipher handle
298
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
299
* ahash cipher
300
* @type: specifies the type of the cipher
301
* @mask: specifies the mask for the cipher
302
*
303
* Allocate a cipher handle for an ahash. The returned struct
304
* crypto_ahash is the cipher handle that is required for any subsequent
305
* API invocation for that ahash.
306
*
307
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
308
* of an error, PTR_ERR() returns the error code.
309
*/
310
struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
311
u32 mask);
312
313
struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
314
315
static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
316
{
317
return &tfm->base;
318
}
319
320
/**
321
* crypto_free_ahash() - zeroize and free the ahash handle
322
* @tfm: cipher handle to be freed
323
*
324
* If @tfm is a NULL or error pointer, this function does nothing.
325
*/
326
static inline void crypto_free_ahash(struct crypto_ahash *tfm)
327
{
328
crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
329
}
330
331
/**
332
* crypto_has_ahash() - Search for the availability of an ahash.
333
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
334
* ahash
335
* @type: specifies the type of the ahash
336
* @mask: specifies the mask for the ahash
337
*
338
* Return: true when the ahash is known to the kernel crypto API; false
339
* otherwise
340
*/
341
int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
342
343
static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
344
{
345
return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
346
}
347
348
static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
349
{
350
return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
351
}
352
353
/**
354
* crypto_ahash_blocksize() - obtain block size for cipher
355
* @tfm: cipher handle
356
*
357
* The block size for the message digest cipher referenced with the cipher
358
* handle is returned.
359
*
360
* Return: block size of cipher
361
*/
362
static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
363
{
364
return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
365
}
366
367
static inline struct hash_alg_common *__crypto_hash_alg_common(
368
struct crypto_alg *alg)
369
{
370
return container_of(alg, struct hash_alg_common, base);
371
}
372
373
static inline struct hash_alg_common *crypto_hash_alg_common(
374
struct crypto_ahash *tfm)
375
{
376
return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
377
}
378
379
/**
380
* crypto_ahash_digestsize() - obtain message digest size
381
* @tfm: cipher handle
382
*
383
* The size for the message digest created by the message digest cipher
384
* referenced with the cipher handle is returned.
385
*
386
*
387
* Return: message digest size of cipher
388
*/
389
static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
390
{
391
return crypto_hash_alg_common(tfm)->digestsize;
392
}
393
394
/**
395
* crypto_ahash_statesize() - obtain size of the ahash state
396
* @tfm: cipher handle
397
*
398
* Return the size of the ahash state. With the crypto_ahash_export()
399
* function, the caller can export the state into a buffer whose size is
400
* defined with this function.
401
*
402
* Return: size of the ahash state
403
*/
404
static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
405
{
406
return tfm->statesize;
407
}
408
409
static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
410
{
411
return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
412
}
413
414
static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
415
{
416
crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
417
}
418
419
static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
420
{
421
crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
422
}
423
424
/**
425
* crypto_ahash_reqtfm() - obtain cipher handle from request
426
* @req: asynchronous request handle that contains the reference to the ahash
427
* cipher handle
428
*
429
* Return the ahash cipher handle that is registered with the asynchronous
430
* request handle ahash_request.
431
*
432
* Return: ahash cipher handle
433
*/
434
static inline struct crypto_ahash *crypto_ahash_reqtfm(
435
struct ahash_request *req)
436
{
437
return __crypto_ahash_cast(req->base.tfm);
438
}
439
440
/**
441
* crypto_ahash_reqsize() - obtain size of the request data structure
442
* @tfm: cipher handle
443
*
444
* Return: size of the request data
445
*/
446
static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
447
{
448
return tfm->reqsize;
449
}
450
451
static inline void *ahash_request_ctx(struct ahash_request *req)
452
{
453
return req->__ctx;
454
}
455
456
/**
457
* crypto_ahash_setkey - set key for cipher handle
458
* @tfm: cipher handle
459
* @key: buffer holding the key
460
* @keylen: length of the key in bytes
461
*
462
* The caller provided key is set for the ahash cipher. The cipher
463
* handle must point to a keyed hash in order for this function to succeed.
464
*
465
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
466
*/
467
int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
468
unsigned int keylen);
469
470
/**
471
* crypto_ahash_finup() - update and finalize message digest
472
* @req: reference to the ahash_request handle that holds all information
473
* needed to perform the cipher operation
474
*
475
* This function is a "short-hand" for the function calls of
476
* crypto_ahash_update and crypto_ahash_final. The parameters have the same
477
* meaning as discussed for those separate functions.
478
*
479
* Return: see crypto_ahash_final()
480
*/
481
int crypto_ahash_finup(struct ahash_request *req);
482
483
/**
484
* crypto_ahash_final() - calculate message digest
485
* @req: reference to the ahash_request handle that holds all information
486
* needed to perform the cipher operation
487
*
488
* Finalize the message digest operation and create the message digest
489
* based on all data added to the cipher handle. The message digest is placed
490
* into the output buffer registered with the ahash_request handle.
491
*
492
* Return:
493
* 0 if the message digest was successfully calculated;
494
* -EINPROGRESS if data is fed into hardware (DMA) or queued for later;
495
* -EBUSY if queue is full and request should be resubmitted later;
496
* other < 0 if an error occurred
497
*/
498
static inline int crypto_ahash_final(struct ahash_request *req)
499
{
500
req->nbytes = 0;
501
return crypto_ahash_finup(req);
502
}
503
504
/**
505
* crypto_ahash_digest() - calculate message digest for a buffer
506
* @req: reference to the ahash_request handle that holds all information
507
* needed to perform the cipher operation
508
*
509
* This function is a "short-hand" for the function calls of crypto_ahash_init,
510
* crypto_ahash_update and crypto_ahash_final. The parameters have the same
511
* meaning as discussed for those separate three functions.
512
*
513
* Return: see crypto_ahash_final()
514
*/
515
int crypto_ahash_digest(struct ahash_request *req);
516
517
/**
518
* crypto_ahash_export() - extract current message digest state
519
* @req: reference to the ahash_request handle whose state is exported
520
* @out: output buffer of sufficient size that can hold the hash state
521
*
522
* This function exports the hash state of the ahash_request handle into the
523
* caller-allocated output buffer out which must have sufficient size (e.g. by
524
* calling crypto_ahash_statesize()).
525
*
526
* Return: 0 if the export was successful; < 0 if an error occurred
527
*/
528
int crypto_ahash_export(struct ahash_request *req, void *out);
529
530
/**
531
* crypto_ahash_import() - import message digest state
532
* @req: reference to ahash_request handle the state is imported into
533
* @in: buffer holding the state
534
*
535
* This function imports the hash state into the ahash_request handle from the
536
* input buffer. That buffer should have been generated with the
537
* crypto_ahash_export function.
538
*
539
* Return: 0 if the import was successful; < 0 if an error occurred
540
*/
541
int crypto_ahash_import(struct ahash_request *req, const void *in);
542
543
/**
544
* crypto_ahash_init() - (re)initialize message digest handle
545
* @req: ahash_request handle that already is initialized with all necessary
546
* data using the ahash_request_* API functions
547
*
548
* The call (re-)initializes the message digest referenced by the ahash_request
549
* handle. Any potentially existing state created by previous operations is
550
* discarded.
551
*
552
* Return: see crypto_ahash_final()
553
*/
554
int crypto_ahash_init(struct ahash_request *req);
555
556
/**
557
* crypto_ahash_update() - add data to message digest for processing
558
* @req: ahash_request handle that was previously initialized with the
559
* crypto_ahash_init call.
560
*
561
* Updates the message digest state of the &ahash_request handle. The input data
562
* is pointed to by the scatter/gather list registered in the &ahash_request
563
* handle
564
*
565
* Return: see crypto_ahash_final()
566
*/
567
int crypto_ahash_update(struct ahash_request *req);
568
569
/**
570
* DOC: Asynchronous Hash Request Handle
571
*
572
* The &ahash_request data structure contains all pointers to data
573
* required for the asynchronous cipher operation. This includes the cipher
574
* handle (which can be used by multiple &ahash_request instances), pointer
575
* to plaintext and the message digest output buffer, asynchronous callback
576
* function, etc. It acts as a handle to the ahash_request_* API calls in a
577
* similar way as ahash handle to the crypto_ahash_* API calls.
578
*/
579
580
/**
581
* ahash_request_set_tfm() - update cipher handle reference in request
582
* @req: request handle to be modified
583
* @tfm: cipher handle that shall be added to the request handle
584
*
585
* Allow the caller to replace the existing ahash handle in the request
586
* data structure with a different one.
587
*/
588
static inline void ahash_request_set_tfm(struct ahash_request *req,
589
struct crypto_ahash *tfm)
590
{
591
crypto_request_set_tfm(&req->base, crypto_ahash_tfm(tfm));
592
}
593
594
/**
595
* ahash_request_alloc() - allocate request data structure
596
* @tfm: cipher handle to be registered with the request
597
* @gfp: memory allocation flag that is handed to kmalloc by the API call.
598
*
599
* Allocate the request data structure that must be used with the ahash
600
* message digest API calls. During
601
* the allocation, the provided ahash handle
602
* is registered in the request data structure.
603
*
604
* Return: allocated request handle in case of success, or NULL if out of memory
605
*/
606
static inline struct ahash_request *ahash_request_alloc_noprof(
607
struct crypto_ahash *tfm, gfp_t gfp)
608
{
609
struct ahash_request *req;
610
611
req = kmalloc_noprof(sizeof(struct ahash_request) +
612
crypto_ahash_reqsize(tfm), gfp);
613
614
if (likely(req))
615
ahash_request_set_tfm(req, tfm);
616
617
return req;
618
}
619
#define ahash_request_alloc(...) alloc_hooks(ahash_request_alloc_noprof(__VA_ARGS__))
620
621
/**
622
* ahash_request_free() - zeroize and free the request data structure
623
* @req: request data structure cipher handle to be freed
624
*/
625
void ahash_request_free(struct ahash_request *req);
626
627
static inline void ahash_request_zero(struct ahash_request *req)
628
{
629
memzero_explicit(req, sizeof(*req) +
630
crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
631
}
632
633
static inline struct ahash_request *ahash_request_cast(
634
struct crypto_async_request *req)
635
{
636
return container_of(req, struct ahash_request, base);
637
}
638
639
/**
640
* ahash_request_set_callback() - set asynchronous callback function
641
* @req: request handle
642
* @flags: specify zero or an ORing of the flags
643
* CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
644
* increase the wait queue beyond the initial maximum size;
645
* CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
646
* @compl: callback function pointer to be registered with the request handle
647
* @data: The data pointer refers to memory that is not used by the kernel
648
* crypto API, but provided to the callback function for it to use. Here,
649
* the caller can provide a reference to memory the callback function can
650
* operate on. As the callback function is invoked asynchronously to the
651
* related functionality, it may need to access data structures of the
652
* related functionality which can be referenced using this pointer. The
653
* callback function can access the memory via the "data" field in the
654
* &crypto_async_request data structure provided to the callback function.
655
*
656
* This function allows setting the callback function that is triggered once
657
* the cipher operation completes.
658
*
659
* The callback function is registered with the &ahash_request handle and
660
* must comply with the following template::
661
*
662
* void callback_function(struct crypto_async_request *req, int error)
663
*/
664
static inline void ahash_request_set_callback(struct ahash_request *req,
665
u32 flags,
666
crypto_completion_t compl,
667
void *data)
668
{
669
flags &= ~CRYPTO_AHASH_REQ_PRIVATE;
670
flags |= req->base.flags & CRYPTO_AHASH_REQ_PRIVATE;
671
crypto_request_set_callback(&req->base, flags, compl, data);
672
}
673
674
/**
675
* ahash_request_set_crypt() - set data buffers
676
* @req: ahash_request handle to be updated
677
* @src: source scatter/gather list
678
* @result: buffer that is filled with the message digest -- the caller must
679
* ensure that the buffer has sufficient space by, for example, calling
680
* crypto_ahash_digestsize()
681
* @nbytes: number of bytes to process from the source scatter/gather list
682
*
683
* By using this call, the caller references the source scatter/gather list.
684
* The source scatter/gather list points to the data the message digest is to
685
* be calculated for.
686
*/
687
static inline void ahash_request_set_crypt(struct ahash_request *req,
688
struct scatterlist *src, u8 *result,
689
unsigned int nbytes)
690
{
691
req->src = src;
692
req->nbytes = nbytes;
693
req->result = result;
694
req->base.flags &= ~CRYPTO_AHASH_REQ_VIRT;
695
}
696
697
/**
698
* ahash_request_set_virt() - set virtual address data buffers
699
* @req: ahash_request handle to be updated
700
* @src: source virtual address
701
* @result: buffer that is filled with the message digest -- the caller must
702
* ensure that the buffer has sufficient space by, for example, calling
703
* crypto_ahash_digestsize()
704
* @nbytes: number of bytes to process from the source virtual address
705
*
706
* By using this call, the caller references the source virtual address.
707
* The source virtual address points to the data the message digest is to
708
* be calculated for.
709
*/
710
static inline void ahash_request_set_virt(struct ahash_request *req,
711
const u8 *src, u8 *result,
712
unsigned int nbytes)
713
{
714
req->svirt = src;
715
req->nbytes = nbytes;
716
req->result = result;
717
req->base.flags |= CRYPTO_AHASH_REQ_VIRT;
718
}
719
720
/**
721
* DOC: Synchronous Message Digest API
722
*
723
* The synchronous message digest API is used with the ciphers of type
724
* CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
725
*
726
* The message digest API is able to maintain state information for the
727
* caller.
728
*
729
* The synchronous message digest API can store user-related context in its
730
* shash_desc request data structure.
731
*/
732
733
/**
734
* crypto_alloc_shash() - allocate message digest handle
735
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
736
* message digest cipher
737
* @type: specifies the type of the cipher
738
* @mask: specifies the mask for the cipher
739
*
740
* Allocate a cipher handle for a message digest. The returned &struct
741
* crypto_shash is the cipher handle that is required for any subsequent
742
* API invocation for that message digest.
743
*
744
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
745
* of an error, PTR_ERR() returns the error code.
746
*/
747
struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
748
u32 mask);
749
750
struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
751
752
int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
753
754
static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
755
{
756
return &tfm->base;
757
}
758
759
/**
760
* crypto_free_shash() - zeroize and free the message digest handle
761
* @tfm: cipher handle to be freed
762
*
763
* If @tfm is a NULL or error pointer, this function does nothing.
764
*/
765
static inline void crypto_free_shash(struct crypto_shash *tfm)
766
{
767
crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
768
}
769
770
static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
771
{
772
return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
773
}
774
775
static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
776
{
777
return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
778
}
779
780
/**
781
* crypto_shash_blocksize() - obtain block size for cipher
782
* @tfm: cipher handle
783
*
784
* The block size for the message digest cipher referenced with the cipher
785
* handle is returned.
786
*
787
* Return: block size of cipher
788
*/
789
static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
790
{
791
return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
792
}
793
794
static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
795
{
796
return container_of(alg, struct shash_alg, base);
797
}
798
799
static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
800
{
801
return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
802
}
803
804
/**
805
* crypto_shash_digestsize() - obtain message digest size
806
* @tfm: cipher handle
807
*
808
* The size for the message digest created by the message digest cipher
809
* referenced with the cipher handle is returned.
810
*
811
* Return: digest size of cipher
812
*/
813
static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
814
{
815
return crypto_shash_alg(tfm)->digestsize;
816
}
817
818
static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
819
{
820
return crypto_shash_alg(tfm)->statesize;
821
}
822
823
static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
824
{
825
return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
826
}
827
828
static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
829
{
830
crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
831
}
832
833
static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
834
{
835
crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
836
}
837
838
/**
839
* crypto_shash_descsize() - obtain the operational state size
840
* @tfm: cipher handle
841
*
842
* The size of the operational state the cipher needs during operation is
843
* returned for the hash referenced with the cipher handle. This size is
844
* required to calculate the memory requirements to allow the caller allocating
845
* sufficient memory for operational state.
846
*
847
* The operational state is defined with struct shash_desc where the size of
848
* that data structure is to be calculated as
849
* sizeof(struct shash_desc) + crypto_shash_descsize(alg)
850
*
851
* Return: size of the operational state
852
*/
853
static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
854
{
855
return crypto_shash_alg(tfm)->descsize;
856
}
857
858
static inline void *shash_desc_ctx(struct shash_desc *desc)
859
{
860
return desc->__ctx;
861
}
862
863
/**
864
* crypto_shash_setkey() - set key for message digest
865
* @tfm: cipher handle
866
* @key: buffer holding the key
867
* @keylen: length of the key in bytes
868
*
869
* The caller provided key is set for the keyed message digest cipher. The
870
* cipher handle must point to a keyed message digest cipher in order for this
871
* function to succeed.
872
*
873
* Context: Softirq or process context.
874
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
875
*/
876
int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
877
unsigned int keylen);
878
879
/**
880
* crypto_shash_digest() - calculate message digest for buffer
881
* @desc: see crypto_shash_final()
882
* @data: see crypto_shash_update()
883
* @len: see crypto_shash_update()
884
* @out: see crypto_shash_final()
885
*
886
* This function is a "short-hand" for the function calls of crypto_shash_init,
887
* crypto_shash_update and crypto_shash_final. The parameters have the same
888
* meaning as discussed for those separate three functions.
889
*
890
* Context: Softirq or process context.
891
* Return: 0 if the message digest creation was successful; < 0 if an error
892
* occurred
893
*/
894
int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
895
unsigned int len, u8 *out);
896
897
/**
898
* crypto_shash_tfm_digest() - calculate message digest for buffer
899
* @tfm: hash transformation object
900
* @data: see crypto_shash_update()
901
* @len: see crypto_shash_update()
902
* @out: see crypto_shash_final()
903
*
904
* This is a simplified version of crypto_shash_digest() for users who don't
905
* want to allocate their own hash descriptor (shash_desc). Instead,
906
* crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
907
* directly, and it allocates a hash descriptor on the stack internally.
908
* Note that this stack allocation may be fairly large.
909
*
910
* Context: Softirq or process context.
911
* Return: 0 on success; < 0 if an error occurred.
912
*/
913
int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
914
unsigned int len, u8 *out);
915
916
int crypto_hash_digest(struct crypto_ahash *tfm, const u8 *data,
917
unsigned int len, u8 *out);
918
919
/**
920
* crypto_shash_export() - extract operational state for message digest
921
* @desc: reference to the operational state handle whose state is exported
922
* @out: output buffer of sufficient size that can hold the hash state
923
*
924
* This function exports the hash state of the operational state handle into the
925
* caller-allocated output buffer out which must have sufficient size (e.g. by
926
* calling crypto_shash_descsize).
927
*
928
* Context: Softirq or process context.
929
* Return: 0 if the export creation was successful; < 0 if an error occurred
930
*/
931
int crypto_shash_export(struct shash_desc *desc, void *out);
932
933
/**
934
* crypto_shash_import() - import operational state
935
* @desc: reference to the operational state handle the state imported into
936
* @in: buffer holding the state
937
*
938
* This function imports the hash state into the operational state handle from
939
* the input buffer. That buffer should have been generated with the
940
* crypto_ahash_export function.
941
*
942
* Context: Softirq or process context.
943
* Return: 0 if the import was successful; < 0 if an error occurred
944
*/
945
int crypto_shash_import(struct shash_desc *desc, const void *in);
946
947
/**
948
* crypto_shash_init() - (re)initialize message digest
949
* @desc: operational state handle that is already filled
950
*
951
* The call (re-)initializes the message digest referenced by the
952
* operational state handle. Any potentially existing state created by
953
* previous operations is discarded.
954
*
955
* Context: Softirq or process context.
956
* Return: 0 if the message digest initialization was successful; < 0 if an
957
* error occurred
958
*/
959
int crypto_shash_init(struct shash_desc *desc);
960
961
/**
962
* crypto_shash_finup() - calculate message digest of buffer
963
* @desc: see crypto_shash_final()
964
* @data: see crypto_shash_update()
965
* @len: see crypto_shash_update()
966
* @out: see crypto_shash_final()
967
*
968
* This function is a "short-hand" for the function calls of
969
* crypto_shash_update and crypto_shash_final. The parameters have the same
970
* meaning as discussed for those separate functions.
971
*
972
* Context: Softirq or process context.
973
* Return: 0 if the message digest creation was successful; < 0 if an error
974
* occurred
975
*/
976
int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
977
unsigned int len, u8 *out);
978
979
/**
980
* crypto_shash_update() - add data to message digest for processing
981
* @desc: operational state handle that is already initialized
982
* @data: input data to be added to the message digest
983
* @len: length of the input data
984
*
985
* Updates the message digest state of the operational state handle.
986
*
987
* Context: Softirq or process context.
988
* Return: 0 if the message digest update was successful; < 0 if an error
989
* occurred
990
*/
991
static inline int crypto_shash_update(struct shash_desc *desc, const u8 *data,
992
unsigned int len)
993
{
994
return crypto_shash_finup(desc, data, len, NULL);
995
}
996
997
/**
998
* crypto_shash_final() - calculate message digest
999
* @desc: operational state handle that is already filled with data
1000
* @out: output buffer filled with the message digest
1001
*
1002
* Finalize the message digest operation and create the message digest
1003
* based on all data added to the cipher handle. The message digest is placed
1004
* into the output buffer. The caller must ensure that the output buffer is
1005
* large enough by using crypto_shash_digestsize.
1006
*
1007
* Context: Softirq or process context.
1008
* Return: 0 if the message digest creation was successful; < 0 if an error
1009
* occurred
1010
*/
1011
static inline int crypto_shash_final(struct shash_desc *desc, u8 *out)
1012
{
1013
return crypto_shash_finup(desc, NULL, 0, out);
1014
}
1015
1016
static inline void shash_desc_zero(struct shash_desc *desc)
1017
{
1018
memzero_explicit(desc,
1019
sizeof(*desc) + crypto_shash_descsize(desc->tfm));
1020
}
1021
1022
static inline bool ahash_is_async(struct crypto_ahash *tfm)
1023
{
1024
return crypto_tfm_is_async(&tfm->base);
1025
}
1026
1027
static inline struct ahash_request *ahash_request_on_stack_init(
1028
char *buf, struct crypto_ahash *tfm)
1029
{
1030
struct ahash_request *req = (void *)buf;
1031
1032
crypto_stack_request_init(&req->base, crypto_ahash_tfm(tfm));
1033
return req;
1034
}
1035
1036
static inline struct ahash_request *ahash_request_clone(
1037
struct ahash_request *req, size_t total, gfp_t gfp)
1038
{
1039
return container_of(crypto_request_clone(&req->base, total, gfp),
1040
struct ahash_request, base);
1041
}
1042
1043
#endif /* _CRYPTO_HASH_H */
1044
1045