Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/crypto/internal/acompress.h
26292 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/*
3
* Asynchronous Compression operations
4
*
5
* Copyright (c) 2016, Intel Corporation
6
* Authors: Weigang Li <[email protected]>
7
* Giovanni Cabiddu <[email protected]>
8
*/
9
#ifndef _CRYPTO_ACOMP_INT_H
10
#define _CRYPTO_ACOMP_INT_H
11
12
#include <crypto/acompress.h>
13
#include <crypto/algapi.h>
14
#include <crypto/scatterwalk.h>
15
#include <linux/compiler_types.h>
16
#include <linux/cpumask_types.h>
17
#include <linux/spinlock.h>
18
#include <linux/workqueue_types.h>
19
20
#define ACOMP_FBREQ_ON_STACK(name, req) \
21
char __##name##_req[sizeof(struct acomp_req) + \
22
MAX_SYNC_COMP_REQSIZE] CRYPTO_MINALIGN_ATTR; \
23
struct acomp_req *name = acomp_fbreq_on_stack_init( \
24
__##name##_req, (req))
25
26
/**
27
* struct acomp_alg - asynchronous compression algorithm
28
*
29
* @compress: Function performs a compress operation
30
* @decompress: Function performs a de-compress operation
31
* @init: Initialize the cryptographic transformation object.
32
* This function is used to initialize the cryptographic
33
* transformation object. This function is called only once at
34
* the instantiation time, right after the transformation context
35
* was allocated. In case the cryptographic hardware has some
36
* special requirements which need to be handled by software, this
37
* function shall check for the precise requirement of the
38
* transformation and put any software fallbacks in place.
39
* @exit: Deinitialize the cryptographic transformation object. This is a
40
* counterpart to @init, used to remove various changes set in
41
* @init.
42
*
43
* @base: Common crypto API algorithm data structure
44
* @calg: Cmonn algorithm data structure shared with scomp
45
*/
46
struct acomp_alg {
47
int (*compress)(struct acomp_req *req);
48
int (*decompress)(struct acomp_req *req);
49
int (*init)(struct crypto_acomp *tfm);
50
void (*exit)(struct crypto_acomp *tfm);
51
52
union {
53
struct COMP_ALG_COMMON;
54
struct comp_alg_common calg;
55
};
56
};
57
58
struct crypto_acomp_stream {
59
spinlock_t lock;
60
void *ctx;
61
};
62
63
struct crypto_acomp_streams {
64
/* These must come first because of struct scomp_alg. */
65
void *(*alloc_ctx)(void);
66
void (*free_ctx)(void *);
67
68
struct crypto_acomp_stream __percpu *streams;
69
struct work_struct stream_work;
70
cpumask_t stream_want;
71
};
72
73
struct acomp_walk {
74
union {
75
/* Virtual address of the source. */
76
struct {
77
struct {
78
const void *const addr;
79
} virt;
80
} src;
81
82
/* Private field for the API, do not use. */
83
struct scatter_walk in;
84
};
85
86
union {
87
/* Virtual address of the destination. */
88
struct {
89
struct {
90
void *const addr;
91
} virt;
92
} dst;
93
94
/* Private field for the API, do not use. */
95
struct scatter_walk out;
96
};
97
98
unsigned int slen;
99
unsigned int dlen;
100
101
int flags;
102
};
103
104
/*
105
* Transform internal helpers.
106
*/
107
static inline void *acomp_request_ctx(struct acomp_req *req)
108
{
109
return req->__ctx;
110
}
111
112
static inline void *acomp_tfm_ctx(struct crypto_acomp *tfm)
113
{
114
return tfm->base.__crt_ctx;
115
}
116
117
static inline void acomp_request_complete(struct acomp_req *req,
118
int err)
119
{
120
crypto_request_complete(&req->base, err);
121
}
122
123
/**
124
* crypto_register_acomp() -- Register asynchronous compression algorithm
125
*
126
* Function registers an implementation of an asynchronous
127
* compression algorithm
128
*
129
* @alg: algorithm definition
130
*
131
* Return: zero on success; error code in case of error
132
*/
133
int crypto_register_acomp(struct acomp_alg *alg);
134
135
/**
136
* crypto_unregister_acomp() -- Unregister asynchronous compression algorithm
137
*
138
* Function unregisters an implementation of an asynchronous
139
* compression algorithm
140
*
141
* @alg: algorithm definition
142
*/
143
void crypto_unregister_acomp(struct acomp_alg *alg);
144
145
int crypto_register_acomps(struct acomp_alg *algs, int count);
146
void crypto_unregister_acomps(struct acomp_alg *algs, int count);
147
148
static inline bool acomp_request_issg(struct acomp_req *req)
149
{
150
return !(req->base.flags & (CRYPTO_ACOMP_REQ_SRC_VIRT |
151
CRYPTO_ACOMP_REQ_DST_VIRT));
152
}
153
154
static inline bool acomp_request_src_isvirt(struct acomp_req *req)
155
{
156
return req->base.flags & CRYPTO_ACOMP_REQ_SRC_VIRT;
157
}
158
159
static inline bool acomp_request_dst_isvirt(struct acomp_req *req)
160
{
161
return req->base.flags & CRYPTO_ACOMP_REQ_DST_VIRT;
162
}
163
164
static inline bool acomp_request_isvirt(struct acomp_req *req)
165
{
166
return req->base.flags & (CRYPTO_ACOMP_REQ_SRC_VIRT |
167
CRYPTO_ACOMP_REQ_DST_VIRT);
168
}
169
170
static inline bool acomp_request_src_isnondma(struct acomp_req *req)
171
{
172
return req->base.flags & CRYPTO_ACOMP_REQ_SRC_NONDMA;
173
}
174
175
static inline bool acomp_request_dst_isnondma(struct acomp_req *req)
176
{
177
return req->base.flags & CRYPTO_ACOMP_REQ_DST_NONDMA;
178
}
179
180
static inline bool acomp_request_isnondma(struct acomp_req *req)
181
{
182
return req->base.flags & (CRYPTO_ACOMP_REQ_SRC_NONDMA |
183
CRYPTO_ACOMP_REQ_DST_NONDMA);
184
}
185
186
static inline bool crypto_acomp_req_virt(struct crypto_acomp *tfm)
187
{
188
return crypto_tfm_req_virt(&tfm->base);
189
}
190
191
void crypto_acomp_free_streams(struct crypto_acomp_streams *s);
192
int crypto_acomp_alloc_streams(struct crypto_acomp_streams *s);
193
194
struct crypto_acomp_stream *crypto_acomp_lock_stream_bh(
195
struct crypto_acomp_streams *s) __acquires(stream);
196
197
static inline void crypto_acomp_unlock_stream_bh(
198
struct crypto_acomp_stream *stream) __releases(stream)
199
{
200
spin_unlock_bh(&stream->lock);
201
}
202
203
void acomp_walk_done_src(struct acomp_walk *walk, int used);
204
void acomp_walk_done_dst(struct acomp_walk *walk, int used);
205
int acomp_walk_next_src(struct acomp_walk *walk);
206
int acomp_walk_next_dst(struct acomp_walk *walk);
207
int acomp_walk_virt(struct acomp_walk *__restrict walk,
208
struct acomp_req *__restrict req, bool atomic);
209
210
static inline bool acomp_walk_more_src(const struct acomp_walk *walk, int cur)
211
{
212
return walk->slen != cur;
213
}
214
215
static inline u32 acomp_request_flags(struct acomp_req *req)
216
{
217
return crypto_request_flags(&req->base) & ~CRYPTO_ACOMP_REQ_PRIVATE;
218
}
219
220
static inline struct crypto_acomp *crypto_acomp_fb(struct crypto_acomp *tfm)
221
{
222
return __crypto_acomp_tfm(crypto_acomp_tfm(tfm)->fb);
223
}
224
225
static inline struct acomp_req *acomp_fbreq_on_stack_init(
226
char *buf, struct acomp_req *old)
227
{
228
struct crypto_acomp *tfm = crypto_acomp_reqtfm(old);
229
struct acomp_req *req = (void *)buf;
230
231
crypto_stack_request_init(&req->base,
232
crypto_acomp_tfm(crypto_acomp_fb(tfm)));
233
acomp_request_set_callback(req, acomp_request_flags(old), NULL, NULL);
234
req->base.flags &= ~CRYPTO_ACOMP_REQ_PRIVATE;
235
req->base.flags |= old->base.flags & CRYPTO_ACOMP_REQ_PRIVATE;
236
req->src = old->src;
237
req->dst = old->dst;
238
req->slen = old->slen;
239
req->dlen = old->dlen;
240
241
return req;
242
}
243
244
#endif
245
246