Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/rdma/ib_verbs.h
49094 views
1
/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2
/*
3
* Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4
* Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5
* Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6
* Copyright (c) 2004 Topspin Corporation. All rights reserved.
7
* Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9
* Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10
*/
11
12
#ifndef IB_VERBS_H
13
#define IB_VERBS_H
14
15
#include <linux/ethtool.h>
16
#include <linux/types.h>
17
#include <linux/device.h>
18
#include <linux/dma-mapping.h>
19
#include <linux/kref.h>
20
#include <linux/list.h>
21
#include <linux/rwsem.h>
22
#include <linux/workqueue.h>
23
#include <linux/irq_poll.h>
24
#include <uapi/linux/if_ether.h>
25
#include <net/ipv6.h>
26
#include <net/ip.h>
27
#include <linux/string.h>
28
#include <linux/slab.h>
29
#include <linux/netdevice.h>
30
#include <linux/refcount.h>
31
#include <linux/if_link.h>
32
#include <linux/atomic.h>
33
#include <linux/mmu_notifier.h>
34
#include <linux/uaccess.h>
35
#include <linux/cgroup_rdma.h>
36
#include <linux/irqflags.h>
37
#include <linux/preempt.h>
38
#include <linux/dim.h>
39
#include <uapi/rdma/ib_user_verbs.h>
40
#include <rdma/rdma_counter.h>
41
#include <rdma/restrack.h>
42
#include <rdma/signature.h>
43
#include <uapi/rdma/rdma_user_ioctl.h>
44
#include <uapi/rdma/ib_user_ioctl_verbs.h>
45
#include <linux/pci-tph.h>
46
47
#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
48
49
struct ib_umem_odp;
50
struct ib_uqp_object;
51
struct ib_usrq_object;
52
struct ib_uwq_object;
53
struct rdma_cm_id;
54
struct ib_port;
55
struct hw_stats_device_data;
56
57
extern struct workqueue_struct *ib_wq;
58
extern struct workqueue_struct *ib_comp_wq;
59
extern struct workqueue_struct *ib_comp_unbound_wq;
60
61
struct ib_ucq_object;
62
63
__printf(2, 3) __cold
64
void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
65
__printf(2, 3) __cold
66
void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
67
__printf(2, 3) __cold
68
void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
69
__printf(2, 3) __cold
70
void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
71
__printf(2, 3) __cold
72
void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
73
__printf(2, 3) __cold
74
void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
75
__printf(2, 3) __cold
76
void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
77
78
#if defined(CONFIG_DYNAMIC_DEBUG) || \
79
(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
80
#define ibdev_dbg(__dev, format, args...) \
81
dynamic_ibdev_dbg(__dev, format, ##args)
82
#else
83
__printf(2, 3) __cold
84
static inline
85
void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
86
#endif
87
88
#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
89
do { \
90
static DEFINE_RATELIMIT_STATE(_rs, \
91
DEFAULT_RATELIMIT_INTERVAL, \
92
DEFAULT_RATELIMIT_BURST); \
93
if (__ratelimit(&_rs)) \
94
ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
95
} while (0)
96
97
#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
98
ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
99
#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
100
ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
101
#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
102
ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
103
#define ibdev_err_ratelimited(ibdev, fmt, ...) \
104
ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
105
#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
106
ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
107
#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
108
ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
109
#define ibdev_info_ratelimited(ibdev, fmt, ...) \
110
ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
111
112
#if defined(CONFIG_DYNAMIC_DEBUG) || \
113
(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
114
/* descriptor check is first to prevent flooding with "callbacks suppressed" */
115
#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
116
do { \
117
static DEFINE_RATELIMIT_STATE(_rs, \
118
DEFAULT_RATELIMIT_INTERVAL, \
119
DEFAULT_RATELIMIT_BURST); \
120
DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
121
if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
122
__dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
123
##__VA_ARGS__); \
124
} while (0)
125
#else
126
__printf(2, 3) __cold
127
static inline
128
void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
129
#endif
130
131
union ib_gid {
132
u8 raw[16];
133
struct {
134
__be64 subnet_prefix;
135
__be64 interface_id;
136
} global;
137
};
138
139
extern union ib_gid zgid;
140
141
enum ib_gid_type {
142
IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
143
IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
144
IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
145
IB_GID_TYPE_SIZE
146
};
147
148
#define ROCE_V2_UDP_DPORT 4791
149
struct ib_gid_attr {
150
struct net_device __rcu *ndev;
151
struct ib_device *device;
152
union ib_gid gid;
153
enum ib_gid_type gid_type;
154
u16 index;
155
u32 port_num;
156
};
157
158
enum {
159
/* set the local administered indication */
160
IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
161
};
162
163
enum rdma_transport_type {
164
RDMA_TRANSPORT_IB,
165
RDMA_TRANSPORT_IWARP,
166
RDMA_TRANSPORT_USNIC,
167
RDMA_TRANSPORT_USNIC_UDP,
168
RDMA_TRANSPORT_UNSPECIFIED,
169
};
170
171
enum rdma_protocol_type {
172
RDMA_PROTOCOL_IB,
173
RDMA_PROTOCOL_IBOE,
174
RDMA_PROTOCOL_IWARP,
175
RDMA_PROTOCOL_USNIC_UDP
176
};
177
178
__attribute_const__ enum rdma_transport_type
179
rdma_node_get_transport(unsigned int node_type);
180
181
enum rdma_network_type {
182
RDMA_NETWORK_IB,
183
RDMA_NETWORK_ROCE_V1,
184
RDMA_NETWORK_IPV4,
185
RDMA_NETWORK_IPV6
186
};
187
188
static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
189
{
190
if (network_type == RDMA_NETWORK_IPV4 ||
191
network_type == RDMA_NETWORK_IPV6)
192
return IB_GID_TYPE_ROCE_UDP_ENCAP;
193
else if (network_type == RDMA_NETWORK_ROCE_V1)
194
return IB_GID_TYPE_ROCE;
195
else
196
return IB_GID_TYPE_IB;
197
}
198
199
static inline enum rdma_network_type
200
rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
201
{
202
if (attr->gid_type == IB_GID_TYPE_IB)
203
return RDMA_NETWORK_IB;
204
205
if (attr->gid_type == IB_GID_TYPE_ROCE)
206
return RDMA_NETWORK_ROCE_V1;
207
208
if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
209
return RDMA_NETWORK_IPV4;
210
else
211
return RDMA_NETWORK_IPV6;
212
}
213
214
enum rdma_link_layer {
215
IB_LINK_LAYER_UNSPECIFIED,
216
IB_LINK_LAYER_INFINIBAND,
217
IB_LINK_LAYER_ETHERNET,
218
};
219
220
enum ib_device_cap_flags {
221
IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
222
IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
223
IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
224
IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
225
IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
226
IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
227
IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
228
IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
229
IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
230
/* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
231
IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
232
IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
233
IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
234
IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
235
IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
236
237
/* Reserved, old SEND_W_INV = 1 << 16,*/
238
IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
239
/*
240
* Devices should set IB_DEVICE_UD_IP_SUM if they support
241
* insertion of UDP and TCP checksum on outgoing UD IPoIB
242
* messages and can verify the validity of checksum for
243
* incoming messages. Setting this flag implies that the
244
* IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
245
*/
246
IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
247
IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
248
249
/*
250
* This device supports the IB "base memory management extension",
251
* which includes support for fast registrations (IB_WR_REG_MR,
252
* IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
253
* also be set by any iWarp device which must support FRs to comply
254
* to the iWarp verbs spec. iWarp devices also support the
255
* IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
256
* stag.
257
*/
258
IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
259
IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
260
IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
261
IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
262
/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
263
IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
264
IB_DEVICE_MANAGED_FLOW_STEERING =
265
IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
266
/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
267
IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
268
/* The device supports padding incoming writes to cacheline. */
269
IB_DEVICE_PCI_WRITE_END_PADDING =
270
IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
271
/* Placement type attributes */
272
IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
273
IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
274
IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
275
};
276
277
enum ib_kernel_cap_flags {
278
/*
279
* This device supports a per-device lkey or stag that can be
280
* used without performing a memory registration for the local
281
* memory. Note that ULPs should never check this flag, but
282
* instead of use the local_dma_lkey flag in the ib_pd structure,
283
* which will always contain a usable lkey.
284
*/
285
IBK_LOCAL_DMA_LKEY = 1 << 0,
286
/* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
287
IBK_INTEGRITY_HANDOVER = 1 << 1,
288
/* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
289
IBK_ON_DEMAND_PAGING = 1 << 2,
290
/* IB_MR_TYPE_SG_GAPS is supported */
291
IBK_SG_GAPS_REG = 1 << 3,
292
/* Driver supports RDMA_NLDEV_CMD_DELLINK */
293
IBK_ALLOW_USER_UNREG = 1 << 4,
294
295
/* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
296
IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
297
/* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
298
IBK_UD_TSO = 1 << 6,
299
/* iopib will use the device ops:
300
* get_vf_config
301
* get_vf_guid
302
* get_vf_stats
303
* set_vf_guid
304
* set_vf_link_state
305
*/
306
IBK_VIRTUAL_FUNCTION = 1 << 7,
307
/* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
308
IBK_RDMA_NETDEV_OPA = 1 << 8,
309
};
310
311
enum ib_atomic_cap {
312
IB_ATOMIC_NONE,
313
IB_ATOMIC_HCA,
314
IB_ATOMIC_GLOB
315
};
316
317
enum ib_odp_general_cap_bits {
318
IB_ODP_SUPPORT = IB_UVERBS_ODP_SUPPORT,
319
IB_ODP_SUPPORT_IMPLICIT = IB_UVERBS_ODP_SUPPORT_IMPLICIT,
320
};
321
322
enum ib_odp_transport_cap_bits {
323
IB_ODP_SUPPORT_SEND = IB_UVERBS_ODP_SUPPORT_SEND,
324
IB_ODP_SUPPORT_RECV = IB_UVERBS_ODP_SUPPORT_RECV,
325
IB_ODP_SUPPORT_WRITE = IB_UVERBS_ODP_SUPPORT_WRITE,
326
IB_ODP_SUPPORT_READ = IB_UVERBS_ODP_SUPPORT_READ,
327
IB_ODP_SUPPORT_ATOMIC = IB_UVERBS_ODP_SUPPORT_ATOMIC,
328
IB_ODP_SUPPORT_SRQ_RECV = IB_UVERBS_ODP_SUPPORT_SRQ_RECV,
329
IB_ODP_SUPPORT_FLUSH = IB_UVERBS_ODP_SUPPORT_FLUSH,
330
IB_ODP_SUPPORT_ATOMIC_WRITE = IB_UVERBS_ODP_SUPPORT_ATOMIC_WRITE,
331
};
332
333
struct ib_odp_caps {
334
uint64_t general_caps;
335
struct {
336
uint32_t rc_odp_caps;
337
uint32_t uc_odp_caps;
338
uint32_t ud_odp_caps;
339
uint32_t xrc_odp_caps;
340
} per_transport_caps;
341
};
342
343
struct ib_rss_caps {
344
/* Corresponding bit will be set if qp type from
345
* 'enum ib_qp_type' is supported, e.g.
346
* supported_qpts |= 1 << IB_QPT_UD
347
*/
348
u32 supported_qpts;
349
u32 max_rwq_indirection_tables;
350
u32 max_rwq_indirection_table_size;
351
};
352
353
enum ib_tm_cap_flags {
354
/* Support tag matching with rendezvous offload for RC transport */
355
IB_TM_CAP_RNDV_RC = 1 << 0,
356
};
357
358
struct ib_tm_caps {
359
/* Max size of RNDV header */
360
u32 max_rndv_hdr_size;
361
/* Max number of entries in tag matching list */
362
u32 max_num_tags;
363
/* From enum ib_tm_cap_flags */
364
u32 flags;
365
/* Max number of outstanding list operations */
366
u32 max_ops;
367
/* Max number of SGE in tag matching entry */
368
u32 max_sge;
369
};
370
371
struct ib_cq_init_attr {
372
unsigned int cqe;
373
u32 comp_vector;
374
u32 flags;
375
};
376
377
enum ib_cq_attr_mask {
378
IB_CQ_MODERATE = 1 << 0,
379
};
380
381
struct ib_cq_caps {
382
u16 max_cq_moderation_count;
383
u16 max_cq_moderation_period;
384
};
385
386
struct ib_dm_mr_attr {
387
u64 length;
388
u64 offset;
389
u32 access_flags;
390
};
391
392
struct ib_dm_alloc_attr {
393
u64 length;
394
u32 alignment;
395
u32 flags;
396
};
397
398
struct ib_device_attr {
399
u64 fw_ver;
400
__be64 sys_image_guid;
401
u64 max_mr_size;
402
u64 page_size_cap;
403
u32 vendor_id;
404
u32 vendor_part_id;
405
u32 hw_ver;
406
int max_qp;
407
int max_qp_wr;
408
u64 device_cap_flags;
409
u64 kernel_cap_flags;
410
int max_send_sge;
411
int max_recv_sge;
412
int max_sge_rd;
413
int max_cq;
414
int max_cqe;
415
int max_mr;
416
int max_pd;
417
int max_qp_rd_atom;
418
int max_ee_rd_atom;
419
int max_res_rd_atom;
420
int max_qp_init_rd_atom;
421
int max_ee_init_rd_atom;
422
enum ib_atomic_cap atomic_cap;
423
enum ib_atomic_cap masked_atomic_cap;
424
int max_ee;
425
int max_rdd;
426
int max_mw;
427
int max_raw_ipv6_qp;
428
int max_raw_ethy_qp;
429
int max_mcast_grp;
430
int max_mcast_qp_attach;
431
int max_total_mcast_qp_attach;
432
int max_ah;
433
int max_srq;
434
int max_srq_wr;
435
int max_srq_sge;
436
unsigned int max_fast_reg_page_list_len;
437
unsigned int max_pi_fast_reg_page_list_len;
438
u16 max_pkeys;
439
u8 local_ca_ack_delay;
440
int sig_prot_cap;
441
int sig_guard_cap;
442
struct ib_odp_caps odp_caps;
443
uint64_t timestamp_mask;
444
uint64_t hca_core_clock; /* in KHZ */
445
struct ib_rss_caps rss_caps;
446
u32 max_wq_type_rq;
447
u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
448
struct ib_tm_caps tm_caps;
449
struct ib_cq_caps cq_caps;
450
u64 max_dm_size;
451
/* Max entries for sgl for optimized performance per READ */
452
u32 max_sgl_rd;
453
};
454
455
enum ib_mtu {
456
IB_MTU_256 = 1,
457
IB_MTU_512 = 2,
458
IB_MTU_1024 = 3,
459
IB_MTU_2048 = 4,
460
IB_MTU_4096 = 5
461
};
462
463
enum opa_mtu {
464
OPA_MTU_8192 = 6,
465
OPA_MTU_10240 = 7
466
};
467
468
static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469
{
470
switch (mtu) {
471
case IB_MTU_256: return 256;
472
case IB_MTU_512: return 512;
473
case IB_MTU_1024: return 1024;
474
case IB_MTU_2048: return 2048;
475
case IB_MTU_4096: return 4096;
476
default: return -1;
477
}
478
}
479
480
static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481
{
482
if (mtu >= 4096)
483
return IB_MTU_4096;
484
else if (mtu >= 2048)
485
return IB_MTU_2048;
486
else if (mtu >= 1024)
487
return IB_MTU_1024;
488
else if (mtu >= 512)
489
return IB_MTU_512;
490
else
491
return IB_MTU_256;
492
}
493
494
static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495
{
496
switch (mtu) {
497
case OPA_MTU_8192:
498
return 8192;
499
case OPA_MTU_10240:
500
return 10240;
501
default:
502
return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503
}
504
}
505
506
static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507
{
508
if (mtu >= 10240)
509
return OPA_MTU_10240;
510
else if (mtu >= 8192)
511
return OPA_MTU_8192;
512
else
513
return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514
}
515
516
enum ib_port_state {
517
IB_PORT_NOP = 0,
518
IB_PORT_DOWN = 1,
519
IB_PORT_INIT = 2,
520
IB_PORT_ARMED = 3,
521
IB_PORT_ACTIVE = 4,
522
IB_PORT_ACTIVE_DEFER = 5
523
};
524
525
static inline const char *__attribute_const__
526
ib_port_state_to_str(enum ib_port_state state)
527
{
528
const char * const states[] = {
529
[IB_PORT_NOP] = "NOP",
530
[IB_PORT_DOWN] = "DOWN",
531
[IB_PORT_INIT] = "INIT",
532
[IB_PORT_ARMED] = "ARMED",
533
[IB_PORT_ACTIVE] = "ACTIVE",
534
[IB_PORT_ACTIVE_DEFER] = "ACTIVE_DEFER",
535
};
536
537
if (state < ARRAY_SIZE(states))
538
return states[state];
539
return "UNKNOWN";
540
}
541
542
enum ib_port_phys_state {
543
IB_PORT_PHYS_STATE_SLEEP = 1,
544
IB_PORT_PHYS_STATE_POLLING = 2,
545
IB_PORT_PHYS_STATE_DISABLED = 3,
546
IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
547
IB_PORT_PHYS_STATE_LINK_UP = 5,
548
IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
549
IB_PORT_PHYS_STATE_PHY_TEST = 7,
550
};
551
552
enum ib_port_width {
553
IB_WIDTH_1X = 1,
554
IB_WIDTH_2X = 16,
555
IB_WIDTH_4X = 2,
556
IB_WIDTH_8X = 4,
557
IB_WIDTH_12X = 8
558
};
559
560
static inline int ib_width_enum_to_int(enum ib_port_width width)
561
{
562
switch (width) {
563
case IB_WIDTH_1X: return 1;
564
case IB_WIDTH_2X: return 2;
565
case IB_WIDTH_4X: return 4;
566
case IB_WIDTH_8X: return 8;
567
case IB_WIDTH_12X: return 12;
568
default: return -1;
569
}
570
}
571
572
enum ib_port_speed {
573
IB_SPEED_SDR = 1,
574
IB_SPEED_DDR = 2,
575
IB_SPEED_QDR = 4,
576
IB_SPEED_FDR10 = 8,
577
IB_SPEED_FDR = 16,
578
IB_SPEED_EDR = 32,
579
IB_SPEED_HDR = 64,
580
IB_SPEED_NDR = 128,
581
IB_SPEED_XDR = 256,
582
};
583
584
enum ib_stat_flag {
585
IB_STAT_FLAG_OPTIONAL = 1 << 0,
586
};
587
588
/**
589
* struct rdma_stat_desc - description of one rdma stat/counter
590
* @name: The name of the counter
591
* @flags: Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
592
* @priv: Driver private information; Core code should not use
593
*/
594
struct rdma_stat_desc {
595
const char *name;
596
unsigned int flags;
597
const void *priv;
598
};
599
600
/**
601
* struct rdma_hw_stats - collection of hardware stats and their management
602
* @lock: Mutex to protect parallel write access to lifespan and values
603
* of counters, which are 64bits and not guaranteed to be written
604
* atomicaly on 32bits systems.
605
* @timestamp: Used by the core code to track when the last update was
606
* @lifespan: Used by the core code to determine how old the counters
607
* should be before being updated again. Stored in jiffies, defaults
608
* to 10 milliseconds, drivers can override the default be specifying
609
* their own value during their allocation routine.
610
* @descs: Array of pointers to static descriptors used for the counters
611
* in directory.
612
* @is_disabled: A bitmap to indicate each counter is currently disabled
613
* or not.
614
* @num_counters: How many hardware counters there are. If name is
615
* shorter than this number, a kernel oops will result. Driver authors
616
* are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
617
* in their code to prevent this.
618
* @value: Array of u64 counters that are accessed by the sysfs code and
619
* filled in by the drivers get_stats routine
620
*/
621
struct rdma_hw_stats {
622
struct mutex lock; /* Protect lifespan and values[] */
623
unsigned long timestamp;
624
unsigned long lifespan;
625
const struct rdma_stat_desc *descs;
626
unsigned long *is_disabled;
627
int num_counters;
628
u64 value[] __counted_by(num_counters);
629
};
630
631
#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
632
633
struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
634
const struct rdma_stat_desc *descs, int num_counters,
635
unsigned long lifespan);
636
637
void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
638
639
/* Define bits for the various functionality this port needs to be supported by
640
* the core.
641
*/
642
/* Management 0x00000FFF */
643
#define RDMA_CORE_CAP_IB_MAD 0x00000001
644
#define RDMA_CORE_CAP_IB_SMI 0x00000002
645
#define RDMA_CORE_CAP_IB_CM 0x00000004
646
#define RDMA_CORE_CAP_IW_CM 0x00000008
647
#define RDMA_CORE_CAP_IB_SA 0x00000010
648
#define RDMA_CORE_CAP_OPA_MAD 0x00000020
649
650
/* Address format 0x000FF000 */
651
#define RDMA_CORE_CAP_AF_IB 0x00001000
652
#define RDMA_CORE_CAP_ETH_AH 0x00002000
653
#define RDMA_CORE_CAP_OPA_AH 0x00004000
654
#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
655
656
/* Protocol 0xFFF00000 */
657
#define RDMA_CORE_CAP_PROT_IB 0x00100000
658
#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
659
#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
660
#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
661
#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
662
#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
663
664
#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
665
| RDMA_CORE_CAP_PROT_ROCE \
666
| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
667
668
#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
669
| RDMA_CORE_CAP_IB_MAD \
670
| RDMA_CORE_CAP_IB_SMI \
671
| RDMA_CORE_CAP_IB_CM \
672
| RDMA_CORE_CAP_IB_SA \
673
| RDMA_CORE_CAP_AF_IB)
674
#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
675
| RDMA_CORE_CAP_IB_MAD \
676
| RDMA_CORE_CAP_IB_CM \
677
| RDMA_CORE_CAP_AF_IB \
678
| RDMA_CORE_CAP_ETH_AH)
679
#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
680
(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
681
| RDMA_CORE_CAP_IB_MAD \
682
| RDMA_CORE_CAP_IB_CM \
683
| RDMA_CORE_CAP_AF_IB \
684
| RDMA_CORE_CAP_ETH_AH)
685
#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
686
| RDMA_CORE_CAP_IW_CM)
687
#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
688
| RDMA_CORE_CAP_OPA_MAD)
689
690
#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
691
692
#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
693
694
struct ib_port_attr {
695
u64 subnet_prefix;
696
enum ib_port_state state;
697
enum ib_mtu max_mtu;
698
enum ib_mtu active_mtu;
699
u32 phys_mtu;
700
int gid_tbl_len;
701
unsigned int ip_gids:1;
702
/* This is the value from PortInfo CapabilityMask, defined by IBA */
703
u32 port_cap_flags;
704
u32 max_msg_sz;
705
u32 bad_pkey_cntr;
706
u32 qkey_viol_cntr;
707
u16 pkey_tbl_len;
708
u32 sm_lid;
709
u32 lid;
710
u8 lmc;
711
u8 max_vl_num;
712
u8 sm_sl;
713
u8 subnet_timeout;
714
u8 init_type_reply;
715
u8 active_width;
716
u16 active_speed;
717
u8 phys_state;
718
u16 port_cap_flags2;
719
};
720
721
enum ib_device_modify_flags {
722
IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
723
IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
724
};
725
726
#define IB_DEVICE_NODE_DESC_MAX 64
727
728
struct ib_device_modify {
729
u64 sys_image_guid;
730
char node_desc[IB_DEVICE_NODE_DESC_MAX];
731
};
732
733
enum ib_port_modify_flags {
734
IB_PORT_SHUTDOWN = 1,
735
IB_PORT_INIT_TYPE = (1<<2),
736
IB_PORT_RESET_QKEY_CNTR = (1<<3),
737
IB_PORT_OPA_MASK_CHG = (1<<4)
738
};
739
740
struct ib_port_modify {
741
u32 set_port_cap_mask;
742
u32 clr_port_cap_mask;
743
u8 init_type;
744
};
745
746
enum ib_event_type {
747
IB_EVENT_CQ_ERR,
748
IB_EVENT_QP_FATAL,
749
IB_EVENT_QP_REQ_ERR,
750
IB_EVENT_QP_ACCESS_ERR,
751
IB_EVENT_COMM_EST,
752
IB_EVENT_SQ_DRAINED,
753
IB_EVENT_PATH_MIG,
754
IB_EVENT_PATH_MIG_ERR,
755
IB_EVENT_DEVICE_FATAL,
756
IB_EVENT_PORT_ACTIVE,
757
IB_EVENT_PORT_ERR,
758
IB_EVENT_LID_CHANGE,
759
IB_EVENT_PKEY_CHANGE,
760
IB_EVENT_SM_CHANGE,
761
IB_EVENT_SRQ_ERR,
762
IB_EVENT_SRQ_LIMIT_REACHED,
763
IB_EVENT_QP_LAST_WQE_REACHED,
764
IB_EVENT_CLIENT_REREGISTER,
765
IB_EVENT_GID_CHANGE,
766
IB_EVENT_WQ_FATAL,
767
};
768
769
const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
770
771
struct ib_event {
772
struct ib_device *device;
773
union {
774
struct ib_cq *cq;
775
struct ib_qp *qp;
776
struct ib_srq *srq;
777
struct ib_wq *wq;
778
u32 port_num;
779
} element;
780
enum ib_event_type event;
781
};
782
783
struct ib_event_handler {
784
struct ib_device *device;
785
void (*handler)(struct ib_event_handler *, struct ib_event *);
786
struct list_head list;
787
};
788
789
#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
790
do { \
791
(_ptr)->device = _device; \
792
(_ptr)->handler = _handler; \
793
INIT_LIST_HEAD(&(_ptr)->list); \
794
} while (0)
795
796
struct ib_global_route {
797
const struct ib_gid_attr *sgid_attr;
798
union ib_gid dgid;
799
u32 flow_label;
800
u8 sgid_index;
801
u8 hop_limit;
802
u8 traffic_class;
803
};
804
805
struct ib_grh {
806
__be32 version_tclass_flow;
807
__be16 paylen;
808
u8 next_hdr;
809
u8 hop_limit;
810
union ib_gid sgid;
811
union ib_gid dgid;
812
};
813
814
union rdma_network_hdr {
815
struct ib_grh ibgrh;
816
struct {
817
/* The IB spec states that if it's IPv4, the header
818
* is located in the last 20 bytes of the header.
819
*/
820
u8 reserved[20];
821
struct iphdr roce4grh;
822
};
823
};
824
825
#define IB_QPN_MASK 0xFFFFFF
826
827
enum {
828
IB_MULTICAST_QPN = 0xffffff
829
};
830
831
#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
832
#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
833
834
enum ib_ah_flags {
835
IB_AH_GRH = 1
836
};
837
838
enum ib_rate {
839
IB_RATE_PORT_CURRENT = 0,
840
IB_RATE_2_5_GBPS = 2,
841
IB_RATE_5_GBPS = 5,
842
IB_RATE_10_GBPS = 3,
843
IB_RATE_20_GBPS = 6,
844
IB_RATE_30_GBPS = 4,
845
IB_RATE_40_GBPS = 7,
846
IB_RATE_60_GBPS = 8,
847
IB_RATE_80_GBPS = 9,
848
IB_RATE_120_GBPS = 10,
849
IB_RATE_14_GBPS = 11,
850
IB_RATE_56_GBPS = 12,
851
IB_RATE_112_GBPS = 13,
852
IB_RATE_168_GBPS = 14,
853
IB_RATE_25_GBPS = 15,
854
IB_RATE_100_GBPS = 16,
855
IB_RATE_200_GBPS = 17,
856
IB_RATE_300_GBPS = 18,
857
IB_RATE_28_GBPS = 19,
858
IB_RATE_50_GBPS = 20,
859
IB_RATE_400_GBPS = 21,
860
IB_RATE_600_GBPS = 22,
861
IB_RATE_800_GBPS = 23,
862
IB_RATE_1600_GBPS = 25,
863
};
864
865
/**
866
* ib_rate_to_mult - Convert the IB rate enum to a multiple of the
867
* base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
868
* converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
869
* @rate: rate to convert.
870
*/
871
__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
872
873
/**
874
* ib_rate_to_mbps - Convert the IB rate enum to Mbps.
875
* For example, IB_RATE_2_5_GBPS will be converted to 2500.
876
* @rate: rate to convert.
877
*/
878
__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
879
880
881
/**
882
* enum ib_mr_type - memory region type
883
* @IB_MR_TYPE_MEM_REG: memory region that is used for
884
* normal registration
885
* @IB_MR_TYPE_SG_GAPS: memory region that is capable to
886
* register any arbitrary sg lists (without
887
* the normal mr constraints - see
888
* ib_map_mr_sg)
889
* @IB_MR_TYPE_DM: memory region that is used for device
890
* memory registration
891
* @IB_MR_TYPE_USER: memory region that is used for the user-space
892
* application
893
* @IB_MR_TYPE_DMA: memory region that is used for DMA operations
894
* without address translations (VA=PA)
895
* @IB_MR_TYPE_INTEGRITY: memory region that is used for
896
* data integrity operations
897
*/
898
enum ib_mr_type {
899
IB_MR_TYPE_MEM_REG,
900
IB_MR_TYPE_SG_GAPS,
901
IB_MR_TYPE_DM,
902
IB_MR_TYPE_USER,
903
IB_MR_TYPE_DMA,
904
IB_MR_TYPE_INTEGRITY,
905
};
906
907
enum ib_mr_status_check {
908
IB_MR_CHECK_SIG_STATUS = 1,
909
};
910
911
/**
912
* struct ib_mr_status - Memory region status container
913
*
914
* @fail_status: Bitmask of MR checks status. For each
915
* failed check a corresponding status bit is set.
916
* @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
917
* failure.
918
*/
919
struct ib_mr_status {
920
u32 fail_status;
921
struct ib_sig_err sig_err;
922
};
923
924
/**
925
* mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
926
* enum.
927
* @mult: multiple to convert.
928
*/
929
__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
930
931
struct rdma_ah_init_attr {
932
struct rdma_ah_attr *ah_attr;
933
u32 flags;
934
struct net_device *xmit_slave;
935
};
936
937
enum rdma_ah_attr_type {
938
RDMA_AH_ATTR_TYPE_UNDEFINED,
939
RDMA_AH_ATTR_TYPE_IB,
940
RDMA_AH_ATTR_TYPE_ROCE,
941
RDMA_AH_ATTR_TYPE_OPA,
942
};
943
944
struct ib_ah_attr {
945
u16 dlid;
946
u8 src_path_bits;
947
};
948
949
struct roce_ah_attr {
950
u8 dmac[ETH_ALEN];
951
};
952
953
struct opa_ah_attr {
954
u32 dlid;
955
u8 src_path_bits;
956
bool make_grd;
957
};
958
959
struct rdma_ah_attr {
960
struct ib_global_route grh;
961
u8 sl;
962
u8 static_rate;
963
u32 port_num;
964
u8 ah_flags;
965
enum rdma_ah_attr_type type;
966
union {
967
struct ib_ah_attr ib;
968
struct roce_ah_attr roce;
969
struct opa_ah_attr opa;
970
};
971
};
972
973
enum ib_wc_status {
974
IB_WC_SUCCESS,
975
IB_WC_LOC_LEN_ERR,
976
IB_WC_LOC_QP_OP_ERR,
977
IB_WC_LOC_EEC_OP_ERR,
978
IB_WC_LOC_PROT_ERR,
979
IB_WC_WR_FLUSH_ERR,
980
IB_WC_MW_BIND_ERR,
981
IB_WC_BAD_RESP_ERR,
982
IB_WC_LOC_ACCESS_ERR,
983
IB_WC_REM_INV_REQ_ERR,
984
IB_WC_REM_ACCESS_ERR,
985
IB_WC_REM_OP_ERR,
986
IB_WC_RETRY_EXC_ERR,
987
IB_WC_RNR_RETRY_EXC_ERR,
988
IB_WC_LOC_RDD_VIOL_ERR,
989
IB_WC_REM_INV_RD_REQ_ERR,
990
IB_WC_REM_ABORT_ERR,
991
IB_WC_INV_EECN_ERR,
992
IB_WC_INV_EEC_STATE_ERR,
993
IB_WC_FATAL_ERR,
994
IB_WC_RESP_TIMEOUT_ERR,
995
IB_WC_GENERAL_ERR
996
};
997
998
const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
999
1000
enum ib_wc_opcode {
1001
IB_WC_SEND = IB_UVERBS_WC_SEND,
1002
IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
1003
IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
1004
IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
1005
IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
1006
IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
1007
IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
1008
IB_WC_LSO = IB_UVERBS_WC_TSO,
1009
IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
1010
IB_WC_REG_MR,
1011
IB_WC_MASKED_COMP_SWAP,
1012
IB_WC_MASKED_FETCH_ADD,
1013
IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
1014
/*
1015
* Set value of IB_WC_RECV so consumers can test if a completion is a
1016
* receive by testing (opcode & IB_WC_RECV).
1017
*/
1018
IB_WC_RECV = 1 << 7,
1019
IB_WC_RECV_RDMA_WITH_IMM
1020
};
1021
1022
enum ib_wc_flags {
1023
IB_WC_GRH = 1,
1024
IB_WC_WITH_IMM = (1<<1),
1025
IB_WC_WITH_INVALIDATE = (1<<2),
1026
IB_WC_IP_CSUM_OK = (1<<3),
1027
IB_WC_WITH_SMAC = (1<<4),
1028
IB_WC_WITH_VLAN = (1<<5),
1029
IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1030
};
1031
1032
struct ib_wc {
1033
union {
1034
u64 wr_id;
1035
struct ib_cqe *wr_cqe;
1036
};
1037
enum ib_wc_status status;
1038
enum ib_wc_opcode opcode;
1039
u32 vendor_err;
1040
u32 byte_len;
1041
struct ib_qp *qp;
1042
union {
1043
__be32 imm_data;
1044
u32 invalidate_rkey;
1045
} ex;
1046
u32 src_qp;
1047
u32 slid;
1048
int wc_flags;
1049
u16 pkey_index;
1050
u8 sl;
1051
u8 dlid_path_bits;
1052
u32 port_num; /* valid only for DR SMPs on switches */
1053
u8 smac[ETH_ALEN];
1054
u16 vlan_id;
1055
u8 network_hdr_type;
1056
};
1057
1058
enum ib_cq_notify_flags {
1059
IB_CQ_SOLICITED = 1 << 0,
1060
IB_CQ_NEXT_COMP = 1 << 1,
1061
IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1062
IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1063
};
1064
1065
enum ib_srq_type {
1066
IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1067
IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1068
IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1069
};
1070
1071
static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1072
{
1073
return srq_type == IB_SRQT_XRC ||
1074
srq_type == IB_SRQT_TM;
1075
}
1076
1077
enum ib_srq_attr_mask {
1078
IB_SRQ_MAX_WR = 1 << 0,
1079
IB_SRQ_LIMIT = 1 << 1,
1080
};
1081
1082
struct ib_srq_attr {
1083
u32 max_wr;
1084
u32 max_sge;
1085
u32 srq_limit;
1086
};
1087
1088
struct ib_srq_init_attr {
1089
void (*event_handler)(struct ib_event *, void *);
1090
void *srq_context;
1091
struct ib_srq_attr attr;
1092
enum ib_srq_type srq_type;
1093
1094
struct {
1095
struct ib_cq *cq;
1096
union {
1097
struct {
1098
struct ib_xrcd *xrcd;
1099
} xrc;
1100
1101
struct {
1102
u32 max_num_tags;
1103
} tag_matching;
1104
};
1105
} ext;
1106
};
1107
1108
struct ib_qp_cap {
1109
u32 max_send_wr;
1110
u32 max_recv_wr;
1111
u32 max_send_sge;
1112
u32 max_recv_sge;
1113
u32 max_inline_data;
1114
1115
/*
1116
* Maximum number of rdma_rw_ctx structures in flight at a time.
1117
* ib_create_qp() will calculate the right amount of needed WRs
1118
* and MRs based on this.
1119
*/
1120
u32 max_rdma_ctxs;
1121
};
1122
1123
enum ib_sig_type {
1124
IB_SIGNAL_ALL_WR,
1125
IB_SIGNAL_REQ_WR
1126
};
1127
1128
enum ib_qp_type {
1129
/*
1130
* IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1131
* here (and in that order) since the MAD layer uses them as
1132
* indices into a 2-entry table.
1133
*/
1134
IB_QPT_SMI,
1135
IB_QPT_GSI,
1136
1137
IB_QPT_RC = IB_UVERBS_QPT_RC,
1138
IB_QPT_UC = IB_UVERBS_QPT_UC,
1139
IB_QPT_UD = IB_UVERBS_QPT_UD,
1140
IB_QPT_RAW_IPV6,
1141
IB_QPT_RAW_ETHERTYPE,
1142
IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1143
IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1144
IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1145
IB_QPT_MAX,
1146
IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1147
/* Reserve a range for qp types internal to the low level driver.
1148
* These qp types will not be visible at the IB core layer, so the
1149
* IB_QPT_MAX usages should not be affected in the core layer
1150
*/
1151
IB_QPT_RESERVED1 = 0x1000,
1152
IB_QPT_RESERVED2,
1153
IB_QPT_RESERVED3,
1154
IB_QPT_RESERVED4,
1155
IB_QPT_RESERVED5,
1156
IB_QPT_RESERVED6,
1157
IB_QPT_RESERVED7,
1158
IB_QPT_RESERVED8,
1159
IB_QPT_RESERVED9,
1160
IB_QPT_RESERVED10,
1161
};
1162
1163
enum ib_qp_create_flags {
1164
IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1165
IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1166
IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1167
IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1168
IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1169
IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1170
IB_QP_CREATE_NETIF_QP = 1 << 5,
1171
IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1172
IB_QP_CREATE_NETDEV_USE = 1 << 7,
1173
IB_QP_CREATE_SCATTER_FCS =
1174
IB_UVERBS_QP_CREATE_SCATTER_FCS,
1175
IB_QP_CREATE_CVLAN_STRIPPING =
1176
IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1177
IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1178
IB_QP_CREATE_PCI_WRITE_END_PADDING =
1179
IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1180
/* reserve bits 26-31 for low level drivers' internal use */
1181
IB_QP_CREATE_RESERVED_START = 1 << 26,
1182
IB_QP_CREATE_RESERVED_END = 1 << 31,
1183
};
1184
1185
/*
1186
* Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1187
* callback to destroy the passed in QP.
1188
*/
1189
1190
struct ib_qp_init_attr {
1191
/* This callback occurs in workqueue context */
1192
void (*event_handler)(struct ib_event *, void *);
1193
1194
void *qp_context;
1195
struct ib_cq *send_cq;
1196
struct ib_cq *recv_cq;
1197
struct ib_srq *srq;
1198
struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1199
struct ib_qp_cap cap;
1200
enum ib_sig_type sq_sig_type;
1201
enum ib_qp_type qp_type;
1202
u32 create_flags;
1203
1204
/*
1205
* Only needed for special QP types, or when using the RW API.
1206
*/
1207
u32 port_num;
1208
struct ib_rwq_ind_table *rwq_ind_tbl;
1209
u32 source_qpn;
1210
};
1211
1212
struct ib_qp_open_attr {
1213
void (*event_handler)(struct ib_event *, void *);
1214
void *qp_context;
1215
u32 qp_num;
1216
enum ib_qp_type qp_type;
1217
};
1218
1219
enum ib_rnr_timeout {
1220
IB_RNR_TIMER_655_36 = 0,
1221
IB_RNR_TIMER_000_01 = 1,
1222
IB_RNR_TIMER_000_02 = 2,
1223
IB_RNR_TIMER_000_03 = 3,
1224
IB_RNR_TIMER_000_04 = 4,
1225
IB_RNR_TIMER_000_06 = 5,
1226
IB_RNR_TIMER_000_08 = 6,
1227
IB_RNR_TIMER_000_12 = 7,
1228
IB_RNR_TIMER_000_16 = 8,
1229
IB_RNR_TIMER_000_24 = 9,
1230
IB_RNR_TIMER_000_32 = 10,
1231
IB_RNR_TIMER_000_48 = 11,
1232
IB_RNR_TIMER_000_64 = 12,
1233
IB_RNR_TIMER_000_96 = 13,
1234
IB_RNR_TIMER_001_28 = 14,
1235
IB_RNR_TIMER_001_92 = 15,
1236
IB_RNR_TIMER_002_56 = 16,
1237
IB_RNR_TIMER_003_84 = 17,
1238
IB_RNR_TIMER_005_12 = 18,
1239
IB_RNR_TIMER_007_68 = 19,
1240
IB_RNR_TIMER_010_24 = 20,
1241
IB_RNR_TIMER_015_36 = 21,
1242
IB_RNR_TIMER_020_48 = 22,
1243
IB_RNR_TIMER_030_72 = 23,
1244
IB_RNR_TIMER_040_96 = 24,
1245
IB_RNR_TIMER_061_44 = 25,
1246
IB_RNR_TIMER_081_92 = 26,
1247
IB_RNR_TIMER_122_88 = 27,
1248
IB_RNR_TIMER_163_84 = 28,
1249
IB_RNR_TIMER_245_76 = 29,
1250
IB_RNR_TIMER_327_68 = 30,
1251
IB_RNR_TIMER_491_52 = 31
1252
};
1253
1254
enum ib_qp_attr_mask {
1255
IB_QP_STATE = 1,
1256
IB_QP_CUR_STATE = (1<<1),
1257
IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1258
IB_QP_ACCESS_FLAGS = (1<<3),
1259
IB_QP_PKEY_INDEX = (1<<4),
1260
IB_QP_PORT = (1<<5),
1261
IB_QP_QKEY = (1<<6),
1262
IB_QP_AV = (1<<7),
1263
IB_QP_PATH_MTU = (1<<8),
1264
IB_QP_TIMEOUT = (1<<9),
1265
IB_QP_RETRY_CNT = (1<<10),
1266
IB_QP_RNR_RETRY = (1<<11),
1267
IB_QP_RQ_PSN = (1<<12),
1268
IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1269
IB_QP_ALT_PATH = (1<<14),
1270
IB_QP_MIN_RNR_TIMER = (1<<15),
1271
IB_QP_SQ_PSN = (1<<16),
1272
IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1273
IB_QP_PATH_MIG_STATE = (1<<18),
1274
IB_QP_CAP = (1<<19),
1275
IB_QP_DEST_QPN = (1<<20),
1276
IB_QP_RESERVED1 = (1<<21),
1277
IB_QP_RESERVED2 = (1<<22),
1278
IB_QP_RESERVED3 = (1<<23),
1279
IB_QP_RESERVED4 = (1<<24),
1280
IB_QP_RATE_LIMIT = (1<<25),
1281
1282
IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1283
};
1284
1285
enum ib_qp_state {
1286
IB_QPS_RESET,
1287
IB_QPS_INIT,
1288
IB_QPS_RTR,
1289
IB_QPS_RTS,
1290
IB_QPS_SQD,
1291
IB_QPS_SQE,
1292
IB_QPS_ERR
1293
};
1294
1295
enum ib_mig_state {
1296
IB_MIG_MIGRATED,
1297
IB_MIG_REARM,
1298
IB_MIG_ARMED
1299
};
1300
1301
enum ib_mw_type {
1302
IB_MW_TYPE_1 = 1,
1303
IB_MW_TYPE_2 = 2
1304
};
1305
1306
struct ib_qp_attr {
1307
enum ib_qp_state qp_state;
1308
enum ib_qp_state cur_qp_state;
1309
enum ib_mtu path_mtu;
1310
enum ib_mig_state path_mig_state;
1311
u32 qkey;
1312
u32 rq_psn;
1313
u32 sq_psn;
1314
u32 dest_qp_num;
1315
int qp_access_flags;
1316
struct ib_qp_cap cap;
1317
struct rdma_ah_attr ah_attr;
1318
struct rdma_ah_attr alt_ah_attr;
1319
u16 pkey_index;
1320
u16 alt_pkey_index;
1321
u8 en_sqd_async_notify;
1322
u8 sq_draining;
1323
u8 max_rd_atomic;
1324
u8 max_dest_rd_atomic;
1325
u8 min_rnr_timer;
1326
u32 port_num;
1327
u8 timeout;
1328
u8 retry_cnt;
1329
u8 rnr_retry;
1330
u32 alt_port_num;
1331
u8 alt_timeout;
1332
u32 rate_limit;
1333
struct net_device *xmit_slave;
1334
};
1335
1336
enum ib_wr_opcode {
1337
/* These are shared with userspace */
1338
IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1339
IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1340
IB_WR_SEND = IB_UVERBS_WR_SEND,
1341
IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1342
IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1343
IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1344
IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1345
IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1346
IB_WR_LSO = IB_UVERBS_WR_TSO,
1347
IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1348
IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1349
IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1350
IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1351
IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1352
IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1353
IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1354
IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1355
IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1356
1357
/* These are kernel only and can not be issued by userspace */
1358
IB_WR_REG_MR = 0x20,
1359
IB_WR_REG_MR_INTEGRITY,
1360
1361
/* reserve values for low level drivers' internal use.
1362
* These values will not be used at all in the ib core layer.
1363
*/
1364
IB_WR_RESERVED1 = 0xf0,
1365
IB_WR_RESERVED2,
1366
IB_WR_RESERVED3,
1367
IB_WR_RESERVED4,
1368
IB_WR_RESERVED5,
1369
IB_WR_RESERVED6,
1370
IB_WR_RESERVED7,
1371
IB_WR_RESERVED8,
1372
IB_WR_RESERVED9,
1373
IB_WR_RESERVED10,
1374
};
1375
1376
enum ib_send_flags {
1377
IB_SEND_FENCE = 1,
1378
IB_SEND_SIGNALED = (1<<1),
1379
IB_SEND_SOLICITED = (1<<2),
1380
IB_SEND_INLINE = (1<<3),
1381
IB_SEND_IP_CSUM = (1<<4),
1382
1383
/* reserve bits 26-31 for low level drivers' internal use */
1384
IB_SEND_RESERVED_START = (1 << 26),
1385
IB_SEND_RESERVED_END = (1 << 31),
1386
};
1387
1388
struct ib_sge {
1389
u64 addr;
1390
u32 length;
1391
u32 lkey;
1392
};
1393
1394
struct ib_cqe {
1395
void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1396
};
1397
1398
struct ib_send_wr {
1399
struct ib_send_wr *next;
1400
union {
1401
u64 wr_id;
1402
struct ib_cqe *wr_cqe;
1403
};
1404
struct ib_sge *sg_list;
1405
int num_sge;
1406
enum ib_wr_opcode opcode;
1407
int send_flags;
1408
union {
1409
__be32 imm_data;
1410
u32 invalidate_rkey;
1411
} ex;
1412
};
1413
1414
struct ib_rdma_wr {
1415
struct ib_send_wr wr;
1416
u64 remote_addr;
1417
u32 rkey;
1418
};
1419
1420
static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1421
{
1422
return container_of(wr, struct ib_rdma_wr, wr);
1423
}
1424
1425
struct ib_atomic_wr {
1426
struct ib_send_wr wr;
1427
u64 remote_addr;
1428
u64 compare_add;
1429
u64 swap;
1430
u64 compare_add_mask;
1431
u64 swap_mask;
1432
u32 rkey;
1433
};
1434
1435
static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1436
{
1437
return container_of(wr, struct ib_atomic_wr, wr);
1438
}
1439
1440
struct ib_ud_wr {
1441
struct ib_send_wr wr;
1442
struct ib_ah *ah;
1443
void *header;
1444
int hlen;
1445
int mss;
1446
u32 remote_qpn;
1447
u32 remote_qkey;
1448
u16 pkey_index; /* valid for GSI only */
1449
u32 port_num; /* valid for DR SMPs on switch only */
1450
};
1451
1452
static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1453
{
1454
return container_of(wr, struct ib_ud_wr, wr);
1455
}
1456
1457
struct ib_reg_wr {
1458
struct ib_send_wr wr;
1459
struct ib_mr *mr;
1460
u32 key;
1461
int access;
1462
};
1463
1464
static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1465
{
1466
return container_of(wr, struct ib_reg_wr, wr);
1467
}
1468
1469
struct ib_recv_wr {
1470
struct ib_recv_wr *next;
1471
union {
1472
u64 wr_id;
1473
struct ib_cqe *wr_cqe;
1474
};
1475
struct ib_sge *sg_list;
1476
int num_sge;
1477
};
1478
1479
enum ib_access_flags {
1480
IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1481
IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1482
IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1483
IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1484
IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1485
IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1486
IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1487
IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1488
IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1489
IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1490
IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1491
1492
IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1493
IB_ACCESS_SUPPORTED =
1494
((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1495
};
1496
1497
/*
1498
* XXX: these are apparently used for ->rereg_user_mr, no idea why they
1499
* are hidden here instead of a uapi header!
1500
*/
1501
enum ib_mr_rereg_flags {
1502
IB_MR_REREG_TRANS = 1,
1503
IB_MR_REREG_PD = (1<<1),
1504
IB_MR_REREG_ACCESS = (1<<2),
1505
IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1506
};
1507
1508
struct ib_umem;
1509
1510
enum rdma_remove_reason {
1511
/*
1512
* Userspace requested uobject deletion or initial try
1513
* to remove uobject via cleanup. Call could fail
1514
*/
1515
RDMA_REMOVE_DESTROY,
1516
/* Context deletion. This call should delete the actual object itself */
1517
RDMA_REMOVE_CLOSE,
1518
/* Driver is being hot-unplugged. This call should delete the actual object itself */
1519
RDMA_REMOVE_DRIVER_REMOVE,
1520
/* uobj is being cleaned-up before being committed */
1521
RDMA_REMOVE_ABORT,
1522
/* The driver failed to destroy the uobject and is being disconnected */
1523
RDMA_REMOVE_DRIVER_FAILURE,
1524
};
1525
1526
struct ib_rdmacg_object {
1527
#ifdef CONFIG_CGROUP_RDMA
1528
struct rdma_cgroup *cg; /* owner rdma cgroup */
1529
#endif
1530
};
1531
1532
struct ib_ucontext {
1533
struct ib_device *device;
1534
struct ib_uverbs_file *ufile;
1535
1536
struct ib_rdmacg_object cg_obj;
1537
u64 enabled_caps;
1538
/*
1539
* Implementation details of the RDMA core, don't use in drivers:
1540
*/
1541
struct rdma_restrack_entry res;
1542
struct xarray mmap_xa;
1543
};
1544
1545
struct ib_uobject {
1546
u64 user_handle; /* handle given to us by userspace */
1547
/* ufile & ucontext owning this object */
1548
struct ib_uverbs_file *ufile;
1549
/* FIXME, save memory: ufile->context == context */
1550
struct ib_ucontext *context; /* associated user context */
1551
void *object; /* containing object */
1552
struct list_head list; /* link to context's list */
1553
struct ib_rdmacg_object cg_obj; /* rdmacg object */
1554
int id; /* index into kernel idr */
1555
struct kref ref;
1556
atomic_t usecnt; /* protects exclusive access */
1557
struct rcu_head rcu; /* kfree_rcu() overhead */
1558
1559
const struct uverbs_api_object *uapi_object;
1560
};
1561
1562
struct ib_udata {
1563
const void __user *inbuf;
1564
void __user *outbuf;
1565
size_t inlen;
1566
size_t outlen;
1567
};
1568
1569
struct ib_pd {
1570
u32 local_dma_lkey;
1571
u32 flags;
1572
struct ib_device *device;
1573
struct ib_uobject *uobject;
1574
atomic_t usecnt; /* count all resources */
1575
1576
u32 unsafe_global_rkey;
1577
1578
/*
1579
* Implementation details of the RDMA core, don't use in drivers:
1580
*/
1581
struct ib_mr *__internal_mr;
1582
struct rdma_restrack_entry res;
1583
};
1584
1585
struct ib_xrcd {
1586
struct ib_device *device;
1587
atomic_t usecnt; /* count all exposed resources */
1588
struct inode *inode;
1589
struct rw_semaphore tgt_qps_rwsem;
1590
struct xarray tgt_qps;
1591
};
1592
1593
struct ib_ah {
1594
struct ib_device *device;
1595
struct ib_pd *pd;
1596
struct ib_uobject *uobject;
1597
const struct ib_gid_attr *sgid_attr;
1598
enum rdma_ah_attr_type type;
1599
};
1600
1601
typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1602
1603
enum ib_poll_context {
1604
IB_POLL_SOFTIRQ, /* poll from softirq context */
1605
IB_POLL_WORKQUEUE, /* poll from workqueue */
1606
IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1607
IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1608
1609
IB_POLL_DIRECT, /* caller context, no hw completions */
1610
};
1611
1612
struct ib_cq {
1613
struct ib_device *device;
1614
struct ib_ucq_object *uobject;
1615
ib_comp_handler comp_handler;
1616
void (*event_handler)(struct ib_event *, void *);
1617
void *cq_context;
1618
int cqe;
1619
unsigned int cqe_used;
1620
atomic_t usecnt; /* count number of work queues */
1621
enum ib_poll_context poll_ctx;
1622
struct ib_wc *wc;
1623
struct list_head pool_entry;
1624
union {
1625
struct irq_poll iop;
1626
struct work_struct work;
1627
};
1628
struct workqueue_struct *comp_wq;
1629
struct dim *dim;
1630
1631
/* updated only by trace points */
1632
ktime_t timestamp;
1633
u8 interrupt:1;
1634
u8 shared:1;
1635
unsigned int comp_vector;
1636
1637
/*
1638
* Implementation details of the RDMA core, don't use in drivers:
1639
*/
1640
struct rdma_restrack_entry res;
1641
};
1642
1643
struct ib_srq {
1644
struct ib_device *device;
1645
struct ib_pd *pd;
1646
struct ib_usrq_object *uobject;
1647
void (*event_handler)(struct ib_event *, void *);
1648
void *srq_context;
1649
enum ib_srq_type srq_type;
1650
atomic_t usecnt;
1651
1652
struct {
1653
struct ib_cq *cq;
1654
union {
1655
struct {
1656
struct ib_xrcd *xrcd;
1657
u32 srq_num;
1658
} xrc;
1659
};
1660
} ext;
1661
1662
/*
1663
* Implementation details of the RDMA core, don't use in drivers:
1664
*/
1665
struct rdma_restrack_entry res;
1666
};
1667
1668
enum ib_raw_packet_caps {
1669
/*
1670
* Strip cvlan from incoming packet and report it in the matching work
1671
* completion is supported.
1672
*/
1673
IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1674
IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1675
/*
1676
* Scatter FCS field of an incoming packet to host memory is supported.
1677
*/
1678
IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1679
/* Checksum offloads are supported (for both send and receive). */
1680
IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1681
/*
1682
* When a packet is received for an RQ with no receive WQEs, the
1683
* packet processing is delayed.
1684
*/
1685
IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1686
};
1687
1688
enum ib_wq_type {
1689
IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1690
};
1691
1692
enum ib_wq_state {
1693
IB_WQS_RESET,
1694
IB_WQS_RDY,
1695
IB_WQS_ERR
1696
};
1697
1698
struct ib_wq {
1699
struct ib_device *device;
1700
struct ib_uwq_object *uobject;
1701
void *wq_context;
1702
void (*event_handler)(struct ib_event *, void *);
1703
struct ib_pd *pd;
1704
struct ib_cq *cq;
1705
u32 wq_num;
1706
enum ib_wq_state state;
1707
enum ib_wq_type wq_type;
1708
atomic_t usecnt;
1709
};
1710
1711
enum ib_wq_flags {
1712
IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1713
IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1714
IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1715
IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1716
IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1717
};
1718
1719
struct ib_wq_init_attr {
1720
void *wq_context;
1721
enum ib_wq_type wq_type;
1722
u32 max_wr;
1723
u32 max_sge;
1724
struct ib_cq *cq;
1725
void (*event_handler)(struct ib_event *, void *);
1726
u32 create_flags; /* Use enum ib_wq_flags */
1727
};
1728
1729
enum ib_wq_attr_mask {
1730
IB_WQ_STATE = 1 << 0,
1731
IB_WQ_CUR_STATE = 1 << 1,
1732
IB_WQ_FLAGS = 1 << 2,
1733
};
1734
1735
struct ib_wq_attr {
1736
enum ib_wq_state wq_state;
1737
enum ib_wq_state curr_wq_state;
1738
u32 flags; /* Use enum ib_wq_flags */
1739
u32 flags_mask; /* Use enum ib_wq_flags */
1740
};
1741
1742
struct ib_rwq_ind_table {
1743
struct ib_device *device;
1744
struct ib_uobject *uobject;
1745
atomic_t usecnt;
1746
u32 ind_tbl_num;
1747
u32 log_ind_tbl_size;
1748
struct ib_wq **ind_tbl;
1749
};
1750
1751
struct ib_rwq_ind_table_init_attr {
1752
u32 log_ind_tbl_size;
1753
/* Each entry is a pointer to Receive Work Queue */
1754
struct ib_wq **ind_tbl;
1755
};
1756
1757
enum port_pkey_state {
1758
IB_PORT_PKEY_NOT_VALID = 0,
1759
IB_PORT_PKEY_VALID = 1,
1760
IB_PORT_PKEY_LISTED = 2,
1761
};
1762
1763
struct ib_qp_security;
1764
1765
struct ib_port_pkey {
1766
enum port_pkey_state state;
1767
u16 pkey_index;
1768
u32 port_num;
1769
struct list_head qp_list;
1770
struct list_head to_error_list;
1771
struct ib_qp_security *sec;
1772
};
1773
1774
struct ib_ports_pkeys {
1775
struct ib_port_pkey main;
1776
struct ib_port_pkey alt;
1777
};
1778
1779
struct ib_qp_security {
1780
struct ib_qp *qp;
1781
struct ib_device *dev;
1782
/* Hold this mutex when changing port and pkey settings. */
1783
struct mutex mutex;
1784
struct ib_ports_pkeys *ports_pkeys;
1785
/* A list of all open shared QP handles. Required to enforce security
1786
* properly for all users of a shared QP.
1787
*/
1788
struct list_head shared_qp_list;
1789
void *security;
1790
bool destroying;
1791
atomic_t error_list_count;
1792
struct completion error_complete;
1793
int error_comps_pending;
1794
};
1795
1796
/*
1797
* @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1798
* @max_read_sge: Maximum SGE elements per RDMA READ request.
1799
*/
1800
struct ib_qp {
1801
struct ib_device *device;
1802
struct ib_pd *pd;
1803
struct ib_cq *send_cq;
1804
struct ib_cq *recv_cq;
1805
spinlock_t mr_lock;
1806
int mrs_used;
1807
struct list_head rdma_mrs;
1808
struct list_head sig_mrs;
1809
struct ib_srq *srq;
1810
struct completion srq_completion;
1811
struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1812
struct list_head xrcd_list;
1813
1814
/* count times opened, mcast attaches, flow attaches */
1815
atomic_t usecnt;
1816
struct list_head open_list;
1817
struct ib_qp *real_qp;
1818
struct ib_uqp_object *uobject;
1819
void (*event_handler)(struct ib_event *, void *);
1820
void (*registered_event_handler)(struct ib_event *, void *);
1821
void *qp_context;
1822
/* sgid_attrs associated with the AV's */
1823
const struct ib_gid_attr *av_sgid_attr;
1824
const struct ib_gid_attr *alt_path_sgid_attr;
1825
u32 qp_num;
1826
u32 max_write_sge;
1827
u32 max_read_sge;
1828
enum ib_qp_type qp_type;
1829
struct ib_rwq_ind_table *rwq_ind_tbl;
1830
struct ib_qp_security *qp_sec;
1831
u32 port;
1832
1833
bool integrity_en;
1834
/*
1835
* Implementation details of the RDMA core, don't use in drivers:
1836
*/
1837
struct rdma_restrack_entry res;
1838
1839
/* The counter the qp is bind to */
1840
struct rdma_counter *counter;
1841
};
1842
1843
struct ib_dm {
1844
struct ib_device *device;
1845
u32 length;
1846
u32 flags;
1847
struct ib_uobject *uobject;
1848
atomic_t usecnt;
1849
};
1850
1851
/* bit values to mark existence of ib_dmah fields */
1852
enum {
1853
IB_DMAH_CPU_ID_EXISTS,
1854
IB_DMAH_MEM_TYPE_EXISTS,
1855
IB_DMAH_PH_EXISTS,
1856
};
1857
1858
struct ib_dmah {
1859
struct ib_device *device;
1860
struct ib_uobject *uobject;
1861
/*
1862
* Implementation details of the RDMA core, don't use in drivers:
1863
*/
1864
struct rdma_restrack_entry res;
1865
u32 cpu_id;
1866
enum tph_mem_type mem_type;
1867
atomic_t usecnt;
1868
u8 ph;
1869
u8 valid_fields; /* use IB_DMAH_XXX_EXISTS */
1870
};
1871
1872
struct ib_mr {
1873
struct ib_device *device;
1874
struct ib_pd *pd;
1875
u32 lkey;
1876
u32 rkey;
1877
u64 iova;
1878
u64 length;
1879
unsigned int page_size;
1880
enum ib_mr_type type;
1881
bool need_inval;
1882
union {
1883
struct ib_uobject *uobject; /* user */
1884
struct list_head qp_entry; /* FR */
1885
};
1886
1887
struct ib_dm *dm;
1888
struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1889
struct ib_dmah *dmah;
1890
/*
1891
* Implementation details of the RDMA core, don't use in drivers:
1892
*/
1893
struct rdma_restrack_entry res;
1894
};
1895
1896
struct ib_mw {
1897
struct ib_device *device;
1898
struct ib_pd *pd;
1899
struct ib_uobject *uobject;
1900
u32 rkey;
1901
enum ib_mw_type type;
1902
};
1903
1904
/* Supported steering options */
1905
enum ib_flow_attr_type {
1906
/* steering according to rule specifications */
1907
IB_FLOW_ATTR_NORMAL = 0x0,
1908
/* default unicast and multicast rule -
1909
* receive all Eth traffic which isn't steered to any QP
1910
*/
1911
IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1912
/* default multicast rule -
1913
* receive all Eth multicast traffic which isn't steered to any QP
1914
*/
1915
IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1916
/* sniffer rule - receive all port traffic */
1917
IB_FLOW_ATTR_SNIFFER = 0x3
1918
};
1919
1920
/* Supported steering header types */
1921
enum ib_flow_spec_type {
1922
/* L2 headers*/
1923
IB_FLOW_SPEC_ETH = 0x20,
1924
IB_FLOW_SPEC_IB = 0x22,
1925
/* L3 header*/
1926
IB_FLOW_SPEC_IPV4 = 0x30,
1927
IB_FLOW_SPEC_IPV6 = 0x31,
1928
IB_FLOW_SPEC_ESP = 0x34,
1929
/* L4 headers*/
1930
IB_FLOW_SPEC_TCP = 0x40,
1931
IB_FLOW_SPEC_UDP = 0x41,
1932
IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1933
IB_FLOW_SPEC_GRE = 0x51,
1934
IB_FLOW_SPEC_MPLS = 0x60,
1935
IB_FLOW_SPEC_INNER = 0x100,
1936
/* Actions */
1937
IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1938
IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1939
IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1940
IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1941
};
1942
#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1943
#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1944
1945
enum ib_flow_flags {
1946
IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1947
IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1948
IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1949
};
1950
1951
struct ib_flow_eth_filter {
1952
u8 dst_mac[6];
1953
u8 src_mac[6];
1954
__be16 ether_type;
1955
__be16 vlan_tag;
1956
};
1957
1958
struct ib_flow_spec_eth {
1959
u32 type;
1960
u16 size;
1961
struct ib_flow_eth_filter val;
1962
struct ib_flow_eth_filter mask;
1963
};
1964
1965
struct ib_flow_ib_filter {
1966
__be16 dlid;
1967
__u8 sl;
1968
};
1969
1970
struct ib_flow_spec_ib {
1971
u32 type;
1972
u16 size;
1973
struct ib_flow_ib_filter val;
1974
struct ib_flow_ib_filter mask;
1975
};
1976
1977
/* IPv4 header flags */
1978
enum ib_ipv4_flags {
1979
IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1980
IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1981
last have this flag set */
1982
};
1983
1984
struct ib_flow_ipv4_filter {
1985
__be32 src_ip;
1986
__be32 dst_ip;
1987
u8 proto;
1988
u8 tos;
1989
u8 ttl;
1990
u8 flags;
1991
};
1992
1993
struct ib_flow_spec_ipv4 {
1994
u32 type;
1995
u16 size;
1996
struct ib_flow_ipv4_filter val;
1997
struct ib_flow_ipv4_filter mask;
1998
};
1999
2000
struct ib_flow_ipv6_filter {
2001
u8 src_ip[16];
2002
u8 dst_ip[16];
2003
__be32 flow_label;
2004
u8 next_hdr;
2005
u8 traffic_class;
2006
u8 hop_limit;
2007
} __packed;
2008
2009
struct ib_flow_spec_ipv6 {
2010
u32 type;
2011
u16 size;
2012
struct ib_flow_ipv6_filter val;
2013
struct ib_flow_ipv6_filter mask;
2014
};
2015
2016
struct ib_flow_tcp_udp_filter {
2017
__be16 dst_port;
2018
__be16 src_port;
2019
};
2020
2021
struct ib_flow_spec_tcp_udp {
2022
u32 type;
2023
u16 size;
2024
struct ib_flow_tcp_udp_filter val;
2025
struct ib_flow_tcp_udp_filter mask;
2026
};
2027
2028
struct ib_flow_tunnel_filter {
2029
__be32 tunnel_id;
2030
};
2031
2032
/* ib_flow_spec_tunnel describes the Vxlan tunnel
2033
* the tunnel_id from val has the vni value
2034
*/
2035
struct ib_flow_spec_tunnel {
2036
u32 type;
2037
u16 size;
2038
struct ib_flow_tunnel_filter val;
2039
struct ib_flow_tunnel_filter mask;
2040
};
2041
2042
struct ib_flow_esp_filter {
2043
__be32 spi;
2044
__be32 seq;
2045
};
2046
2047
struct ib_flow_spec_esp {
2048
u32 type;
2049
u16 size;
2050
struct ib_flow_esp_filter val;
2051
struct ib_flow_esp_filter mask;
2052
};
2053
2054
struct ib_flow_gre_filter {
2055
__be16 c_ks_res0_ver;
2056
__be16 protocol;
2057
__be32 key;
2058
};
2059
2060
struct ib_flow_spec_gre {
2061
u32 type;
2062
u16 size;
2063
struct ib_flow_gre_filter val;
2064
struct ib_flow_gre_filter mask;
2065
};
2066
2067
struct ib_flow_mpls_filter {
2068
__be32 tag;
2069
};
2070
2071
struct ib_flow_spec_mpls {
2072
u32 type;
2073
u16 size;
2074
struct ib_flow_mpls_filter val;
2075
struct ib_flow_mpls_filter mask;
2076
};
2077
2078
struct ib_flow_spec_action_tag {
2079
enum ib_flow_spec_type type;
2080
u16 size;
2081
u32 tag_id;
2082
};
2083
2084
struct ib_flow_spec_action_drop {
2085
enum ib_flow_spec_type type;
2086
u16 size;
2087
};
2088
2089
struct ib_flow_spec_action_handle {
2090
enum ib_flow_spec_type type;
2091
u16 size;
2092
struct ib_flow_action *act;
2093
};
2094
2095
enum ib_counters_description {
2096
IB_COUNTER_PACKETS,
2097
IB_COUNTER_BYTES,
2098
};
2099
2100
struct ib_flow_spec_action_count {
2101
enum ib_flow_spec_type type;
2102
u16 size;
2103
struct ib_counters *counters;
2104
};
2105
2106
union ib_flow_spec {
2107
struct {
2108
u32 type;
2109
u16 size;
2110
};
2111
struct ib_flow_spec_eth eth;
2112
struct ib_flow_spec_ib ib;
2113
struct ib_flow_spec_ipv4 ipv4;
2114
struct ib_flow_spec_tcp_udp tcp_udp;
2115
struct ib_flow_spec_ipv6 ipv6;
2116
struct ib_flow_spec_tunnel tunnel;
2117
struct ib_flow_spec_esp esp;
2118
struct ib_flow_spec_gre gre;
2119
struct ib_flow_spec_mpls mpls;
2120
struct ib_flow_spec_action_tag flow_tag;
2121
struct ib_flow_spec_action_drop drop;
2122
struct ib_flow_spec_action_handle action;
2123
struct ib_flow_spec_action_count flow_count;
2124
};
2125
2126
struct ib_flow_attr {
2127
enum ib_flow_attr_type type;
2128
u16 size;
2129
u16 priority;
2130
u32 flags;
2131
u8 num_of_specs;
2132
u32 port;
2133
union ib_flow_spec flows[];
2134
};
2135
2136
struct ib_flow {
2137
struct ib_qp *qp;
2138
struct ib_device *device;
2139
struct ib_uobject *uobject;
2140
};
2141
2142
enum ib_flow_action_type {
2143
IB_FLOW_ACTION_UNSPECIFIED,
2144
IB_FLOW_ACTION_ESP = 1,
2145
};
2146
2147
struct ib_flow_action_attrs_esp_keymats {
2148
enum ib_uverbs_flow_action_esp_keymat protocol;
2149
union {
2150
struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2151
} keymat;
2152
};
2153
2154
struct ib_flow_action_attrs_esp_replays {
2155
enum ib_uverbs_flow_action_esp_replay protocol;
2156
union {
2157
struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2158
} replay;
2159
};
2160
2161
enum ib_flow_action_attrs_esp_flags {
2162
/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2163
* This is done in order to share the same flags between user-space and
2164
* kernel and spare an unnecessary translation.
2165
*/
2166
2167
/* Kernel flags */
2168
IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2169
IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2170
};
2171
2172
struct ib_flow_spec_list {
2173
struct ib_flow_spec_list *next;
2174
union ib_flow_spec spec;
2175
};
2176
2177
struct ib_flow_action_attrs_esp {
2178
struct ib_flow_action_attrs_esp_keymats *keymat;
2179
struct ib_flow_action_attrs_esp_replays *replay;
2180
struct ib_flow_spec_list *encap;
2181
/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2182
* Value of 0 is a valid value.
2183
*/
2184
u32 esn;
2185
u32 spi;
2186
u32 seq;
2187
u32 tfc_pad;
2188
/* Use enum ib_flow_action_attrs_esp_flags */
2189
u64 flags;
2190
u64 hard_limit_pkts;
2191
};
2192
2193
struct ib_flow_action {
2194
struct ib_device *device;
2195
struct ib_uobject *uobject;
2196
enum ib_flow_action_type type;
2197
atomic_t usecnt;
2198
};
2199
2200
struct ib_mad;
2201
2202
enum ib_process_mad_flags {
2203
IB_MAD_IGNORE_MKEY = 1,
2204
IB_MAD_IGNORE_BKEY = 2,
2205
IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2206
};
2207
2208
enum ib_mad_result {
2209
IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2210
IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2211
IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2212
IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2213
};
2214
2215
struct ib_port_cache {
2216
u64 subnet_prefix;
2217
struct ib_pkey_cache *pkey;
2218
struct ib_gid_table *gid;
2219
u8 lmc;
2220
enum ib_port_state port_state;
2221
enum ib_port_state last_port_state;
2222
};
2223
2224
struct ib_port_immutable {
2225
int pkey_tbl_len;
2226
int gid_tbl_len;
2227
u32 core_cap_flags;
2228
u32 max_mad_size;
2229
};
2230
2231
struct ib_port_data {
2232
struct ib_device *ib_dev;
2233
2234
struct ib_port_immutable immutable;
2235
2236
spinlock_t pkey_list_lock;
2237
2238
spinlock_t netdev_lock;
2239
2240
struct list_head pkey_list;
2241
2242
struct ib_port_cache cache;
2243
2244
struct net_device __rcu *netdev;
2245
netdevice_tracker netdev_tracker;
2246
struct hlist_node ndev_hash_link;
2247
struct rdma_port_counter port_counter;
2248
struct ib_port *sysfs;
2249
};
2250
2251
/* rdma netdev type - specifies protocol type */
2252
enum rdma_netdev_t {
2253
RDMA_NETDEV_OPA_VNIC,
2254
RDMA_NETDEV_IPOIB,
2255
};
2256
2257
/**
2258
* struct rdma_netdev - rdma netdev
2259
* For cases where netstack interfacing is required.
2260
*/
2261
struct rdma_netdev {
2262
void *clnt_priv;
2263
struct ib_device *hca;
2264
u32 port_num;
2265
int mtu;
2266
2267
/*
2268
* cleanup function must be specified.
2269
* FIXME: This is only used for OPA_VNIC and that usage should be
2270
* removed too.
2271
*/
2272
void (*free_rdma_netdev)(struct net_device *netdev);
2273
2274
/* control functions */
2275
void (*set_id)(struct net_device *netdev, int id);
2276
/* send packet */
2277
int (*send)(struct net_device *dev, struct sk_buff *skb,
2278
struct ib_ah *address, u32 dqpn);
2279
/* multicast */
2280
int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2281
union ib_gid *gid, u16 mlid,
2282
int set_qkey, u32 qkey);
2283
int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2284
union ib_gid *gid, u16 mlid);
2285
/* timeout */
2286
void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2287
};
2288
2289
struct rdma_netdev_alloc_params {
2290
size_t sizeof_priv;
2291
unsigned int txqs;
2292
unsigned int rxqs;
2293
void *param;
2294
2295
int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2296
struct net_device *netdev, void *param);
2297
};
2298
2299
struct ib_odp_counters {
2300
atomic64_t faults;
2301
atomic64_t faults_handled;
2302
atomic64_t invalidations;
2303
atomic64_t invalidations_handled;
2304
atomic64_t prefetch;
2305
};
2306
2307
struct ib_counters {
2308
struct ib_device *device;
2309
struct ib_uobject *uobject;
2310
/* num of objects attached */
2311
atomic_t usecnt;
2312
};
2313
2314
struct ib_counters_read_attr {
2315
u64 *counters_buff;
2316
u32 ncounters;
2317
u32 flags; /* use enum ib_read_counters_flags */
2318
};
2319
2320
struct uverbs_attr_bundle;
2321
struct iw_cm_id;
2322
struct iw_cm_conn_param;
2323
2324
#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2325
.size_##ib_struct = \
2326
(sizeof(struct drv_struct) + \
2327
BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2328
BUILD_BUG_ON_ZERO( \
2329
!__same_type(((struct drv_struct *)NULL)->member, \
2330
struct ib_struct)))
2331
2332
#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2333
((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2334
gfp, false))
2335
2336
#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2337
((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2338
GFP_KERNEL, true))
2339
2340
#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2341
rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2342
2343
#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2344
2345
struct rdma_user_mmap_entry {
2346
struct kref ref;
2347
struct ib_ucontext *ucontext;
2348
unsigned long start_pgoff;
2349
size_t npages;
2350
bool driver_removed;
2351
};
2352
2353
/* Return the offset (in bytes) the user should pass to libc's mmap() */
2354
static inline u64
2355
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2356
{
2357
return (u64)entry->start_pgoff << PAGE_SHIFT;
2358
}
2359
2360
/**
2361
* struct ib_device_ops - InfiniBand device operations
2362
* This structure defines all the InfiniBand device operations, providers will
2363
* need to define the supported operations, otherwise they will be set to null.
2364
*/
2365
struct ib_device_ops {
2366
struct module *owner;
2367
enum rdma_driver_id driver_id;
2368
u32 uverbs_abi_ver;
2369
unsigned int uverbs_no_driver_id_binding:1;
2370
2371
/*
2372
* NOTE: New drivers should not make use of device_group; instead new
2373
* device parameter should be exposed via netlink command. This
2374
* mechanism exists only for existing drivers.
2375
*/
2376
const struct attribute_group *device_group;
2377
const struct attribute_group **port_groups;
2378
2379
int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2380
const struct ib_send_wr **bad_send_wr);
2381
int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2382
const struct ib_recv_wr **bad_recv_wr);
2383
void (*drain_rq)(struct ib_qp *qp);
2384
void (*drain_sq)(struct ib_qp *qp);
2385
int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2386
int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2387
int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2388
int (*post_srq_recv)(struct ib_srq *srq,
2389
const struct ib_recv_wr *recv_wr,
2390
const struct ib_recv_wr **bad_recv_wr);
2391
int (*process_mad)(struct ib_device *device, int process_mad_flags,
2392
u32 port_num, const struct ib_wc *in_wc,
2393
const struct ib_grh *in_grh,
2394
const struct ib_mad *in_mad, struct ib_mad *out_mad,
2395
size_t *out_mad_size, u16 *out_mad_pkey_index);
2396
int (*query_device)(struct ib_device *device,
2397
struct ib_device_attr *device_attr,
2398
struct ib_udata *udata);
2399
int (*modify_device)(struct ib_device *device, int device_modify_mask,
2400
struct ib_device_modify *device_modify);
2401
void (*get_dev_fw_str)(struct ib_device *device, char *str);
2402
const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2403
int comp_vector);
2404
int (*query_port)(struct ib_device *device, u32 port_num,
2405
struct ib_port_attr *port_attr);
2406
int (*modify_port)(struct ib_device *device, u32 port_num,
2407
int port_modify_mask,
2408
struct ib_port_modify *port_modify);
2409
/*
2410
* The following mandatory functions are used only at device
2411
* registration. Keep functions such as these at the end of this
2412
* structure to avoid cache line misses when accessing struct ib_device
2413
* in fast paths.
2414
*/
2415
int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2416
struct ib_port_immutable *immutable);
2417
enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2418
u32 port_num);
2419
/*
2420
* When calling get_netdev, the HW vendor's driver should return the
2421
* net device of device @device at port @port_num or NULL if such
2422
* a net device doesn't exist. The vendor driver should call dev_hold
2423
* on this net device. The HW vendor's device driver must guarantee
2424
* that this function returns NULL before the net device has finished
2425
* NETDEV_UNREGISTER state.
2426
*/
2427
struct net_device *(*get_netdev)(struct ib_device *device,
2428
u32 port_num);
2429
/*
2430
* rdma netdev operation
2431
*
2432
* Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2433
* must return -EOPNOTSUPP if it doesn't support the specified type.
2434
*/
2435
struct net_device *(*alloc_rdma_netdev)(
2436
struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2437
const char *name, unsigned char name_assign_type,
2438
void (*setup)(struct net_device *));
2439
2440
int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2441
enum rdma_netdev_t type,
2442
struct rdma_netdev_alloc_params *params);
2443
/*
2444
* query_gid should be return GID value for @device, when @port_num
2445
* link layer is either IB or iWarp. It is no-op if @port_num port
2446
* is RoCE link layer.
2447
*/
2448
int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2449
union ib_gid *gid);
2450
/*
2451
* When calling add_gid, the HW vendor's driver should add the gid
2452
* of device of port at gid index available at @attr. Meta-info of
2453
* that gid (for example, the network device related to this gid) is
2454
* available at @attr. @context allows the HW vendor driver to store
2455
* extra information together with a GID entry. The HW vendor driver may
2456
* allocate memory to contain this information and store it in @context
2457
* when a new GID entry is written to. Params are consistent until the
2458
* next call of add_gid or delete_gid. The function should return 0 on
2459
* success or error otherwise. The function could be called
2460
* concurrently for different ports. This function is only called when
2461
* roce_gid_table is used.
2462
*/
2463
int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2464
/*
2465
* When calling del_gid, the HW vendor's driver should delete the
2466
* gid of device @device at gid index gid_index of port port_num
2467
* available in @attr.
2468
* Upon the deletion of a GID entry, the HW vendor must free any
2469
* allocated memory. The caller will clear @context afterwards.
2470
* This function is only called when roce_gid_table is used.
2471
*/
2472
int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2473
int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2474
u16 *pkey);
2475
int (*alloc_ucontext)(struct ib_ucontext *context,
2476
struct ib_udata *udata);
2477
void (*dealloc_ucontext)(struct ib_ucontext *context);
2478
int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2479
/*
2480
* This will be called once refcount of an entry in mmap_xa reaches
2481
* zero. The type of the memory that was mapped may differ between
2482
* entries and is opaque to the rdma_user_mmap interface.
2483
* Therefore needs to be implemented by the driver in mmap_free.
2484
*/
2485
void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2486
void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2487
int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2488
int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2489
int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2490
struct ib_udata *udata);
2491
int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2492
struct ib_udata *udata);
2493
int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2494
int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2495
int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2496
int (*create_srq)(struct ib_srq *srq,
2497
struct ib_srq_init_attr *srq_init_attr,
2498
struct ib_udata *udata);
2499
int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2500
enum ib_srq_attr_mask srq_attr_mask,
2501
struct ib_udata *udata);
2502
int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2503
int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2504
int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2505
struct ib_udata *udata);
2506
int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2507
int qp_attr_mask, struct ib_udata *udata);
2508
int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2509
int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2510
int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2511
int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2512
struct uverbs_attr_bundle *attrs);
2513
int (*create_cq_umem)(struct ib_cq *cq,
2514
const struct ib_cq_init_attr *attr,
2515
struct ib_umem *umem,
2516
struct uverbs_attr_bundle *attrs);
2517
int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2518
int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2519
int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2520
/*
2521
* pre_destroy_cq - Prevent a cq from generating any new work
2522
* completions, but not free any kernel resources
2523
*/
2524
int (*pre_destroy_cq)(struct ib_cq *cq);
2525
/*
2526
* post_destroy_cq - Free all kernel resources
2527
*/
2528
void (*post_destroy_cq)(struct ib_cq *cq);
2529
struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2530
struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2531
u64 virt_addr, int mr_access_flags,
2532
struct ib_dmah *dmah,
2533
struct ib_udata *udata);
2534
struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2535
u64 length, u64 virt_addr, int fd,
2536
int mr_access_flags,
2537
struct ib_dmah *dmah,
2538
struct uverbs_attr_bundle *attrs);
2539
struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2540
u64 length, u64 virt_addr,
2541
int mr_access_flags, struct ib_pd *pd,
2542
struct ib_udata *udata);
2543
int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2544
struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2545
u32 max_num_sg);
2546
struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2547
u32 max_num_data_sg,
2548
u32 max_num_meta_sg);
2549
int (*advise_mr)(struct ib_pd *pd,
2550
enum ib_uverbs_advise_mr_advice advice, u32 flags,
2551
struct ib_sge *sg_list, u32 num_sge,
2552
struct uverbs_attr_bundle *attrs);
2553
2554
/*
2555
* Kernel users should universally support relaxed ordering (RO), as
2556
* they are designed to read data only after observing the CQE and use
2557
* the DMA API correctly.
2558
*
2559
* Some drivers implicitly enable RO if platform supports it.
2560
*/
2561
int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2562
unsigned int *sg_offset);
2563
int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2564
struct ib_mr_status *mr_status);
2565
int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2566
int (*dealloc_mw)(struct ib_mw *mw);
2567
int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2568
int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2569
int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2570
int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2571
struct ib_flow *(*create_flow)(struct ib_qp *qp,
2572
struct ib_flow_attr *flow_attr,
2573
struct ib_udata *udata);
2574
int (*destroy_flow)(struct ib_flow *flow_id);
2575
int (*destroy_flow_action)(struct ib_flow_action *action);
2576
int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2577
int state);
2578
int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2579
struct ifla_vf_info *ivf);
2580
int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2581
struct ifla_vf_stats *stats);
2582
int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2583
struct ifla_vf_guid *node_guid,
2584
struct ifla_vf_guid *port_guid);
2585
int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2586
int type);
2587
struct ib_wq *(*create_wq)(struct ib_pd *pd,
2588
struct ib_wq_init_attr *init_attr,
2589
struct ib_udata *udata);
2590
int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2591
int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2592
u32 wq_attr_mask, struct ib_udata *udata);
2593
int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2594
struct ib_rwq_ind_table_init_attr *init_attr,
2595
struct ib_udata *udata);
2596
int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2597
struct ib_dm *(*alloc_dm)(struct ib_device *device,
2598
struct ib_ucontext *context,
2599
struct ib_dm_alloc_attr *attr,
2600
struct uverbs_attr_bundle *attrs);
2601
int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2602
int (*alloc_dmah)(struct ib_dmah *ibdmah,
2603
struct uverbs_attr_bundle *attrs);
2604
int (*dealloc_dmah)(struct ib_dmah *dmah, struct uverbs_attr_bundle *attrs);
2605
struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2606
struct ib_dm_mr_attr *attr,
2607
struct uverbs_attr_bundle *attrs);
2608
int (*create_counters)(struct ib_counters *counters,
2609
struct uverbs_attr_bundle *attrs);
2610
int (*destroy_counters)(struct ib_counters *counters);
2611
int (*read_counters)(struct ib_counters *counters,
2612
struct ib_counters_read_attr *counters_read_attr,
2613
struct uverbs_attr_bundle *attrs);
2614
int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2615
int data_sg_nents, unsigned int *data_sg_offset,
2616
struct scatterlist *meta_sg, int meta_sg_nents,
2617
unsigned int *meta_sg_offset);
2618
2619
/*
2620
* alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2621
* fill in the driver initialized data. The struct is kfree()'ed by
2622
* the sysfs core when the device is removed. A lifespan of -1 in the
2623
* return struct tells the core to set a default lifespan.
2624
*/
2625
struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2626
struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2627
u32 port_num);
2628
/*
2629
* get_hw_stats - Fill in the counter value(s) in the stats struct.
2630
* @index - The index in the value array we wish to have updated, or
2631
* num_counters if we want all stats updated
2632
* Return codes -
2633
* < 0 - Error, no counters updated
2634
* index - Updated the single counter pointed to by index
2635
* num_counters - Updated all counters (will reset the timestamp
2636
* and prevent further calls for lifespan milliseconds)
2637
* Drivers are allowed to update all counters in leiu of just the
2638
* one given in index at their option
2639
*/
2640
int (*get_hw_stats)(struct ib_device *device,
2641
struct rdma_hw_stats *stats, u32 port, int index);
2642
2643
/*
2644
* modify_hw_stat - Modify the counter configuration
2645
* @enable: true/false when enable/disable a counter
2646
* Return codes - 0 on success or error code otherwise.
2647
*/
2648
int (*modify_hw_stat)(struct ib_device *device, u32 port,
2649
unsigned int counter_index, bool enable);
2650
/*
2651
* Allows rdma drivers to add their own restrack attributes.
2652
*/
2653
int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2654
int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2655
int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2656
int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2657
int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2658
int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2659
int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2660
int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2661
int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2662
2663
/* Device lifecycle callbacks */
2664
/*
2665
* Called after the device becomes registered, before clients are
2666
* attached
2667
*/
2668
int (*enable_driver)(struct ib_device *dev);
2669
/*
2670
* This is called as part of ib_dealloc_device().
2671
*/
2672
void (*dealloc_driver)(struct ib_device *dev);
2673
2674
/* iWarp CM callbacks */
2675
void (*iw_add_ref)(struct ib_qp *qp);
2676
void (*iw_rem_ref)(struct ib_qp *qp);
2677
struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2678
int (*iw_connect)(struct iw_cm_id *cm_id,
2679
struct iw_cm_conn_param *conn_param);
2680
int (*iw_accept)(struct iw_cm_id *cm_id,
2681
struct iw_cm_conn_param *conn_param);
2682
int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2683
u8 pdata_len);
2684
int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2685
int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2686
/*
2687
* counter_bind_qp - Bind a QP to a counter.
2688
* @counter - The counter to be bound. If counter->id is zero then
2689
* the driver needs to allocate a new counter and set counter->id
2690
*/
2691
int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp,
2692
u32 port);
2693
/*
2694
* counter_unbind_qp - Unbind the qp from the dynamically-allocated
2695
* counter and bind it onto the default one
2696
*/
2697
int (*counter_unbind_qp)(struct ib_qp *qp, u32 port);
2698
/*
2699
* counter_dealloc -De-allocate the hw counter
2700
*/
2701
int (*counter_dealloc)(struct rdma_counter *counter);
2702
/*
2703
* counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2704
* the driver initialized data.
2705
*/
2706
struct rdma_hw_stats *(*counter_alloc_stats)(
2707
struct rdma_counter *counter);
2708
/*
2709
* counter_update_stats - Query the stats value of this counter
2710
*/
2711
int (*counter_update_stats)(struct rdma_counter *counter);
2712
2713
/*
2714
* counter_init - Initialize the driver specific rdma counter struct.
2715
*/
2716
void (*counter_init)(struct rdma_counter *counter);
2717
2718
/*
2719
* Allows rdma drivers to add their own restrack attributes
2720
* dumped via 'rdma stat' iproute2 command.
2721
*/
2722
int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2723
2724
/* query driver for its ucontext properties */
2725
int (*query_ucontext)(struct ib_ucontext *context,
2726
struct uverbs_attr_bundle *attrs);
2727
2728
/*
2729
* Provide NUMA node. This API exists for rdmavt/hfi1 only.
2730
* Everyone else relies on Linux memory management model.
2731
*/
2732
int (*get_numa_node)(struct ib_device *dev);
2733
2734
/*
2735
* add_sub_dev - Add a sub IB device
2736
*/
2737
struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2738
enum rdma_nl_dev_type type,
2739
const char *name);
2740
2741
/*
2742
* del_sub_dev - Delete a sub IB device
2743
*/
2744
void (*del_sub_dev)(struct ib_device *sub_dev);
2745
2746
/*
2747
* ufile_cleanup - Attempt to cleanup ubojects HW resources inside
2748
* the ufile.
2749
*/
2750
void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile);
2751
2752
/*
2753
* report_port_event - Drivers need to implement this if they have
2754
* some private stuff to handle when link status changes.
2755
*/
2756
void (*report_port_event)(struct ib_device *ibdev,
2757
struct net_device *ndev, unsigned long event);
2758
2759
DECLARE_RDMA_OBJ_SIZE(ib_ah);
2760
DECLARE_RDMA_OBJ_SIZE(ib_counters);
2761
DECLARE_RDMA_OBJ_SIZE(ib_cq);
2762
DECLARE_RDMA_OBJ_SIZE(ib_dmah);
2763
DECLARE_RDMA_OBJ_SIZE(ib_mw);
2764
DECLARE_RDMA_OBJ_SIZE(ib_pd);
2765
DECLARE_RDMA_OBJ_SIZE(ib_qp);
2766
DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2767
DECLARE_RDMA_OBJ_SIZE(ib_srq);
2768
DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2769
DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2770
DECLARE_RDMA_OBJ_SIZE(rdma_counter);
2771
};
2772
2773
struct ib_core_device {
2774
/* device must be the first element in structure until,
2775
* union of ib_core_device and device exists in ib_device.
2776
*/
2777
struct device dev;
2778
possible_net_t rdma_net;
2779
struct kobject *ports_kobj;
2780
struct list_head port_list;
2781
struct ib_device *owner; /* reach back to owner ib_device */
2782
};
2783
2784
struct rdma_restrack_root;
2785
struct ib_device {
2786
/* Do not access @dma_device directly from ULP nor from HW drivers. */
2787
struct device *dma_device;
2788
struct ib_device_ops ops;
2789
char name[IB_DEVICE_NAME_MAX];
2790
struct rcu_head rcu_head;
2791
2792
struct list_head event_handler_list;
2793
/* Protects event_handler_list */
2794
struct rw_semaphore event_handler_rwsem;
2795
2796
/* Protects QP's event_handler calls and open_qp list */
2797
spinlock_t qp_open_list_lock;
2798
2799
struct rw_semaphore client_data_rwsem;
2800
struct xarray client_data;
2801
struct mutex unregistration_lock;
2802
2803
/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2804
rwlock_t cache_lock;
2805
/**
2806
* port_data is indexed by port number
2807
*/
2808
struct ib_port_data *port_data;
2809
2810
int num_comp_vectors;
2811
2812
union {
2813
struct device dev;
2814
struct ib_core_device coredev;
2815
};
2816
2817
/* First group is for device attributes,
2818
* Second group is for driver provided attributes (optional).
2819
* Third group is for the hw_stats
2820
* It is a NULL terminated array.
2821
*/
2822
const struct attribute_group *groups[4];
2823
u8 hw_stats_attr_index;
2824
2825
u64 uverbs_cmd_mask;
2826
2827
char node_desc[IB_DEVICE_NODE_DESC_MAX];
2828
__be64 node_guid;
2829
u32 local_dma_lkey;
2830
u16 is_switch:1;
2831
/* Indicates kernel verbs support, should not be used in drivers */
2832
u16 kverbs_provider:1;
2833
/* CQ adaptive moderation (RDMA DIM) */
2834
u16 use_cq_dim:1;
2835
u8 node_type;
2836
u32 phys_port_cnt;
2837
struct ib_device_attr attrs;
2838
struct hw_stats_device_data *hw_stats_data;
2839
2840
#ifdef CONFIG_CGROUP_RDMA
2841
struct rdmacg_device cg_device;
2842
#endif
2843
2844
u32 index;
2845
2846
spinlock_t cq_pools_lock;
2847
struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2848
2849
struct rdma_restrack_root *res;
2850
2851
const struct uapi_definition *driver_def;
2852
2853
/*
2854
* Positive refcount indicates that the device is currently
2855
* registered and cannot be unregistered.
2856
*/
2857
refcount_t refcount;
2858
struct completion unreg_completion;
2859
struct work_struct unregistration_work;
2860
2861
const struct rdma_link_ops *link_ops;
2862
2863
/* Protects compat_devs xarray modifications */
2864
struct mutex compat_devs_mutex;
2865
/* Maintains compat devices for each net namespace */
2866
struct xarray compat_devs;
2867
2868
/* Used by iWarp CM */
2869
char iw_ifname[IFNAMSIZ];
2870
u32 iw_driver_flags;
2871
u32 lag_flags;
2872
2873
/* A parent device has a list of sub-devices */
2874
struct mutex subdev_lock;
2875
struct list_head subdev_list_head;
2876
2877
/* A sub device has a type and a parent */
2878
enum rdma_nl_dev_type type;
2879
struct ib_device *parent;
2880
struct list_head subdev_list;
2881
2882
enum rdma_nl_name_assign_type name_assign_type;
2883
};
2884
2885
static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2886
gfp_t gfp, bool is_numa_aware)
2887
{
2888
if (is_numa_aware && dev->ops.get_numa_node)
2889
return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2890
2891
return kzalloc(size, gfp);
2892
}
2893
2894
struct ib_client_nl_info;
2895
struct ib_client {
2896
const char *name;
2897
int (*add)(struct ib_device *ibdev);
2898
void (*remove)(struct ib_device *, void *client_data);
2899
void (*rename)(struct ib_device *dev, void *client_data);
2900
int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2901
struct ib_client_nl_info *res);
2902
int (*get_global_nl_info)(struct ib_client_nl_info *res);
2903
2904
/* Returns the net_dev belonging to this ib_client and matching the
2905
* given parameters.
2906
* @dev: An RDMA device that the net_dev use for communication.
2907
* @port: A physical port number on the RDMA device.
2908
* @pkey: P_Key that the net_dev uses if applicable.
2909
* @gid: A GID that the net_dev uses to communicate.
2910
* @addr: An IP address the net_dev is configured with.
2911
* @client_data: The device's client data set by ib_set_client_data().
2912
*
2913
* An ib_client that implements a net_dev on top of RDMA devices
2914
* (such as IP over IB) should implement this callback, allowing the
2915
* rdma_cm module to find the right net_dev for a given request.
2916
*
2917
* The caller is responsible for calling dev_put on the returned
2918
* netdev. */
2919
struct net_device *(*get_net_dev_by_params)(
2920
struct ib_device *dev,
2921
u32 port,
2922
u16 pkey,
2923
const union ib_gid *gid,
2924
const struct sockaddr *addr,
2925
void *client_data);
2926
2927
refcount_t uses;
2928
struct completion uses_zero;
2929
u32 client_id;
2930
2931
/* kverbs are not required by the client */
2932
u8 no_kverbs_req:1;
2933
};
2934
2935
/*
2936
* IB block DMA iterator
2937
*
2938
* Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2939
* to a HW supported page size.
2940
*/
2941
struct ib_block_iter {
2942
/* internal states */
2943
struct scatterlist *__sg; /* sg holding the current aligned block */
2944
dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2945
size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */
2946
unsigned int __sg_nents; /* number of SG entries */
2947
unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2948
unsigned int __pg_bit; /* alignment of current block */
2949
};
2950
2951
struct ib_device *_ib_alloc_device(size_t size, struct net *net);
2952
#define ib_alloc_device(drv_struct, member) \
2953
container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2954
BUILD_BUG_ON_ZERO(offsetof( \
2955
struct drv_struct, member)), \
2956
&init_net), \
2957
struct drv_struct, member)
2958
2959
#define ib_alloc_device_with_net(drv_struct, member, net) \
2960
container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2961
BUILD_BUG_ON_ZERO(offsetof( \
2962
struct drv_struct, member)), net), \
2963
struct drv_struct, member)
2964
2965
void ib_dealloc_device(struct ib_device *device);
2966
2967
void ib_get_device_fw_str(struct ib_device *device, char *str);
2968
2969
int ib_register_device(struct ib_device *device, const char *name,
2970
struct device *dma_device);
2971
void ib_unregister_device(struct ib_device *device);
2972
void ib_unregister_driver(enum rdma_driver_id driver_id);
2973
void ib_unregister_device_and_put(struct ib_device *device);
2974
void ib_unregister_device_queued(struct ib_device *ib_dev);
2975
2976
int ib_register_client (struct ib_client *client);
2977
void ib_unregister_client(struct ib_client *client);
2978
2979
void __rdma_block_iter_start(struct ib_block_iter *biter,
2980
struct scatterlist *sglist,
2981
unsigned int nents,
2982
unsigned long pgsz);
2983
bool __rdma_block_iter_next(struct ib_block_iter *biter);
2984
2985
/**
2986
* rdma_block_iter_dma_address - get the aligned dma address of the current
2987
* block held by the block iterator.
2988
* @biter: block iterator holding the memory block
2989
*/
2990
static inline dma_addr_t
2991
rdma_block_iter_dma_address(struct ib_block_iter *biter)
2992
{
2993
return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2994
}
2995
2996
/**
2997
* rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2998
* @sglist: sglist to iterate over
2999
* @biter: block iterator holding the memory block
3000
* @nents: maximum number of sg entries to iterate over
3001
* @pgsz: best HW supported page size to use
3002
*
3003
* Callers may use rdma_block_iter_dma_address() to get each
3004
* blocks aligned DMA address.
3005
*/
3006
#define rdma_for_each_block(sglist, biter, nents, pgsz) \
3007
for (__rdma_block_iter_start(biter, sglist, nents, \
3008
pgsz); \
3009
__rdma_block_iter_next(biter);)
3010
3011
/**
3012
* ib_get_client_data - Get IB client context
3013
* @device:Device to get context for
3014
* @client:Client to get context for
3015
*
3016
* ib_get_client_data() returns the client context data set with
3017
* ib_set_client_data(). This can only be called while the client is
3018
* registered to the device, once the ib_client remove() callback returns this
3019
* cannot be called.
3020
*/
3021
static inline void *ib_get_client_data(struct ib_device *device,
3022
struct ib_client *client)
3023
{
3024
return xa_load(&device->client_data, client->client_id);
3025
}
3026
void ib_set_client_data(struct ib_device *device, struct ib_client *client,
3027
void *data);
3028
void ib_set_device_ops(struct ib_device *device,
3029
const struct ib_device_ops *ops);
3030
3031
int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
3032
unsigned long pfn, unsigned long size, pgprot_t prot,
3033
struct rdma_user_mmap_entry *entry);
3034
int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
3035
struct rdma_user_mmap_entry *entry,
3036
size_t length);
3037
int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
3038
struct rdma_user_mmap_entry *entry,
3039
size_t length, u32 min_pgoff,
3040
u32 max_pgoff);
3041
3042
#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
3043
void rdma_user_mmap_disassociate(struct ib_device *device);
3044
#else
3045
static inline void rdma_user_mmap_disassociate(struct ib_device *device)
3046
{
3047
}
3048
#endif
3049
3050
static inline int
3051
rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
3052
struct rdma_user_mmap_entry *entry,
3053
size_t length, u32 pgoff)
3054
{
3055
return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
3056
pgoff);
3057
}
3058
3059
struct rdma_user_mmap_entry *
3060
rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
3061
unsigned long pgoff);
3062
struct rdma_user_mmap_entry *
3063
rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
3064
struct vm_area_struct *vma);
3065
void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
3066
3067
void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
3068
3069
static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
3070
{
3071
return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
3072
}
3073
3074
static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
3075
{
3076
return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
3077
}
3078
3079
static inline bool ib_is_buffer_cleared(const void __user *p,
3080
size_t len)
3081
{
3082
bool ret;
3083
u8 *buf;
3084
3085
if (len > USHRT_MAX)
3086
return false;
3087
3088
buf = memdup_user(p, len);
3089
if (IS_ERR(buf))
3090
return false;
3091
3092
ret = !memchr_inv(buf, 0, len);
3093
kfree(buf);
3094
return ret;
3095
}
3096
3097
static inline bool ib_is_udata_cleared(struct ib_udata *udata,
3098
size_t offset,
3099
size_t len)
3100
{
3101
return ib_is_buffer_cleared(udata->inbuf + offset, len);
3102
}
3103
3104
/**
3105
* ib_modify_qp_is_ok - Check that the supplied attribute mask
3106
* contains all required attributes and no attributes not allowed for
3107
* the given QP state transition.
3108
* @cur_state: Current QP state
3109
* @next_state: Next QP state
3110
* @type: QP type
3111
* @mask: Mask of supplied QP attributes
3112
*
3113
* This function is a helper function that a low-level driver's
3114
* modify_qp method can use to validate the consumer's input. It
3115
* checks that cur_state and next_state are valid QP states, that a
3116
* transition from cur_state to next_state is allowed by the IB spec,
3117
* and that the attribute mask supplied is allowed for the transition.
3118
*/
3119
bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3120
enum ib_qp_type type, enum ib_qp_attr_mask mask);
3121
3122
void ib_register_event_handler(struct ib_event_handler *event_handler);
3123
void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3124
void ib_dispatch_event(const struct ib_event *event);
3125
3126
int ib_query_port(struct ib_device *device,
3127
u32 port_num, struct ib_port_attr *port_attr);
3128
3129
enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3130
u32 port_num);
3131
3132
/**
3133
* rdma_cap_ib_switch - Check if the device is IB switch
3134
* @device: Device to check
3135
*
3136
* Device driver is responsible for setting is_switch bit on
3137
* in ib_device structure at init time.
3138
*
3139
* Return: true if the device is IB switch.
3140
*/
3141
static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3142
{
3143
return device->is_switch;
3144
}
3145
3146
/**
3147
* rdma_start_port - Return the first valid port number for the device
3148
* specified
3149
*
3150
* @device: Device to be checked
3151
*
3152
* Return start port number
3153
*/
3154
static inline u32 rdma_start_port(const struct ib_device *device)
3155
{
3156
return rdma_cap_ib_switch(device) ? 0 : 1;
3157
}
3158
3159
/**
3160
* rdma_for_each_port - Iterate over all valid port numbers of the IB device
3161
* @device: The struct ib_device * to iterate over
3162
* @iter: The unsigned int to store the port number
3163
*/
3164
#define rdma_for_each_port(device, iter) \
3165
for (iter = rdma_start_port(device + \
3166
BUILD_BUG_ON_ZERO(!__same_type(u32, \
3167
iter))); \
3168
iter <= rdma_end_port(device); iter++)
3169
3170
/**
3171
* rdma_end_port - Return the last valid port number for the device
3172
* specified
3173
*
3174
* @device: Device to be checked
3175
*
3176
* Return last port number
3177
*/
3178
static inline u32 rdma_end_port(const struct ib_device *device)
3179
{
3180
return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3181
}
3182
3183
static inline int rdma_is_port_valid(const struct ib_device *device,
3184
unsigned int port)
3185
{
3186
return (port >= rdma_start_port(device) &&
3187
port <= rdma_end_port(device));
3188
}
3189
3190
static inline bool rdma_is_grh_required(const struct ib_device *device,
3191
u32 port_num)
3192
{
3193
return device->port_data[port_num].immutable.core_cap_flags &
3194
RDMA_CORE_PORT_IB_GRH_REQUIRED;
3195
}
3196
3197
static inline bool rdma_protocol_ib(const struct ib_device *device,
3198
u32 port_num)
3199
{
3200
return device->port_data[port_num].immutable.core_cap_flags &
3201
RDMA_CORE_CAP_PROT_IB;
3202
}
3203
3204
static inline bool rdma_protocol_roce(const struct ib_device *device,
3205
u32 port_num)
3206
{
3207
return device->port_data[port_num].immutable.core_cap_flags &
3208
(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3209
}
3210
3211
static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3212
u32 port_num)
3213
{
3214
return device->port_data[port_num].immutable.core_cap_flags &
3215
RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3216
}
3217
3218
static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3219
u32 port_num)
3220
{
3221
return device->port_data[port_num].immutable.core_cap_flags &
3222
RDMA_CORE_CAP_PROT_ROCE;
3223
}
3224
3225
static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3226
u32 port_num)
3227
{
3228
return device->port_data[port_num].immutable.core_cap_flags &
3229
RDMA_CORE_CAP_PROT_IWARP;
3230
}
3231
3232
static inline bool rdma_ib_or_roce(const struct ib_device *device,
3233
u32 port_num)
3234
{
3235
return rdma_protocol_ib(device, port_num) ||
3236
rdma_protocol_roce(device, port_num);
3237
}
3238
3239
static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3240
u32 port_num)
3241
{
3242
return device->port_data[port_num].immutable.core_cap_flags &
3243
RDMA_CORE_CAP_PROT_RAW_PACKET;
3244
}
3245
3246
static inline bool rdma_protocol_usnic(const struct ib_device *device,
3247
u32 port_num)
3248
{
3249
return device->port_data[port_num].immutable.core_cap_flags &
3250
RDMA_CORE_CAP_PROT_USNIC;
3251
}
3252
3253
/**
3254
* rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3255
* Management Datagrams.
3256
* @device: Device to check
3257
* @port_num: Port number to check
3258
*
3259
* Management Datagrams (MAD) are a required part of the InfiniBand
3260
* specification and are supported on all InfiniBand devices. A slightly
3261
* extended version are also supported on OPA interfaces.
3262
*
3263
* Return: true if the port supports sending/receiving of MAD packets.
3264
*/
3265
static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3266
{
3267
return device->port_data[port_num].immutable.core_cap_flags &
3268
RDMA_CORE_CAP_IB_MAD;
3269
}
3270
3271
/**
3272
* rdma_cap_opa_mad - Check if the port of device provides support for OPA
3273
* Management Datagrams.
3274
* @device: Device to check
3275
* @port_num: Port number to check
3276
*
3277
* Intel OmniPath devices extend and/or replace the InfiniBand Management
3278
* datagrams with their own versions. These OPA MADs share many but not all of
3279
* the characteristics of InfiniBand MADs.
3280
*
3281
* OPA MADs differ in the following ways:
3282
*
3283
* 1) MADs are variable size up to 2K
3284
* IBTA defined MADs remain fixed at 256 bytes
3285
* 2) OPA SMPs must carry valid PKeys
3286
* 3) OPA SMP packets are a different format
3287
*
3288
* Return: true if the port supports OPA MAD packet formats.
3289
*/
3290
static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3291
{
3292
return device->port_data[port_num].immutable.core_cap_flags &
3293
RDMA_CORE_CAP_OPA_MAD;
3294
}
3295
3296
/**
3297
* rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3298
* Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3299
* @device: Device to check
3300
* @port_num: Port number to check
3301
*
3302
* Each InfiniBand node is required to provide a Subnet Management Agent
3303
* that the subnet manager can access. Prior to the fabric being fully
3304
* configured by the subnet manager, the SMA is accessed via a well known
3305
* interface called the Subnet Management Interface (SMI). This interface
3306
* uses directed route packets to communicate with the SM to get around the
3307
* chicken and egg problem of the SM needing to know what's on the fabric
3308
* in order to configure the fabric, and needing to configure the fabric in
3309
* order to send packets to the devices on the fabric. These directed
3310
* route packets do not need the fabric fully configured in order to reach
3311
* their destination. The SMI is the only method allowed to send
3312
* directed route packets on an InfiniBand fabric.
3313
*
3314
* Return: true if the port provides an SMI.
3315
*/
3316
static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3317
{
3318
return device->port_data[port_num].immutable.core_cap_flags &
3319
RDMA_CORE_CAP_IB_SMI;
3320
}
3321
3322
/**
3323
* rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3324
* Communication Manager.
3325
* @device: Device to check
3326
* @port_num: Port number to check
3327
*
3328
* The InfiniBand Communication Manager is one of many pre-defined General
3329
* Service Agents (GSA) that are accessed via the General Service
3330
* Interface (GSI). It's role is to facilitate establishment of connections
3331
* between nodes as well as other management related tasks for established
3332
* connections.
3333
*
3334
* Return: true if the port supports an IB CM (this does not guarantee that
3335
* a CM is actually running however).
3336
*/
3337
static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3338
{
3339
return device->port_data[port_num].immutable.core_cap_flags &
3340
RDMA_CORE_CAP_IB_CM;
3341
}
3342
3343
/**
3344
* rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3345
* Communication Manager.
3346
* @device: Device to check
3347
* @port_num: Port number to check
3348
*
3349
* Similar to above, but specific to iWARP connections which have a different
3350
* managment protocol than InfiniBand.
3351
*
3352
* Return: true if the port supports an iWARP CM (this does not guarantee that
3353
* a CM is actually running however).
3354
*/
3355
static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3356
{
3357
return device->port_data[port_num].immutable.core_cap_flags &
3358
RDMA_CORE_CAP_IW_CM;
3359
}
3360
3361
/**
3362
* rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3363
* Subnet Administration.
3364
* @device: Device to check
3365
* @port_num: Port number to check
3366
*
3367
* An InfiniBand Subnet Administration (SA) service is a pre-defined General
3368
* Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3369
* fabrics, devices should resolve routes to other hosts by contacting the
3370
* SA to query the proper route.
3371
*
3372
* Return: true if the port should act as a client to the fabric Subnet
3373
* Administration interface. This does not imply that the SA service is
3374
* running locally.
3375
*/
3376
static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3377
{
3378
return device->port_data[port_num].immutable.core_cap_flags &
3379
RDMA_CORE_CAP_IB_SA;
3380
}
3381
3382
/**
3383
* rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3384
* Multicast.
3385
* @device: Device to check
3386
* @port_num: Port number to check
3387
*
3388
* InfiniBand multicast registration is more complex than normal IPv4 or
3389
* IPv6 multicast registration. Each Host Channel Adapter must register
3390
* with the Subnet Manager when it wishes to join a multicast group. It
3391
* should do so only once regardless of how many queue pairs it subscribes
3392
* to this group. And it should leave the group only after all queue pairs
3393
* attached to the group have been detached.
3394
*
3395
* Return: true if the port must undertake the additional adminstrative
3396
* overhead of registering/unregistering with the SM and tracking of the
3397
* total number of queue pairs attached to the multicast group.
3398
*/
3399
static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3400
u32 port_num)
3401
{
3402
return rdma_cap_ib_sa(device, port_num);
3403
}
3404
3405
/**
3406
* rdma_cap_af_ib - Check if the port of device has the capability
3407
* Native Infiniband Address.
3408
* @device: Device to check
3409
* @port_num: Port number to check
3410
*
3411
* InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3412
* GID. RoCE uses a different mechanism, but still generates a GID via
3413
* a prescribed mechanism and port specific data.
3414
*
3415
* Return: true if the port uses a GID address to identify devices on the
3416
* network.
3417
*/
3418
static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3419
{
3420
return device->port_data[port_num].immutable.core_cap_flags &
3421
RDMA_CORE_CAP_AF_IB;
3422
}
3423
3424
/**
3425
* rdma_cap_eth_ah - Check if the port of device has the capability
3426
* Ethernet Address Handle.
3427
* @device: Device to check
3428
* @port_num: Port number to check
3429
*
3430
* RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3431
* to fabricate GIDs over Ethernet/IP specific addresses native to the
3432
* port. Normally, packet headers are generated by the sending host
3433
* adapter, but when sending connectionless datagrams, we must manually
3434
* inject the proper headers for the fabric we are communicating over.
3435
*
3436
* Return: true if we are running as a RoCE port and must force the
3437
* addition of a Global Route Header built from our Ethernet Address
3438
* Handle into our header list for connectionless packets.
3439
*/
3440
static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3441
{
3442
return device->port_data[port_num].immutable.core_cap_flags &
3443
RDMA_CORE_CAP_ETH_AH;
3444
}
3445
3446
/**
3447
* rdma_cap_opa_ah - Check if the port of device supports
3448
* OPA Address handles
3449
* @device: Device to check
3450
* @port_num: Port number to check
3451
*
3452
* Return: true if we are running on an OPA device which supports
3453
* the extended OPA addressing.
3454
*/
3455
static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3456
{
3457
return (device->port_data[port_num].immutable.core_cap_flags &
3458
RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3459
}
3460
3461
/**
3462
* rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3463
*
3464
* @device: Device
3465
* @port_num: Port number
3466
*
3467
* This MAD size includes the MAD headers and MAD payload. No other headers
3468
* are included.
3469
*
3470
* Return the max MAD size required by the Port. Will return 0 if the port
3471
* does not support MADs
3472
*/
3473
static inline size_t rdma_max_mad_size(const struct ib_device *device,
3474
u32 port_num)
3475
{
3476
return device->port_data[port_num].immutable.max_mad_size;
3477
}
3478
3479
/**
3480
* rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3481
* @device: Device to check
3482
* @port_num: Port number to check
3483
*
3484
* RoCE GID table mechanism manages the various GIDs for a device.
3485
*
3486
* NOTE: if allocating the port's GID table has failed, this call will still
3487
* return true, but any RoCE GID table API will fail.
3488
*
3489
* Return: true if the port uses RoCE GID table mechanism in order to manage
3490
* its GIDs.
3491
*/
3492
static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3493
u32 port_num)
3494
{
3495
return rdma_protocol_roce(device, port_num) &&
3496
device->ops.add_gid && device->ops.del_gid;
3497
}
3498
3499
/*
3500
* Check if the device supports READ W/ INVALIDATE.
3501
*/
3502
static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3503
{
3504
/*
3505
* iWarp drivers must support READ W/ INVALIDATE. No other protocol
3506
* has support for it yet.
3507
*/
3508
return rdma_protocol_iwarp(dev, port_num);
3509
}
3510
3511
/**
3512
* rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3513
* @device: Device
3514
* @port_num: 1 based Port number
3515
*
3516
* Return true if port is an Intel OPA port , false if not
3517
*/
3518
static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3519
u32 port_num)
3520
{
3521
return (device->port_data[port_num].immutable.core_cap_flags &
3522
RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3523
}
3524
3525
/**
3526
* rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3527
* @device: Device
3528
* @port: Port number
3529
* @mtu: enum value of MTU
3530
*
3531
* Return the MTU size supported by the port as an integer value. Will return
3532
* -1 if enum value of mtu is not supported.
3533
*/
3534
static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3535
int mtu)
3536
{
3537
if (rdma_core_cap_opa_port(device, port))
3538
return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3539
else
3540
return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3541
}
3542
3543
/**
3544
* rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3545
* @device: Device
3546
* @port: Port number
3547
* @attr: port attribute
3548
*
3549
* Return the MTU size supported by the port as an integer value.
3550
*/
3551
static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3552
struct ib_port_attr *attr)
3553
{
3554
if (rdma_core_cap_opa_port(device, port))
3555
return attr->phys_mtu;
3556
else
3557
return ib_mtu_enum_to_int(attr->max_mtu);
3558
}
3559
3560
int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3561
int state);
3562
int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3563
struct ifla_vf_info *info);
3564
int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3565
struct ifla_vf_stats *stats);
3566
int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3567
struct ifla_vf_guid *node_guid,
3568
struct ifla_vf_guid *port_guid);
3569
int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3570
int type);
3571
3572
int ib_query_pkey(struct ib_device *device,
3573
u32 port_num, u16 index, u16 *pkey);
3574
3575
int ib_modify_device(struct ib_device *device,
3576
int device_modify_mask,
3577
struct ib_device_modify *device_modify);
3578
3579
int ib_modify_port(struct ib_device *device,
3580
u32 port_num, int port_modify_mask,
3581
struct ib_port_modify *port_modify);
3582
3583
int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3584
u32 *port_num, u16 *index);
3585
3586
int ib_find_pkey(struct ib_device *device,
3587
u32 port_num, u16 pkey, u16 *index);
3588
3589
enum ib_pd_flags {
3590
/*
3591
* Create a memory registration for all memory in the system and place
3592
* the rkey for it into pd->unsafe_global_rkey. This can be used by
3593
* ULPs to avoid the overhead of dynamic MRs.
3594
*
3595
* This flag is generally considered unsafe and must only be used in
3596
* extremly trusted environments. Every use of it will log a warning
3597
* in the kernel log.
3598
*/
3599
IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3600
};
3601
3602
struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3603
const char *caller);
3604
3605
/**
3606
* ib_alloc_pd - Allocates an unused protection domain.
3607
* @device: The device on which to allocate the protection domain.
3608
* @flags: protection domain flags
3609
*
3610
* A protection domain object provides an association between QPs, shared
3611
* receive queues, address handles, memory regions, and memory windows.
3612
*
3613
* Every PD has a local_dma_lkey which can be used as the lkey value for local
3614
* memory operations.
3615
*/
3616
#define ib_alloc_pd(device, flags) \
3617
__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3618
3619
int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3620
3621
/**
3622
* ib_dealloc_pd - Deallocate kernel PD
3623
* @pd: The protection domain
3624
*
3625
* NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3626
*/
3627
static inline void ib_dealloc_pd(struct ib_pd *pd)
3628
{
3629
int ret = ib_dealloc_pd_user(pd, NULL);
3630
3631
WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3632
}
3633
3634
enum rdma_create_ah_flags {
3635
/* In a sleepable context */
3636
RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3637
};
3638
3639
/**
3640
* rdma_create_ah - Creates an address handle for the given address vector.
3641
* @pd: The protection domain associated with the address handle.
3642
* @ah_attr: The attributes of the address vector.
3643
* @flags: Create address handle flags (see enum rdma_create_ah_flags).
3644
*
3645
* The address handle is used to reference a local or global destination
3646
* in all UD QP post sends.
3647
*/
3648
struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3649
u32 flags);
3650
3651
/**
3652
* rdma_create_user_ah - Creates an address handle for the given address vector.
3653
* It resolves destination mac address for ah attribute of RoCE type.
3654
* @pd: The protection domain associated with the address handle.
3655
* @ah_attr: The attributes of the address vector.
3656
* @udata: pointer to user's input output buffer information need by
3657
* provider driver.
3658
*
3659
* It returns 0 on success and returns appropriate error code on error.
3660
* The address handle is used to reference a local or global destination
3661
* in all UD QP post sends.
3662
*/
3663
struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3664
struct rdma_ah_attr *ah_attr,
3665
struct ib_udata *udata);
3666
/**
3667
* ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3668
* work completion.
3669
* @hdr: the L3 header to parse
3670
* @net_type: type of header to parse
3671
* @sgid: place to store source gid
3672
* @dgid: place to store destination gid
3673
*/
3674
int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3675
enum rdma_network_type net_type,
3676
union ib_gid *sgid, union ib_gid *dgid);
3677
3678
/**
3679
* ib_get_rdma_header_version - Get the header version
3680
* @hdr: the L3 header to parse
3681
*/
3682
int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3683
3684
/**
3685
* ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3686
* work completion.
3687
* @device: Device on which the received message arrived.
3688
* @port_num: Port on which the received message arrived.
3689
* @wc: Work completion associated with the received message.
3690
* @grh: References the received global route header. This parameter is
3691
* ignored unless the work completion indicates that the GRH is valid.
3692
* @ah_attr: Returned attributes that can be used when creating an address
3693
* handle for replying to the message.
3694
* When ib_init_ah_attr_from_wc() returns success,
3695
* (a) for IB link layer it optionally contains a reference to SGID attribute
3696
* when GRH is present for IB link layer.
3697
* (b) for RoCE link layer it contains a reference to SGID attribute.
3698
* User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3699
* attributes which are initialized using ib_init_ah_attr_from_wc().
3700
*
3701
*/
3702
int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3703
const struct ib_wc *wc, const struct ib_grh *grh,
3704
struct rdma_ah_attr *ah_attr);
3705
3706
/**
3707
* ib_create_ah_from_wc - Creates an address handle associated with the
3708
* sender of the specified work completion.
3709
* @pd: The protection domain associated with the address handle.
3710
* @wc: Work completion information associated with a received message.
3711
* @grh: References the received global route header. This parameter is
3712
* ignored unless the work completion indicates that the GRH is valid.
3713
* @port_num: The outbound port number to associate with the address.
3714
*
3715
* The address handle is used to reference a local or global destination
3716
* in all UD QP post sends.
3717
*/
3718
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3719
const struct ib_grh *grh, u32 port_num);
3720
3721
/**
3722
* rdma_modify_ah - Modifies the address vector associated with an address
3723
* handle.
3724
* @ah: The address handle to modify.
3725
* @ah_attr: The new address vector attributes to associate with the
3726
* address handle.
3727
*/
3728
int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3729
3730
/**
3731
* rdma_query_ah - Queries the address vector associated with an address
3732
* handle.
3733
* @ah: The address handle to query.
3734
* @ah_attr: The address vector attributes associated with the address
3735
* handle.
3736
*/
3737
int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3738
3739
enum rdma_destroy_ah_flags {
3740
/* In a sleepable context */
3741
RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3742
};
3743
3744
/**
3745
* rdma_destroy_ah_user - Destroys an address handle.
3746
* @ah: The address handle to destroy.
3747
* @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3748
* @udata: Valid user data or NULL for kernel objects
3749
*/
3750
int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3751
3752
/**
3753
* rdma_destroy_ah - Destroys an kernel address handle.
3754
* @ah: The address handle to destroy.
3755
* @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3756
*
3757
* NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3758
*/
3759
static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3760
{
3761
int ret = rdma_destroy_ah_user(ah, flags, NULL);
3762
3763
WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3764
}
3765
3766
struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3767
struct ib_srq_init_attr *srq_init_attr,
3768
struct ib_usrq_object *uobject,
3769
struct ib_udata *udata);
3770
static inline struct ib_srq *
3771
ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3772
{
3773
if (!pd->device->ops.create_srq)
3774
return ERR_PTR(-EOPNOTSUPP);
3775
3776
return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3777
}
3778
3779
/**
3780
* ib_modify_srq - Modifies the attributes for the specified SRQ.
3781
* @srq: The SRQ to modify.
3782
* @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3783
* the current values of selected SRQ attributes are returned.
3784
* @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3785
* are being modified.
3786
*
3787
* The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3788
* IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3789
* the number of receives queued drops below the limit.
3790
*/
3791
int ib_modify_srq(struct ib_srq *srq,
3792
struct ib_srq_attr *srq_attr,
3793
enum ib_srq_attr_mask srq_attr_mask);
3794
3795
/**
3796
* ib_query_srq - Returns the attribute list and current values for the
3797
* specified SRQ.
3798
* @srq: The SRQ to query.
3799
* @srq_attr: The attributes of the specified SRQ.
3800
*/
3801
int ib_query_srq(struct ib_srq *srq,
3802
struct ib_srq_attr *srq_attr);
3803
3804
/**
3805
* ib_destroy_srq_user - Destroys the specified SRQ.
3806
* @srq: The SRQ to destroy.
3807
* @udata: Valid user data or NULL for kernel objects
3808
*/
3809
int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3810
3811
/**
3812
* ib_destroy_srq - Destroys the specified kernel SRQ.
3813
* @srq: The SRQ to destroy.
3814
*
3815
* NOTE: for user srq use ib_destroy_srq_user with valid udata!
3816
*/
3817
static inline void ib_destroy_srq(struct ib_srq *srq)
3818
{
3819
int ret = ib_destroy_srq_user(srq, NULL);
3820
3821
WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3822
}
3823
3824
/**
3825
* ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3826
* @srq: The SRQ to post the work request on.
3827
* @recv_wr: A list of work requests to post on the receive queue.
3828
* @bad_recv_wr: On an immediate failure, this parameter will reference
3829
* the work request that failed to be posted on the QP.
3830
*/
3831
static inline int ib_post_srq_recv(struct ib_srq *srq,
3832
const struct ib_recv_wr *recv_wr,
3833
const struct ib_recv_wr **bad_recv_wr)
3834
{
3835
const struct ib_recv_wr *dummy;
3836
3837
return srq->device->ops.post_srq_recv(srq, recv_wr,
3838
bad_recv_wr ? : &dummy);
3839
}
3840
3841
struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3842
struct ib_qp_init_attr *qp_init_attr,
3843
const char *caller);
3844
/**
3845
* ib_create_qp - Creates a kernel QP associated with the specific protection
3846
* domain.
3847
* @pd: The protection domain associated with the QP.
3848
* @init_attr: A list of initial attributes required to create the
3849
* QP. If QP creation succeeds, then the attributes are updated to
3850
* the actual capabilities of the created QP.
3851
*/
3852
static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3853
struct ib_qp_init_attr *init_attr)
3854
{
3855
return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3856
}
3857
3858
/**
3859
* ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3860
* @qp: The QP to modify.
3861
* @attr: On input, specifies the QP attributes to modify. On output,
3862
* the current values of selected QP attributes are returned.
3863
* @attr_mask: A bit-mask used to specify which attributes of the QP
3864
* are being modified.
3865
* @udata: pointer to user's input output buffer information
3866
* are being modified.
3867
* It returns 0 on success and returns appropriate error code on error.
3868
*/
3869
int ib_modify_qp_with_udata(struct ib_qp *qp,
3870
struct ib_qp_attr *attr,
3871
int attr_mask,
3872
struct ib_udata *udata);
3873
3874
/**
3875
* ib_modify_qp - Modifies the attributes for the specified QP and then
3876
* transitions the QP to the given state.
3877
* @qp: The QP to modify.
3878
* @qp_attr: On input, specifies the QP attributes to modify. On output,
3879
* the current values of selected QP attributes are returned.
3880
* @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3881
* are being modified.
3882
*/
3883
int ib_modify_qp(struct ib_qp *qp,
3884
struct ib_qp_attr *qp_attr,
3885
int qp_attr_mask);
3886
3887
/**
3888
* ib_query_qp - Returns the attribute list and current values for the
3889
* specified QP.
3890
* @qp: The QP to query.
3891
* @qp_attr: The attributes of the specified QP.
3892
* @qp_attr_mask: A bit-mask used to select specific attributes to query.
3893
* @qp_init_attr: Additional attributes of the selected QP.
3894
*
3895
* The qp_attr_mask may be used to limit the query to gathering only the
3896
* selected attributes.
3897
*/
3898
int ib_query_qp(struct ib_qp *qp,
3899
struct ib_qp_attr *qp_attr,
3900
int qp_attr_mask,
3901
struct ib_qp_init_attr *qp_init_attr);
3902
3903
/**
3904
* ib_destroy_qp - Destroys the specified QP.
3905
* @qp: The QP to destroy.
3906
* @udata: Valid udata or NULL for kernel objects
3907
*/
3908
int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3909
3910
/**
3911
* ib_destroy_qp - Destroys the specified kernel QP.
3912
* @qp: The QP to destroy.
3913
*
3914
* NOTE: for user qp use ib_destroy_qp_user with valid udata!
3915
*/
3916
static inline int ib_destroy_qp(struct ib_qp *qp)
3917
{
3918
return ib_destroy_qp_user(qp, NULL);
3919
}
3920
3921
/**
3922
* ib_open_qp - Obtain a reference to an existing sharable QP.
3923
* @xrcd: XRC domain
3924
* @qp_open_attr: Attributes identifying the QP to open.
3925
*
3926
* Returns a reference to a sharable QP.
3927
*/
3928
struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3929
struct ib_qp_open_attr *qp_open_attr);
3930
3931
/**
3932
* ib_close_qp - Release an external reference to a QP.
3933
* @qp: The QP handle to release
3934
*
3935
* The opened QP handle is released by the caller. The underlying
3936
* shared QP is not destroyed until all internal references are released.
3937
*/
3938
int ib_close_qp(struct ib_qp *qp);
3939
3940
/**
3941
* ib_post_send - Posts a list of work requests to the send queue of
3942
* the specified QP.
3943
* @qp: The QP to post the work request on.
3944
* @send_wr: A list of work requests to post on the send queue.
3945
* @bad_send_wr: On an immediate failure, this parameter will reference
3946
* the work request that failed to be posted on the QP.
3947
*
3948
* While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3949
* error is returned, the QP state shall not be affected,
3950
* ib_post_send() will return an immediate error after queueing any
3951
* earlier work requests in the list.
3952
*/
3953
static inline int ib_post_send(struct ib_qp *qp,
3954
const struct ib_send_wr *send_wr,
3955
const struct ib_send_wr **bad_send_wr)
3956
{
3957
const struct ib_send_wr *dummy;
3958
3959
return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3960
}
3961
3962
/**
3963
* ib_post_recv - Posts a list of work requests to the receive queue of
3964
* the specified QP.
3965
* @qp: The QP to post the work request on.
3966
* @recv_wr: A list of work requests to post on the receive queue.
3967
* @bad_recv_wr: On an immediate failure, this parameter will reference
3968
* the work request that failed to be posted on the QP.
3969
*/
3970
static inline int ib_post_recv(struct ib_qp *qp,
3971
const struct ib_recv_wr *recv_wr,
3972
const struct ib_recv_wr **bad_recv_wr)
3973
{
3974
const struct ib_recv_wr *dummy;
3975
3976
return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3977
}
3978
3979
struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3980
int comp_vector, enum ib_poll_context poll_ctx,
3981
const char *caller);
3982
static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3983
int nr_cqe, int comp_vector,
3984
enum ib_poll_context poll_ctx)
3985
{
3986
return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3987
KBUILD_MODNAME);
3988
}
3989
3990
struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3991
int nr_cqe, enum ib_poll_context poll_ctx,
3992
const char *caller);
3993
3994
/**
3995
* ib_alloc_cq_any: Allocate kernel CQ
3996
* @dev: The IB device
3997
* @private: Private data attached to the CQE
3998
* @nr_cqe: Number of CQEs in the CQ
3999
* @poll_ctx: Context used for polling the CQ
4000
*/
4001
static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
4002
void *private, int nr_cqe,
4003
enum ib_poll_context poll_ctx)
4004
{
4005
return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
4006
KBUILD_MODNAME);
4007
}
4008
4009
void ib_free_cq(struct ib_cq *cq);
4010
int ib_process_cq_direct(struct ib_cq *cq, int budget);
4011
4012
/**
4013
* ib_create_cq - Creates a CQ on the specified device.
4014
* @device: The device on which to create the CQ.
4015
* @comp_handler: A user-specified callback that is invoked when a
4016
* completion event occurs on the CQ.
4017
* @event_handler: A user-specified callback that is invoked when an
4018
* asynchronous event not associated with a completion occurs on the CQ.
4019
* @cq_context: Context associated with the CQ returned to the user via
4020
* the associated completion and event handlers.
4021
* @cq_attr: The attributes the CQ should be created upon.
4022
*
4023
* Users can examine the cq structure to determine the actual CQ size.
4024
*/
4025
struct ib_cq *__ib_create_cq(struct ib_device *device,
4026
ib_comp_handler comp_handler,
4027
void (*event_handler)(struct ib_event *, void *),
4028
void *cq_context,
4029
const struct ib_cq_init_attr *cq_attr,
4030
const char *caller);
4031
#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
4032
__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
4033
4034
/**
4035
* ib_resize_cq - Modifies the capacity of the CQ.
4036
* @cq: The CQ to resize.
4037
* @cqe: The minimum size of the CQ.
4038
*
4039
* Users can examine the cq structure to determine the actual CQ size.
4040
*/
4041
int ib_resize_cq(struct ib_cq *cq, int cqe);
4042
4043
/**
4044
* rdma_set_cq_moderation - Modifies moderation params of the CQ
4045
* @cq: The CQ to modify.
4046
* @cq_count: number of CQEs that will trigger an event
4047
* @cq_period: max period of time in usec before triggering an event
4048
*
4049
*/
4050
int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
4051
4052
/**
4053
* ib_destroy_cq_user - Destroys the specified CQ.
4054
* @cq: The CQ to destroy.
4055
* @udata: Valid user data or NULL for kernel objects
4056
*/
4057
int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
4058
4059
/**
4060
* ib_destroy_cq - Destroys the specified kernel CQ.
4061
* @cq: The CQ to destroy.
4062
*
4063
* NOTE: for user cq use ib_destroy_cq_user with valid udata!
4064
*/
4065
static inline void ib_destroy_cq(struct ib_cq *cq)
4066
{
4067
int ret = ib_destroy_cq_user(cq, NULL);
4068
4069
WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
4070
}
4071
4072
/**
4073
* ib_poll_cq - poll a CQ for completion(s)
4074
* @cq:the CQ being polled
4075
* @num_entries:maximum number of completions to return
4076
* @wc:array of at least @num_entries &struct ib_wc where completions
4077
* will be returned
4078
*
4079
* Poll a CQ for (possibly multiple) completions. If the return value
4080
* is < 0, an error occurred. If the return value is >= 0, it is the
4081
* number of completions returned. If the return value is
4082
* non-negative and < num_entries, then the CQ was emptied.
4083
*/
4084
static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
4085
struct ib_wc *wc)
4086
{
4087
return cq->device->ops.poll_cq(cq, num_entries, wc);
4088
}
4089
4090
/**
4091
* ib_req_notify_cq - Request completion notification on a CQ.
4092
* @cq: The CQ to generate an event for.
4093
* @flags:
4094
* Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4095
* to request an event on the next solicited event or next work
4096
* completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4097
* may also be |ed in to request a hint about missed events, as
4098
* described below.
4099
*
4100
* Return Value:
4101
* < 0 means an error occurred while requesting notification
4102
* == 0 means notification was requested successfully, and if
4103
* IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4104
* were missed and it is safe to wait for another event. In
4105
* this case is it guaranteed that any work completions added
4106
* to the CQ since the last CQ poll will trigger a completion
4107
* notification event.
4108
* > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4109
* in. It means that the consumer must poll the CQ again to
4110
* make sure it is empty to avoid missing an event because of a
4111
* race between requesting notification and an entry being
4112
* added to the CQ. This return value means it is possible
4113
* (but not guaranteed) that a work completion has been added
4114
* to the CQ since the last poll without triggering a
4115
* completion notification event.
4116
*/
4117
static inline int ib_req_notify_cq(struct ib_cq *cq,
4118
enum ib_cq_notify_flags flags)
4119
{
4120
return cq->device->ops.req_notify_cq(cq, flags);
4121
}
4122
4123
struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4124
int comp_vector_hint,
4125
enum ib_poll_context poll_ctx);
4126
4127
void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4128
4129
/*
4130
* Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4131
* NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4132
* address into the dma address.
4133
*/
4134
static inline bool ib_uses_virt_dma(struct ib_device *dev)
4135
{
4136
return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4137
}
4138
4139
/*
4140
* Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4141
*/
4142
static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4143
{
4144
if (ib_uses_virt_dma(dev))
4145
return false;
4146
4147
return dma_pci_p2pdma_supported(dev->dma_device);
4148
}
4149
4150
/**
4151
* ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4152
* @dma_addr: The DMA address
4153
*
4154
* Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4155
* going through the dma_addr marshalling.
4156
*/
4157
static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4158
{
4159
/* virt_dma mode maps the kvs's directly into the dma addr */
4160
return (void *)(uintptr_t)dma_addr;
4161
}
4162
4163
/**
4164
* ib_virt_dma_to_page - Convert a dma_addr to a struct page
4165
* @dma_addr: The DMA address
4166
*
4167
* Used by ib_uses_virt_dma() device to get back to the struct page after going
4168
* through the dma_addr marshalling.
4169
*/
4170
static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4171
{
4172
return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4173
}
4174
4175
/**
4176
* ib_dma_mapping_error - check a DMA addr for error
4177
* @dev: The device for which the dma_addr was created
4178
* @dma_addr: The DMA address to check
4179
*/
4180
static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4181
{
4182
if (ib_uses_virt_dma(dev))
4183
return 0;
4184
return dma_mapping_error(dev->dma_device, dma_addr);
4185
}
4186
4187
/**
4188
* ib_dma_map_single - Map a kernel virtual address to DMA address
4189
* @dev: The device for which the dma_addr is to be created
4190
* @cpu_addr: The kernel virtual address
4191
* @size: The size of the region in bytes
4192
* @direction: The direction of the DMA
4193
*/
4194
static inline u64 ib_dma_map_single(struct ib_device *dev,
4195
void *cpu_addr, size_t size,
4196
enum dma_data_direction direction)
4197
{
4198
if (ib_uses_virt_dma(dev))
4199
return (uintptr_t)cpu_addr;
4200
return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4201
}
4202
4203
/**
4204
* ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4205
* @dev: The device for which the DMA address was created
4206
* @addr: The DMA address
4207
* @size: The size of the region in bytes
4208
* @direction: The direction of the DMA
4209
*/
4210
static inline void ib_dma_unmap_single(struct ib_device *dev,
4211
u64 addr, size_t size,
4212
enum dma_data_direction direction)
4213
{
4214
if (!ib_uses_virt_dma(dev))
4215
dma_unmap_single(dev->dma_device, addr, size, direction);
4216
}
4217
4218
/**
4219
* ib_dma_map_page - Map a physical page to DMA address
4220
* @dev: The device for which the dma_addr is to be created
4221
* @page: The page to be mapped
4222
* @offset: The offset within the page
4223
* @size: The size of the region in bytes
4224
* @direction: The direction of the DMA
4225
*/
4226
static inline u64 ib_dma_map_page(struct ib_device *dev,
4227
struct page *page,
4228
unsigned long offset,
4229
size_t size,
4230
enum dma_data_direction direction)
4231
{
4232
if (ib_uses_virt_dma(dev))
4233
return (uintptr_t)(page_address(page) + offset);
4234
return dma_map_page(dev->dma_device, page, offset, size, direction);
4235
}
4236
4237
/**
4238
* ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4239
* @dev: The device for which the DMA address was created
4240
* @addr: The DMA address
4241
* @size: The size of the region in bytes
4242
* @direction: The direction of the DMA
4243
*/
4244
static inline void ib_dma_unmap_page(struct ib_device *dev,
4245
u64 addr, size_t size,
4246
enum dma_data_direction direction)
4247
{
4248
if (!ib_uses_virt_dma(dev))
4249
dma_unmap_page(dev->dma_device, addr, size, direction);
4250
}
4251
4252
int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4253
static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4254
struct scatterlist *sg, int nents,
4255
enum dma_data_direction direction,
4256
unsigned long dma_attrs)
4257
{
4258
if (ib_uses_virt_dma(dev))
4259
return ib_dma_virt_map_sg(dev, sg, nents);
4260
return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4261
dma_attrs);
4262
}
4263
4264
static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4265
struct scatterlist *sg, int nents,
4266
enum dma_data_direction direction,
4267
unsigned long dma_attrs)
4268
{
4269
if (!ib_uses_virt_dma(dev))
4270
dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4271
dma_attrs);
4272
}
4273
4274
/**
4275
* ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4276
* @dev: The device for which the DMA addresses are to be created
4277
* @sgt: The sg_table object describing the buffer
4278
* @direction: The direction of the DMA
4279
* @dma_attrs: Optional DMA attributes for the map operation
4280
*/
4281
static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4282
struct sg_table *sgt,
4283
enum dma_data_direction direction,
4284
unsigned long dma_attrs)
4285
{
4286
int nents;
4287
4288
if (ib_uses_virt_dma(dev)) {
4289
nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4290
if (!nents)
4291
return -EIO;
4292
sgt->nents = nents;
4293
return 0;
4294
}
4295
return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4296
}
4297
4298
static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4299
struct sg_table *sgt,
4300
enum dma_data_direction direction,
4301
unsigned long dma_attrs)
4302
{
4303
if (!ib_uses_virt_dma(dev))
4304
dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4305
}
4306
4307
/**
4308
* ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4309
* @dev: The device for which the DMA addresses are to be created
4310
* @sg: The array of scatter/gather entries
4311
* @nents: The number of scatter/gather entries
4312
* @direction: The direction of the DMA
4313
*/
4314
static inline int ib_dma_map_sg(struct ib_device *dev,
4315
struct scatterlist *sg, int nents,
4316
enum dma_data_direction direction)
4317
{
4318
return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4319
}
4320
4321
/**
4322
* ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4323
* @dev: The device for which the DMA addresses were created
4324
* @sg: The array of scatter/gather entries
4325
* @nents: The number of scatter/gather entries
4326
* @direction: The direction of the DMA
4327
*/
4328
static inline void ib_dma_unmap_sg(struct ib_device *dev,
4329
struct scatterlist *sg, int nents,
4330
enum dma_data_direction direction)
4331
{
4332
ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4333
}
4334
4335
/**
4336
* ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4337
* @dev: The device to query
4338
*
4339
* The returned value represents a size in bytes.
4340
*/
4341
static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4342
{
4343
if (ib_uses_virt_dma(dev))
4344
return UINT_MAX;
4345
return dma_get_max_seg_size(dev->dma_device);
4346
}
4347
4348
/**
4349
* ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4350
* @dev: The device for which the DMA address was created
4351
* @addr: The DMA address
4352
* @size: The size of the region in bytes
4353
* @dir: The direction of the DMA
4354
*/
4355
static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4356
u64 addr,
4357
size_t size,
4358
enum dma_data_direction dir)
4359
{
4360
if (!ib_uses_virt_dma(dev))
4361
dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4362
}
4363
4364
/**
4365
* ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4366
* @dev: The device for which the DMA address was created
4367
* @addr: The DMA address
4368
* @size: The size of the region in bytes
4369
* @dir: The direction of the DMA
4370
*/
4371
static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4372
u64 addr,
4373
size_t size,
4374
enum dma_data_direction dir)
4375
{
4376
if (!ib_uses_virt_dma(dev))
4377
dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4378
}
4379
4380
/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4381
* space. This function should be called when 'current' is the owning MM.
4382
*/
4383
struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4384
u64 virt_addr, int mr_access_flags);
4385
4386
/* ib_advise_mr - give an advice about an address range in a memory region */
4387
int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4388
u32 flags, struct ib_sge *sg_list, u32 num_sge);
4389
/**
4390
* ib_dereg_mr_user - Deregisters a memory region and removes it from the
4391
* HCA translation table.
4392
* @mr: The memory region to deregister.
4393
* @udata: Valid user data or NULL for kernel object
4394
*
4395
* This function can fail, if the memory region has memory windows bound to it.
4396
*/
4397
int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4398
4399
/**
4400
* ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4401
* HCA translation table.
4402
* @mr: The memory region to deregister.
4403
*
4404
* This function can fail, if the memory region has memory windows bound to it.
4405
*
4406
* NOTE: for user mr use ib_dereg_mr_user with valid udata!
4407
*/
4408
static inline int ib_dereg_mr(struct ib_mr *mr)
4409
{
4410
return ib_dereg_mr_user(mr, NULL);
4411
}
4412
4413
struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4414
u32 max_num_sg);
4415
4416
struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4417
u32 max_num_data_sg,
4418
u32 max_num_meta_sg);
4419
4420
/**
4421
* ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4422
* R_Key and L_Key.
4423
* @mr: struct ib_mr pointer to be updated.
4424
* @newkey: new key to be used.
4425
*/
4426
static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4427
{
4428
mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4429
mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4430
}
4431
4432
/**
4433
* ib_inc_rkey - increments the key portion of the given rkey. Can be used
4434
* for calculating a new rkey for type 2 memory windows.
4435
* @rkey: the rkey to increment.
4436
*/
4437
static inline u32 ib_inc_rkey(u32 rkey)
4438
{
4439
const u32 mask = 0x000000ff;
4440
return ((rkey + 1) & mask) | (rkey & ~mask);
4441
}
4442
4443
/**
4444
* ib_attach_mcast - Attaches the specified QP to a multicast group.
4445
* @qp: QP to attach to the multicast group. The QP must be type
4446
* IB_QPT_UD.
4447
* @gid: Multicast group GID.
4448
* @lid: Multicast group LID in host byte order.
4449
*
4450
* In order to send and receive multicast packets, subnet
4451
* administration must have created the multicast group and configured
4452
* the fabric appropriately. The port associated with the specified
4453
* QP must also be a member of the multicast group.
4454
*/
4455
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4456
4457
/**
4458
* ib_detach_mcast - Detaches the specified QP from a multicast group.
4459
* @qp: QP to detach from the multicast group.
4460
* @gid: Multicast group GID.
4461
* @lid: Multicast group LID in host byte order.
4462
*/
4463
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4464
4465
struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4466
struct inode *inode, struct ib_udata *udata);
4467
int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4468
4469
static inline int ib_check_mr_access(struct ib_device *ib_dev,
4470
unsigned int flags)
4471
{
4472
u64 device_cap = ib_dev->attrs.device_cap_flags;
4473
4474
/*
4475
* Local write permission is required if remote write or
4476
* remote atomic permission is also requested.
4477
*/
4478
if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4479
!(flags & IB_ACCESS_LOCAL_WRITE))
4480
return -EINVAL;
4481
4482
if (flags & ~IB_ACCESS_SUPPORTED)
4483
return -EINVAL;
4484
4485
if (flags & IB_ACCESS_ON_DEMAND &&
4486
!(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4487
return -EOPNOTSUPP;
4488
4489
if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4490
!(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4491
(flags & IB_ACCESS_FLUSH_PERSISTENT &&
4492
!(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4493
return -EOPNOTSUPP;
4494
4495
return 0;
4496
}
4497
4498
static inline bool ib_access_writable(int access_flags)
4499
{
4500
/*
4501
* We have writable memory backing the MR if any of the following
4502
* access flags are set. "Local write" and "remote write" obviously
4503
* require write access. "Remote atomic" can do things like fetch and
4504
* add, which will modify memory, and "MW bind" can change permissions
4505
* by binding a window.
4506
*/
4507
return access_flags &
4508
(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4509
IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4510
}
4511
4512
/**
4513
* ib_check_mr_status: lightweight check of MR status.
4514
* This routine may provide status checks on a selected
4515
* ib_mr. first use is for signature status check.
4516
*
4517
* @mr: A memory region.
4518
* @check_mask: Bitmask of which checks to perform from
4519
* ib_mr_status_check enumeration.
4520
* @mr_status: The container of relevant status checks.
4521
* failed checks will be indicated in the status bitmask
4522
* and the relevant info shall be in the error item.
4523
*/
4524
int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4525
struct ib_mr_status *mr_status);
4526
4527
/**
4528
* ib_device_try_get: Hold a registration lock
4529
* @dev: The device to lock
4530
*
4531
* A device under an active registration lock cannot become unregistered. It
4532
* is only possible to obtain a registration lock on a device that is fully
4533
* registered, otherwise this function returns false.
4534
*
4535
* The registration lock is only necessary for actions which require the
4536
* device to still be registered. Uses that only require the device pointer to
4537
* be valid should use get_device(&ibdev->dev) to hold the memory.
4538
*
4539
*/
4540
static inline bool ib_device_try_get(struct ib_device *dev)
4541
{
4542
return refcount_inc_not_zero(&dev->refcount);
4543
}
4544
4545
void ib_device_put(struct ib_device *device);
4546
struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4547
enum rdma_driver_id driver_id);
4548
struct ib_device *ib_device_get_by_name(const char *name,
4549
enum rdma_driver_id driver_id);
4550
struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4551
u16 pkey, const union ib_gid *gid,
4552
const struct sockaddr *addr);
4553
int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4554
unsigned int port);
4555
struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4556
u32 port);
4557
int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
4558
u32 *port);
4559
4560
static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev)
4561
{
4562
return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ?
4563
IB_PORT_ACTIVE : IB_PORT_DOWN;
4564
}
4565
4566
void ib_dispatch_port_state_event(struct ib_device *ibdev,
4567
struct net_device *ndev);
4568
struct ib_wq *ib_create_wq(struct ib_pd *pd,
4569
struct ib_wq_init_attr *init_attr);
4570
int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4571
4572
int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4573
unsigned int *sg_offset, unsigned int page_size);
4574
int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4575
int data_sg_nents, unsigned int *data_sg_offset,
4576
struct scatterlist *meta_sg, int meta_sg_nents,
4577
unsigned int *meta_sg_offset, unsigned int page_size);
4578
4579
static inline int
4580
ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4581
unsigned int *sg_offset, unsigned int page_size)
4582
{
4583
int n;
4584
4585
n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4586
mr->iova = 0;
4587
4588
return n;
4589
}
4590
4591
int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4592
unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4593
4594
void ib_drain_rq(struct ib_qp *qp);
4595
void ib_drain_sq(struct ib_qp *qp);
4596
void ib_drain_qp(struct ib_qp *qp);
4597
4598
int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4599
u8 *width);
4600
4601
static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4602
{
4603
if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4604
return attr->roce.dmac;
4605
return NULL;
4606
}
4607
4608
static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4609
{
4610
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4611
attr->ib.dlid = (u16)dlid;
4612
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4613
attr->opa.dlid = dlid;
4614
}
4615
4616
static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4617
{
4618
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4619
return attr->ib.dlid;
4620
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4621
return attr->opa.dlid;
4622
return 0;
4623
}
4624
4625
static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4626
{
4627
attr->sl = sl;
4628
}
4629
4630
static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4631
{
4632
return attr->sl;
4633
}
4634
4635
static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4636
u8 src_path_bits)
4637
{
4638
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4639
attr->ib.src_path_bits = src_path_bits;
4640
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4641
attr->opa.src_path_bits = src_path_bits;
4642
}
4643
4644
static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4645
{
4646
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4647
return attr->ib.src_path_bits;
4648
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4649
return attr->opa.src_path_bits;
4650
return 0;
4651
}
4652
4653
static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4654
bool make_grd)
4655
{
4656
if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4657
attr->opa.make_grd = make_grd;
4658
}
4659
4660
static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4661
{
4662
if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4663
return attr->opa.make_grd;
4664
return false;
4665
}
4666
4667
static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4668
{
4669
attr->port_num = port_num;
4670
}
4671
4672
static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4673
{
4674
return attr->port_num;
4675
}
4676
4677
static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4678
u8 static_rate)
4679
{
4680
attr->static_rate = static_rate;
4681
}
4682
4683
static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4684
{
4685
return attr->static_rate;
4686
}
4687
4688
static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4689
enum ib_ah_flags flag)
4690
{
4691
attr->ah_flags = flag;
4692
}
4693
4694
static inline enum ib_ah_flags
4695
rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4696
{
4697
return attr->ah_flags;
4698
}
4699
4700
static inline const struct ib_global_route
4701
*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4702
{
4703
return &attr->grh;
4704
}
4705
4706
/*To retrieve and modify the grh */
4707
static inline struct ib_global_route
4708
*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4709
{
4710
return &attr->grh;
4711
}
4712
4713
static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4714
{
4715
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4716
4717
memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4718
}
4719
4720
static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4721
__be64 prefix)
4722
{
4723
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4724
4725
grh->dgid.global.subnet_prefix = prefix;
4726
}
4727
4728
static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4729
__be64 if_id)
4730
{
4731
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4732
4733
grh->dgid.global.interface_id = if_id;
4734
}
4735
4736
static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4737
union ib_gid *dgid, u32 flow_label,
4738
u8 sgid_index, u8 hop_limit,
4739
u8 traffic_class)
4740
{
4741
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4742
4743
attr->ah_flags = IB_AH_GRH;
4744
if (dgid)
4745
grh->dgid = *dgid;
4746
grh->flow_label = flow_label;
4747
grh->sgid_index = sgid_index;
4748
grh->hop_limit = hop_limit;
4749
grh->traffic_class = traffic_class;
4750
grh->sgid_attr = NULL;
4751
}
4752
4753
void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4754
void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4755
u32 flow_label, u8 hop_limit, u8 traffic_class,
4756
const struct ib_gid_attr *sgid_attr);
4757
void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4758
const struct rdma_ah_attr *src);
4759
void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4760
const struct rdma_ah_attr *new);
4761
void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4762
4763
/**
4764
* rdma_ah_find_type - Return address handle type.
4765
*
4766
* @dev: Device to be checked
4767
* @port_num: Port number
4768
*/
4769
static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4770
u32 port_num)
4771
{
4772
if (rdma_protocol_roce(dev, port_num))
4773
return RDMA_AH_ATTR_TYPE_ROCE;
4774
if (rdma_protocol_ib(dev, port_num)) {
4775
if (rdma_cap_opa_ah(dev, port_num))
4776
return RDMA_AH_ATTR_TYPE_OPA;
4777
return RDMA_AH_ATTR_TYPE_IB;
4778
}
4779
if (dev->type == RDMA_DEVICE_TYPE_SMI)
4780
return RDMA_AH_ATTR_TYPE_IB;
4781
4782
return RDMA_AH_ATTR_TYPE_UNDEFINED;
4783
}
4784
4785
/**
4786
* ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4787
* In the current implementation the only way to
4788
* get the 32bit lid is from other sources for OPA.
4789
* For IB, lids will always be 16bits so cast the
4790
* value accordingly.
4791
*
4792
* @lid: A 32bit LID
4793
*/
4794
static inline u16 ib_lid_cpu16(u32 lid)
4795
{
4796
WARN_ON_ONCE(lid & 0xFFFF0000);
4797
return (u16)lid;
4798
}
4799
4800
/**
4801
* ib_lid_be16 - Return lid in 16bit BE encoding.
4802
*
4803
* @lid: A 32bit LID
4804
*/
4805
static inline __be16 ib_lid_be16(u32 lid)
4806
{
4807
WARN_ON_ONCE(lid & 0xFFFF0000);
4808
return cpu_to_be16((u16)lid);
4809
}
4810
4811
/**
4812
* ib_get_vector_affinity - Get the affinity mappings of a given completion
4813
* vector
4814
* @device: the rdma device
4815
* @comp_vector: index of completion vector
4816
*
4817
* Returns NULL on failure, otherwise a corresponding cpu map of the
4818
* completion vector (returns all-cpus map if the device driver doesn't
4819
* implement get_vector_affinity).
4820
*/
4821
static inline const struct cpumask *
4822
ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4823
{
4824
if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4825
!device->ops.get_vector_affinity)
4826
return NULL;
4827
4828
return device->ops.get_vector_affinity(device, comp_vector);
4829
4830
}
4831
4832
/**
4833
* rdma_roce_rescan_device - Rescan all of the network devices in the system
4834
* and add their gids, as needed, to the relevant RoCE devices.
4835
*
4836
* @ibdev: the rdma device
4837
*/
4838
void rdma_roce_rescan_device(struct ib_device *ibdev);
4839
void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port);
4840
void roce_del_all_netdev_gids(struct ib_device *ib_dev,
4841
u32 port, struct net_device *ndev);
4842
4843
struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4844
4845
#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
4846
int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4847
bool rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs);
4848
#else
4849
static inline int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs)
4850
{
4851
return 0;
4852
}
4853
static inline bool
4854
rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs)
4855
{
4856
return false;
4857
}
4858
#endif
4859
4860
struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4861
enum rdma_netdev_t type, const char *name,
4862
unsigned char name_assign_type,
4863
void (*setup)(struct net_device *));
4864
4865
int rdma_init_netdev(struct ib_device *device, u32 port_num,
4866
enum rdma_netdev_t type, const char *name,
4867
unsigned char name_assign_type,
4868
void (*setup)(struct net_device *),
4869
struct net_device *netdev);
4870
4871
/**
4872
* rdma_device_to_ibdev - Get ib_device pointer from device pointer
4873
*
4874
* @device: device pointer for which ib_device pointer to retrieve
4875
*
4876
* rdma_device_to_ibdev() retrieves ib_device pointer from device.
4877
*
4878
*/
4879
static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4880
{
4881
struct ib_core_device *coredev =
4882
container_of(device, struct ib_core_device, dev);
4883
4884
return coredev->owner;
4885
}
4886
4887
/**
4888
* ibdev_to_node - return the NUMA node for a given ib_device
4889
* @ibdev: device to get the NUMA node for.
4890
*/
4891
static inline int ibdev_to_node(struct ib_device *ibdev)
4892
{
4893
struct device *parent = ibdev->dev.parent;
4894
4895
if (!parent)
4896
return NUMA_NO_NODE;
4897
return dev_to_node(parent);
4898
}
4899
4900
/**
4901
* rdma_device_to_drv_device - Helper macro to reach back to driver's
4902
* ib_device holder structure from device pointer.
4903
*
4904
* NOTE: New drivers should not make use of this API; This API is only for
4905
* existing drivers who have exposed sysfs entries using
4906
* ops->device_group.
4907
*/
4908
#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4909
container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4910
4911
bool rdma_dev_access_netns(const struct ib_device *device,
4912
const struct net *net);
4913
4914
bool rdma_dev_has_raw_cap(const struct ib_device *dev);
4915
static inline struct net *rdma_dev_net(struct ib_device *device)
4916
{
4917
return read_pnet(&device->coredev.rdma_net);
4918
}
4919
4920
#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4921
#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4922
#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4923
4924
/**
4925
* rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4926
* on the flow_label
4927
* @fl: flow_label value
4928
*
4929
* This function will convert the 20 bit flow_label input to a valid RoCE v2
4930
* UDP src port 14 bit value. All RoCE V2 drivers should use this same
4931
* convention.
4932
*/
4933
static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4934
{
4935
u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4936
4937
fl_low ^= fl_high >> 14;
4938
return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4939
}
4940
4941
/**
4942
* rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4943
* local and remote qpn values
4944
*
4945
* This function folded the multiplication results of two qpns, 24 bit each,
4946
* fields, and converts it to a 20 bit results.
4947
*
4948
* This function will create symmetric flow_label value based on the local
4949
* and remote qpn values. this will allow both the requester and responder
4950
* to calculate the same flow_label for a given connection.
4951
*
4952
* This helper function should be used by driver in case the upper layer
4953
* provide a zero flow_label value. This is to improve entropy of RDMA
4954
* traffic in the network.
4955
*/
4956
static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4957
{
4958
u64 v = (u64)lqpn * rqpn;
4959
4960
v ^= v >> 20;
4961
v ^= v >> 40;
4962
4963
return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4964
}
4965
4966
/**
4967
* rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4968
* label. If flow label is not defined in GRH then
4969
* calculate it based on lqpn/rqpn.
4970
*
4971
* @fl: flow label from GRH
4972
* @lqpn: local qp number
4973
* @rqpn: remote qp number
4974
*/
4975
static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4976
{
4977
if (!fl)
4978
fl = rdma_calc_flow_label(lqpn, rqpn);
4979
4980
return rdma_flow_label_to_udp_sport(fl);
4981
}
4982
4983
const struct ib_port_immutable*
4984
ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4985
4986
/** ib_add_sub_device - Add a sub IB device on an existing one
4987
*
4988
* @parent: The IB device that needs to add a sub device
4989
* @type: The type of the new sub device
4990
* @name: The name of the new sub device
4991
*
4992
*
4993
* Return 0 on success, an error code otherwise
4994
*/
4995
int ib_add_sub_device(struct ib_device *parent,
4996
enum rdma_nl_dev_type type,
4997
const char *name);
4998
4999
5000
/** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
5001
*
5002
* @sub: The sub device that is going to be deleted
5003
*
5004
* Return 0 on success, an error code otherwise
5005
*/
5006
int ib_del_sub_device_and_put(struct ib_device *sub);
5007
5008
static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
5009
{
5010
ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
5011
}
5012
5013
#endif /* IB_VERBS_H */
5014
5015