Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/math-emu/op-4.h
26282 views
1
/* Software floating-point emulation.
2
Basic four-word fraction declaration and manipulation.
3
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
4
This file is part of the GNU C Library.
5
Contributed by Richard Henderson ([email protected]),
6
Jakub Jelinek ([email protected]),
7
David S. Miller ([email protected]) and
8
Peter Maydell ([email protected]).
9
10
The GNU C Library is free software; you can redistribute it and/or
11
modify it under the terms of the GNU Library General Public License as
12
published by the Free Software Foundation; either version 2 of the
13
License, or (at your option) any later version.
14
15
The GNU C Library is distributed in the hope that it will be useful,
16
but WITHOUT ANY WARRANTY; without even the implied warranty of
17
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18
Library General Public License for more details.
19
20
You should have received a copy of the GNU Library General Public
21
License along with the GNU C Library; see the file COPYING.LIB. If
22
not, write to the Free Software Foundation, Inc.,
23
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
24
25
#ifndef __MATH_EMU_OP_4_H__
26
#define __MATH_EMU_OP_4_H__
27
28
#define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4]
29
#define _FP_FRAC_COPY_4(D,S) \
30
(D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \
31
D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])
32
#define _FP_FRAC_SET_4(X,I) __FP_FRAC_SET_4(X, I)
33
#define _FP_FRAC_HIGH_4(X) (X##_f[3])
34
#define _FP_FRAC_LOW_4(X) (X##_f[0])
35
#define _FP_FRAC_WORD_4(X,w) (X##_f[w])
36
37
#define _FP_FRAC_SLL_4(X,N) \
38
do { \
39
_FP_I_TYPE _up, _down, _skip, _i; \
40
_skip = (N) / _FP_W_TYPE_SIZE; \
41
_up = (N) % _FP_W_TYPE_SIZE; \
42
_down = _FP_W_TYPE_SIZE - _up; \
43
if (!_up) \
44
for (_i = 3; _i >= _skip; --_i) \
45
X##_f[_i] = X##_f[_i-_skip]; \
46
else \
47
{ \
48
for (_i = 3; _i > _skip; --_i) \
49
X##_f[_i] = X##_f[_i-_skip] << _up \
50
| X##_f[_i-_skip-1] >> _down; \
51
X##_f[_i--] = X##_f[0] << _up; \
52
} \
53
for (; _i >= 0; --_i) \
54
X##_f[_i] = 0; \
55
} while (0)
56
57
/* This one was broken too */
58
#define _FP_FRAC_SRL_4(X,N) \
59
do { \
60
_FP_I_TYPE _up, _down, _skip, _i; \
61
_skip = (N) / _FP_W_TYPE_SIZE; \
62
_down = (N) % _FP_W_TYPE_SIZE; \
63
_up = _FP_W_TYPE_SIZE - _down; \
64
if (!_down) \
65
for (_i = 0; _i <= 3-_skip; ++_i) \
66
X##_f[_i] = X##_f[_i+_skip]; \
67
else \
68
{ \
69
for (_i = 0; _i < 3-_skip; ++_i) \
70
X##_f[_i] = X##_f[_i+_skip] >> _down \
71
| X##_f[_i+_skip+1] << _up; \
72
X##_f[_i++] = X##_f[3] >> _down; \
73
} \
74
for (; _i < 4; ++_i) \
75
X##_f[_i] = 0; \
76
} while (0)
77
78
79
/* Right shift with sticky-lsb.
80
* What this actually means is that we do a standard right-shift,
81
* but that if any of the bits that fall off the right hand side
82
* were one then we always set the LSbit.
83
*/
84
#define _FP_FRAC_SRS_4(X,N,size) \
85
do { \
86
_FP_I_TYPE _up, _down, _skip, _i; \
87
_FP_W_TYPE _s; \
88
_skip = (N) / _FP_W_TYPE_SIZE; \
89
_down = (N) % _FP_W_TYPE_SIZE; \
90
_up = _FP_W_TYPE_SIZE - _down; \
91
for (_s = _i = 0; _i < _skip; ++_i) \
92
_s |= X##_f[_i]; \
93
_s |= X##_f[_i] << _up; \
94
/* s is now != 0 if we want to set the LSbit */ \
95
if (!_down) \
96
for (_i = 0; _i <= 3-_skip; ++_i) \
97
X##_f[_i] = X##_f[_i+_skip]; \
98
else \
99
{ \
100
for (_i = 0; _i < 3-_skip; ++_i) \
101
X##_f[_i] = X##_f[_i+_skip] >> _down \
102
| X##_f[_i+_skip+1] << _up; \
103
X##_f[_i++] = X##_f[3] >> _down; \
104
} \
105
for (; _i < 4; ++_i) \
106
X##_f[_i] = 0; \
107
/* don't fix the LSB until the very end when we're sure f[0] is stable */ \
108
X##_f[0] |= (_s != 0); \
109
} while (0)
110
111
#define _FP_FRAC_ADD_4(R,X,Y) \
112
__FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
113
X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
114
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
115
116
#define _FP_FRAC_SUB_4(R,X,Y) \
117
__FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
118
X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
119
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
120
121
#define _FP_FRAC_DEC_4(X,Y) \
122
__FP_FRAC_DEC_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
123
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
124
125
#define _FP_FRAC_ADDI_4(X,I) \
126
__FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)
127
128
#define _FP_ZEROFRAC_4 0,0,0,0
129
#define _FP_MINFRAC_4 0,0,0,1
130
#define _FP_MAXFRAC_4 (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0)
131
132
#define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)
133
#define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE)X##_f[3] < 0)
134
#define _FP_FRAC_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs)
135
#define _FP_FRAC_CLEAR_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs)
136
137
#define _FP_FRAC_EQ_4(X,Y) \
138
(X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \
139
&& X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])
140
141
#define _FP_FRAC_GT_4(X,Y) \
142
(X##_f[3] > Y##_f[3] || \
143
(X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \
144
(X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \
145
(X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0]) \
146
)) \
147
)) \
148
)
149
150
#define _FP_FRAC_GE_4(X,Y) \
151
(X##_f[3] > Y##_f[3] || \
152
(X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \
153
(X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \
154
(X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0]) \
155
)) \
156
)) \
157
)
158
159
160
#define _FP_FRAC_CLZ_4(R,X) \
161
do { \
162
if (X##_f[3]) \
163
{ \
164
__FP_CLZ(R,X##_f[3]); \
165
} \
166
else if (X##_f[2]) \
167
{ \
168
__FP_CLZ(R,X##_f[2]); \
169
R += _FP_W_TYPE_SIZE; \
170
} \
171
else if (X##_f[1]) \
172
{ \
173
__FP_CLZ(R,X##_f[2]); \
174
R += _FP_W_TYPE_SIZE*2; \
175
} \
176
else \
177
{ \
178
__FP_CLZ(R,X##_f[0]); \
179
R += _FP_W_TYPE_SIZE*3; \
180
} \
181
} while(0)
182
183
184
#define _FP_UNPACK_RAW_4(fs, X, val) \
185
do { \
186
union _FP_UNION_##fs _flo; _flo.flt = (val); \
187
X##_f[0] = _flo.bits.frac0; \
188
X##_f[1] = _flo.bits.frac1; \
189
X##_f[2] = _flo.bits.frac2; \
190
X##_f[3] = _flo.bits.frac3; \
191
X##_e = _flo.bits.exp; \
192
X##_s = _flo.bits.sign; \
193
} while (0)
194
195
#define _FP_UNPACK_RAW_4_P(fs, X, val) \
196
do { \
197
union _FP_UNION_##fs *_flo = \
198
(union _FP_UNION_##fs *)(val); \
199
\
200
X##_f[0] = _flo->bits.frac0; \
201
X##_f[1] = _flo->bits.frac1; \
202
X##_f[2] = _flo->bits.frac2; \
203
X##_f[3] = _flo->bits.frac3; \
204
X##_e = _flo->bits.exp; \
205
X##_s = _flo->bits.sign; \
206
} while (0)
207
208
#define _FP_PACK_RAW_4(fs, val, X) \
209
do { \
210
union _FP_UNION_##fs _flo; \
211
_flo.bits.frac0 = X##_f[0]; \
212
_flo.bits.frac1 = X##_f[1]; \
213
_flo.bits.frac2 = X##_f[2]; \
214
_flo.bits.frac3 = X##_f[3]; \
215
_flo.bits.exp = X##_e; \
216
_flo.bits.sign = X##_s; \
217
(val) = _flo.flt; \
218
} while (0)
219
220
#define _FP_PACK_RAW_4_P(fs, val, X) \
221
do { \
222
union _FP_UNION_##fs *_flo = \
223
(union _FP_UNION_##fs *)(val); \
224
\
225
_flo->bits.frac0 = X##_f[0]; \
226
_flo->bits.frac1 = X##_f[1]; \
227
_flo->bits.frac2 = X##_f[2]; \
228
_flo->bits.frac3 = X##_f[3]; \
229
_flo->bits.exp = X##_e; \
230
_flo->bits.sign = X##_s; \
231
} while (0)
232
233
/*
234
* Multiplication algorithms:
235
*/
236
237
/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
238
239
#define _FP_MUL_MEAT_4_wide(wfracbits, R, X, Y, doit) \
240
do { \
241
_FP_FRAC_DECL_8(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \
242
_FP_FRAC_DECL_2(_d); _FP_FRAC_DECL_2(_e); _FP_FRAC_DECL_2(_f); \
243
\
244
doit(_FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0), X##_f[0], Y##_f[0]); \
245
doit(_b_f1, _b_f0, X##_f[0], Y##_f[1]); \
246
doit(_c_f1, _c_f0, X##_f[1], Y##_f[0]); \
247
doit(_d_f1, _d_f0, X##_f[1], Y##_f[1]); \
248
doit(_e_f1, _e_f0, X##_f[0], Y##_f[2]); \
249
doit(_f_f1, _f_f0, X##_f[2], Y##_f[0]); \
250
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \
251
_FP_FRAC_WORD_8(_z,1), 0,_b_f1,_b_f0, \
252
0,0,_FP_FRAC_WORD_8(_z,1)); \
253
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \
254
_FP_FRAC_WORD_8(_z,1), 0,_c_f1,_c_f0, \
255
_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \
256
_FP_FRAC_WORD_8(_z,1)); \
257
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
258
_FP_FRAC_WORD_8(_z,2), 0,_d_f1,_d_f0, \
259
0,_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2)); \
260
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
261
_FP_FRAC_WORD_8(_z,2), 0,_e_f1,_e_f0, \
262
_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
263
_FP_FRAC_WORD_8(_z,2)); \
264
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
265
_FP_FRAC_WORD_8(_z,2), 0,_f_f1,_f_f0, \
266
_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
267
_FP_FRAC_WORD_8(_z,2)); \
268
doit(_b_f1, _b_f0, X##_f[0], Y##_f[3]); \
269
doit(_c_f1, _c_f0, X##_f[3], Y##_f[0]); \
270
doit(_d_f1, _d_f0, X##_f[1], Y##_f[2]); \
271
doit(_e_f1, _e_f0, X##_f[2], Y##_f[1]); \
272
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
273
_FP_FRAC_WORD_8(_z,3), 0,_b_f1,_b_f0, \
274
0,_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3)); \
275
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
276
_FP_FRAC_WORD_8(_z,3), 0,_c_f1,_c_f0, \
277
_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
278
_FP_FRAC_WORD_8(_z,3)); \
279
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
280
_FP_FRAC_WORD_8(_z,3), 0,_d_f1,_d_f0, \
281
_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
282
_FP_FRAC_WORD_8(_z,3)); \
283
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
284
_FP_FRAC_WORD_8(_z,3), 0,_e_f1,_e_f0, \
285
_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
286
_FP_FRAC_WORD_8(_z,3)); \
287
doit(_b_f1, _b_f0, X##_f[2], Y##_f[2]); \
288
doit(_c_f1, _c_f0, X##_f[1], Y##_f[3]); \
289
doit(_d_f1, _d_f0, X##_f[3], Y##_f[1]); \
290
doit(_e_f1, _e_f0, X##_f[2], Y##_f[3]); \
291
doit(_f_f1, _f_f0, X##_f[3], Y##_f[2]); \
292
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
293
_FP_FRAC_WORD_8(_z,4), 0,_b_f1,_b_f0, \
294
0,_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4)); \
295
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
296
_FP_FRAC_WORD_8(_z,4), 0,_c_f1,_c_f0, \
297
_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
298
_FP_FRAC_WORD_8(_z,4)); \
299
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
300
_FP_FRAC_WORD_8(_z,4), 0,_d_f1,_d_f0, \
301
_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
302
_FP_FRAC_WORD_8(_z,4)); \
303
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
304
_FP_FRAC_WORD_8(_z,5), 0,_e_f1,_e_f0, \
305
0,_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5)); \
306
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
307
_FP_FRAC_WORD_8(_z,5), 0,_f_f1,_f_f0, \
308
_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
309
_FP_FRAC_WORD_8(_z,5)); \
310
doit(_b_f1, _b_f0, X##_f[3], Y##_f[3]); \
311
__FP_FRAC_ADD_2(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
312
_b_f1,_b_f0, \
313
_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6)); \
314
\
315
/* Normalize since we know where the msb of the multiplicands \
316
were (bit B), we know that the msb of the of the product is \
317
at either 2B or 2B-1. */ \
318
_FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \
319
__FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \
320
_FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \
321
} while (0)
322
323
#define _FP_MUL_MEAT_4_gmp(wfracbits, R, X, Y) \
324
do { \
325
_FP_FRAC_DECL_8(_z); \
326
\
327
mpn_mul_n(_z_f, _x_f, _y_f, 4); \
328
\
329
/* Normalize since we know where the msb of the multiplicands \
330
were (bit B), we know that the msb of the of the product is \
331
at either 2B or 2B-1. */ \
332
_FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \
333
__FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \
334
_FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \
335
} while (0)
336
337
/*
338
* Helper utility for _FP_DIV_MEAT_4_udiv:
339
* pppp = m * nnn
340
*/
341
#define umul_ppppmnnn(p3,p2,p1,p0,m,n2,n1,n0) \
342
do { \
343
UWtype _t; \
344
umul_ppmm(p1,p0,m,n0); \
345
umul_ppmm(p2,_t,m,n1); \
346
__FP_FRAC_ADDI_2(p2,p1,_t); \
347
umul_ppmm(p3,_t,m,n2); \
348
__FP_FRAC_ADDI_2(p3,p2,_t); \
349
} while (0)
350
351
/*
352
* Division algorithms:
353
*/
354
355
#define _FP_DIV_MEAT_4_udiv(fs, R, X, Y) \
356
do { \
357
int _i; \
358
_FP_FRAC_DECL_4(_n); _FP_FRAC_DECL_4(_m); \
359
_FP_FRAC_SET_4(_n, _FP_ZEROFRAC_4); \
360
if (_FP_FRAC_GT_4(X, Y)) \
361
{ \
362
_n_f[3] = X##_f[0] << (_FP_W_TYPE_SIZE - 1); \
363
_FP_FRAC_SRL_4(X, 1); \
364
} \
365
else \
366
R##_e--; \
367
\
368
/* Normalize, i.e. make the most significant bit of the \
369
denominator set. */ \
370
_FP_FRAC_SLL_4(Y, _FP_WFRACXBITS_##fs); \
371
\
372
for (_i = 3; ; _i--) \
373
{ \
374
if (X##_f[3] == Y##_f[3]) \
375
{ \
376
/* This is a special case, not an optimization \
377
(X##_f[3]/Y##_f[3] would not fit into UWtype). \
378
As X## is guaranteed to be < Y, R##_f[_i] can be either \
379
(UWtype)-1 or (UWtype)-2. */ \
380
R##_f[_i] = -1; \
381
if (!_i) \
382
break; \
383
__FP_FRAC_SUB_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
384
Y##_f[2], Y##_f[1], Y##_f[0], 0, \
385
X##_f[2], X##_f[1], X##_f[0], _n_f[_i]); \
386
_FP_FRAC_SUB_4(X, Y, X); \
387
if (X##_f[3] > Y##_f[3]) \
388
{ \
389
R##_f[_i] = -2; \
390
_FP_FRAC_ADD_4(X, Y, X); \
391
} \
392
} \
393
else \
394
{ \
395
udiv_qrnnd(R##_f[_i], X##_f[3], X##_f[3], X##_f[2], Y##_f[3]); \
396
umul_ppppmnnn(_m_f[3], _m_f[2], _m_f[1], _m_f[0], \
397
R##_f[_i], Y##_f[2], Y##_f[1], Y##_f[0]); \
398
X##_f[2] = X##_f[1]; \
399
X##_f[1] = X##_f[0]; \
400
X##_f[0] = _n_f[_i]; \
401
if (_FP_FRAC_GT_4(_m, X)) \
402
{ \
403
R##_f[_i]--; \
404
_FP_FRAC_ADD_4(X, Y, X); \
405
if (_FP_FRAC_GE_4(X, Y) && _FP_FRAC_GT_4(_m, X)) \
406
{ \
407
R##_f[_i]--; \
408
_FP_FRAC_ADD_4(X, Y, X); \
409
} \
410
} \
411
_FP_FRAC_DEC_4(X, _m); \
412
if (!_i) \
413
{ \
414
if (!_FP_FRAC_EQ_4(X, _m)) \
415
R##_f[0] |= _FP_WORK_STICKY; \
416
break; \
417
} \
418
} \
419
} \
420
} while (0)
421
422
423
/*
424
* Square root algorithms:
425
* We have just one right now, maybe Newton approximation
426
* should be added for those machines where division is fast.
427
*/
428
429
#define _FP_SQRT_MEAT_4(R, S, T, X, q) \
430
do { \
431
while (q) \
432
{ \
433
T##_f[3] = S##_f[3] + q; \
434
if (T##_f[3] <= X##_f[3]) \
435
{ \
436
S##_f[3] = T##_f[3] + q; \
437
X##_f[3] -= T##_f[3]; \
438
R##_f[3] += q; \
439
} \
440
_FP_FRAC_SLL_4(X, 1); \
441
q >>= 1; \
442
} \
443
q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
444
while (q) \
445
{ \
446
T##_f[2] = S##_f[2] + q; \
447
T##_f[3] = S##_f[3]; \
448
if (T##_f[3] < X##_f[3] || \
449
(T##_f[3] == X##_f[3] && T##_f[2] <= X##_f[2])) \
450
{ \
451
S##_f[2] = T##_f[2] + q; \
452
S##_f[3] += (T##_f[2] > S##_f[2]); \
453
__FP_FRAC_DEC_2(X##_f[3], X##_f[2], \
454
T##_f[3], T##_f[2]); \
455
R##_f[2] += q; \
456
} \
457
_FP_FRAC_SLL_4(X, 1); \
458
q >>= 1; \
459
} \
460
q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
461
while (q) \
462
{ \
463
T##_f[1] = S##_f[1] + q; \
464
T##_f[2] = S##_f[2]; \
465
T##_f[3] = S##_f[3]; \
466
if (T##_f[3] < X##_f[3] || \
467
(T##_f[3] == X##_f[3] && (T##_f[2] < X##_f[2] || \
468
(T##_f[2] == X##_f[2] && T##_f[1] <= X##_f[1])))) \
469
{ \
470
S##_f[1] = T##_f[1] + q; \
471
S##_f[2] += (T##_f[1] > S##_f[1]); \
472
S##_f[3] += (T##_f[2] > S##_f[2]); \
473
__FP_FRAC_DEC_3(X##_f[3], X##_f[2], X##_f[1], \
474
T##_f[3], T##_f[2], T##_f[1]); \
475
R##_f[1] += q; \
476
} \
477
_FP_FRAC_SLL_4(X, 1); \
478
q >>= 1; \
479
} \
480
q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
481
while (q != _FP_WORK_ROUND) \
482
{ \
483
T##_f[0] = S##_f[0] + q; \
484
T##_f[1] = S##_f[1]; \
485
T##_f[2] = S##_f[2]; \
486
T##_f[3] = S##_f[3]; \
487
if (_FP_FRAC_GE_4(X,T)) \
488
{ \
489
S##_f[0] = T##_f[0] + q; \
490
S##_f[1] += (T##_f[0] > S##_f[0]); \
491
S##_f[2] += (T##_f[1] > S##_f[1]); \
492
S##_f[3] += (T##_f[2] > S##_f[2]); \
493
_FP_FRAC_DEC_4(X, T); \
494
R##_f[0] += q; \
495
} \
496
_FP_FRAC_SLL_4(X, 1); \
497
q >>= 1; \
498
} \
499
if (!_FP_FRAC_ZEROP_4(X)) \
500
{ \
501
if (_FP_FRAC_GT_4(X,S)) \
502
R##_f[0] |= _FP_WORK_ROUND; \
503
R##_f[0] |= _FP_WORK_STICKY; \
504
} \
505
} while (0)
506
507
508
/*
509
* Internals
510
*/
511
512
#define __FP_FRAC_SET_4(X,I3,I2,I1,I0) \
513
(X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
514
515
#ifndef __FP_FRAC_ADD_3
516
#define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \
517
do { \
518
int _c1, _c2; \
519
r0 = x0 + y0; \
520
_c1 = r0 < x0; \
521
r1 = x1 + y1; \
522
_c2 = r1 < x1; \
523
r1 += _c1; \
524
_c2 |= r1 < _c1; \
525
r2 = x2 + y2 + _c2; \
526
} while (0)
527
#endif
528
529
#ifndef __FP_FRAC_ADD_4
530
#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
531
do { \
532
int _c1, _c2, _c3; \
533
r0 = x0 + y0; \
534
_c1 = r0 < x0; \
535
r1 = x1 + y1; \
536
_c2 = r1 < x1; \
537
r1 += _c1; \
538
_c2 |= r1 < _c1; \
539
r2 = x2 + y2; \
540
_c3 = r2 < x2; \
541
r2 += _c2; \
542
_c3 |= r2 < _c2; \
543
r3 = x3 + y3 + _c3; \
544
} while (0)
545
#endif
546
547
#ifndef __FP_FRAC_SUB_3
548
#define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \
549
do { \
550
int _c1, _c2; \
551
r0 = x0 - y0; \
552
_c1 = r0 > x0; \
553
r1 = x1 - y1; \
554
_c2 = r1 > x1; \
555
r1 -= _c1; \
556
_c2 |= r1 > _c1; \
557
r2 = x2 - y2 - _c2; \
558
} while (0)
559
#endif
560
561
#ifndef __FP_FRAC_SUB_4
562
#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
563
do { \
564
int _c1, _c2, _c3; \
565
r0 = x0 - y0; \
566
_c1 = r0 > x0; \
567
r1 = x1 - y1; \
568
_c2 = r1 > x1; \
569
r1 -= _c1; \
570
_c2 |= r1 > _c1; \
571
r2 = x2 - y2; \
572
_c3 = r2 > x2; \
573
r2 -= _c2; \
574
_c3 |= r2 > _c2; \
575
r3 = x3 - y3 - _c3; \
576
} while (0)
577
#endif
578
579
#ifndef __FP_FRAC_DEC_3
580
#define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) \
581
do { \
582
UWtype _t0, _t1, _t2; \
583
_t0 = x0, _t1 = x1, _t2 = x2; \
584
__FP_FRAC_SUB_3 (x2, x1, x0, _t2, _t1, _t0, y2, y1, y0); \
585
} while (0)
586
#endif
587
588
#ifndef __FP_FRAC_DEC_4
589
#define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) \
590
do { \
591
UWtype _t0, _t1, _t2, _t3; \
592
_t0 = x0, _t1 = x1, _t2 = x2, _t3 = x3; \
593
__FP_FRAC_SUB_4 (x3,x2,x1,x0,_t3,_t2,_t1,_t0, y3,y2,y1,y0); \
594
} while (0)
595
#endif
596
597
#ifndef __FP_FRAC_ADDI_4
598
#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \
599
do { \
600
UWtype _t; \
601
_t = ((x0 += i) < i); \
602
x1 += _t; _t = (x1 < _t); \
603
x2 += _t; _t = (x2 < _t); \
604
x3 += _t; \
605
} while (0)
606
#endif
607
608
/* Convert FP values between word sizes. This appears to be more
609
* complicated than I'd have expected it to be, so these might be
610
* wrong... These macros are in any case somewhat bogus because they
611
* use information about what various FRAC_n variables look like
612
* internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
613
* the ones in op-2.h and op-1.h.
614
*/
615
#define _FP_FRAC_CONV_1_4(dfs, sfs, D, S) \
616
do { \
617
if (S##_c != FP_CLS_NAN) \
618
_FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \
619
_FP_WFRACBITS_##sfs); \
620
else \
621
_FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \
622
D##_f = S##_f[0]; \
623
} while (0)
624
625
#define _FP_FRAC_CONV_2_4(dfs, sfs, D, S) \
626
do { \
627
if (S##_c != FP_CLS_NAN) \
628
_FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \
629
_FP_WFRACBITS_##sfs); \
630
else \
631
_FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \
632
D##_f0 = S##_f[0]; \
633
D##_f1 = S##_f[1]; \
634
} while (0)
635
636
/* Assembly/disassembly for converting to/from integral types.
637
* No shifting or overflow handled here.
638
*/
639
/* Put the FP value X into r, which is an integer of size rsize. */
640
#define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \
641
do { \
642
if (rsize <= _FP_W_TYPE_SIZE) \
643
r = X##_f[0]; \
644
else if (rsize <= 2*_FP_W_TYPE_SIZE) \
645
{ \
646
r = X##_f[1]; \
647
r <<= _FP_W_TYPE_SIZE; \
648
r += X##_f[0]; \
649
} \
650
else \
651
{ \
652
/* I'm feeling lazy so we deal with int == 3words (implausible)*/ \
653
/* and int == 4words as a single case. */ \
654
r = X##_f[3]; \
655
r <<= _FP_W_TYPE_SIZE; \
656
r += X##_f[2]; \
657
r <<= _FP_W_TYPE_SIZE; \
658
r += X##_f[1]; \
659
r <<= _FP_W_TYPE_SIZE; \
660
r += X##_f[0]; \
661
} \
662
} while (0)
663
664
/* "No disassemble Number Five!" */
665
/* move an integer of size rsize into X's fractional part. We rely on
666
* the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
667
* having to mask the values we store into it.
668
*/
669
#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \
670
do { \
671
X##_f[0] = r; \
672
X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \
673
X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \
674
X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \
675
} while (0)
676
677
#define _FP_FRAC_CONV_4_1(dfs, sfs, D, S) \
678
do { \
679
D##_f[0] = S##_f; \
680
D##_f[1] = D##_f[2] = D##_f[3] = 0; \
681
_FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \
682
} while (0)
683
684
#define _FP_FRAC_CONV_4_2(dfs, sfs, D, S) \
685
do { \
686
D##_f[0] = S##_f0; \
687
D##_f[1] = S##_f1; \
688
D##_f[2] = D##_f[3] = 0; \
689
_FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \
690
} while (0)
691
692
#endif
693
694