Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/crypto/internal/cipher.h
26292 views
1
/* SPDX-License-Identifier: GPL-2.0-or-later */
2
/*
3
* Copyright (c) 2002 James Morris <[email protected]>
4
* Copyright (c) 2002 David S. Miller ([email protected])
5
* Copyright (c) 2005 Herbert Xu <[email protected]>
6
*
7
* Portions derived from Cryptoapi, by Alexander Kjeldaas <[email protected]>
8
* and Nettle, by Niels Möller.
9
*/
10
11
#ifndef _CRYPTO_INTERNAL_CIPHER_H
12
#define _CRYPTO_INTERNAL_CIPHER_H
13
14
#include <crypto/algapi.h>
15
16
struct crypto_cipher {
17
struct crypto_tfm base;
18
};
19
20
/**
21
* DOC: Single Block Cipher API
22
*
23
* The single block cipher API is used with the ciphers of type
24
* CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
25
*
26
* Using the single block cipher API calls, operations with the basic cipher
27
* primitive can be implemented. These cipher primitives exclude any block
28
* chaining operations including IV handling.
29
*
30
* The purpose of this single block cipher API is to support the implementation
31
* of templates or other concepts that only need to perform the cipher operation
32
* on one block at a time. Templates invoke the underlying cipher primitive
33
* block-wise and process either the input or the output data of these cipher
34
* operations.
35
*/
36
37
static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
38
{
39
return (struct crypto_cipher *)tfm;
40
}
41
42
/**
43
* crypto_alloc_cipher() - allocate single block cipher handle
44
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
45
* single block cipher
46
* @type: specifies the type of the cipher
47
* @mask: specifies the mask for the cipher
48
*
49
* Allocate a cipher handle for a single block cipher. The returned struct
50
* crypto_cipher is the cipher handle that is required for any subsequent API
51
* invocation for that single block cipher.
52
*
53
* Return: allocated cipher handle in case of success; IS_ERR() is true in case
54
* of an error, PTR_ERR() returns the error code.
55
*/
56
static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
57
u32 type, u32 mask)
58
{
59
type &= ~CRYPTO_ALG_TYPE_MASK;
60
type |= CRYPTO_ALG_TYPE_CIPHER;
61
mask |= CRYPTO_ALG_TYPE_MASK;
62
63
return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
64
}
65
66
static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
67
{
68
return &tfm->base;
69
}
70
71
/**
72
* crypto_free_cipher() - zeroize and free the single block cipher handle
73
* @tfm: cipher handle to be freed
74
*/
75
static inline void crypto_free_cipher(struct crypto_cipher *tfm)
76
{
77
crypto_free_tfm(crypto_cipher_tfm(tfm));
78
}
79
80
/**
81
* crypto_has_cipher() - Search for the availability of a single block cipher
82
* @alg_name: is the cra_name / name or cra_driver_name / driver name of the
83
* single block cipher
84
* @type: specifies the type of the cipher
85
* @mask: specifies the mask for the cipher
86
*
87
* Return: true when the single block cipher is known to the kernel crypto API;
88
* false otherwise
89
*/
90
static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
91
{
92
type &= ~CRYPTO_ALG_TYPE_MASK;
93
type |= CRYPTO_ALG_TYPE_CIPHER;
94
mask |= CRYPTO_ALG_TYPE_MASK;
95
96
return crypto_has_alg(alg_name, type, mask);
97
}
98
99
/**
100
* crypto_cipher_blocksize() - obtain block size for cipher
101
* @tfm: cipher handle
102
*
103
* The block size for the single block cipher referenced with the cipher handle
104
* tfm is returned. The caller may use that information to allocate appropriate
105
* memory for the data returned by the encryption or decryption operation
106
*
107
* Return: block size of cipher
108
*/
109
static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
110
{
111
return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
112
}
113
114
static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
115
{
116
return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
117
}
118
119
static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
120
{
121
return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
122
}
123
124
static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
125
u32 flags)
126
{
127
crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
128
}
129
130
static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
131
u32 flags)
132
{
133
crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
134
}
135
136
/**
137
* crypto_cipher_setkey() - set key for cipher
138
* @tfm: cipher handle
139
* @key: buffer holding the key
140
* @keylen: length of the key in bytes
141
*
142
* The caller provided key is set for the single block cipher referenced by the
143
* cipher handle.
144
*
145
* Note, the key length determines the cipher type. Many block ciphers implement
146
* different cipher modes depending on the key size, such as AES-128 vs AES-192
147
* vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
148
* is performed.
149
*
150
* Return: 0 if the setting of the key was successful; < 0 if an error occurred
151
*/
152
int crypto_cipher_setkey(struct crypto_cipher *tfm,
153
const u8 *key, unsigned int keylen);
154
155
/**
156
* crypto_cipher_encrypt_one() - encrypt one block of plaintext
157
* @tfm: cipher handle
158
* @dst: points to the buffer that will be filled with the ciphertext
159
* @src: buffer holding the plaintext to be encrypted
160
*
161
* Invoke the encryption operation of one block. The caller must ensure that
162
* the plaintext and ciphertext buffers are at least one block in size.
163
*/
164
void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
165
u8 *dst, const u8 *src);
166
167
/**
168
* crypto_cipher_decrypt_one() - decrypt one block of ciphertext
169
* @tfm: cipher handle
170
* @dst: points to the buffer that will be filled with the plaintext
171
* @src: buffer holding the ciphertext to be decrypted
172
*
173
* Invoke the decryption operation of one block. The caller must ensure that
174
* the plaintext and ciphertext buffers are at least one block in size.
175
*/
176
void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
177
u8 *dst, const u8 *src);
178
179
struct crypto_cipher *crypto_clone_cipher(struct crypto_cipher *cipher);
180
181
struct crypto_cipher_spawn {
182
struct crypto_spawn base;
183
};
184
185
static inline int crypto_grab_cipher(struct crypto_cipher_spawn *spawn,
186
struct crypto_instance *inst,
187
const char *name, u32 type, u32 mask)
188
{
189
type &= ~CRYPTO_ALG_TYPE_MASK;
190
type |= CRYPTO_ALG_TYPE_CIPHER;
191
mask |= CRYPTO_ALG_TYPE_MASK;
192
return crypto_grab_spawn(&spawn->base, inst, name, type, mask);
193
}
194
195
static inline void crypto_drop_cipher(struct crypto_cipher_spawn *spawn)
196
{
197
crypto_drop_spawn(&spawn->base);
198
}
199
200
static inline struct crypto_alg *crypto_spawn_cipher_alg(
201
struct crypto_cipher_spawn *spawn)
202
{
203
return spawn->base.alg;
204
}
205
206
static inline struct crypto_cipher *crypto_spawn_cipher(
207
struct crypto_cipher_spawn *spawn)
208
{
209
u32 type = CRYPTO_ALG_TYPE_CIPHER;
210
u32 mask = CRYPTO_ALG_TYPE_MASK;
211
212
return __crypto_cipher_cast(crypto_spawn_tfm(&spawn->base, type, mask));
213
}
214
215
static inline struct cipher_alg *crypto_cipher_alg(struct crypto_cipher *tfm)
216
{
217
return &crypto_cipher_tfm(tfm)->__crt_alg->cra_cipher;
218
}
219
220
#endif
221
222