Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/rdma/ib_verbs.h
26278 views
1
/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2
/*
3
* Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
4
* Copyright (c) 2004 Infinicon Corporation. All rights reserved.
5
* Copyright (c) 2004, 2020 Intel Corporation. All rights reserved.
6
* Copyright (c) 2004 Topspin Corporation. All rights reserved.
7
* Copyright (c) 2004 Voltaire Corporation. All rights reserved.
8
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9
* Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
10
*/
11
12
#ifndef IB_VERBS_H
13
#define IB_VERBS_H
14
15
#include <linux/ethtool.h>
16
#include <linux/types.h>
17
#include <linux/device.h>
18
#include <linux/dma-mapping.h>
19
#include <linux/kref.h>
20
#include <linux/list.h>
21
#include <linux/rwsem.h>
22
#include <linux/workqueue.h>
23
#include <linux/irq_poll.h>
24
#include <uapi/linux/if_ether.h>
25
#include <net/ipv6.h>
26
#include <net/ip.h>
27
#include <linux/string.h>
28
#include <linux/slab.h>
29
#include <linux/netdevice.h>
30
#include <linux/refcount.h>
31
#include <linux/if_link.h>
32
#include <linux/atomic.h>
33
#include <linux/mmu_notifier.h>
34
#include <linux/uaccess.h>
35
#include <linux/cgroup_rdma.h>
36
#include <linux/irqflags.h>
37
#include <linux/preempt.h>
38
#include <linux/dim.h>
39
#include <uapi/rdma/ib_user_verbs.h>
40
#include <rdma/rdma_counter.h>
41
#include <rdma/restrack.h>
42
#include <rdma/signature.h>
43
#include <uapi/rdma/rdma_user_ioctl.h>
44
#include <uapi/rdma/ib_user_ioctl_verbs.h>
45
#include <linux/pci-tph.h>
46
47
#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN
48
49
struct ib_umem_odp;
50
struct ib_uqp_object;
51
struct ib_usrq_object;
52
struct ib_uwq_object;
53
struct rdma_cm_id;
54
struct ib_port;
55
struct hw_stats_device_data;
56
57
extern struct workqueue_struct *ib_wq;
58
extern struct workqueue_struct *ib_comp_wq;
59
extern struct workqueue_struct *ib_comp_unbound_wq;
60
61
struct ib_ucq_object;
62
63
__printf(2, 3) __cold
64
void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
65
__printf(2, 3) __cold
66
void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
67
__printf(2, 3) __cold
68
void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
69
__printf(2, 3) __cold
70
void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
71
__printf(2, 3) __cold
72
void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
73
__printf(2, 3) __cold
74
void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
75
__printf(2, 3) __cold
76
void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
77
78
#if defined(CONFIG_DYNAMIC_DEBUG) || \
79
(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
80
#define ibdev_dbg(__dev, format, args...) \
81
dynamic_ibdev_dbg(__dev, format, ##args)
82
#else
83
__printf(2, 3) __cold
84
static inline
85
void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
86
#endif
87
88
#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \
89
do { \
90
static DEFINE_RATELIMIT_STATE(_rs, \
91
DEFAULT_RATELIMIT_INTERVAL, \
92
DEFAULT_RATELIMIT_BURST); \
93
if (__ratelimit(&_rs)) \
94
ibdev_level(ibdev, fmt, ##__VA_ARGS__); \
95
} while (0)
96
97
#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
98
ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
99
#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
100
ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
101
#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
102
ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
103
#define ibdev_err_ratelimited(ibdev, fmt, ...) \
104
ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
105
#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
106
ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
107
#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
108
ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
109
#define ibdev_info_ratelimited(ibdev, fmt, ...) \
110
ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
111
112
#if defined(CONFIG_DYNAMIC_DEBUG) || \
113
(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
114
/* descriptor check is first to prevent flooding with "callbacks suppressed" */
115
#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \
116
do { \
117
static DEFINE_RATELIMIT_STATE(_rs, \
118
DEFAULT_RATELIMIT_INTERVAL, \
119
DEFAULT_RATELIMIT_BURST); \
120
DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \
121
if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \
122
__dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \
123
##__VA_ARGS__); \
124
} while (0)
125
#else
126
__printf(2, 3) __cold
127
static inline
128
void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
129
#endif
130
131
union ib_gid {
132
u8 raw[16];
133
struct {
134
__be64 subnet_prefix;
135
__be64 interface_id;
136
} global;
137
};
138
139
extern union ib_gid zgid;
140
141
enum ib_gid_type {
142
IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
143
IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
144
IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
145
IB_GID_TYPE_SIZE
146
};
147
148
#define ROCE_V2_UDP_DPORT 4791
149
struct ib_gid_attr {
150
struct net_device __rcu *ndev;
151
struct ib_device *device;
152
union ib_gid gid;
153
enum ib_gid_type gid_type;
154
u16 index;
155
u32 port_num;
156
};
157
158
enum {
159
/* set the local administered indication */
160
IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2,
161
};
162
163
enum rdma_transport_type {
164
RDMA_TRANSPORT_IB,
165
RDMA_TRANSPORT_IWARP,
166
RDMA_TRANSPORT_USNIC,
167
RDMA_TRANSPORT_USNIC_UDP,
168
RDMA_TRANSPORT_UNSPECIFIED,
169
};
170
171
enum rdma_protocol_type {
172
RDMA_PROTOCOL_IB,
173
RDMA_PROTOCOL_IBOE,
174
RDMA_PROTOCOL_IWARP,
175
RDMA_PROTOCOL_USNIC_UDP
176
};
177
178
__attribute_const__ enum rdma_transport_type
179
rdma_node_get_transport(unsigned int node_type);
180
181
enum rdma_network_type {
182
RDMA_NETWORK_IB,
183
RDMA_NETWORK_ROCE_V1,
184
RDMA_NETWORK_IPV4,
185
RDMA_NETWORK_IPV6
186
};
187
188
static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
189
{
190
if (network_type == RDMA_NETWORK_IPV4 ||
191
network_type == RDMA_NETWORK_IPV6)
192
return IB_GID_TYPE_ROCE_UDP_ENCAP;
193
else if (network_type == RDMA_NETWORK_ROCE_V1)
194
return IB_GID_TYPE_ROCE;
195
else
196
return IB_GID_TYPE_IB;
197
}
198
199
static inline enum rdma_network_type
200
rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
201
{
202
if (attr->gid_type == IB_GID_TYPE_IB)
203
return RDMA_NETWORK_IB;
204
205
if (attr->gid_type == IB_GID_TYPE_ROCE)
206
return RDMA_NETWORK_ROCE_V1;
207
208
if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
209
return RDMA_NETWORK_IPV4;
210
else
211
return RDMA_NETWORK_IPV6;
212
}
213
214
enum rdma_link_layer {
215
IB_LINK_LAYER_UNSPECIFIED,
216
IB_LINK_LAYER_INFINIBAND,
217
IB_LINK_LAYER_ETHERNET,
218
};
219
220
enum ib_device_cap_flags {
221
IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
222
IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
223
IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
224
IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
225
IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
226
IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
227
IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
228
IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
229
IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
230
/* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
231
IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
232
IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
233
IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
234
IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
235
IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
236
237
/* Reserved, old SEND_W_INV = 1 << 16,*/
238
IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
239
/*
240
* Devices should set IB_DEVICE_UD_IP_SUM if they support
241
* insertion of UDP and TCP checksum on outgoing UD IPoIB
242
* messages and can verify the validity of checksum for
243
* incoming messages. Setting this flag implies that the
244
* IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
245
*/
246
IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
247
IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
248
249
/*
250
* This device supports the IB "base memory management extension",
251
* which includes support for fast registrations (IB_WR_REG_MR,
252
* IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
253
* also be set by any iWarp device which must support FRs to comply
254
* to the iWarp verbs spec. iWarp devices also support the
255
* IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
256
* stag.
257
*/
258
IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
259
IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
260
IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
261
IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
262
/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
263
IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
264
IB_DEVICE_MANAGED_FLOW_STEERING =
265
IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
266
/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
267
IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
268
/* The device supports padding incoming writes to cacheline. */
269
IB_DEVICE_PCI_WRITE_END_PADDING =
270
IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
271
/* Placement type attributes */
272
IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
273
IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
274
IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
275
};
276
277
enum ib_kernel_cap_flags {
278
/*
279
* This device supports a per-device lkey or stag that can be
280
* used without performing a memory registration for the local
281
* memory. Note that ULPs should never check this flag, but
282
* instead of use the local_dma_lkey flag in the ib_pd structure,
283
* which will always contain a usable lkey.
284
*/
285
IBK_LOCAL_DMA_LKEY = 1 << 0,
286
/* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
287
IBK_INTEGRITY_HANDOVER = 1 << 1,
288
/* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
289
IBK_ON_DEMAND_PAGING = 1 << 2,
290
/* IB_MR_TYPE_SG_GAPS is supported */
291
IBK_SG_GAPS_REG = 1 << 3,
292
/* Driver supports RDMA_NLDEV_CMD_DELLINK */
293
IBK_ALLOW_USER_UNREG = 1 << 4,
294
295
/* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
296
IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
297
/* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
298
IBK_UD_TSO = 1 << 6,
299
/* iopib will use the device ops:
300
* get_vf_config
301
* get_vf_guid
302
* get_vf_stats
303
* set_vf_guid
304
* set_vf_link_state
305
*/
306
IBK_VIRTUAL_FUNCTION = 1 << 7,
307
/* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
308
IBK_RDMA_NETDEV_OPA = 1 << 8,
309
};
310
311
enum ib_atomic_cap {
312
IB_ATOMIC_NONE,
313
IB_ATOMIC_HCA,
314
IB_ATOMIC_GLOB
315
};
316
317
enum ib_odp_general_cap_bits {
318
IB_ODP_SUPPORT = IB_UVERBS_ODP_SUPPORT,
319
IB_ODP_SUPPORT_IMPLICIT = IB_UVERBS_ODP_SUPPORT_IMPLICIT,
320
};
321
322
enum ib_odp_transport_cap_bits {
323
IB_ODP_SUPPORT_SEND = IB_UVERBS_ODP_SUPPORT_SEND,
324
IB_ODP_SUPPORT_RECV = IB_UVERBS_ODP_SUPPORT_RECV,
325
IB_ODP_SUPPORT_WRITE = IB_UVERBS_ODP_SUPPORT_WRITE,
326
IB_ODP_SUPPORT_READ = IB_UVERBS_ODP_SUPPORT_READ,
327
IB_ODP_SUPPORT_ATOMIC = IB_UVERBS_ODP_SUPPORT_ATOMIC,
328
IB_ODP_SUPPORT_SRQ_RECV = IB_UVERBS_ODP_SUPPORT_SRQ_RECV,
329
IB_ODP_SUPPORT_FLUSH = IB_UVERBS_ODP_SUPPORT_FLUSH,
330
IB_ODP_SUPPORT_ATOMIC_WRITE = IB_UVERBS_ODP_SUPPORT_ATOMIC_WRITE,
331
};
332
333
struct ib_odp_caps {
334
uint64_t general_caps;
335
struct {
336
uint32_t rc_odp_caps;
337
uint32_t uc_odp_caps;
338
uint32_t ud_odp_caps;
339
uint32_t xrc_odp_caps;
340
} per_transport_caps;
341
};
342
343
struct ib_rss_caps {
344
/* Corresponding bit will be set if qp type from
345
* 'enum ib_qp_type' is supported, e.g.
346
* supported_qpts |= 1 << IB_QPT_UD
347
*/
348
u32 supported_qpts;
349
u32 max_rwq_indirection_tables;
350
u32 max_rwq_indirection_table_size;
351
};
352
353
enum ib_tm_cap_flags {
354
/* Support tag matching with rendezvous offload for RC transport */
355
IB_TM_CAP_RNDV_RC = 1 << 0,
356
};
357
358
struct ib_tm_caps {
359
/* Max size of RNDV header */
360
u32 max_rndv_hdr_size;
361
/* Max number of entries in tag matching list */
362
u32 max_num_tags;
363
/* From enum ib_tm_cap_flags */
364
u32 flags;
365
/* Max number of outstanding list operations */
366
u32 max_ops;
367
/* Max number of SGE in tag matching entry */
368
u32 max_sge;
369
};
370
371
struct ib_cq_init_attr {
372
unsigned int cqe;
373
u32 comp_vector;
374
u32 flags;
375
};
376
377
enum ib_cq_attr_mask {
378
IB_CQ_MODERATE = 1 << 0,
379
};
380
381
struct ib_cq_caps {
382
u16 max_cq_moderation_count;
383
u16 max_cq_moderation_period;
384
};
385
386
struct ib_dm_mr_attr {
387
u64 length;
388
u64 offset;
389
u32 access_flags;
390
};
391
392
struct ib_dm_alloc_attr {
393
u64 length;
394
u32 alignment;
395
u32 flags;
396
};
397
398
struct ib_device_attr {
399
u64 fw_ver;
400
__be64 sys_image_guid;
401
u64 max_mr_size;
402
u64 page_size_cap;
403
u32 vendor_id;
404
u32 vendor_part_id;
405
u32 hw_ver;
406
int max_qp;
407
int max_qp_wr;
408
u64 device_cap_flags;
409
u64 kernel_cap_flags;
410
int max_send_sge;
411
int max_recv_sge;
412
int max_sge_rd;
413
int max_cq;
414
int max_cqe;
415
int max_mr;
416
int max_pd;
417
int max_qp_rd_atom;
418
int max_ee_rd_atom;
419
int max_res_rd_atom;
420
int max_qp_init_rd_atom;
421
int max_ee_init_rd_atom;
422
enum ib_atomic_cap atomic_cap;
423
enum ib_atomic_cap masked_atomic_cap;
424
int max_ee;
425
int max_rdd;
426
int max_mw;
427
int max_raw_ipv6_qp;
428
int max_raw_ethy_qp;
429
int max_mcast_grp;
430
int max_mcast_qp_attach;
431
int max_total_mcast_qp_attach;
432
int max_ah;
433
int max_srq;
434
int max_srq_wr;
435
int max_srq_sge;
436
unsigned int max_fast_reg_page_list_len;
437
unsigned int max_pi_fast_reg_page_list_len;
438
u16 max_pkeys;
439
u8 local_ca_ack_delay;
440
int sig_prot_cap;
441
int sig_guard_cap;
442
struct ib_odp_caps odp_caps;
443
uint64_t timestamp_mask;
444
uint64_t hca_core_clock; /* in KHZ */
445
struct ib_rss_caps rss_caps;
446
u32 max_wq_type_rq;
447
u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */
448
struct ib_tm_caps tm_caps;
449
struct ib_cq_caps cq_caps;
450
u64 max_dm_size;
451
/* Max entries for sgl for optimized performance per READ */
452
u32 max_sgl_rd;
453
};
454
455
enum ib_mtu {
456
IB_MTU_256 = 1,
457
IB_MTU_512 = 2,
458
IB_MTU_1024 = 3,
459
IB_MTU_2048 = 4,
460
IB_MTU_4096 = 5
461
};
462
463
enum opa_mtu {
464
OPA_MTU_8192 = 6,
465
OPA_MTU_10240 = 7
466
};
467
468
static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469
{
470
switch (mtu) {
471
case IB_MTU_256: return 256;
472
case IB_MTU_512: return 512;
473
case IB_MTU_1024: return 1024;
474
case IB_MTU_2048: return 2048;
475
case IB_MTU_4096: return 4096;
476
default: return -1;
477
}
478
}
479
480
static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481
{
482
if (mtu >= 4096)
483
return IB_MTU_4096;
484
else if (mtu >= 2048)
485
return IB_MTU_2048;
486
else if (mtu >= 1024)
487
return IB_MTU_1024;
488
else if (mtu >= 512)
489
return IB_MTU_512;
490
else
491
return IB_MTU_256;
492
}
493
494
static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495
{
496
switch (mtu) {
497
case OPA_MTU_8192:
498
return 8192;
499
case OPA_MTU_10240:
500
return 10240;
501
default:
502
return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503
}
504
}
505
506
static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507
{
508
if (mtu >= 10240)
509
return OPA_MTU_10240;
510
else if (mtu >= 8192)
511
return OPA_MTU_8192;
512
else
513
return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514
}
515
516
enum ib_port_state {
517
IB_PORT_NOP = 0,
518
IB_PORT_DOWN = 1,
519
IB_PORT_INIT = 2,
520
IB_PORT_ARMED = 3,
521
IB_PORT_ACTIVE = 4,
522
IB_PORT_ACTIVE_DEFER = 5
523
};
524
525
static inline const char *__attribute_const__
526
ib_port_state_to_str(enum ib_port_state state)
527
{
528
const char * const states[] = {
529
[IB_PORT_NOP] = "NOP",
530
[IB_PORT_DOWN] = "DOWN",
531
[IB_PORT_INIT] = "INIT",
532
[IB_PORT_ARMED] = "ARMED",
533
[IB_PORT_ACTIVE] = "ACTIVE",
534
[IB_PORT_ACTIVE_DEFER] = "ACTIVE_DEFER",
535
};
536
537
if (state < ARRAY_SIZE(states))
538
return states[state];
539
return "UNKNOWN";
540
}
541
542
enum ib_port_phys_state {
543
IB_PORT_PHYS_STATE_SLEEP = 1,
544
IB_PORT_PHYS_STATE_POLLING = 2,
545
IB_PORT_PHYS_STATE_DISABLED = 3,
546
IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
547
IB_PORT_PHYS_STATE_LINK_UP = 5,
548
IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
549
IB_PORT_PHYS_STATE_PHY_TEST = 7,
550
};
551
552
enum ib_port_width {
553
IB_WIDTH_1X = 1,
554
IB_WIDTH_2X = 16,
555
IB_WIDTH_4X = 2,
556
IB_WIDTH_8X = 4,
557
IB_WIDTH_12X = 8
558
};
559
560
static inline int ib_width_enum_to_int(enum ib_port_width width)
561
{
562
switch (width) {
563
case IB_WIDTH_1X: return 1;
564
case IB_WIDTH_2X: return 2;
565
case IB_WIDTH_4X: return 4;
566
case IB_WIDTH_8X: return 8;
567
case IB_WIDTH_12X: return 12;
568
default: return -1;
569
}
570
}
571
572
enum ib_port_speed {
573
IB_SPEED_SDR = 1,
574
IB_SPEED_DDR = 2,
575
IB_SPEED_QDR = 4,
576
IB_SPEED_FDR10 = 8,
577
IB_SPEED_FDR = 16,
578
IB_SPEED_EDR = 32,
579
IB_SPEED_HDR = 64,
580
IB_SPEED_NDR = 128,
581
IB_SPEED_XDR = 256,
582
};
583
584
enum ib_stat_flag {
585
IB_STAT_FLAG_OPTIONAL = 1 << 0,
586
};
587
588
/**
589
* struct rdma_stat_desc
590
* @name - The name of the counter
591
* @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
592
* @priv - Driver private information; Core code should not use
593
*/
594
struct rdma_stat_desc {
595
const char *name;
596
unsigned int flags;
597
const void *priv;
598
};
599
600
/**
601
* struct rdma_hw_stats
602
* @lock - Mutex to protect parallel write access to lifespan and values
603
* of counters, which are 64bits and not guaranteed to be written
604
* atomicaly on 32bits systems.
605
* @timestamp - Used by the core code to track when the last update was
606
* @lifespan - Used by the core code to determine how old the counters
607
* should be before being updated again. Stored in jiffies, defaults
608
* to 10 milliseconds, drivers can override the default be specifying
609
* their own value during their allocation routine.
610
* @descs - Array of pointers to static descriptors used for the counters
611
* in directory.
612
* @is_disabled - A bitmap to indicate each counter is currently disabled
613
* or not.
614
* @num_counters - How many hardware counters there are. If name is
615
* shorter than this number, a kernel oops will result. Driver authors
616
* are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
617
* in their code to prevent this.
618
* @value - Array of u64 counters that are accessed by the sysfs code and
619
* filled in by the drivers get_stats routine
620
*/
621
struct rdma_hw_stats {
622
struct mutex lock; /* Protect lifespan and values[] */
623
unsigned long timestamp;
624
unsigned long lifespan;
625
const struct rdma_stat_desc *descs;
626
unsigned long *is_disabled;
627
int num_counters;
628
u64 value[] __counted_by(num_counters);
629
};
630
631
#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
632
633
struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
634
const struct rdma_stat_desc *descs, int num_counters,
635
unsigned long lifespan);
636
637
void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
638
639
/* Define bits for the various functionality this port needs to be supported by
640
* the core.
641
*/
642
/* Management 0x00000FFF */
643
#define RDMA_CORE_CAP_IB_MAD 0x00000001
644
#define RDMA_CORE_CAP_IB_SMI 0x00000002
645
#define RDMA_CORE_CAP_IB_CM 0x00000004
646
#define RDMA_CORE_CAP_IW_CM 0x00000008
647
#define RDMA_CORE_CAP_IB_SA 0x00000010
648
#define RDMA_CORE_CAP_OPA_MAD 0x00000020
649
650
/* Address format 0x000FF000 */
651
#define RDMA_CORE_CAP_AF_IB 0x00001000
652
#define RDMA_CORE_CAP_ETH_AH 0x00002000
653
#define RDMA_CORE_CAP_OPA_AH 0x00004000
654
#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000
655
656
/* Protocol 0xFFF00000 */
657
#define RDMA_CORE_CAP_PROT_IB 0x00100000
658
#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
659
#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
660
#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
661
#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000
662
#define RDMA_CORE_CAP_PROT_USNIC 0x02000000
663
664
#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
665
| RDMA_CORE_CAP_PROT_ROCE \
666
| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
667
668
#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
669
| RDMA_CORE_CAP_IB_MAD \
670
| RDMA_CORE_CAP_IB_SMI \
671
| RDMA_CORE_CAP_IB_CM \
672
| RDMA_CORE_CAP_IB_SA \
673
| RDMA_CORE_CAP_AF_IB)
674
#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
675
| RDMA_CORE_CAP_IB_MAD \
676
| RDMA_CORE_CAP_IB_CM \
677
| RDMA_CORE_CAP_AF_IB \
678
| RDMA_CORE_CAP_ETH_AH)
679
#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
680
(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
681
| RDMA_CORE_CAP_IB_MAD \
682
| RDMA_CORE_CAP_IB_CM \
683
| RDMA_CORE_CAP_AF_IB \
684
| RDMA_CORE_CAP_ETH_AH)
685
#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
686
| RDMA_CORE_CAP_IW_CM)
687
#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
688
| RDMA_CORE_CAP_OPA_MAD)
689
690
#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET)
691
692
#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC)
693
694
struct ib_port_attr {
695
u64 subnet_prefix;
696
enum ib_port_state state;
697
enum ib_mtu max_mtu;
698
enum ib_mtu active_mtu;
699
u32 phys_mtu;
700
int gid_tbl_len;
701
unsigned int ip_gids:1;
702
/* This is the value from PortInfo CapabilityMask, defined by IBA */
703
u32 port_cap_flags;
704
u32 max_msg_sz;
705
u32 bad_pkey_cntr;
706
u32 qkey_viol_cntr;
707
u16 pkey_tbl_len;
708
u32 sm_lid;
709
u32 lid;
710
u8 lmc;
711
u8 max_vl_num;
712
u8 sm_sl;
713
u8 subnet_timeout;
714
u8 init_type_reply;
715
u8 active_width;
716
u16 active_speed;
717
u8 phys_state;
718
u16 port_cap_flags2;
719
};
720
721
enum ib_device_modify_flags {
722
IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
723
IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
724
};
725
726
#define IB_DEVICE_NODE_DESC_MAX 64
727
728
struct ib_device_modify {
729
u64 sys_image_guid;
730
char node_desc[IB_DEVICE_NODE_DESC_MAX];
731
};
732
733
enum ib_port_modify_flags {
734
IB_PORT_SHUTDOWN = 1,
735
IB_PORT_INIT_TYPE = (1<<2),
736
IB_PORT_RESET_QKEY_CNTR = (1<<3),
737
IB_PORT_OPA_MASK_CHG = (1<<4)
738
};
739
740
struct ib_port_modify {
741
u32 set_port_cap_mask;
742
u32 clr_port_cap_mask;
743
u8 init_type;
744
};
745
746
enum ib_event_type {
747
IB_EVENT_CQ_ERR,
748
IB_EVENT_QP_FATAL,
749
IB_EVENT_QP_REQ_ERR,
750
IB_EVENT_QP_ACCESS_ERR,
751
IB_EVENT_COMM_EST,
752
IB_EVENT_SQ_DRAINED,
753
IB_EVENT_PATH_MIG,
754
IB_EVENT_PATH_MIG_ERR,
755
IB_EVENT_DEVICE_FATAL,
756
IB_EVENT_PORT_ACTIVE,
757
IB_EVENT_PORT_ERR,
758
IB_EVENT_LID_CHANGE,
759
IB_EVENT_PKEY_CHANGE,
760
IB_EVENT_SM_CHANGE,
761
IB_EVENT_SRQ_ERR,
762
IB_EVENT_SRQ_LIMIT_REACHED,
763
IB_EVENT_QP_LAST_WQE_REACHED,
764
IB_EVENT_CLIENT_REREGISTER,
765
IB_EVENT_GID_CHANGE,
766
IB_EVENT_WQ_FATAL,
767
};
768
769
const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
770
771
struct ib_event {
772
struct ib_device *device;
773
union {
774
struct ib_cq *cq;
775
struct ib_qp *qp;
776
struct ib_srq *srq;
777
struct ib_wq *wq;
778
u32 port_num;
779
} element;
780
enum ib_event_type event;
781
};
782
783
struct ib_event_handler {
784
struct ib_device *device;
785
void (*handler)(struct ib_event_handler *, struct ib_event *);
786
struct list_head list;
787
};
788
789
#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
790
do { \
791
(_ptr)->device = _device; \
792
(_ptr)->handler = _handler; \
793
INIT_LIST_HEAD(&(_ptr)->list); \
794
} while (0)
795
796
struct ib_global_route {
797
const struct ib_gid_attr *sgid_attr;
798
union ib_gid dgid;
799
u32 flow_label;
800
u8 sgid_index;
801
u8 hop_limit;
802
u8 traffic_class;
803
};
804
805
struct ib_grh {
806
__be32 version_tclass_flow;
807
__be16 paylen;
808
u8 next_hdr;
809
u8 hop_limit;
810
union ib_gid sgid;
811
union ib_gid dgid;
812
};
813
814
union rdma_network_hdr {
815
struct ib_grh ibgrh;
816
struct {
817
/* The IB spec states that if it's IPv4, the header
818
* is located in the last 20 bytes of the header.
819
*/
820
u8 reserved[20];
821
struct iphdr roce4grh;
822
};
823
};
824
825
#define IB_QPN_MASK 0xFFFFFF
826
827
enum {
828
IB_MULTICAST_QPN = 0xffffff
829
};
830
831
#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
832
#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000)
833
834
enum ib_ah_flags {
835
IB_AH_GRH = 1
836
};
837
838
enum ib_rate {
839
IB_RATE_PORT_CURRENT = 0,
840
IB_RATE_2_5_GBPS = 2,
841
IB_RATE_5_GBPS = 5,
842
IB_RATE_10_GBPS = 3,
843
IB_RATE_20_GBPS = 6,
844
IB_RATE_30_GBPS = 4,
845
IB_RATE_40_GBPS = 7,
846
IB_RATE_60_GBPS = 8,
847
IB_RATE_80_GBPS = 9,
848
IB_RATE_120_GBPS = 10,
849
IB_RATE_14_GBPS = 11,
850
IB_RATE_56_GBPS = 12,
851
IB_RATE_112_GBPS = 13,
852
IB_RATE_168_GBPS = 14,
853
IB_RATE_25_GBPS = 15,
854
IB_RATE_100_GBPS = 16,
855
IB_RATE_200_GBPS = 17,
856
IB_RATE_300_GBPS = 18,
857
IB_RATE_28_GBPS = 19,
858
IB_RATE_50_GBPS = 20,
859
IB_RATE_400_GBPS = 21,
860
IB_RATE_600_GBPS = 22,
861
IB_RATE_800_GBPS = 23,
862
};
863
864
/**
865
* ib_rate_to_mult - Convert the IB rate enum to a multiple of the
866
* base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
867
* converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
868
* @rate: rate to convert.
869
*/
870
__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
871
872
/**
873
* ib_rate_to_mbps - Convert the IB rate enum to Mbps.
874
* For example, IB_RATE_2_5_GBPS will be converted to 2500.
875
* @rate: rate to convert.
876
*/
877
__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
878
879
880
/**
881
* enum ib_mr_type - memory region type
882
* @IB_MR_TYPE_MEM_REG: memory region that is used for
883
* normal registration
884
* @IB_MR_TYPE_SG_GAPS: memory region that is capable to
885
* register any arbitrary sg lists (without
886
* the normal mr constraints - see
887
* ib_map_mr_sg)
888
* @IB_MR_TYPE_DM: memory region that is used for device
889
* memory registration
890
* @IB_MR_TYPE_USER: memory region that is used for the user-space
891
* application
892
* @IB_MR_TYPE_DMA: memory region that is used for DMA operations
893
* without address translations (VA=PA)
894
* @IB_MR_TYPE_INTEGRITY: memory region that is used for
895
* data integrity operations
896
*/
897
enum ib_mr_type {
898
IB_MR_TYPE_MEM_REG,
899
IB_MR_TYPE_SG_GAPS,
900
IB_MR_TYPE_DM,
901
IB_MR_TYPE_USER,
902
IB_MR_TYPE_DMA,
903
IB_MR_TYPE_INTEGRITY,
904
};
905
906
enum ib_mr_status_check {
907
IB_MR_CHECK_SIG_STATUS = 1,
908
};
909
910
/**
911
* struct ib_mr_status - Memory region status container
912
*
913
* @fail_status: Bitmask of MR checks status. For each
914
* failed check a corresponding status bit is set.
915
* @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
916
* failure.
917
*/
918
struct ib_mr_status {
919
u32 fail_status;
920
struct ib_sig_err sig_err;
921
};
922
923
/**
924
* mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
925
* enum.
926
* @mult: multiple to convert.
927
*/
928
__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
929
930
struct rdma_ah_init_attr {
931
struct rdma_ah_attr *ah_attr;
932
u32 flags;
933
struct net_device *xmit_slave;
934
};
935
936
enum rdma_ah_attr_type {
937
RDMA_AH_ATTR_TYPE_UNDEFINED,
938
RDMA_AH_ATTR_TYPE_IB,
939
RDMA_AH_ATTR_TYPE_ROCE,
940
RDMA_AH_ATTR_TYPE_OPA,
941
};
942
943
struct ib_ah_attr {
944
u16 dlid;
945
u8 src_path_bits;
946
};
947
948
struct roce_ah_attr {
949
u8 dmac[ETH_ALEN];
950
};
951
952
struct opa_ah_attr {
953
u32 dlid;
954
u8 src_path_bits;
955
bool make_grd;
956
};
957
958
struct rdma_ah_attr {
959
struct ib_global_route grh;
960
u8 sl;
961
u8 static_rate;
962
u32 port_num;
963
u8 ah_flags;
964
enum rdma_ah_attr_type type;
965
union {
966
struct ib_ah_attr ib;
967
struct roce_ah_attr roce;
968
struct opa_ah_attr opa;
969
};
970
};
971
972
enum ib_wc_status {
973
IB_WC_SUCCESS,
974
IB_WC_LOC_LEN_ERR,
975
IB_WC_LOC_QP_OP_ERR,
976
IB_WC_LOC_EEC_OP_ERR,
977
IB_WC_LOC_PROT_ERR,
978
IB_WC_WR_FLUSH_ERR,
979
IB_WC_MW_BIND_ERR,
980
IB_WC_BAD_RESP_ERR,
981
IB_WC_LOC_ACCESS_ERR,
982
IB_WC_REM_INV_REQ_ERR,
983
IB_WC_REM_ACCESS_ERR,
984
IB_WC_REM_OP_ERR,
985
IB_WC_RETRY_EXC_ERR,
986
IB_WC_RNR_RETRY_EXC_ERR,
987
IB_WC_LOC_RDD_VIOL_ERR,
988
IB_WC_REM_INV_RD_REQ_ERR,
989
IB_WC_REM_ABORT_ERR,
990
IB_WC_INV_EECN_ERR,
991
IB_WC_INV_EEC_STATE_ERR,
992
IB_WC_FATAL_ERR,
993
IB_WC_RESP_TIMEOUT_ERR,
994
IB_WC_GENERAL_ERR
995
};
996
997
const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
998
999
enum ib_wc_opcode {
1000
IB_WC_SEND = IB_UVERBS_WC_SEND,
1001
IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
1002
IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
1003
IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
1004
IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
1005
IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
1006
IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
1007
IB_WC_LSO = IB_UVERBS_WC_TSO,
1008
IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
1009
IB_WC_REG_MR,
1010
IB_WC_MASKED_COMP_SWAP,
1011
IB_WC_MASKED_FETCH_ADD,
1012
IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
1013
/*
1014
* Set value of IB_WC_RECV so consumers can test if a completion is a
1015
* receive by testing (opcode & IB_WC_RECV).
1016
*/
1017
IB_WC_RECV = 1 << 7,
1018
IB_WC_RECV_RDMA_WITH_IMM
1019
};
1020
1021
enum ib_wc_flags {
1022
IB_WC_GRH = 1,
1023
IB_WC_WITH_IMM = (1<<1),
1024
IB_WC_WITH_INVALIDATE = (1<<2),
1025
IB_WC_IP_CSUM_OK = (1<<3),
1026
IB_WC_WITH_SMAC = (1<<4),
1027
IB_WC_WITH_VLAN = (1<<5),
1028
IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1029
};
1030
1031
struct ib_wc {
1032
union {
1033
u64 wr_id;
1034
struct ib_cqe *wr_cqe;
1035
};
1036
enum ib_wc_status status;
1037
enum ib_wc_opcode opcode;
1038
u32 vendor_err;
1039
u32 byte_len;
1040
struct ib_qp *qp;
1041
union {
1042
__be32 imm_data;
1043
u32 invalidate_rkey;
1044
} ex;
1045
u32 src_qp;
1046
u32 slid;
1047
int wc_flags;
1048
u16 pkey_index;
1049
u8 sl;
1050
u8 dlid_path_bits;
1051
u32 port_num; /* valid only for DR SMPs on switches */
1052
u8 smac[ETH_ALEN];
1053
u16 vlan_id;
1054
u8 network_hdr_type;
1055
};
1056
1057
enum ib_cq_notify_flags {
1058
IB_CQ_SOLICITED = 1 << 0,
1059
IB_CQ_NEXT_COMP = 1 << 1,
1060
IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1061
IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1062
};
1063
1064
enum ib_srq_type {
1065
IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1066
IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1067
IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1068
};
1069
1070
static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1071
{
1072
return srq_type == IB_SRQT_XRC ||
1073
srq_type == IB_SRQT_TM;
1074
}
1075
1076
enum ib_srq_attr_mask {
1077
IB_SRQ_MAX_WR = 1 << 0,
1078
IB_SRQ_LIMIT = 1 << 1,
1079
};
1080
1081
struct ib_srq_attr {
1082
u32 max_wr;
1083
u32 max_sge;
1084
u32 srq_limit;
1085
};
1086
1087
struct ib_srq_init_attr {
1088
void (*event_handler)(struct ib_event *, void *);
1089
void *srq_context;
1090
struct ib_srq_attr attr;
1091
enum ib_srq_type srq_type;
1092
1093
struct {
1094
struct ib_cq *cq;
1095
union {
1096
struct {
1097
struct ib_xrcd *xrcd;
1098
} xrc;
1099
1100
struct {
1101
u32 max_num_tags;
1102
} tag_matching;
1103
};
1104
} ext;
1105
};
1106
1107
struct ib_qp_cap {
1108
u32 max_send_wr;
1109
u32 max_recv_wr;
1110
u32 max_send_sge;
1111
u32 max_recv_sge;
1112
u32 max_inline_data;
1113
1114
/*
1115
* Maximum number of rdma_rw_ctx structures in flight at a time.
1116
* ib_create_qp() will calculate the right amount of needed WRs
1117
* and MRs based on this.
1118
*/
1119
u32 max_rdma_ctxs;
1120
};
1121
1122
enum ib_sig_type {
1123
IB_SIGNAL_ALL_WR,
1124
IB_SIGNAL_REQ_WR
1125
};
1126
1127
enum ib_qp_type {
1128
/*
1129
* IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1130
* here (and in that order) since the MAD layer uses them as
1131
* indices into a 2-entry table.
1132
*/
1133
IB_QPT_SMI,
1134
IB_QPT_GSI,
1135
1136
IB_QPT_RC = IB_UVERBS_QPT_RC,
1137
IB_QPT_UC = IB_UVERBS_QPT_UC,
1138
IB_QPT_UD = IB_UVERBS_QPT_UD,
1139
IB_QPT_RAW_IPV6,
1140
IB_QPT_RAW_ETHERTYPE,
1141
IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1142
IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1143
IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1144
IB_QPT_MAX,
1145
IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1146
/* Reserve a range for qp types internal to the low level driver.
1147
* These qp types will not be visible at the IB core layer, so the
1148
* IB_QPT_MAX usages should not be affected in the core layer
1149
*/
1150
IB_QPT_RESERVED1 = 0x1000,
1151
IB_QPT_RESERVED2,
1152
IB_QPT_RESERVED3,
1153
IB_QPT_RESERVED4,
1154
IB_QPT_RESERVED5,
1155
IB_QPT_RESERVED6,
1156
IB_QPT_RESERVED7,
1157
IB_QPT_RESERVED8,
1158
IB_QPT_RESERVED9,
1159
IB_QPT_RESERVED10,
1160
};
1161
1162
enum ib_qp_create_flags {
1163
IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
1164
IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK =
1165
IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1166
IB_QP_CREATE_CROSS_CHANNEL = 1 << 2,
1167
IB_QP_CREATE_MANAGED_SEND = 1 << 3,
1168
IB_QP_CREATE_MANAGED_RECV = 1 << 4,
1169
IB_QP_CREATE_NETIF_QP = 1 << 5,
1170
IB_QP_CREATE_INTEGRITY_EN = 1 << 6,
1171
IB_QP_CREATE_NETDEV_USE = 1 << 7,
1172
IB_QP_CREATE_SCATTER_FCS =
1173
IB_UVERBS_QP_CREATE_SCATTER_FCS,
1174
IB_QP_CREATE_CVLAN_STRIPPING =
1175
IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1176
IB_QP_CREATE_SOURCE_QPN = 1 << 10,
1177
IB_QP_CREATE_PCI_WRITE_END_PADDING =
1178
IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1179
/* reserve bits 26-31 for low level drivers' internal use */
1180
IB_QP_CREATE_RESERVED_START = 1 << 26,
1181
IB_QP_CREATE_RESERVED_END = 1 << 31,
1182
};
1183
1184
/*
1185
* Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1186
* callback to destroy the passed in QP.
1187
*/
1188
1189
struct ib_qp_init_attr {
1190
/* This callback occurs in workqueue context */
1191
void (*event_handler)(struct ib_event *, void *);
1192
1193
void *qp_context;
1194
struct ib_cq *send_cq;
1195
struct ib_cq *recv_cq;
1196
struct ib_srq *srq;
1197
struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1198
struct ib_qp_cap cap;
1199
enum ib_sig_type sq_sig_type;
1200
enum ib_qp_type qp_type;
1201
u32 create_flags;
1202
1203
/*
1204
* Only needed for special QP types, or when using the RW API.
1205
*/
1206
u32 port_num;
1207
struct ib_rwq_ind_table *rwq_ind_tbl;
1208
u32 source_qpn;
1209
};
1210
1211
struct ib_qp_open_attr {
1212
void (*event_handler)(struct ib_event *, void *);
1213
void *qp_context;
1214
u32 qp_num;
1215
enum ib_qp_type qp_type;
1216
};
1217
1218
enum ib_rnr_timeout {
1219
IB_RNR_TIMER_655_36 = 0,
1220
IB_RNR_TIMER_000_01 = 1,
1221
IB_RNR_TIMER_000_02 = 2,
1222
IB_RNR_TIMER_000_03 = 3,
1223
IB_RNR_TIMER_000_04 = 4,
1224
IB_RNR_TIMER_000_06 = 5,
1225
IB_RNR_TIMER_000_08 = 6,
1226
IB_RNR_TIMER_000_12 = 7,
1227
IB_RNR_TIMER_000_16 = 8,
1228
IB_RNR_TIMER_000_24 = 9,
1229
IB_RNR_TIMER_000_32 = 10,
1230
IB_RNR_TIMER_000_48 = 11,
1231
IB_RNR_TIMER_000_64 = 12,
1232
IB_RNR_TIMER_000_96 = 13,
1233
IB_RNR_TIMER_001_28 = 14,
1234
IB_RNR_TIMER_001_92 = 15,
1235
IB_RNR_TIMER_002_56 = 16,
1236
IB_RNR_TIMER_003_84 = 17,
1237
IB_RNR_TIMER_005_12 = 18,
1238
IB_RNR_TIMER_007_68 = 19,
1239
IB_RNR_TIMER_010_24 = 20,
1240
IB_RNR_TIMER_015_36 = 21,
1241
IB_RNR_TIMER_020_48 = 22,
1242
IB_RNR_TIMER_030_72 = 23,
1243
IB_RNR_TIMER_040_96 = 24,
1244
IB_RNR_TIMER_061_44 = 25,
1245
IB_RNR_TIMER_081_92 = 26,
1246
IB_RNR_TIMER_122_88 = 27,
1247
IB_RNR_TIMER_163_84 = 28,
1248
IB_RNR_TIMER_245_76 = 29,
1249
IB_RNR_TIMER_327_68 = 30,
1250
IB_RNR_TIMER_491_52 = 31
1251
};
1252
1253
enum ib_qp_attr_mask {
1254
IB_QP_STATE = 1,
1255
IB_QP_CUR_STATE = (1<<1),
1256
IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1257
IB_QP_ACCESS_FLAGS = (1<<3),
1258
IB_QP_PKEY_INDEX = (1<<4),
1259
IB_QP_PORT = (1<<5),
1260
IB_QP_QKEY = (1<<6),
1261
IB_QP_AV = (1<<7),
1262
IB_QP_PATH_MTU = (1<<8),
1263
IB_QP_TIMEOUT = (1<<9),
1264
IB_QP_RETRY_CNT = (1<<10),
1265
IB_QP_RNR_RETRY = (1<<11),
1266
IB_QP_RQ_PSN = (1<<12),
1267
IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1268
IB_QP_ALT_PATH = (1<<14),
1269
IB_QP_MIN_RNR_TIMER = (1<<15),
1270
IB_QP_SQ_PSN = (1<<16),
1271
IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1272
IB_QP_PATH_MIG_STATE = (1<<18),
1273
IB_QP_CAP = (1<<19),
1274
IB_QP_DEST_QPN = (1<<20),
1275
IB_QP_RESERVED1 = (1<<21),
1276
IB_QP_RESERVED2 = (1<<22),
1277
IB_QP_RESERVED3 = (1<<23),
1278
IB_QP_RESERVED4 = (1<<24),
1279
IB_QP_RATE_LIMIT = (1<<25),
1280
1281
IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1282
};
1283
1284
enum ib_qp_state {
1285
IB_QPS_RESET,
1286
IB_QPS_INIT,
1287
IB_QPS_RTR,
1288
IB_QPS_RTS,
1289
IB_QPS_SQD,
1290
IB_QPS_SQE,
1291
IB_QPS_ERR
1292
};
1293
1294
enum ib_mig_state {
1295
IB_MIG_MIGRATED,
1296
IB_MIG_REARM,
1297
IB_MIG_ARMED
1298
};
1299
1300
enum ib_mw_type {
1301
IB_MW_TYPE_1 = 1,
1302
IB_MW_TYPE_2 = 2
1303
};
1304
1305
struct ib_qp_attr {
1306
enum ib_qp_state qp_state;
1307
enum ib_qp_state cur_qp_state;
1308
enum ib_mtu path_mtu;
1309
enum ib_mig_state path_mig_state;
1310
u32 qkey;
1311
u32 rq_psn;
1312
u32 sq_psn;
1313
u32 dest_qp_num;
1314
int qp_access_flags;
1315
struct ib_qp_cap cap;
1316
struct rdma_ah_attr ah_attr;
1317
struct rdma_ah_attr alt_ah_attr;
1318
u16 pkey_index;
1319
u16 alt_pkey_index;
1320
u8 en_sqd_async_notify;
1321
u8 sq_draining;
1322
u8 max_rd_atomic;
1323
u8 max_dest_rd_atomic;
1324
u8 min_rnr_timer;
1325
u32 port_num;
1326
u8 timeout;
1327
u8 retry_cnt;
1328
u8 rnr_retry;
1329
u32 alt_port_num;
1330
u8 alt_timeout;
1331
u32 rate_limit;
1332
struct net_device *xmit_slave;
1333
};
1334
1335
enum ib_wr_opcode {
1336
/* These are shared with userspace */
1337
IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1338
IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1339
IB_WR_SEND = IB_UVERBS_WR_SEND,
1340
IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1341
IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1342
IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1343
IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1344
IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1345
IB_WR_LSO = IB_UVERBS_WR_TSO,
1346
IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1347
IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1348
IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1349
IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1350
IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1351
IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1352
IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1353
IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1354
IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1355
1356
/* These are kernel only and can not be issued by userspace */
1357
IB_WR_REG_MR = 0x20,
1358
IB_WR_REG_MR_INTEGRITY,
1359
1360
/* reserve values for low level drivers' internal use.
1361
* These values will not be used at all in the ib core layer.
1362
*/
1363
IB_WR_RESERVED1 = 0xf0,
1364
IB_WR_RESERVED2,
1365
IB_WR_RESERVED3,
1366
IB_WR_RESERVED4,
1367
IB_WR_RESERVED5,
1368
IB_WR_RESERVED6,
1369
IB_WR_RESERVED7,
1370
IB_WR_RESERVED8,
1371
IB_WR_RESERVED9,
1372
IB_WR_RESERVED10,
1373
};
1374
1375
enum ib_send_flags {
1376
IB_SEND_FENCE = 1,
1377
IB_SEND_SIGNALED = (1<<1),
1378
IB_SEND_SOLICITED = (1<<2),
1379
IB_SEND_INLINE = (1<<3),
1380
IB_SEND_IP_CSUM = (1<<4),
1381
1382
/* reserve bits 26-31 for low level drivers' internal use */
1383
IB_SEND_RESERVED_START = (1 << 26),
1384
IB_SEND_RESERVED_END = (1 << 31),
1385
};
1386
1387
struct ib_sge {
1388
u64 addr;
1389
u32 length;
1390
u32 lkey;
1391
};
1392
1393
struct ib_cqe {
1394
void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1395
};
1396
1397
struct ib_send_wr {
1398
struct ib_send_wr *next;
1399
union {
1400
u64 wr_id;
1401
struct ib_cqe *wr_cqe;
1402
};
1403
struct ib_sge *sg_list;
1404
int num_sge;
1405
enum ib_wr_opcode opcode;
1406
int send_flags;
1407
union {
1408
__be32 imm_data;
1409
u32 invalidate_rkey;
1410
} ex;
1411
};
1412
1413
struct ib_rdma_wr {
1414
struct ib_send_wr wr;
1415
u64 remote_addr;
1416
u32 rkey;
1417
};
1418
1419
static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1420
{
1421
return container_of(wr, struct ib_rdma_wr, wr);
1422
}
1423
1424
struct ib_atomic_wr {
1425
struct ib_send_wr wr;
1426
u64 remote_addr;
1427
u64 compare_add;
1428
u64 swap;
1429
u64 compare_add_mask;
1430
u64 swap_mask;
1431
u32 rkey;
1432
};
1433
1434
static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1435
{
1436
return container_of(wr, struct ib_atomic_wr, wr);
1437
}
1438
1439
struct ib_ud_wr {
1440
struct ib_send_wr wr;
1441
struct ib_ah *ah;
1442
void *header;
1443
int hlen;
1444
int mss;
1445
u32 remote_qpn;
1446
u32 remote_qkey;
1447
u16 pkey_index; /* valid for GSI only */
1448
u32 port_num; /* valid for DR SMPs on switch only */
1449
};
1450
1451
static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1452
{
1453
return container_of(wr, struct ib_ud_wr, wr);
1454
}
1455
1456
struct ib_reg_wr {
1457
struct ib_send_wr wr;
1458
struct ib_mr *mr;
1459
u32 key;
1460
int access;
1461
};
1462
1463
static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1464
{
1465
return container_of(wr, struct ib_reg_wr, wr);
1466
}
1467
1468
struct ib_recv_wr {
1469
struct ib_recv_wr *next;
1470
union {
1471
u64 wr_id;
1472
struct ib_cqe *wr_cqe;
1473
};
1474
struct ib_sge *sg_list;
1475
int num_sge;
1476
};
1477
1478
enum ib_access_flags {
1479
IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1480
IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1481
IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1482
IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1483
IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1484
IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1485
IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1486
IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1487
IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1488
IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1489
IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1490
1491
IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1492
IB_ACCESS_SUPPORTED =
1493
((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1494
};
1495
1496
/*
1497
* XXX: these are apparently used for ->rereg_user_mr, no idea why they
1498
* are hidden here instead of a uapi header!
1499
*/
1500
enum ib_mr_rereg_flags {
1501
IB_MR_REREG_TRANS = 1,
1502
IB_MR_REREG_PD = (1<<1),
1503
IB_MR_REREG_ACCESS = (1<<2),
1504
IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1505
};
1506
1507
struct ib_umem;
1508
1509
enum rdma_remove_reason {
1510
/*
1511
* Userspace requested uobject deletion or initial try
1512
* to remove uobject via cleanup. Call could fail
1513
*/
1514
RDMA_REMOVE_DESTROY,
1515
/* Context deletion. This call should delete the actual object itself */
1516
RDMA_REMOVE_CLOSE,
1517
/* Driver is being hot-unplugged. This call should delete the actual object itself */
1518
RDMA_REMOVE_DRIVER_REMOVE,
1519
/* uobj is being cleaned-up before being committed */
1520
RDMA_REMOVE_ABORT,
1521
/* The driver failed to destroy the uobject and is being disconnected */
1522
RDMA_REMOVE_DRIVER_FAILURE,
1523
};
1524
1525
struct ib_rdmacg_object {
1526
#ifdef CONFIG_CGROUP_RDMA
1527
struct rdma_cgroup *cg; /* owner rdma cgroup */
1528
#endif
1529
};
1530
1531
struct ib_ucontext {
1532
struct ib_device *device;
1533
struct ib_uverbs_file *ufile;
1534
1535
struct ib_rdmacg_object cg_obj;
1536
u64 enabled_caps;
1537
/*
1538
* Implementation details of the RDMA core, don't use in drivers:
1539
*/
1540
struct rdma_restrack_entry res;
1541
struct xarray mmap_xa;
1542
};
1543
1544
struct ib_uobject {
1545
u64 user_handle; /* handle given to us by userspace */
1546
/* ufile & ucontext owning this object */
1547
struct ib_uverbs_file *ufile;
1548
/* FIXME, save memory: ufile->context == context */
1549
struct ib_ucontext *context; /* associated user context */
1550
void *object; /* containing object */
1551
struct list_head list; /* link to context's list */
1552
struct ib_rdmacg_object cg_obj; /* rdmacg object */
1553
int id; /* index into kernel idr */
1554
struct kref ref;
1555
atomic_t usecnt; /* protects exclusive access */
1556
struct rcu_head rcu; /* kfree_rcu() overhead */
1557
1558
const struct uverbs_api_object *uapi_object;
1559
};
1560
1561
struct ib_udata {
1562
const void __user *inbuf;
1563
void __user *outbuf;
1564
size_t inlen;
1565
size_t outlen;
1566
};
1567
1568
struct ib_pd {
1569
u32 local_dma_lkey;
1570
u32 flags;
1571
struct ib_device *device;
1572
struct ib_uobject *uobject;
1573
atomic_t usecnt; /* count all resources */
1574
1575
u32 unsafe_global_rkey;
1576
1577
/*
1578
* Implementation details of the RDMA core, don't use in drivers:
1579
*/
1580
struct ib_mr *__internal_mr;
1581
struct rdma_restrack_entry res;
1582
};
1583
1584
struct ib_xrcd {
1585
struct ib_device *device;
1586
atomic_t usecnt; /* count all exposed resources */
1587
struct inode *inode;
1588
struct rw_semaphore tgt_qps_rwsem;
1589
struct xarray tgt_qps;
1590
};
1591
1592
struct ib_ah {
1593
struct ib_device *device;
1594
struct ib_pd *pd;
1595
struct ib_uobject *uobject;
1596
const struct ib_gid_attr *sgid_attr;
1597
enum rdma_ah_attr_type type;
1598
};
1599
1600
typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1601
1602
enum ib_poll_context {
1603
IB_POLL_SOFTIRQ, /* poll from softirq context */
1604
IB_POLL_WORKQUEUE, /* poll from workqueue */
1605
IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1606
IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1607
1608
IB_POLL_DIRECT, /* caller context, no hw completions */
1609
};
1610
1611
struct ib_cq {
1612
struct ib_device *device;
1613
struct ib_ucq_object *uobject;
1614
ib_comp_handler comp_handler;
1615
void (*event_handler)(struct ib_event *, void *);
1616
void *cq_context;
1617
int cqe;
1618
unsigned int cqe_used;
1619
atomic_t usecnt; /* count number of work queues */
1620
enum ib_poll_context poll_ctx;
1621
struct ib_wc *wc;
1622
struct list_head pool_entry;
1623
union {
1624
struct irq_poll iop;
1625
struct work_struct work;
1626
};
1627
struct workqueue_struct *comp_wq;
1628
struct dim *dim;
1629
1630
/* updated only by trace points */
1631
ktime_t timestamp;
1632
u8 interrupt:1;
1633
u8 shared:1;
1634
unsigned int comp_vector;
1635
1636
/*
1637
* Implementation details of the RDMA core, don't use in drivers:
1638
*/
1639
struct rdma_restrack_entry res;
1640
};
1641
1642
struct ib_srq {
1643
struct ib_device *device;
1644
struct ib_pd *pd;
1645
struct ib_usrq_object *uobject;
1646
void (*event_handler)(struct ib_event *, void *);
1647
void *srq_context;
1648
enum ib_srq_type srq_type;
1649
atomic_t usecnt;
1650
1651
struct {
1652
struct ib_cq *cq;
1653
union {
1654
struct {
1655
struct ib_xrcd *xrcd;
1656
u32 srq_num;
1657
} xrc;
1658
};
1659
} ext;
1660
1661
/*
1662
* Implementation details of the RDMA core, don't use in drivers:
1663
*/
1664
struct rdma_restrack_entry res;
1665
};
1666
1667
enum ib_raw_packet_caps {
1668
/*
1669
* Strip cvlan from incoming packet and report it in the matching work
1670
* completion is supported.
1671
*/
1672
IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1673
IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1674
/*
1675
* Scatter FCS field of an incoming packet to host memory is supported.
1676
*/
1677
IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1678
/* Checksum offloads are supported (for both send and receive). */
1679
IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1680
/*
1681
* When a packet is received for an RQ with no receive WQEs, the
1682
* packet processing is delayed.
1683
*/
1684
IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1685
};
1686
1687
enum ib_wq_type {
1688
IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1689
};
1690
1691
enum ib_wq_state {
1692
IB_WQS_RESET,
1693
IB_WQS_RDY,
1694
IB_WQS_ERR
1695
};
1696
1697
struct ib_wq {
1698
struct ib_device *device;
1699
struct ib_uwq_object *uobject;
1700
void *wq_context;
1701
void (*event_handler)(struct ib_event *, void *);
1702
struct ib_pd *pd;
1703
struct ib_cq *cq;
1704
u32 wq_num;
1705
enum ib_wq_state state;
1706
enum ib_wq_type wq_type;
1707
atomic_t usecnt;
1708
};
1709
1710
enum ib_wq_flags {
1711
IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1712
IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1713
IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1714
IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1715
IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1716
};
1717
1718
struct ib_wq_init_attr {
1719
void *wq_context;
1720
enum ib_wq_type wq_type;
1721
u32 max_wr;
1722
u32 max_sge;
1723
struct ib_cq *cq;
1724
void (*event_handler)(struct ib_event *, void *);
1725
u32 create_flags; /* Use enum ib_wq_flags */
1726
};
1727
1728
enum ib_wq_attr_mask {
1729
IB_WQ_STATE = 1 << 0,
1730
IB_WQ_CUR_STATE = 1 << 1,
1731
IB_WQ_FLAGS = 1 << 2,
1732
};
1733
1734
struct ib_wq_attr {
1735
enum ib_wq_state wq_state;
1736
enum ib_wq_state curr_wq_state;
1737
u32 flags; /* Use enum ib_wq_flags */
1738
u32 flags_mask; /* Use enum ib_wq_flags */
1739
};
1740
1741
struct ib_rwq_ind_table {
1742
struct ib_device *device;
1743
struct ib_uobject *uobject;
1744
atomic_t usecnt;
1745
u32 ind_tbl_num;
1746
u32 log_ind_tbl_size;
1747
struct ib_wq **ind_tbl;
1748
};
1749
1750
struct ib_rwq_ind_table_init_attr {
1751
u32 log_ind_tbl_size;
1752
/* Each entry is a pointer to Receive Work Queue */
1753
struct ib_wq **ind_tbl;
1754
};
1755
1756
enum port_pkey_state {
1757
IB_PORT_PKEY_NOT_VALID = 0,
1758
IB_PORT_PKEY_VALID = 1,
1759
IB_PORT_PKEY_LISTED = 2,
1760
};
1761
1762
struct ib_qp_security;
1763
1764
struct ib_port_pkey {
1765
enum port_pkey_state state;
1766
u16 pkey_index;
1767
u32 port_num;
1768
struct list_head qp_list;
1769
struct list_head to_error_list;
1770
struct ib_qp_security *sec;
1771
};
1772
1773
struct ib_ports_pkeys {
1774
struct ib_port_pkey main;
1775
struct ib_port_pkey alt;
1776
};
1777
1778
struct ib_qp_security {
1779
struct ib_qp *qp;
1780
struct ib_device *dev;
1781
/* Hold this mutex when changing port and pkey settings. */
1782
struct mutex mutex;
1783
struct ib_ports_pkeys *ports_pkeys;
1784
/* A list of all open shared QP handles. Required to enforce security
1785
* properly for all users of a shared QP.
1786
*/
1787
struct list_head shared_qp_list;
1788
void *security;
1789
bool destroying;
1790
atomic_t error_list_count;
1791
struct completion error_complete;
1792
int error_comps_pending;
1793
};
1794
1795
/*
1796
* @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1797
* @max_read_sge: Maximum SGE elements per RDMA READ request.
1798
*/
1799
struct ib_qp {
1800
struct ib_device *device;
1801
struct ib_pd *pd;
1802
struct ib_cq *send_cq;
1803
struct ib_cq *recv_cq;
1804
spinlock_t mr_lock;
1805
int mrs_used;
1806
struct list_head rdma_mrs;
1807
struct list_head sig_mrs;
1808
struct ib_srq *srq;
1809
struct completion srq_completion;
1810
struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1811
struct list_head xrcd_list;
1812
1813
/* count times opened, mcast attaches, flow attaches */
1814
atomic_t usecnt;
1815
struct list_head open_list;
1816
struct ib_qp *real_qp;
1817
struct ib_uqp_object *uobject;
1818
void (*event_handler)(struct ib_event *, void *);
1819
void (*registered_event_handler)(struct ib_event *, void *);
1820
void *qp_context;
1821
/* sgid_attrs associated with the AV's */
1822
const struct ib_gid_attr *av_sgid_attr;
1823
const struct ib_gid_attr *alt_path_sgid_attr;
1824
u32 qp_num;
1825
u32 max_write_sge;
1826
u32 max_read_sge;
1827
enum ib_qp_type qp_type;
1828
struct ib_rwq_ind_table *rwq_ind_tbl;
1829
struct ib_qp_security *qp_sec;
1830
u32 port;
1831
1832
bool integrity_en;
1833
/*
1834
* Implementation details of the RDMA core, don't use in drivers:
1835
*/
1836
struct rdma_restrack_entry res;
1837
1838
/* The counter the qp is bind to */
1839
struct rdma_counter *counter;
1840
};
1841
1842
struct ib_dm {
1843
struct ib_device *device;
1844
u32 length;
1845
u32 flags;
1846
struct ib_uobject *uobject;
1847
atomic_t usecnt;
1848
};
1849
1850
/* bit values to mark existence of ib_dmah fields */
1851
enum {
1852
IB_DMAH_CPU_ID_EXISTS,
1853
IB_DMAH_MEM_TYPE_EXISTS,
1854
IB_DMAH_PH_EXISTS,
1855
};
1856
1857
struct ib_dmah {
1858
struct ib_device *device;
1859
struct ib_uobject *uobject;
1860
/*
1861
* Implementation details of the RDMA core, don't use in drivers:
1862
*/
1863
struct rdma_restrack_entry res;
1864
u32 cpu_id;
1865
enum tph_mem_type mem_type;
1866
atomic_t usecnt;
1867
u8 ph;
1868
u8 valid_fields; /* use IB_DMAH_XXX_EXISTS */
1869
};
1870
1871
struct ib_mr {
1872
struct ib_device *device;
1873
struct ib_pd *pd;
1874
u32 lkey;
1875
u32 rkey;
1876
u64 iova;
1877
u64 length;
1878
unsigned int page_size;
1879
enum ib_mr_type type;
1880
bool need_inval;
1881
union {
1882
struct ib_uobject *uobject; /* user */
1883
struct list_head qp_entry; /* FR */
1884
};
1885
1886
struct ib_dm *dm;
1887
struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1888
struct ib_dmah *dmah;
1889
/*
1890
* Implementation details of the RDMA core, don't use in drivers:
1891
*/
1892
struct rdma_restrack_entry res;
1893
};
1894
1895
struct ib_mw {
1896
struct ib_device *device;
1897
struct ib_pd *pd;
1898
struct ib_uobject *uobject;
1899
u32 rkey;
1900
enum ib_mw_type type;
1901
};
1902
1903
/* Supported steering options */
1904
enum ib_flow_attr_type {
1905
/* steering according to rule specifications */
1906
IB_FLOW_ATTR_NORMAL = 0x0,
1907
/* default unicast and multicast rule -
1908
* receive all Eth traffic which isn't steered to any QP
1909
*/
1910
IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1911
/* default multicast rule -
1912
* receive all Eth multicast traffic which isn't steered to any QP
1913
*/
1914
IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1915
/* sniffer rule - receive all port traffic */
1916
IB_FLOW_ATTR_SNIFFER = 0x3
1917
};
1918
1919
/* Supported steering header types */
1920
enum ib_flow_spec_type {
1921
/* L2 headers*/
1922
IB_FLOW_SPEC_ETH = 0x20,
1923
IB_FLOW_SPEC_IB = 0x22,
1924
/* L3 header*/
1925
IB_FLOW_SPEC_IPV4 = 0x30,
1926
IB_FLOW_SPEC_IPV6 = 0x31,
1927
IB_FLOW_SPEC_ESP = 0x34,
1928
/* L4 headers*/
1929
IB_FLOW_SPEC_TCP = 0x40,
1930
IB_FLOW_SPEC_UDP = 0x41,
1931
IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50,
1932
IB_FLOW_SPEC_GRE = 0x51,
1933
IB_FLOW_SPEC_MPLS = 0x60,
1934
IB_FLOW_SPEC_INNER = 0x100,
1935
/* Actions */
1936
IB_FLOW_SPEC_ACTION_TAG = 0x1000,
1937
IB_FLOW_SPEC_ACTION_DROP = 0x1001,
1938
IB_FLOW_SPEC_ACTION_HANDLE = 0x1002,
1939
IB_FLOW_SPEC_ACTION_COUNT = 0x1003,
1940
};
1941
#define IB_FLOW_SPEC_LAYER_MASK 0xF0
1942
#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1943
1944
enum ib_flow_flags {
1945
IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1946
IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1947
IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */
1948
};
1949
1950
struct ib_flow_eth_filter {
1951
u8 dst_mac[6];
1952
u8 src_mac[6];
1953
__be16 ether_type;
1954
__be16 vlan_tag;
1955
};
1956
1957
struct ib_flow_spec_eth {
1958
u32 type;
1959
u16 size;
1960
struct ib_flow_eth_filter val;
1961
struct ib_flow_eth_filter mask;
1962
};
1963
1964
struct ib_flow_ib_filter {
1965
__be16 dlid;
1966
__u8 sl;
1967
};
1968
1969
struct ib_flow_spec_ib {
1970
u32 type;
1971
u16 size;
1972
struct ib_flow_ib_filter val;
1973
struct ib_flow_ib_filter mask;
1974
};
1975
1976
/* IPv4 header flags */
1977
enum ib_ipv4_flags {
1978
IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1979
IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the
1980
last have this flag set */
1981
};
1982
1983
struct ib_flow_ipv4_filter {
1984
__be32 src_ip;
1985
__be32 dst_ip;
1986
u8 proto;
1987
u8 tos;
1988
u8 ttl;
1989
u8 flags;
1990
};
1991
1992
struct ib_flow_spec_ipv4 {
1993
u32 type;
1994
u16 size;
1995
struct ib_flow_ipv4_filter val;
1996
struct ib_flow_ipv4_filter mask;
1997
};
1998
1999
struct ib_flow_ipv6_filter {
2000
u8 src_ip[16];
2001
u8 dst_ip[16];
2002
__be32 flow_label;
2003
u8 next_hdr;
2004
u8 traffic_class;
2005
u8 hop_limit;
2006
} __packed;
2007
2008
struct ib_flow_spec_ipv6 {
2009
u32 type;
2010
u16 size;
2011
struct ib_flow_ipv6_filter val;
2012
struct ib_flow_ipv6_filter mask;
2013
};
2014
2015
struct ib_flow_tcp_udp_filter {
2016
__be16 dst_port;
2017
__be16 src_port;
2018
};
2019
2020
struct ib_flow_spec_tcp_udp {
2021
u32 type;
2022
u16 size;
2023
struct ib_flow_tcp_udp_filter val;
2024
struct ib_flow_tcp_udp_filter mask;
2025
};
2026
2027
struct ib_flow_tunnel_filter {
2028
__be32 tunnel_id;
2029
};
2030
2031
/* ib_flow_spec_tunnel describes the Vxlan tunnel
2032
* the tunnel_id from val has the vni value
2033
*/
2034
struct ib_flow_spec_tunnel {
2035
u32 type;
2036
u16 size;
2037
struct ib_flow_tunnel_filter val;
2038
struct ib_flow_tunnel_filter mask;
2039
};
2040
2041
struct ib_flow_esp_filter {
2042
__be32 spi;
2043
__be32 seq;
2044
};
2045
2046
struct ib_flow_spec_esp {
2047
u32 type;
2048
u16 size;
2049
struct ib_flow_esp_filter val;
2050
struct ib_flow_esp_filter mask;
2051
};
2052
2053
struct ib_flow_gre_filter {
2054
__be16 c_ks_res0_ver;
2055
__be16 protocol;
2056
__be32 key;
2057
};
2058
2059
struct ib_flow_spec_gre {
2060
u32 type;
2061
u16 size;
2062
struct ib_flow_gre_filter val;
2063
struct ib_flow_gre_filter mask;
2064
};
2065
2066
struct ib_flow_mpls_filter {
2067
__be32 tag;
2068
};
2069
2070
struct ib_flow_spec_mpls {
2071
u32 type;
2072
u16 size;
2073
struct ib_flow_mpls_filter val;
2074
struct ib_flow_mpls_filter mask;
2075
};
2076
2077
struct ib_flow_spec_action_tag {
2078
enum ib_flow_spec_type type;
2079
u16 size;
2080
u32 tag_id;
2081
};
2082
2083
struct ib_flow_spec_action_drop {
2084
enum ib_flow_spec_type type;
2085
u16 size;
2086
};
2087
2088
struct ib_flow_spec_action_handle {
2089
enum ib_flow_spec_type type;
2090
u16 size;
2091
struct ib_flow_action *act;
2092
};
2093
2094
enum ib_counters_description {
2095
IB_COUNTER_PACKETS,
2096
IB_COUNTER_BYTES,
2097
};
2098
2099
struct ib_flow_spec_action_count {
2100
enum ib_flow_spec_type type;
2101
u16 size;
2102
struct ib_counters *counters;
2103
};
2104
2105
union ib_flow_spec {
2106
struct {
2107
u32 type;
2108
u16 size;
2109
};
2110
struct ib_flow_spec_eth eth;
2111
struct ib_flow_spec_ib ib;
2112
struct ib_flow_spec_ipv4 ipv4;
2113
struct ib_flow_spec_tcp_udp tcp_udp;
2114
struct ib_flow_spec_ipv6 ipv6;
2115
struct ib_flow_spec_tunnel tunnel;
2116
struct ib_flow_spec_esp esp;
2117
struct ib_flow_spec_gre gre;
2118
struct ib_flow_spec_mpls mpls;
2119
struct ib_flow_spec_action_tag flow_tag;
2120
struct ib_flow_spec_action_drop drop;
2121
struct ib_flow_spec_action_handle action;
2122
struct ib_flow_spec_action_count flow_count;
2123
};
2124
2125
struct ib_flow_attr {
2126
enum ib_flow_attr_type type;
2127
u16 size;
2128
u16 priority;
2129
u32 flags;
2130
u8 num_of_specs;
2131
u32 port;
2132
union ib_flow_spec flows[];
2133
};
2134
2135
struct ib_flow {
2136
struct ib_qp *qp;
2137
struct ib_device *device;
2138
struct ib_uobject *uobject;
2139
};
2140
2141
enum ib_flow_action_type {
2142
IB_FLOW_ACTION_UNSPECIFIED,
2143
IB_FLOW_ACTION_ESP = 1,
2144
};
2145
2146
struct ib_flow_action_attrs_esp_keymats {
2147
enum ib_uverbs_flow_action_esp_keymat protocol;
2148
union {
2149
struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2150
} keymat;
2151
};
2152
2153
struct ib_flow_action_attrs_esp_replays {
2154
enum ib_uverbs_flow_action_esp_replay protocol;
2155
union {
2156
struct ib_uverbs_flow_action_esp_replay_bmp bmp;
2157
} replay;
2158
};
2159
2160
enum ib_flow_action_attrs_esp_flags {
2161
/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2162
* This is done in order to share the same flags between user-space and
2163
* kernel and spare an unnecessary translation.
2164
*/
2165
2166
/* Kernel flags */
2167
IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32,
2168
IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33,
2169
};
2170
2171
struct ib_flow_spec_list {
2172
struct ib_flow_spec_list *next;
2173
union ib_flow_spec spec;
2174
};
2175
2176
struct ib_flow_action_attrs_esp {
2177
struct ib_flow_action_attrs_esp_keymats *keymat;
2178
struct ib_flow_action_attrs_esp_replays *replay;
2179
struct ib_flow_spec_list *encap;
2180
/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2181
* Value of 0 is a valid value.
2182
*/
2183
u32 esn;
2184
u32 spi;
2185
u32 seq;
2186
u32 tfc_pad;
2187
/* Use enum ib_flow_action_attrs_esp_flags */
2188
u64 flags;
2189
u64 hard_limit_pkts;
2190
};
2191
2192
struct ib_flow_action {
2193
struct ib_device *device;
2194
struct ib_uobject *uobject;
2195
enum ib_flow_action_type type;
2196
atomic_t usecnt;
2197
};
2198
2199
struct ib_mad;
2200
2201
enum ib_process_mad_flags {
2202
IB_MAD_IGNORE_MKEY = 1,
2203
IB_MAD_IGNORE_BKEY = 2,
2204
IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2205
};
2206
2207
enum ib_mad_result {
2208
IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
2209
IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
2210
IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
2211
IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
2212
};
2213
2214
struct ib_port_cache {
2215
u64 subnet_prefix;
2216
struct ib_pkey_cache *pkey;
2217
struct ib_gid_table *gid;
2218
u8 lmc;
2219
enum ib_port_state port_state;
2220
enum ib_port_state last_port_state;
2221
};
2222
2223
struct ib_port_immutable {
2224
int pkey_tbl_len;
2225
int gid_tbl_len;
2226
u32 core_cap_flags;
2227
u32 max_mad_size;
2228
};
2229
2230
struct ib_port_data {
2231
struct ib_device *ib_dev;
2232
2233
struct ib_port_immutable immutable;
2234
2235
spinlock_t pkey_list_lock;
2236
2237
spinlock_t netdev_lock;
2238
2239
struct list_head pkey_list;
2240
2241
struct ib_port_cache cache;
2242
2243
struct net_device __rcu *netdev;
2244
netdevice_tracker netdev_tracker;
2245
struct hlist_node ndev_hash_link;
2246
struct rdma_port_counter port_counter;
2247
struct ib_port *sysfs;
2248
};
2249
2250
/* rdma netdev type - specifies protocol type */
2251
enum rdma_netdev_t {
2252
RDMA_NETDEV_OPA_VNIC,
2253
RDMA_NETDEV_IPOIB,
2254
};
2255
2256
/**
2257
* struct rdma_netdev - rdma netdev
2258
* For cases where netstack interfacing is required.
2259
*/
2260
struct rdma_netdev {
2261
void *clnt_priv;
2262
struct ib_device *hca;
2263
u32 port_num;
2264
int mtu;
2265
2266
/*
2267
* cleanup function must be specified.
2268
* FIXME: This is only used for OPA_VNIC and that usage should be
2269
* removed too.
2270
*/
2271
void (*free_rdma_netdev)(struct net_device *netdev);
2272
2273
/* control functions */
2274
void (*set_id)(struct net_device *netdev, int id);
2275
/* send packet */
2276
int (*send)(struct net_device *dev, struct sk_buff *skb,
2277
struct ib_ah *address, u32 dqpn);
2278
/* multicast */
2279
int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2280
union ib_gid *gid, u16 mlid,
2281
int set_qkey, u32 qkey);
2282
int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2283
union ib_gid *gid, u16 mlid);
2284
/* timeout */
2285
void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2286
};
2287
2288
struct rdma_netdev_alloc_params {
2289
size_t sizeof_priv;
2290
unsigned int txqs;
2291
unsigned int rxqs;
2292
void *param;
2293
2294
int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2295
struct net_device *netdev, void *param);
2296
};
2297
2298
struct ib_odp_counters {
2299
atomic64_t faults;
2300
atomic64_t faults_handled;
2301
atomic64_t invalidations;
2302
atomic64_t invalidations_handled;
2303
atomic64_t prefetch;
2304
};
2305
2306
struct ib_counters {
2307
struct ib_device *device;
2308
struct ib_uobject *uobject;
2309
/* num of objects attached */
2310
atomic_t usecnt;
2311
};
2312
2313
struct ib_counters_read_attr {
2314
u64 *counters_buff;
2315
u32 ncounters;
2316
u32 flags; /* use enum ib_read_counters_flags */
2317
};
2318
2319
struct uverbs_attr_bundle;
2320
struct iw_cm_id;
2321
struct iw_cm_conn_param;
2322
2323
#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \
2324
.size_##ib_struct = \
2325
(sizeof(struct drv_struct) + \
2326
BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \
2327
BUILD_BUG_ON_ZERO( \
2328
!__same_type(((struct drv_struct *)NULL)->member, \
2329
struct ib_struct)))
2330
2331
#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \
2332
((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2333
gfp, false))
2334
2335
#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \
2336
((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2337
GFP_KERNEL, true))
2338
2339
#define rdma_zalloc_drv_obj(ib_dev, ib_type) \
2340
rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2341
2342
#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2343
2344
struct rdma_user_mmap_entry {
2345
struct kref ref;
2346
struct ib_ucontext *ucontext;
2347
unsigned long start_pgoff;
2348
size_t npages;
2349
bool driver_removed;
2350
};
2351
2352
/* Return the offset (in bytes) the user should pass to libc's mmap() */
2353
static inline u64
2354
rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2355
{
2356
return (u64)entry->start_pgoff << PAGE_SHIFT;
2357
}
2358
2359
/**
2360
* struct ib_device_ops - InfiniBand device operations
2361
* This structure defines all the InfiniBand device operations, providers will
2362
* need to define the supported operations, otherwise they will be set to null.
2363
*/
2364
struct ib_device_ops {
2365
struct module *owner;
2366
enum rdma_driver_id driver_id;
2367
u32 uverbs_abi_ver;
2368
unsigned int uverbs_no_driver_id_binding:1;
2369
2370
/*
2371
* NOTE: New drivers should not make use of device_group; instead new
2372
* device parameter should be exposed via netlink command. This
2373
* mechanism exists only for existing drivers.
2374
*/
2375
const struct attribute_group *device_group;
2376
const struct attribute_group **port_groups;
2377
2378
int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2379
const struct ib_send_wr **bad_send_wr);
2380
int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2381
const struct ib_recv_wr **bad_recv_wr);
2382
void (*drain_rq)(struct ib_qp *qp);
2383
void (*drain_sq)(struct ib_qp *qp);
2384
int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2385
int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2386
int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2387
int (*post_srq_recv)(struct ib_srq *srq,
2388
const struct ib_recv_wr *recv_wr,
2389
const struct ib_recv_wr **bad_recv_wr);
2390
int (*process_mad)(struct ib_device *device, int process_mad_flags,
2391
u32 port_num, const struct ib_wc *in_wc,
2392
const struct ib_grh *in_grh,
2393
const struct ib_mad *in_mad, struct ib_mad *out_mad,
2394
size_t *out_mad_size, u16 *out_mad_pkey_index);
2395
int (*query_device)(struct ib_device *device,
2396
struct ib_device_attr *device_attr,
2397
struct ib_udata *udata);
2398
int (*modify_device)(struct ib_device *device, int device_modify_mask,
2399
struct ib_device_modify *device_modify);
2400
void (*get_dev_fw_str)(struct ib_device *device, char *str);
2401
const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2402
int comp_vector);
2403
int (*query_port)(struct ib_device *device, u32 port_num,
2404
struct ib_port_attr *port_attr);
2405
int (*modify_port)(struct ib_device *device, u32 port_num,
2406
int port_modify_mask,
2407
struct ib_port_modify *port_modify);
2408
/**
2409
* The following mandatory functions are used only at device
2410
* registration. Keep functions such as these at the end of this
2411
* structure to avoid cache line misses when accessing struct ib_device
2412
* in fast paths.
2413
*/
2414
int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2415
struct ib_port_immutable *immutable);
2416
enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2417
u32 port_num);
2418
/**
2419
* When calling get_netdev, the HW vendor's driver should return the
2420
* net device of device @device at port @port_num or NULL if such
2421
* a net device doesn't exist. The vendor driver should call dev_hold
2422
* on this net device. The HW vendor's device driver must guarantee
2423
* that this function returns NULL before the net device has finished
2424
* NETDEV_UNREGISTER state.
2425
*/
2426
struct net_device *(*get_netdev)(struct ib_device *device,
2427
u32 port_num);
2428
/**
2429
* rdma netdev operation
2430
*
2431
* Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2432
* must return -EOPNOTSUPP if it doesn't support the specified type.
2433
*/
2434
struct net_device *(*alloc_rdma_netdev)(
2435
struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2436
const char *name, unsigned char name_assign_type,
2437
void (*setup)(struct net_device *));
2438
2439
int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2440
enum rdma_netdev_t type,
2441
struct rdma_netdev_alloc_params *params);
2442
/**
2443
* query_gid should be return GID value for @device, when @port_num
2444
* link layer is either IB or iWarp. It is no-op if @port_num port
2445
* is RoCE link layer.
2446
*/
2447
int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2448
union ib_gid *gid);
2449
/**
2450
* When calling add_gid, the HW vendor's driver should add the gid
2451
* of device of port at gid index available at @attr. Meta-info of
2452
* that gid (for example, the network device related to this gid) is
2453
* available at @attr. @context allows the HW vendor driver to store
2454
* extra information together with a GID entry. The HW vendor driver may
2455
* allocate memory to contain this information and store it in @context
2456
* when a new GID entry is written to. Params are consistent until the
2457
* next call of add_gid or delete_gid. The function should return 0 on
2458
* success or error otherwise. The function could be called
2459
* concurrently for different ports. This function is only called when
2460
* roce_gid_table is used.
2461
*/
2462
int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2463
/**
2464
* When calling del_gid, the HW vendor's driver should delete the
2465
* gid of device @device at gid index gid_index of port port_num
2466
* available in @attr.
2467
* Upon the deletion of a GID entry, the HW vendor must free any
2468
* allocated memory. The caller will clear @context afterwards.
2469
* This function is only called when roce_gid_table is used.
2470
*/
2471
int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2472
int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2473
u16 *pkey);
2474
int (*alloc_ucontext)(struct ib_ucontext *context,
2475
struct ib_udata *udata);
2476
void (*dealloc_ucontext)(struct ib_ucontext *context);
2477
int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2478
/**
2479
* This will be called once refcount of an entry in mmap_xa reaches
2480
* zero. The type of the memory that was mapped may differ between
2481
* entries and is opaque to the rdma_user_mmap interface.
2482
* Therefore needs to be implemented by the driver in mmap_free.
2483
*/
2484
void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2485
void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2486
int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2487
int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2488
int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2489
struct ib_udata *udata);
2490
int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2491
struct ib_udata *udata);
2492
int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2493
int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2494
int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2495
int (*create_srq)(struct ib_srq *srq,
2496
struct ib_srq_init_attr *srq_init_attr,
2497
struct ib_udata *udata);
2498
int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2499
enum ib_srq_attr_mask srq_attr_mask,
2500
struct ib_udata *udata);
2501
int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2502
int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2503
int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2504
struct ib_udata *udata);
2505
int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2506
int qp_attr_mask, struct ib_udata *udata);
2507
int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2508
int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2509
int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2510
int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2511
struct uverbs_attr_bundle *attrs);
2512
int (*create_cq_umem)(struct ib_cq *cq,
2513
const struct ib_cq_init_attr *attr,
2514
struct ib_umem *umem,
2515
struct uverbs_attr_bundle *attrs);
2516
int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2517
int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2518
int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2519
/**
2520
* pre_destroy_cq - Prevent a cq from generating any new work
2521
* completions, but not free any kernel resources
2522
*/
2523
int (*pre_destroy_cq)(struct ib_cq *cq);
2524
/**
2525
* post_destroy_cq - Free all kernel resources
2526
*/
2527
void (*post_destroy_cq)(struct ib_cq *cq);
2528
struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2529
struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2530
u64 virt_addr, int mr_access_flags,
2531
struct ib_dmah *dmah,
2532
struct ib_udata *udata);
2533
struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2534
u64 length, u64 virt_addr, int fd,
2535
int mr_access_flags,
2536
struct ib_dmah *dmah,
2537
struct uverbs_attr_bundle *attrs);
2538
struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2539
u64 length, u64 virt_addr,
2540
int mr_access_flags, struct ib_pd *pd,
2541
struct ib_udata *udata);
2542
int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2543
struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2544
u32 max_num_sg);
2545
struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2546
u32 max_num_data_sg,
2547
u32 max_num_meta_sg);
2548
int (*advise_mr)(struct ib_pd *pd,
2549
enum ib_uverbs_advise_mr_advice advice, u32 flags,
2550
struct ib_sge *sg_list, u32 num_sge,
2551
struct uverbs_attr_bundle *attrs);
2552
2553
/*
2554
* Kernel users should universally support relaxed ordering (RO), as
2555
* they are designed to read data only after observing the CQE and use
2556
* the DMA API correctly.
2557
*
2558
* Some drivers implicitly enable RO if platform supports it.
2559
*/
2560
int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2561
unsigned int *sg_offset);
2562
int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2563
struct ib_mr_status *mr_status);
2564
int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2565
int (*dealloc_mw)(struct ib_mw *mw);
2566
int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2567
int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2568
int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2569
int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2570
struct ib_flow *(*create_flow)(struct ib_qp *qp,
2571
struct ib_flow_attr *flow_attr,
2572
struct ib_udata *udata);
2573
int (*destroy_flow)(struct ib_flow *flow_id);
2574
int (*destroy_flow_action)(struct ib_flow_action *action);
2575
int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2576
int state);
2577
int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2578
struct ifla_vf_info *ivf);
2579
int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2580
struct ifla_vf_stats *stats);
2581
int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2582
struct ifla_vf_guid *node_guid,
2583
struct ifla_vf_guid *port_guid);
2584
int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2585
int type);
2586
struct ib_wq *(*create_wq)(struct ib_pd *pd,
2587
struct ib_wq_init_attr *init_attr,
2588
struct ib_udata *udata);
2589
int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2590
int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2591
u32 wq_attr_mask, struct ib_udata *udata);
2592
int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2593
struct ib_rwq_ind_table_init_attr *init_attr,
2594
struct ib_udata *udata);
2595
int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2596
struct ib_dm *(*alloc_dm)(struct ib_device *device,
2597
struct ib_ucontext *context,
2598
struct ib_dm_alloc_attr *attr,
2599
struct uverbs_attr_bundle *attrs);
2600
int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2601
int (*alloc_dmah)(struct ib_dmah *ibdmah,
2602
struct uverbs_attr_bundle *attrs);
2603
int (*dealloc_dmah)(struct ib_dmah *dmah, struct uverbs_attr_bundle *attrs);
2604
struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2605
struct ib_dm_mr_attr *attr,
2606
struct uverbs_attr_bundle *attrs);
2607
int (*create_counters)(struct ib_counters *counters,
2608
struct uverbs_attr_bundle *attrs);
2609
int (*destroy_counters)(struct ib_counters *counters);
2610
int (*read_counters)(struct ib_counters *counters,
2611
struct ib_counters_read_attr *counters_read_attr,
2612
struct uverbs_attr_bundle *attrs);
2613
int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2614
int data_sg_nents, unsigned int *data_sg_offset,
2615
struct scatterlist *meta_sg, int meta_sg_nents,
2616
unsigned int *meta_sg_offset);
2617
2618
/**
2619
* alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2620
* fill in the driver initialized data. The struct is kfree()'ed by
2621
* the sysfs core when the device is removed. A lifespan of -1 in the
2622
* return struct tells the core to set a default lifespan.
2623
*/
2624
struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2625
struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2626
u32 port_num);
2627
/**
2628
* get_hw_stats - Fill in the counter value(s) in the stats struct.
2629
* @index - The index in the value array we wish to have updated, or
2630
* num_counters if we want all stats updated
2631
* Return codes -
2632
* < 0 - Error, no counters updated
2633
* index - Updated the single counter pointed to by index
2634
* num_counters - Updated all counters (will reset the timestamp
2635
* and prevent further calls for lifespan milliseconds)
2636
* Drivers are allowed to update all counters in leiu of just the
2637
* one given in index at their option
2638
*/
2639
int (*get_hw_stats)(struct ib_device *device,
2640
struct rdma_hw_stats *stats, u32 port, int index);
2641
2642
/**
2643
* modify_hw_stat - Modify the counter configuration
2644
* @enable: true/false when enable/disable a counter
2645
* Return codes - 0 on success or error code otherwise.
2646
*/
2647
int (*modify_hw_stat)(struct ib_device *device, u32 port,
2648
unsigned int counter_index, bool enable);
2649
/**
2650
* Allows rdma drivers to add their own restrack attributes.
2651
*/
2652
int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2653
int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2654
int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2655
int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2656
int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2657
int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2658
int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2659
int (*fill_res_srq_entry)(struct sk_buff *msg, struct ib_srq *ib_srq);
2660
int (*fill_res_srq_entry_raw)(struct sk_buff *msg, struct ib_srq *ib_srq);
2661
2662
/* Device lifecycle callbacks */
2663
/*
2664
* Called after the device becomes registered, before clients are
2665
* attached
2666
*/
2667
int (*enable_driver)(struct ib_device *dev);
2668
/*
2669
* This is called as part of ib_dealloc_device().
2670
*/
2671
void (*dealloc_driver)(struct ib_device *dev);
2672
2673
/* iWarp CM callbacks */
2674
void (*iw_add_ref)(struct ib_qp *qp);
2675
void (*iw_rem_ref)(struct ib_qp *qp);
2676
struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2677
int (*iw_connect)(struct iw_cm_id *cm_id,
2678
struct iw_cm_conn_param *conn_param);
2679
int (*iw_accept)(struct iw_cm_id *cm_id,
2680
struct iw_cm_conn_param *conn_param);
2681
int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2682
u8 pdata_len);
2683
int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2684
int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2685
/**
2686
* counter_bind_qp - Bind a QP to a counter.
2687
* @counter - The counter to be bound. If counter->id is zero then
2688
* the driver needs to allocate a new counter and set counter->id
2689
*/
2690
int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp,
2691
u32 port);
2692
/**
2693
* counter_unbind_qp - Unbind the qp from the dynamically-allocated
2694
* counter and bind it onto the default one
2695
*/
2696
int (*counter_unbind_qp)(struct ib_qp *qp, u32 port);
2697
/**
2698
* counter_dealloc -De-allocate the hw counter
2699
*/
2700
int (*counter_dealloc)(struct rdma_counter *counter);
2701
/**
2702
* counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2703
* the driver initialized data.
2704
*/
2705
struct rdma_hw_stats *(*counter_alloc_stats)(
2706
struct rdma_counter *counter);
2707
/**
2708
* counter_update_stats - Query the stats value of this counter
2709
*/
2710
int (*counter_update_stats)(struct rdma_counter *counter);
2711
2712
/**
2713
* counter_init - Initialize the driver specific rdma counter struct.
2714
*/
2715
void (*counter_init)(struct rdma_counter *counter);
2716
2717
/**
2718
* Allows rdma drivers to add their own restrack attributes
2719
* dumped via 'rdma stat' iproute2 command.
2720
*/
2721
int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2722
2723
/* query driver for its ucontext properties */
2724
int (*query_ucontext)(struct ib_ucontext *context,
2725
struct uverbs_attr_bundle *attrs);
2726
2727
/*
2728
* Provide NUMA node. This API exists for rdmavt/hfi1 only.
2729
* Everyone else relies on Linux memory management model.
2730
*/
2731
int (*get_numa_node)(struct ib_device *dev);
2732
2733
/**
2734
* add_sub_dev - Add a sub IB device
2735
*/
2736
struct ib_device *(*add_sub_dev)(struct ib_device *parent,
2737
enum rdma_nl_dev_type type,
2738
const char *name);
2739
2740
/**
2741
* del_sub_dev - Delete a sub IB device
2742
*/
2743
void (*del_sub_dev)(struct ib_device *sub_dev);
2744
2745
/**
2746
* ufile_cleanup - Attempt to cleanup ubojects HW resources inside
2747
* the ufile.
2748
*/
2749
void (*ufile_hw_cleanup)(struct ib_uverbs_file *ufile);
2750
2751
/**
2752
* report_port_event - Drivers need to implement this if they have
2753
* some private stuff to handle when link status changes.
2754
*/
2755
void (*report_port_event)(struct ib_device *ibdev,
2756
struct net_device *ndev, unsigned long event);
2757
2758
DECLARE_RDMA_OBJ_SIZE(ib_ah);
2759
DECLARE_RDMA_OBJ_SIZE(ib_counters);
2760
DECLARE_RDMA_OBJ_SIZE(ib_cq);
2761
DECLARE_RDMA_OBJ_SIZE(ib_dmah);
2762
DECLARE_RDMA_OBJ_SIZE(ib_mw);
2763
DECLARE_RDMA_OBJ_SIZE(ib_pd);
2764
DECLARE_RDMA_OBJ_SIZE(ib_qp);
2765
DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2766
DECLARE_RDMA_OBJ_SIZE(ib_srq);
2767
DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2768
DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2769
DECLARE_RDMA_OBJ_SIZE(rdma_counter);
2770
};
2771
2772
struct ib_core_device {
2773
/* device must be the first element in structure until,
2774
* union of ib_core_device and device exists in ib_device.
2775
*/
2776
struct device dev;
2777
possible_net_t rdma_net;
2778
struct kobject *ports_kobj;
2779
struct list_head port_list;
2780
struct ib_device *owner; /* reach back to owner ib_device */
2781
};
2782
2783
struct rdma_restrack_root;
2784
struct ib_device {
2785
/* Do not access @dma_device directly from ULP nor from HW drivers. */
2786
struct device *dma_device;
2787
struct ib_device_ops ops;
2788
char name[IB_DEVICE_NAME_MAX];
2789
struct rcu_head rcu_head;
2790
2791
struct list_head event_handler_list;
2792
/* Protects event_handler_list */
2793
struct rw_semaphore event_handler_rwsem;
2794
2795
/* Protects QP's event_handler calls and open_qp list */
2796
spinlock_t qp_open_list_lock;
2797
2798
struct rw_semaphore client_data_rwsem;
2799
struct xarray client_data;
2800
struct mutex unregistration_lock;
2801
2802
/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2803
rwlock_t cache_lock;
2804
/**
2805
* port_data is indexed by port number
2806
*/
2807
struct ib_port_data *port_data;
2808
2809
int num_comp_vectors;
2810
2811
union {
2812
struct device dev;
2813
struct ib_core_device coredev;
2814
};
2815
2816
/* First group is for device attributes,
2817
* Second group is for driver provided attributes (optional).
2818
* Third group is for the hw_stats
2819
* It is a NULL terminated array.
2820
*/
2821
const struct attribute_group *groups[4];
2822
u8 hw_stats_attr_index;
2823
2824
u64 uverbs_cmd_mask;
2825
2826
char node_desc[IB_DEVICE_NODE_DESC_MAX];
2827
__be64 node_guid;
2828
u32 local_dma_lkey;
2829
u16 is_switch:1;
2830
/* Indicates kernel verbs support, should not be used in drivers */
2831
u16 kverbs_provider:1;
2832
/* CQ adaptive moderation (RDMA DIM) */
2833
u16 use_cq_dim:1;
2834
u8 node_type;
2835
u32 phys_port_cnt;
2836
struct ib_device_attr attrs;
2837
struct hw_stats_device_data *hw_stats_data;
2838
2839
#ifdef CONFIG_CGROUP_RDMA
2840
struct rdmacg_device cg_device;
2841
#endif
2842
2843
u32 index;
2844
2845
spinlock_t cq_pools_lock;
2846
struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2847
2848
struct rdma_restrack_root *res;
2849
2850
const struct uapi_definition *driver_def;
2851
2852
/*
2853
* Positive refcount indicates that the device is currently
2854
* registered and cannot be unregistered.
2855
*/
2856
refcount_t refcount;
2857
struct completion unreg_completion;
2858
struct work_struct unregistration_work;
2859
2860
const struct rdma_link_ops *link_ops;
2861
2862
/* Protects compat_devs xarray modifications */
2863
struct mutex compat_devs_mutex;
2864
/* Maintains compat devices for each net namespace */
2865
struct xarray compat_devs;
2866
2867
/* Used by iWarp CM */
2868
char iw_ifname[IFNAMSIZ];
2869
u32 iw_driver_flags;
2870
u32 lag_flags;
2871
2872
/* A parent device has a list of sub-devices */
2873
struct mutex subdev_lock;
2874
struct list_head subdev_list_head;
2875
2876
/* A sub device has a type and a parent */
2877
enum rdma_nl_dev_type type;
2878
struct ib_device *parent;
2879
struct list_head subdev_list;
2880
2881
enum rdma_nl_name_assign_type name_assign_type;
2882
};
2883
2884
static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2885
gfp_t gfp, bool is_numa_aware)
2886
{
2887
if (is_numa_aware && dev->ops.get_numa_node)
2888
return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2889
2890
return kzalloc(size, gfp);
2891
}
2892
2893
struct ib_client_nl_info;
2894
struct ib_client {
2895
const char *name;
2896
int (*add)(struct ib_device *ibdev);
2897
void (*remove)(struct ib_device *, void *client_data);
2898
void (*rename)(struct ib_device *dev, void *client_data);
2899
int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2900
struct ib_client_nl_info *res);
2901
int (*get_global_nl_info)(struct ib_client_nl_info *res);
2902
2903
/* Returns the net_dev belonging to this ib_client and matching the
2904
* given parameters.
2905
* @dev: An RDMA device that the net_dev use for communication.
2906
* @port: A physical port number on the RDMA device.
2907
* @pkey: P_Key that the net_dev uses if applicable.
2908
* @gid: A GID that the net_dev uses to communicate.
2909
* @addr: An IP address the net_dev is configured with.
2910
* @client_data: The device's client data set by ib_set_client_data().
2911
*
2912
* An ib_client that implements a net_dev on top of RDMA devices
2913
* (such as IP over IB) should implement this callback, allowing the
2914
* rdma_cm module to find the right net_dev for a given request.
2915
*
2916
* The caller is responsible for calling dev_put on the returned
2917
* netdev. */
2918
struct net_device *(*get_net_dev_by_params)(
2919
struct ib_device *dev,
2920
u32 port,
2921
u16 pkey,
2922
const union ib_gid *gid,
2923
const struct sockaddr *addr,
2924
void *client_data);
2925
2926
refcount_t uses;
2927
struct completion uses_zero;
2928
u32 client_id;
2929
2930
/* kverbs are not required by the client */
2931
u8 no_kverbs_req:1;
2932
};
2933
2934
/*
2935
* IB block DMA iterator
2936
*
2937
* Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2938
* to a HW supported page size.
2939
*/
2940
struct ib_block_iter {
2941
/* internal states */
2942
struct scatterlist *__sg; /* sg holding the current aligned block */
2943
dma_addr_t __dma_addr; /* unaligned DMA address of this block */
2944
size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */
2945
unsigned int __sg_nents; /* number of SG entries */
2946
unsigned int __sg_advance; /* number of bytes to advance in sg in next step */
2947
unsigned int __pg_bit; /* alignment of current block */
2948
};
2949
2950
struct ib_device *_ib_alloc_device(size_t size, struct net *net);
2951
#define ib_alloc_device(drv_struct, member) \
2952
container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2953
BUILD_BUG_ON_ZERO(offsetof( \
2954
struct drv_struct, member)), \
2955
&init_net), \
2956
struct drv_struct, member)
2957
2958
#define ib_alloc_device_with_net(drv_struct, member, net) \
2959
container_of(_ib_alloc_device(sizeof(struct drv_struct) + \
2960
BUILD_BUG_ON_ZERO(offsetof( \
2961
struct drv_struct, member)), net), \
2962
struct drv_struct, member)
2963
2964
void ib_dealloc_device(struct ib_device *device);
2965
2966
void ib_get_device_fw_str(struct ib_device *device, char *str);
2967
2968
int ib_register_device(struct ib_device *device, const char *name,
2969
struct device *dma_device);
2970
void ib_unregister_device(struct ib_device *device);
2971
void ib_unregister_driver(enum rdma_driver_id driver_id);
2972
void ib_unregister_device_and_put(struct ib_device *device);
2973
void ib_unregister_device_queued(struct ib_device *ib_dev);
2974
2975
int ib_register_client (struct ib_client *client);
2976
void ib_unregister_client(struct ib_client *client);
2977
2978
void __rdma_block_iter_start(struct ib_block_iter *biter,
2979
struct scatterlist *sglist,
2980
unsigned int nents,
2981
unsigned long pgsz);
2982
bool __rdma_block_iter_next(struct ib_block_iter *biter);
2983
2984
/**
2985
* rdma_block_iter_dma_address - get the aligned dma address of the current
2986
* block held by the block iterator.
2987
* @biter: block iterator holding the memory block
2988
*/
2989
static inline dma_addr_t
2990
rdma_block_iter_dma_address(struct ib_block_iter *biter)
2991
{
2992
return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2993
}
2994
2995
/**
2996
* rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2997
* @sglist: sglist to iterate over
2998
* @biter: block iterator holding the memory block
2999
* @nents: maximum number of sg entries to iterate over
3000
* @pgsz: best HW supported page size to use
3001
*
3002
* Callers may use rdma_block_iter_dma_address() to get each
3003
* blocks aligned DMA address.
3004
*/
3005
#define rdma_for_each_block(sglist, biter, nents, pgsz) \
3006
for (__rdma_block_iter_start(biter, sglist, nents, \
3007
pgsz); \
3008
__rdma_block_iter_next(biter);)
3009
3010
/**
3011
* ib_get_client_data - Get IB client context
3012
* @device:Device to get context for
3013
* @client:Client to get context for
3014
*
3015
* ib_get_client_data() returns the client context data set with
3016
* ib_set_client_data(). This can only be called while the client is
3017
* registered to the device, once the ib_client remove() callback returns this
3018
* cannot be called.
3019
*/
3020
static inline void *ib_get_client_data(struct ib_device *device,
3021
struct ib_client *client)
3022
{
3023
return xa_load(&device->client_data, client->client_id);
3024
}
3025
void ib_set_client_data(struct ib_device *device, struct ib_client *client,
3026
void *data);
3027
void ib_set_device_ops(struct ib_device *device,
3028
const struct ib_device_ops *ops);
3029
3030
int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
3031
unsigned long pfn, unsigned long size, pgprot_t prot,
3032
struct rdma_user_mmap_entry *entry);
3033
int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
3034
struct rdma_user_mmap_entry *entry,
3035
size_t length);
3036
int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
3037
struct rdma_user_mmap_entry *entry,
3038
size_t length, u32 min_pgoff,
3039
u32 max_pgoff);
3040
3041
#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
3042
void rdma_user_mmap_disassociate(struct ib_device *device);
3043
#else
3044
static inline void rdma_user_mmap_disassociate(struct ib_device *device)
3045
{
3046
}
3047
#endif
3048
3049
static inline int
3050
rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
3051
struct rdma_user_mmap_entry *entry,
3052
size_t length, u32 pgoff)
3053
{
3054
return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
3055
pgoff);
3056
}
3057
3058
struct rdma_user_mmap_entry *
3059
rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
3060
unsigned long pgoff);
3061
struct rdma_user_mmap_entry *
3062
rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
3063
struct vm_area_struct *vma);
3064
void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
3065
3066
void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
3067
3068
static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
3069
{
3070
return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
3071
}
3072
3073
static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
3074
{
3075
return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
3076
}
3077
3078
static inline bool ib_is_buffer_cleared(const void __user *p,
3079
size_t len)
3080
{
3081
bool ret;
3082
u8 *buf;
3083
3084
if (len > USHRT_MAX)
3085
return false;
3086
3087
buf = memdup_user(p, len);
3088
if (IS_ERR(buf))
3089
return false;
3090
3091
ret = !memchr_inv(buf, 0, len);
3092
kfree(buf);
3093
return ret;
3094
}
3095
3096
static inline bool ib_is_udata_cleared(struct ib_udata *udata,
3097
size_t offset,
3098
size_t len)
3099
{
3100
return ib_is_buffer_cleared(udata->inbuf + offset, len);
3101
}
3102
3103
/**
3104
* ib_modify_qp_is_ok - Check that the supplied attribute mask
3105
* contains all required attributes and no attributes not allowed for
3106
* the given QP state transition.
3107
* @cur_state: Current QP state
3108
* @next_state: Next QP state
3109
* @type: QP type
3110
* @mask: Mask of supplied QP attributes
3111
*
3112
* This function is a helper function that a low-level driver's
3113
* modify_qp method can use to validate the consumer's input. It
3114
* checks that cur_state and next_state are valid QP states, that a
3115
* transition from cur_state to next_state is allowed by the IB spec,
3116
* and that the attribute mask supplied is allowed for the transition.
3117
*/
3118
bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3119
enum ib_qp_type type, enum ib_qp_attr_mask mask);
3120
3121
void ib_register_event_handler(struct ib_event_handler *event_handler);
3122
void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3123
void ib_dispatch_event(const struct ib_event *event);
3124
3125
int ib_query_port(struct ib_device *device,
3126
u32 port_num, struct ib_port_attr *port_attr);
3127
3128
enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3129
u32 port_num);
3130
3131
/**
3132
* rdma_cap_ib_switch - Check if the device is IB switch
3133
* @device: Device to check
3134
*
3135
* Device driver is responsible for setting is_switch bit on
3136
* in ib_device structure at init time.
3137
*
3138
* Return: true if the device is IB switch.
3139
*/
3140
static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3141
{
3142
return device->is_switch;
3143
}
3144
3145
/**
3146
* rdma_start_port - Return the first valid port number for the device
3147
* specified
3148
*
3149
* @device: Device to be checked
3150
*
3151
* Return start port number
3152
*/
3153
static inline u32 rdma_start_port(const struct ib_device *device)
3154
{
3155
return rdma_cap_ib_switch(device) ? 0 : 1;
3156
}
3157
3158
/**
3159
* rdma_for_each_port - Iterate over all valid port numbers of the IB device
3160
* @device - The struct ib_device * to iterate over
3161
* @iter - The unsigned int to store the port number
3162
*/
3163
#define rdma_for_each_port(device, iter) \
3164
for (iter = rdma_start_port(device + \
3165
BUILD_BUG_ON_ZERO(!__same_type(u32, \
3166
iter))); \
3167
iter <= rdma_end_port(device); iter++)
3168
3169
/**
3170
* rdma_end_port - Return the last valid port number for the device
3171
* specified
3172
*
3173
* @device: Device to be checked
3174
*
3175
* Return last port number
3176
*/
3177
static inline u32 rdma_end_port(const struct ib_device *device)
3178
{
3179
return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3180
}
3181
3182
static inline int rdma_is_port_valid(const struct ib_device *device,
3183
unsigned int port)
3184
{
3185
return (port >= rdma_start_port(device) &&
3186
port <= rdma_end_port(device));
3187
}
3188
3189
static inline bool rdma_is_grh_required(const struct ib_device *device,
3190
u32 port_num)
3191
{
3192
return device->port_data[port_num].immutable.core_cap_flags &
3193
RDMA_CORE_PORT_IB_GRH_REQUIRED;
3194
}
3195
3196
static inline bool rdma_protocol_ib(const struct ib_device *device,
3197
u32 port_num)
3198
{
3199
return device->port_data[port_num].immutable.core_cap_flags &
3200
RDMA_CORE_CAP_PROT_IB;
3201
}
3202
3203
static inline bool rdma_protocol_roce(const struct ib_device *device,
3204
u32 port_num)
3205
{
3206
return device->port_data[port_num].immutable.core_cap_flags &
3207
(RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3208
}
3209
3210
static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3211
u32 port_num)
3212
{
3213
return device->port_data[port_num].immutable.core_cap_flags &
3214
RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3215
}
3216
3217
static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3218
u32 port_num)
3219
{
3220
return device->port_data[port_num].immutable.core_cap_flags &
3221
RDMA_CORE_CAP_PROT_ROCE;
3222
}
3223
3224
static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3225
u32 port_num)
3226
{
3227
return device->port_data[port_num].immutable.core_cap_flags &
3228
RDMA_CORE_CAP_PROT_IWARP;
3229
}
3230
3231
static inline bool rdma_ib_or_roce(const struct ib_device *device,
3232
u32 port_num)
3233
{
3234
return rdma_protocol_ib(device, port_num) ||
3235
rdma_protocol_roce(device, port_num);
3236
}
3237
3238
static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3239
u32 port_num)
3240
{
3241
return device->port_data[port_num].immutable.core_cap_flags &
3242
RDMA_CORE_CAP_PROT_RAW_PACKET;
3243
}
3244
3245
static inline bool rdma_protocol_usnic(const struct ib_device *device,
3246
u32 port_num)
3247
{
3248
return device->port_data[port_num].immutable.core_cap_flags &
3249
RDMA_CORE_CAP_PROT_USNIC;
3250
}
3251
3252
/**
3253
* rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3254
* Management Datagrams.
3255
* @device: Device to check
3256
* @port_num: Port number to check
3257
*
3258
* Management Datagrams (MAD) are a required part of the InfiniBand
3259
* specification and are supported on all InfiniBand devices. A slightly
3260
* extended version are also supported on OPA interfaces.
3261
*
3262
* Return: true if the port supports sending/receiving of MAD packets.
3263
*/
3264
static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3265
{
3266
return device->port_data[port_num].immutable.core_cap_flags &
3267
RDMA_CORE_CAP_IB_MAD;
3268
}
3269
3270
/**
3271
* rdma_cap_opa_mad - Check if the port of device provides support for OPA
3272
* Management Datagrams.
3273
* @device: Device to check
3274
* @port_num: Port number to check
3275
*
3276
* Intel OmniPath devices extend and/or replace the InfiniBand Management
3277
* datagrams with their own versions. These OPA MADs share many but not all of
3278
* the characteristics of InfiniBand MADs.
3279
*
3280
* OPA MADs differ in the following ways:
3281
*
3282
* 1) MADs are variable size up to 2K
3283
* IBTA defined MADs remain fixed at 256 bytes
3284
* 2) OPA SMPs must carry valid PKeys
3285
* 3) OPA SMP packets are a different format
3286
*
3287
* Return: true if the port supports OPA MAD packet formats.
3288
*/
3289
static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3290
{
3291
return device->port_data[port_num].immutable.core_cap_flags &
3292
RDMA_CORE_CAP_OPA_MAD;
3293
}
3294
3295
/**
3296
* rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3297
* Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3298
* @device: Device to check
3299
* @port_num: Port number to check
3300
*
3301
* Each InfiniBand node is required to provide a Subnet Management Agent
3302
* that the subnet manager can access. Prior to the fabric being fully
3303
* configured by the subnet manager, the SMA is accessed via a well known
3304
* interface called the Subnet Management Interface (SMI). This interface
3305
* uses directed route packets to communicate with the SM to get around the
3306
* chicken and egg problem of the SM needing to know what's on the fabric
3307
* in order to configure the fabric, and needing to configure the fabric in
3308
* order to send packets to the devices on the fabric. These directed
3309
* route packets do not need the fabric fully configured in order to reach
3310
* their destination. The SMI is the only method allowed to send
3311
* directed route packets on an InfiniBand fabric.
3312
*
3313
* Return: true if the port provides an SMI.
3314
*/
3315
static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3316
{
3317
return device->port_data[port_num].immutable.core_cap_flags &
3318
RDMA_CORE_CAP_IB_SMI;
3319
}
3320
3321
/**
3322
* rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3323
* Communication Manager.
3324
* @device: Device to check
3325
* @port_num: Port number to check
3326
*
3327
* The InfiniBand Communication Manager is one of many pre-defined General
3328
* Service Agents (GSA) that are accessed via the General Service
3329
* Interface (GSI). It's role is to facilitate establishment of connections
3330
* between nodes as well as other management related tasks for established
3331
* connections.
3332
*
3333
* Return: true if the port supports an IB CM (this does not guarantee that
3334
* a CM is actually running however).
3335
*/
3336
static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3337
{
3338
return device->port_data[port_num].immutable.core_cap_flags &
3339
RDMA_CORE_CAP_IB_CM;
3340
}
3341
3342
/**
3343
* rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3344
* Communication Manager.
3345
* @device: Device to check
3346
* @port_num: Port number to check
3347
*
3348
* Similar to above, but specific to iWARP connections which have a different
3349
* managment protocol than InfiniBand.
3350
*
3351
* Return: true if the port supports an iWARP CM (this does not guarantee that
3352
* a CM is actually running however).
3353
*/
3354
static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3355
{
3356
return device->port_data[port_num].immutable.core_cap_flags &
3357
RDMA_CORE_CAP_IW_CM;
3358
}
3359
3360
/**
3361
* rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3362
* Subnet Administration.
3363
* @device: Device to check
3364
* @port_num: Port number to check
3365
*
3366
* An InfiniBand Subnet Administration (SA) service is a pre-defined General
3367
* Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
3368
* fabrics, devices should resolve routes to other hosts by contacting the
3369
* SA to query the proper route.
3370
*
3371
* Return: true if the port should act as a client to the fabric Subnet
3372
* Administration interface. This does not imply that the SA service is
3373
* running locally.
3374
*/
3375
static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3376
{
3377
return device->port_data[port_num].immutable.core_cap_flags &
3378
RDMA_CORE_CAP_IB_SA;
3379
}
3380
3381
/**
3382
* rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3383
* Multicast.
3384
* @device: Device to check
3385
* @port_num: Port number to check
3386
*
3387
* InfiniBand multicast registration is more complex than normal IPv4 or
3388
* IPv6 multicast registration. Each Host Channel Adapter must register
3389
* with the Subnet Manager when it wishes to join a multicast group. It
3390
* should do so only once regardless of how many queue pairs it subscribes
3391
* to this group. And it should leave the group only after all queue pairs
3392
* attached to the group have been detached.
3393
*
3394
* Return: true if the port must undertake the additional adminstrative
3395
* overhead of registering/unregistering with the SM and tracking of the
3396
* total number of queue pairs attached to the multicast group.
3397
*/
3398
static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3399
u32 port_num)
3400
{
3401
return rdma_cap_ib_sa(device, port_num);
3402
}
3403
3404
/**
3405
* rdma_cap_af_ib - Check if the port of device has the capability
3406
* Native Infiniband Address.
3407
* @device: Device to check
3408
* @port_num: Port number to check
3409
*
3410
* InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3411
* GID. RoCE uses a different mechanism, but still generates a GID via
3412
* a prescribed mechanism and port specific data.
3413
*
3414
* Return: true if the port uses a GID address to identify devices on the
3415
* network.
3416
*/
3417
static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3418
{
3419
return device->port_data[port_num].immutable.core_cap_flags &
3420
RDMA_CORE_CAP_AF_IB;
3421
}
3422
3423
/**
3424
* rdma_cap_eth_ah - Check if the port of device has the capability
3425
* Ethernet Address Handle.
3426
* @device: Device to check
3427
* @port_num: Port number to check
3428
*
3429
* RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3430
* to fabricate GIDs over Ethernet/IP specific addresses native to the
3431
* port. Normally, packet headers are generated by the sending host
3432
* adapter, but when sending connectionless datagrams, we must manually
3433
* inject the proper headers for the fabric we are communicating over.
3434
*
3435
* Return: true if we are running as a RoCE port and must force the
3436
* addition of a Global Route Header built from our Ethernet Address
3437
* Handle into our header list for connectionless packets.
3438
*/
3439
static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3440
{
3441
return device->port_data[port_num].immutable.core_cap_flags &
3442
RDMA_CORE_CAP_ETH_AH;
3443
}
3444
3445
/**
3446
* rdma_cap_opa_ah - Check if the port of device supports
3447
* OPA Address handles
3448
* @device: Device to check
3449
* @port_num: Port number to check
3450
*
3451
* Return: true if we are running on an OPA device which supports
3452
* the extended OPA addressing.
3453
*/
3454
static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3455
{
3456
return (device->port_data[port_num].immutable.core_cap_flags &
3457
RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3458
}
3459
3460
/**
3461
* rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3462
*
3463
* @device: Device
3464
* @port_num: Port number
3465
*
3466
* This MAD size includes the MAD headers and MAD payload. No other headers
3467
* are included.
3468
*
3469
* Return the max MAD size required by the Port. Will return 0 if the port
3470
* does not support MADs
3471
*/
3472
static inline size_t rdma_max_mad_size(const struct ib_device *device,
3473
u32 port_num)
3474
{
3475
return device->port_data[port_num].immutable.max_mad_size;
3476
}
3477
3478
/**
3479
* rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3480
* @device: Device to check
3481
* @port_num: Port number to check
3482
*
3483
* RoCE GID table mechanism manages the various GIDs for a device.
3484
*
3485
* NOTE: if allocating the port's GID table has failed, this call will still
3486
* return true, but any RoCE GID table API will fail.
3487
*
3488
* Return: true if the port uses RoCE GID table mechanism in order to manage
3489
* its GIDs.
3490
*/
3491
static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3492
u32 port_num)
3493
{
3494
return rdma_protocol_roce(device, port_num) &&
3495
device->ops.add_gid && device->ops.del_gid;
3496
}
3497
3498
/*
3499
* Check if the device supports READ W/ INVALIDATE.
3500
*/
3501
static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3502
{
3503
/*
3504
* iWarp drivers must support READ W/ INVALIDATE. No other protocol
3505
* has support for it yet.
3506
*/
3507
return rdma_protocol_iwarp(dev, port_num);
3508
}
3509
3510
/**
3511
* rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3512
* @device: Device
3513
* @port_num: 1 based Port number
3514
*
3515
* Return true if port is an Intel OPA port , false if not
3516
*/
3517
static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3518
u32 port_num)
3519
{
3520
return (device->port_data[port_num].immutable.core_cap_flags &
3521
RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3522
}
3523
3524
/**
3525
* rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3526
* @device: Device
3527
* @port_num: Port number
3528
* @mtu: enum value of MTU
3529
*
3530
* Return the MTU size supported by the port as an integer value. Will return
3531
* -1 if enum value of mtu is not supported.
3532
*/
3533
static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3534
int mtu)
3535
{
3536
if (rdma_core_cap_opa_port(device, port))
3537
return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3538
else
3539
return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3540
}
3541
3542
/**
3543
* rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3544
* @device: Device
3545
* @port_num: Port number
3546
* @attr: port attribute
3547
*
3548
* Return the MTU size supported by the port as an integer value.
3549
*/
3550
static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3551
struct ib_port_attr *attr)
3552
{
3553
if (rdma_core_cap_opa_port(device, port))
3554
return attr->phys_mtu;
3555
else
3556
return ib_mtu_enum_to_int(attr->max_mtu);
3557
}
3558
3559
int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3560
int state);
3561
int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3562
struct ifla_vf_info *info);
3563
int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3564
struct ifla_vf_stats *stats);
3565
int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3566
struct ifla_vf_guid *node_guid,
3567
struct ifla_vf_guid *port_guid);
3568
int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3569
int type);
3570
3571
int ib_query_pkey(struct ib_device *device,
3572
u32 port_num, u16 index, u16 *pkey);
3573
3574
int ib_modify_device(struct ib_device *device,
3575
int device_modify_mask,
3576
struct ib_device_modify *device_modify);
3577
3578
int ib_modify_port(struct ib_device *device,
3579
u32 port_num, int port_modify_mask,
3580
struct ib_port_modify *port_modify);
3581
3582
int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3583
u32 *port_num, u16 *index);
3584
3585
int ib_find_pkey(struct ib_device *device,
3586
u32 port_num, u16 pkey, u16 *index);
3587
3588
enum ib_pd_flags {
3589
/*
3590
* Create a memory registration for all memory in the system and place
3591
* the rkey for it into pd->unsafe_global_rkey. This can be used by
3592
* ULPs to avoid the overhead of dynamic MRs.
3593
*
3594
* This flag is generally considered unsafe and must only be used in
3595
* extremly trusted environments. Every use of it will log a warning
3596
* in the kernel log.
3597
*/
3598
IB_PD_UNSAFE_GLOBAL_RKEY = 0x01,
3599
};
3600
3601
struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3602
const char *caller);
3603
3604
/**
3605
* ib_alloc_pd - Allocates an unused protection domain.
3606
* @device: The device on which to allocate the protection domain.
3607
* @flags: protection domain flags
3608
*
3609
* A protection domain object provides an association between QPs, shared
3610
* receive queues, address handles, memory regions, and memory windows.
3611
*
3612
* Every PD has a local_dma_lkey which can be used as the lkey value for local
3613
* memory operations.
3614
*/
3615
#define ib_alloc_pd(device, flags) \
3616
__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3617
3618
int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3619
3620
/**
3621
* ib_dealloc_pd - Deallocate kernel PD
3622
* @pd: The protection domain
3623
*
3624
* NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3625
*/
3626
static inline void ib_dealloc_pd(struct ib_pd *pd)
3627
{
3628
int ret = ib_dealloc_pd_user(pd, NULL);
3629
3630
WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3631
}
3632
3633
enum rdma_create_ah_flags {
3634
/* In a sleepable context */
3635
RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3636
};
3637
3638
/**
3639
* rdma_create_ah - Creates an address handle for the given address vector.
3640
* @pd: The protection domain associated with the address handle.
3641
* @ah_attr: The attributes of the address vector.
3642
* @flags: Create address handle flags (see enum rdma_create_ah_flags).
3643
*
3644
* The address handle is used to reference a local or global destination
3645
* in all UD QP post sends.
3646
*/
3647
struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3648
u32 flags);
3649
3650
/**
3651
* rdma_create_user_ah - Creates an address handle for the given address vector.
3652
* It resolves destination mac address for ah attribute of RoCE type.
3653
* @pd: The protection domain associated with the address handle.
3654
* @ah_attr: The attributes of the address vector.
3655
* @udata: pointer to user's input output buffer information need by
3656
* provider driver.
3657
*
3658
* It returns 0 on success and returns appropriate error code on error.
3659
* The address handle is used to reference a local or global destination
3660
* in all UD QP post sends.
3661
*/
3662
struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3663
struct rdma_ah_attr *ah_attr,
3664
struct ib_udata *udata);
3665
/**
3666
* ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3667
* work completion.
3668
* @hdr: the L3 header to parse
3669
* @net_type: type of header to parse
3670
* @sgid: place to store source gid
3671
* @dgid: place to store destination gid
3672
*/
3673
int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3674
enum rdma_network_type net_type,
3675
union ib_gid *sgid, union ib_gid *dgid);
3676
3677
/**
3678
* ib_get_rdma_header_version - Get the header version
3679
* @hdr: the L3 header to parse
3680
*/
3681
int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3682
3683
/**
3684
* ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3685
* work completion.
3686
* @device: Device on which the received message arrived.
3687
* @port_num: Port on which the received message arrived.
3688
* @wc: Work completion associated with the received message.
3689
* @grh: References the received global route header. This parameter is
3690
* ignored unless the work completion indicates that the GRH is valid.
3691
* @ah_attr: Returned attributes that can be used when creating an address
3692
* handle for replying to the message.
3693
* When ib_init_ah_attr_from_wc() returns success,
3694
* (a) for IB link layer it optionally contains a reference to SGID attribute
3695
* when GRH is present for IB link layer.
3696
* (b) for RoCE link layer it contains a reference to SGID attribute.
3697
* User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3698
* attributes which are initialized using ib_init_ah_attr_from_wc().
3699
*
3700
*/
3701
int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3702
const struct ib_wc *wc, const struct ib_grh *grh,
3703
struct rdma_ah_attr *ah_attr);
3704
3705
/**
3706
* ib_create_ah_from_wc - Creates an address handle associated with the
3707
* sender of the specified work completion.
3708
* @pd: The protection domain associated with the address handle.
3709
* @wc: Work completion information associated with a received message.
3710
* @grh: References the received global route header. This parameter is
3711
* ignored unless the work completion indicates that the GRH is valid.
3712
* @port_num: The outbound port number to associate with the address.
3713
*
3714
* The address handle is used to reference a local or global destination
3715
* in all UD QP post sends.
3716
*/
3717
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3718
const struct ib_grh *grh, u32 port_num);
3719
3720
/**
3721
* rdma_modify_ah - Modifies the address vector associated with an address
3722
* handle.
3723
* @ah: The address handle to modify.
3724
* @ah_attr: The new address vector attributes to associate with the
3725
* address handle.
3726
*/
3727
int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3728
3729
/**
3730
* rdma_query_ah - Queries the address vector associated with an address
3731
* handle.
3732
* @ah: The address handle to query.
3733
* @ah_attr: The address vector attributes associated with the address
3734
* handle.
3735
*/
3736
int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3737
3738
enum rdma_destroy_ah_flags {
3739
/* In a sleepable context */
3740
RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3741
};
3742
3743
/**
3744
* rdma_destroy_ah_user - Destroys an address handle.
3745
* @ah: The address handle to destroy.
3746
* @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3747
* @udata: Valid user data or NULL for kernel objects
3748
*/
3749
int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3750
3751
/**
3752
* rdma_destroy_ah - Destroys an kernel address handle.
3753
* @ah: The address handle to destroy.
3754
* @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3755
*
3756
* NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3757
*/
3758
static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3759
{
3760
int ret = rdma_destroy_ah_user(ah, flags, NULL);
3761
3762
WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3763
}
3764
3765
struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3766
struct ib_srq_init_attr *srq_init_attr,
3767
struct ib_usrq_object *uobject,
3768
struct ib_udata *udata);
3769
static inline struct ib_srq *
3770
ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3771
{
3772
if (!pd->device->ops.create_srq)
3773
return ERR_PTR(-EOPNOTSUPP);
3774
3775
return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3776
}
3777
3778
/**
3779
* ib_modify_srq - Modifies the attributes for the specified SRQ.
3780
* @srq: The SRQ to modify.
3781
* @srq_attr: On input, specifies the SRQ attributes to modify. On output,
3782
* the current values of selected SRQ attributes are returned.
3783
* @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3784
* are being modified.
3785
*
3786
* The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3787
* IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3788
* the number of receives queued drops below the limit.
3789
*/
3790
int ib_modify_srq(struct ib_srq *srq,
3791
struct ib_srq_attr *srq_attr,
3792
enum ib_srq_attr_mask srq_attr_mask);
3793
3794
/**
3795
* ib_query_srq - Returns the attribute list and current values for the
3796
* specified SRQ.
3797
* @srq: The SRQ to query.
3798
* @srq_attr: The attributes of the specified SRQ.
3799
*/
3800
int ib_query_srq(struct ib_srq *srq,
3801
struct ib_srq_attr *srq_attr);
3802
3803
/**
3804
* ib_destroy_srq_user - Destroys the specified SRQ.
3805
* @srq: The SRQ to destroy.
3806
* @udata: Valid user data or NULL for kernel objects
3807
*/
3808
int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3809
3810
/**
3811
* ib_destroy_srq - Destroys the specified kernel SRQ.
3812
* @srq: The SRQ to destroy.
3813
*
3814
* NOTE: for user srq use ib_destroy_srq_user with valid udata!
3815
*/
3816
static inline void ib_destroy_srq(struct ib_srq *srq)
3817
{
3818
int ret = ib_destroy_srq_user(srq, NULL);
3819
3820
WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3821
}
3822
3823
/**
3824
* ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3825
* @srq: The SRQ to post the work request on.
3826
* @recv_wr: A list of work requests to post on the receive queue.
3827
* @bad_recv_wr: On an immediate failure, this parameter will reference
3828
* the work request that failed to be posted on the QP.
3829
*/
3830
static inline int ib_post_srq_recv(struct ib_srq *srq,
3831
const struct ib_recv_wr *recv_wr,
3832
const struct ib_recv_wr **bad_recv_wr)
3833
{
3834
const struct ib_recv_wr *dummy;
3835
3836
return srq->device->ops.post_srq_recv(srq, recv_wr,
3837
bad_recv_wr ? : &dummy);
3838
}
3839
3840
struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3841
struct ib_qp_init_attr *qp_init_attr,
3842
const char *caller);
3843
/**
3844
* ib_create_qp - Creates a kernel QP associated with the specific protection
3845
* domain.
3846
* @pd: The protection domain associated with the QP.
3847
* @init_attr: A list of initial attributes required to create the
3848
* QP. If QP creation succeeds, then the attributes are updated to
3849
* the actual capabilities of the created QP.
3850
*/
3851
static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3852
struct ib_qp_init_attr *init_attr)
3853
{
3854
return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3855
}
3856
3857
/**
3858
* ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3859
* @qp: The QP to modify.
3860
* @attr: On input, specifies the QP attributes to modify. On output,
3861
* the current values of selected QP attributes are returned.
3862
* @attr_mask: A bit-mask used to specify which attributes of the QP
3863
* are being modified.
3864
* @udata: pointer to user's input output buffer information
3865
* are being modified.
3866
* It returns 0 on success and returns appropriate error code on error.
3867
*/
3868
int ib_modify_qp_with_udata(struct ib_qp *qp,
3869
struct ib_qp_attr *attr,
3870
int attr_mask,
3871
struct ib_udata *udata);
3872
3873
/**
3874
* ib_modify_qp - Modifies the attributes for the specified QP and then
3875
* transitions the QP to the given state.
3876
* @qp: The QP to modify.
3877
* @qp_attr: On input, specifies the QP attributes to modify. On output,
3878
* the current values of selected QP attributes are returned.
3879
* @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3880
* are being modified.
3881
*/
3882
int ib_modify_qp(struct ib_qp *qp,
3883
struct ib_qp_attr *qp_attr,
3884
int qp_attr_mask);
3885
3886
/**
3887
* ib_query_qp - Returns the attribute list and current values for the
3888
* specified QP.
3889
* @qp: The QP to query.
3890
* @qp_attr: The attributes of the specified QP.
3891
* @qp_attr_mask: A bit-mask used to select specific attributes to query.
3892
* @qp_init_attr: Additional attributes of the selected QP.
3893
*
3894
* The qp_attr_mask may be used to limit the query to gathering only the
3895
* selected attributes.
3896
*/
3897
int ib_query_qp(struct ib_qp *qp,
3898
struct ib_qp_attr *qp_attr,
3899
int qp_attr_mask,
3900
struct ib_qp_init_attr *qp_init_attr);
3901
3902
/**
3903
* ib_destroy_qp - Destroys the specified QP.
3904
* @qp: The QP to destroy.
3905
* @udata: Valid udata or NULL for kernel objects
3906
*/
3907
int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3908
3909
/**
3910
* ib_destroy_qp - Destroys the specified kernel QP.
3911
* @qp: The QP to destroy.
3912
*
3913
* NOTE: for user qp use ib_destroy_qp_user with valid udata!
3914
*/
3915
static inline int ib_destroy_qp(struct ib_qp *qp)
3916
{
3917
return ib_destroy_qp_user(qp, NULL);
3918
}
3919
3920
/**
3921
* ib_open_qp - Obtain a reference to an existing sharable QP.
3922
* @xrcd - XRC domain
3923
* @qp_open_attr: Attributes identifying the QP to open.
3924
*
3925
* Returns a reference to a sharable QP.
3926
*/
3927
struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3928
struct ib_qp_open_attr *qp_open_attr);
3929
3930
/**
3931
* ib_close_qp - Release an external reference to a QP.
3932
* @qp: The QP handle to release
3933
*
3934
* The opened QP handle is released by the caller. The underlying
3935
* shared QP is not destroyed until all internal references are released.
3936
*/
3937
int ib_close_qp(struct ib_qp *qp);
3938
3939
/**
3940
* ib_post_send - Posts a list of work requests to the send queue of
3941
* the specified QP.
3942
* @qp: The QP to post the work request on.
3943
* @send_wr: A list of work requests to post on the send queue.
3944
* @bad_send_wr: On an immediate failure, this parameter will reference
3945
* the work request that failed to be posted on the QP.
3946
*
3947
* While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3948
* error is returned, the QP state shall not be affected,
3949
* ib_post_send() will return an immediate error after queueing any
3950
* earlier work requests in the list.
3951
*/
3952
static inline int ib_post_send(struct ib_qp *qp,
3953
const struct ib_send_wr *send_wr,
3954
const struct ib_send_wr **bad_send_wr)
3955
{
3956
const struct ib_send_wr *dummy;
3957
3958
return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3959
}
3960
3961
/**
3962
* ib_post_recv - Posts a list of work requests to the receive queue of
3963
* the specified QP.
3964
* @qp: The QP to post the work request on.
3965
* @recv_wr: A list of work requests to post on the receive queue.
3966
* @bad_recv_wr: On an immediate failure, this parameter will reference
3967
* the work request that failed to be posted on the QP.
3968
*/
3969
static inline int ib_post_recv(struct ib_qp *qp,
3970
const struct ib_recv_wr *recv_wr,
3971
const struct ib_recv_wr **bad_recv_wr)
3972
{
3973
const struct ib_recv_wr *dummy;
3974
3975
return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3976
}
3977
3978
struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3979
int comp_vector, enum ib_poll_context poll_ctx,
3980
const char *caller);
3981
static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3982
int nr_cqe, int comp_vector,
3983
enum ib_poll_context poll_ctx)
3984
{
3985
return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3986
KBUILD_MODNAME);
3987
}
3988
3989
struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3990
int nr_cqe, enum ib_poll_context poll_ctx,
3991
const char *caller);
3992
3993
/**
3994
* ib_alloc_cq_any: Allocate kernel CQ
3995
* @dev: The IB device
3996
* @private: Private data attached to the CQE
3997
* @nr_cqe: Number of CQEs in the CQ
3998
* @poll_ctx: Context used for polling the CQ
3999
*/
4000
static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
4001
void *private, int nr_cqe,
4002
enum ib_poll_context poll_ctx)
4003
{
4004
return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
4005
KBUILD_MODNAME);
4006
}
4007
4008
void ib_free_cq(struct ib_cq *cq);
4009
int ib_process_cq_direct(struct ib_cq *cq, int budget);
4010
4011
/**
4012
* ib_create_cq - Creates a CQ on the specified device.
4013
* @device: The device on which to create the CQ.
4014
* @comp_handler: A user-specified callback that is invoked when a
4015
* completion event occurs on the CQ.
4016
* @event_handler: A user-specified callback that is invoked when an
4017
* asynchronous event not associated with a completion occurs on the CQ.
4018
* @cq_context: Context associated with the CQ returned to the user via
4019
* the associated completion and event handlers.
4020
* @cq_attr: The attributes the CQ should be created upon.
4021
*
4022
* Users can examine the cq structure to determine the actual CQ size.
4023
*/
4024
struct ib_cq *__ib_create_cq(struct ib_device *device,
4025
ib_comp_handler comp_handler,
4026
void (*event_handler)(struct ib_event *, void *),
4027
void *cq_context,
4028
const struct ib_cq_init_attr *cq_attr,
4029
const char *caller);
4030
#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
4031
__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
4032
4033
/**
4034
* ib_resize_cq - Modifies the capacity of the CQ.
4035
* @cq: The CQ to resize.
4036
* @cqe: The minimum size of the CQ.
4037
*
4038
* Users can examine the cq structure to determine the actual CQ size.
4039
*/
4040
int ib_resize_cq(struct ib_cq *cq, int cqe);
4041
4042
/**
4043
* rdma_set_cq_moderation - Modifies moderation params of the CQ
4044
* @cq: The CQ to modify.
4045
* @cq_count: number of CQEs that will trigger an event
4046
* @cq_period: max period of time in usec before triggering an event
4047
*
4048
*/
4049
int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
4050
4051
/**
4052
* ib_destroy_cq_user - Destroys the specified CQ.
4053
* @cq: The CQ to destroy.
4054
* @udata: Valid user data or NULL for kernel objects
4055
*/
4056
int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
4057
4058
/**
4059
* ib_destroy_cq - Destroys the specified kernel CQ.
4060
* @cq: The CQ to destroy.
4061
*
4062
* NOTE: for user cq use ib_destroy_cq_user with valid udata!
4063
*/
4064
static inline void ib_destroy_cq(struct ib_cq *cq)
4065
{
4066
int ret = ib_destroy_cq_user(cq, NULL);
4067
4068
WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
4069
}
4070
4071
/**
4072
* ib_poll_cq - poll a CQ for completion(s)
4073
* @cq:the CQ being polled
4074
* @num_entries:maximum number of completions to return
4075
* @wc:array of at least @num_entries &struct ib_wc where completions
4076
* will be returned
4077
*
4078
* Poll a CQ for (possibly multiple) completions. If the return value
4079
* is < 0, an error occurred. If the return value is >= 0, it is the
4080
* number of completions returned. If the return value is
4081
* non-negative and < num_entries, then the CQ was emptied.
4082
*/
4083
static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
4084
struct ib_wc *wc)
4085
{
4086
return cq->device->ops.poll_cq(cq, num_entries, wc);
4087
}
4088
4089
/**
4090
* ib_req_notify_cq - Request completion notification on a CQ.
4091
* @cq: The CQ to generate an event for.
4092
* @flags:
4093
* Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
4094
* to request an event on the next solicited event or next work
4095
* completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
4096
* may also be |ed in to request a hint about missed events, as
4097
* described below.
4098
*
4099
* Return Value:
4100
* < 0 means an error occurred while requesting notification
4101
* == 0 means notification was requested successfully, and if
4102
* IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
4103
* were missed and it is safe to wait for another event. In
4104
* this case is it guaranteed that any work completions added
4105
* to the CQ since the last CQ poll will trigger a completion
4106
* notification event.
4107
* > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
4108
* in. It means that the consumer must poll the CQ again to
4109
* make sure it is empty to avoid missing an event because of a
4110
* race between requesting notification and an entry being
4111
* added to the CQ. This return value means it is possible
4112
* (but not guaranteed) that a work completion has been added
4113
* to the CQ since the last poll without triggering a
4114
* completion notification event.
4115
*/
4116
static inline int ib_req_notify_cq(struct ib_cq *cq,
4117
enum ib_cq_notify_flags flags)
4118
{
4119
return cq->device->ops.req_notify_cq(cq, flags);
4120
}
4121
4122
struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4123
int comp_vector_hint,
4124
enum ib_poll_context poll_ctx);
4125
4126
void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4127
4128
/*
4129
* Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4130
* NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4131
* address into the dma address.
4132
*/
4133
static inline bool ib_uses_virt_dma(struct ib_device *dev)
4134
{
4135
return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4136
}
4137
4138
/*
4139
* Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4140
*/
4141
static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4142
{
4143
if (ib_uses_virt_dma(dev))
4144
return false;
4145
4146
return dma_pci_p2pdma_supported(dev->dma_device);
4147
}
4148
4149
/**
4150
* ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4151
* @dma_addr: The DMA address
4152
*
4153
* Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4154
* going through the dma_addr marshalling.
4155
*/
4156
static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4157
{
4158
/* virt_dma mode maps the kvs's directly into the dma addr */
4159
return (void *)(uintptr_t)dma_addr;
4160
}
4161
4162
/**
4163
* ib_virt_dma_to_page - Convert a dma_addr to a struct page
4164
* @dma_addr: The DMA address
4165
*
4166
* Used by ib_uses_virt_dma() device to get back to the struct page after going
4167
* through the dma_addr marshalling.
4168
*/
4169
static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4170
{
4171
return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4172
}
4173
4174
/**
4175
* ib_dma_mapping_error - check a DMA addr for error
4176
* @dev: The device for which the dma_addr was created
4177
* @dma_addr: The DMA address to check
4178
*/
4179
static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4180
{
4181
if (ib_uses_virt_dma(dev))
4182
return 0;
4183
return dma_mapping_error(dev->dma_device, dma_addr);
4184
}
4185
4186
/**
4187
* ib_dma_map_single - Map a kernel virtual address to DMA address
4188
* @dev: The device for which the dma_addr is to be created
4189
* @cpu_addr: The kernel virtual address
4190
* @size: The size of the region in bytes
4191
* @direction: The direction of the DMA
4192
*/
4193
static inline u64 ib_dma_map_single(struct ib_device *dev,
4194
void *cpu_addr, size_t size,
4195
enum dma_data_direction direction)
4196
{
4197
if (ib_uses_virt_dma(dev))
4198
return (uintptr_t)cpu_addr;
4199
return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4200
}
4201
4202
/**
4203
* ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4204
* @dev: The device for which the DMA address was created
4205
* @addr: The DMA address
4206
* @size: The size of the region in bytes
4207
* @direction: The direction of the DMA
4208
*/
4209
static inline void ib_dma_unmap_single(struct ib_device *dev,
4210
u64 addr, size_t size,
4211
enum dma_data_direction direction)
4212
{
4213
if (!ib_uses_virt_dma(dev))
4214
dma_unmap_single(dev->dma_device, addr, size, direction);
4215
}
4216
4217
/**
4218
* ib_dma_map_page - Map a physical page to DMA address
4219
* @dev: The device for which the dma_addr is to be created
4220
* @page: The page to be mapped
4221
* @offset: The offset within the page
4222
* @size: The size of the region in bytes
4223
* @direction: The direction of the DMA
4224
*/
4225
static inline u64 ib_dma_map_page(struct ib_device *dev,
4226
struct page *page,
4227
unsigned long offset,
4228
size_t size,
4229
enum dma_data_direction direction)
4230
{
4231
if (ib_uses_virt_dma(dev))
4232
return (uintptr_t)(page_address(page) + offset);
4233
return dma_map_page(dev->dma_device, page, offset, size, direction);
4234
}
4235
4236
/**
4237
* ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4238
* @dev: The device for which the DMA address was created
4239
* @addr: The DMA address
4240
* @size: The size of the region in bytes
4241
* @direction: The direction of the DMA
4242
*/
4243
static inline void ib_dma_unmap_page(struct ib_device *dev,
4244
u64 addr, size_t size,
4245
enum dma_data_direction direction)
4246
{
4247
if (!ib_uses_virt_dma(dev))
4248
dma_unmap_page(dev->dma_device, addr, size, direction);
4249
}
4250
4251
int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4252
static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4253
struct scatterlist *sg, int nents,
4254
enum dma_data_direction direction,
4255
unsigned long dma_attrs)
4256
{
4257
if (ib_uses_virt_dma(dev))
4258
return ib_dma_virt_map_sg(dev, sg, nents);
4259
return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4260
dma_attrs);
4261
}
4262
4263
static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4264
struct scatterlist *sg, int nents,
4265
enum dma_data_direction direction,
4266
unsigned long dma_attrs)
4267
{
4268
if (!ib_uses_virt_dma(dev))
4269
dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4270
dma_attrs);
4271
}
4272
4273
/**
4274
* ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4275
* @dev: The device for which the DMA addresses are to be created
4276
* @sg: The sg_table object describing the buffer
4277
* @direction: The direction of the DMA
4278
* @attrs: Optional DMA attributes for the map operation
4279
*/
4280
static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4281
struct sg_table *sgt,
4282
enum dma_data_direction direction,
4283
unsigned long dma_attrs)
4284
{
4285
int nents;
4286
4287
if (ib_uses_virt_dma(dev)) {
4288
nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4289
if (!nents)
4290
return -EIO;
4291
sgt->nents = nents;
4292
return 0;
4293
}
4294
return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4295
}
4296
4297
static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4298
struct sg_table *sgt,
4299
enum dma_data_direction direction,
4300
unsigned long dma_attrs)
4301
{
4302
if (!ib_uses_virt_dma(dev))
4303
dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4304
}
4305
4306
/**
4307
* ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4308
* @dev: The device for which the DMA addresses are to be created
4309
* @sg: The array of scatter/gather entries
4310
* @nents: The number of scatter/gather entries
4311
* @direction: The direction of the DMA
4312
*/
4313
static inline int ib_dma_map_sg(struct ib_device *dev,
4314
struct scatterlist *sg, int nents,
4315
enum dma_data_direction direction)
4316
{
4317
return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4318
}
4319
4320
/**
4321
* ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4322
* @dev: The device for which the DMA addresses were created
4323
* @sg: The array of scatter/gather entries
4324
* @nents: The number of scatter/gather entries
4325
* @direction: The direction of the DMA
4326
*/
4327
static inline void ib_dma_unmap_sg(struct ib_device *dev,
4328
struct scatterlist *sg, int nents,
4329
enum dma_data_direction direction)
4330
{
4331
ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4332
}
4333
4334
/**
4335
* ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4336
* @dev: The device to query
4337
*
4338
* The returned value represents a size in bytes.
4339
*/
4340
static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4341
{
4342
if (ib_uses_virt_dma(dev))
4343
return UINT_MAX;
4344
return dma_get_max_seg_size(dev->dma_device);
4345
}
4346
4347
/**
4348
* ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4349
* @dev: The device for which the DMA address was created
4350
* @addr: The DMA address
4351
* @size: The size of the region in bytes
4352
* @dir: The direction of the DMA
4353
*/
4354
static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4355
u64 addr,
4356
size_t size,
4357
enum dma_data_direction dir)
4358
{
4359
if (!ib_uses_virt_dma(dev))
4360
dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4361
}
4362
4363
/**
4364
* ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4365
* @dev: The device for which the DMA address was created
4366
* @addr: The DMA address
4367
* @size: The size of the region in bytes
4368
* @dir: The direction of the DMA
4369
*/
4370
static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4371
u64 addr,
4372
size_t size,
4373
enum dma_data_direction dir)
4374
{
4375
if (!ib_uses_virt_dma(dev))
4376
dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4377
}
4378
4379
/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4380
* space. This function should be called when 'current' is the owning MM.
4381
*/
4382
struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4383
u64 virt_addr, int mr_access_flags);
4384
4385
/* ib_advise_mr - give an advice about an address range in a memory region */
4386
int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4387
u32 flags, struct ib_sge *sg_list, u32 num_sge);
4388
/**
4389
* ib_dereg_mr_user - Deregisters a memory region and removes it from the
4390
* HCA translation table.
4391
* @mr: The memory region to deregister.
4392
* @udata: Valid user data or NULL for kernel object
4393
*
4394
* This function can fail, if the memory region has memory windows bound to it.
4395
*/
4396
int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4397
4398
/**
4399
* ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4400
* HCA translation table.
4401
* @mr: The memory region to deregister.
4402
*
4403
* This function can fail, if the memory region has memory windows bound to it.
4404
*
4405
* NOTE: for user mr use ib_dereg_mr_user with valid udata!
4406
*/
4407
static inline int ib_dereg_mr(struct ib_mr *mr)
4408
{
4409
return ib_dereg_mr_user(mr, NULL);
4410
}
4411
4412
struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4413
u32 max_num_sg);
4414
4415
struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4416
u32 max_num_data_sg,
4417
u32 max_num_meta_sg);
4418
4419
/**
4420
* ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4421
* R_Key and L_Key.
4422
* @mr - struct ib_mr pointer to be updated.
4423
* @newkey - new key to be used.
4424
*/
4425
static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4426
{
4427
mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4428
mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4429
}
4430
4431
/**
4432
* ib_inc_rkey - increments the key portion of the given rkey. Can be used
4433
* for calculating a new rkey for type 2 memory windows.
4434
* @rkey - the rkey to increment.
4435
*/
4436
static inline u32 ib_inc_rkey(u32 rkey)
4437
{
4438
const u32 mask = 0x000000ff;
4439
return ((rkey + 1) & mask) | (rkey & ~mask);
4440
}
4441
4442
/**
4443
* ib_attach_mcast - Attaches the specified QP to a multicast group.
4444
* @qp: QP to attach to the multicast group. The QP must be type
4445
* IB_QPT_UD.
4446
* @gid: Multicast group GID.
4447
* @lid: Multicast group LID in host byte order.
4448
*
4449
* In order to send and receive multicast packets, subnet
4450
* administration must have created the multicast group and configured
4451
* the fabric appropriately. The port associated with the specified
4452
* QP must also be a member of the multicast group.
4453
*/
4454
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4455
4456
/**
4457
* ib_detach_mcast - Detaches the specified QP from a multicast group.
4458
* @qp: QP to detach from the multicast group.
4459
* @gid: Multicast group GID.
4460
* @lid: Multicast group LID in host byte order.
4461
*/
4462
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4463
4464
struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4465
struct inode *inode, struct ib_udata *udata);
4466
int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4467
4468
static inline int ib_check_mr_access(struct ib_device *ib_dev,
4469
unsigned int flags)
4470
{
4471
u64 device_cap = ib_dev->attrs.device_cap_flags;
4472
4473
/*
4474
* Local write permission is required if remote write or
4475
* remote atomic permission is also requested.
4476
*/
4477
if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4478
!(flags & IB_ACCESS_LOCAL_WRITE))
4479
return -EINVAL;
4480
4481
if (flags & ~IB_ACCESS_SUPPORTED)
4482
return -EINVAL;
4483
4484
if (flags & IB_ACCESS_ON_DEMAND &&
4485
!(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4486
return -EOPNOTSUPP;
4487
4488
if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4489
!(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4490
(flags & IB_ACCESS_FLUSH_PERSISTENT &&
4491
!(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4492
return -EOPNOTSUPP;
4493
4494
return 0;
4495
}
4496
4497
static inline bool ib_access_writable(int access_flags)
4498
{
4499
/*
4500
* We have writable memory backing the MR if any of the following
4501
* access flags are set. "Local write" and "remote write" obviously
4502
* require write access. "Remote atomic" can do things like fetch and
4503
* add, which will modify memory, and "MW bind" can change permissions
4504
* by binding a window.
4505
*/
4506
return access_flags &
4507
(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
4508
IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4509
}
4510
4511
/**
4512
* ib_check_mr_status: lightweight check of MR status.
4513
* This routine may provide status checks on a selected
4514
* ib_mr. first use is for signature status check.
4515
*
4516
* @mr: A memory region.
4517
* @check_mask: Bitmask of which checks to perform from
4518
* ib_mr_status_check enumeration.
4519
* @mr_status: The container of relevant status checks.
4520
* failed checks will be indicated in the status bitmask
4521
* and the relevant info shall be in the error item.
4522
*/
4523
int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4524
struct ib_mr_status *mr_status);
4525
4526
/**
4527
* ib_device_try_get: Hold a registration lock
4528
* device: The device to lock
4529
*
4530
* A device under an active registration lock cannot become unregistered. It
4531
* is only possible to obtain a registration lock on a device that is fully
4532
* registered, otherwise this function returns false.
4533
*
4534
* The registration lock is only necessary for actions which require the
4535
* device to still be registered. Uses that only require the device pointer to
4536
* be valid should use get_device(&ibdev->dev) to hold the memory.
4537
*
4538
*/
4539
static inline bool ib_device_try_get(struct ib_device *dev)
4540
{
4541
return refcount_inc_not_zero(&dev->refcount);
4542
}
4543
4544
void ib_device_put(struct ib_device *device);
4545
struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4546
enum rdma_driver_id driver_id);
4547
struct ib_device *ib_device_get_by_name(const char *name,
4548
enum rdma_driver_id driver_id);
4549
struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4550
u16 pkey, const union ib_gid *gid,
4551
const struct sockaddr *addr);
4552
int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4553
unsigned int port);
4554
struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
4555
u32 port);
4556
int ib_query_netdev_port(struct ib_device *ibdev, struct net_device *ndev,
4557
u32 *port);
4558
4559
static inline enum ib_port_state ib_get_curr_port_state(struct net_device *net_dev)
4560
{
4561
return (netif_running(net_dev) && netif_carrier_ok(net_dev)) ?
4562
IB_PORT_ACTIVE : IB_PORT_DOWN;
4563
}
4564
4565
void ib_dispatch_port_state_event(struct ib_device *ibdev,
4566
struct net_device *ndev);
4567
struct ib_wq *ib_create_wq(struct ib_pd *pd,
4568
struct ib_wq_init_attr *init_attr);
4569
int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4570
4571
int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4572
unsigned int *sg_offset, unsigned int page_size);
4573
int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4574
int data_sg_nents, unsigned int *data_sg_offset,
4575
struct scatterlist *meta_sg, int meta_sg_nents,
4576
unsigned int *meta_sg_offset, unsigned int page_size);
4577
4578
static inline int
4579
ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4580
unsigned int *sg_offset, unsigned int page_size)
4581
{
4582
int n;
4583
4584
n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4585
mr->iova = 0;
4586
4587
return n;
4588
}
4589
4590
int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4591
unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4592
4593
void ib_drain_rq(struct ib_qp *qp);
4594
void ib_drain_sq(struct ib_qp *qp);
4595
void ib_drain_qp(struct ib_qp *qp);
4596
4597
int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4598
u8 *width);
4599
4600
static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4601
{
4602
if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4603
return attr->roce.dmac;
4604
return NULL;
4605
}
4606
4607
static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4608
{
4609
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4610
attr->ib.dlid = (u16)dlid;
4611
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4612
attr->opa.dlid = dlid;
4613
}
4614
4615
static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4616
{
4617
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4618
return attr->ib.dlid;
4619
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4620
return attr->opa.dlid;
4621
return 0;
4622
}
4623
4624
static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4625
{
4626
attr->sl = sl;
4627
}
4628
4629
static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4630
{
4631
return attr->sl;
4632
}
4633
4634
static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4635
u8 src_path_bits)
4636
{
4637
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4638
attr->ib.src_path_bits = src_path_bits;
4639
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4640
attr->opa.src_path_bits = src_path_bits;
4641
}
4642
4643
static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4644
{
4645
if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4646
return attr->ib.src_path_bits;
4647
else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4648
return attr->opa.src_path_bits;
4649
return 0;
4650
}
4651
4652
static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4653
bool make_grd)
4654
{
4655
if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4656
attr->opa.make_grd = make_grd;
4657
}
4658
4659
static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4660
{
4661
if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4662
return attr->opa.make_grd;
4663
return false;
4664
}
4665
4666
static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4667
{
4668
attr->port_num = port_num;
4669
}
4670
4671
static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4672
{
4673
return attr->port_num;
4674
}
4675
4676
static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4677
u8 static_rate)
4678
{
4679
attr->static_rate = static_rate;
4680
}
4681
4682
static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4683
{
4684
return attr->static_rate;
4685
}
4686
4687
static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4688
enum ib_ah_flags flag)
4689
{
4690
attr->ah_flags = flag;
4691
}
4692
4693
static inline enum ib_ah_flags
4694
rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4695
{
4696
return attr->ah_flags;
4697
}
4698
4699
static inline const struct ib_global_route
4700
*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4701
{
4702
return &attr->grh;
4703
}
4704
4705
/*To retrieve and modify the grh */
4706
static inline struct ib_global_route
4707
*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4708
{
4709
return &attr->grh;
4710
}
4711
4712
static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4713
{
4714
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4715
4716
memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4717
}
4718
4719
static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4720
__be64 prefix)
4721
{
4722
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4723
4724
grh->dgid.global.subnet_prefix = prefix;
4725
}
4726
4727
static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4728
__be64 if_id)
4729
{
4730
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4731
4732
grh->dgid.global.interface_id = if_id;
4733
}
4734
4735
static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4736
union ib_gid *dgid, u32 flow_label,
4737
u8 sgid_index, u8 hop_limit,
4738
u8 traffic_class)
4739
{
4740
struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4741
4742
attr->ah_flags = IB_AH_GRH;
4743
if (dgid)
4744
grh->dgid = *dgid;
4745
grh->flow_label = flow_label;
4746
grh->sgid_index = sgid_index;
4747
grh->hop_limit = hop_limit;
4748
grh->traffic_class = traffic_class;
4749
grh->sgid_attr = NULL;
4750
}
4751
4752
void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4753
void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4754
u32 flow_label, u8 hop_limit, u8 traffic_class,
4755
const struct ib_gid_attr *sgid_attr);
4756
void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4757
const struct rdma_ah_attr *src);
4758
void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4759
const struct rdma_ah_attr *new);
4760
void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4761
4762
/**
4763
* rdma_ah_find_type - Return address handle type.
4764
*
4765
* @dev: Device to be checked
4766
* @port_num: Port number
4767
*/
4768
static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4769
u32 port_num)
4770
{
4771
if (rdma_protocol_roce(dev, port_num))
4772
return RDMA_AH_ATTR_TYPE_ROCE;
4773
if (rdma_protocol_ib(dev, port_num)) {
4774
if (rdma_cap_opa_ah(dev, port_num))
4775
return RDMA_AH_ATTR_TYPE_OPA;
4776
return RDMA_AH_ATTR_TYPE_IB;
4777
}
4778
if (dev->type == RDMA_DEVICE_TYPE_SMI)
4779
return RDMA_AH_ATTR_TYPE_IB;
4780
4781
return RDMA_AH_ATTR_TYPE_UNDEFINED;
4782
}
4783
4784
/**
4785
* ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4786
* In the current implementation the only way to
4787
* get the 32bit lid is from other sources for OPA.
4788
* For IB, lids will always be 16bits so cast the
4789
* value accordingly.
4790
*
4791
* @lid: A 32bit LID
4792
*/
4793
static inline u16 ib_lid_cpu16(u32 lid)
4794
{
4795
WARN_ON_ONCE(lid & 0xFFFF0000);
4796
return (u16)lid;
4797
}
4798
4799
/**
4800
* ib_lid_be16 - Return lid in 16bit BE encoding.
4801
*
4802
* @lid: A 32bit LID
4803
*/
4804
static inline __be16 ib_lid_be16(u32 lid)
4805
{
4806
WARN_ON_ONCE(lid & 0xFFFF0000);
4807
return cpu_to_be16((u16)lid);
4808
}
4809
4810
/**
4811
* ib_get_vector_affinity - Get the affinity mappings of a given completion
4812
* vector
4813
* @device: the rdma device
4814
* @comp_vector: index of completion vector
4815
*
4816
* Returns NULL on failure, otherwise a corresponding cpu map of the
4817
* completion vector (returns all-cpus map if the device driver doesn't
4818
* implement get_vector_affinity).
4819
*/
4820
static inline const struct cpumask *
4821
ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4822
{
4823
if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4824
!device->ops.get_vector_affinity)
4825
return NULL;
4826
4827
return device->ops.get_vector_affinity(device, comp_vector);
4828
4829
}
4830
4831
/**
4832
* rdma_roce_rescan_device - Rescan all of the network devices in the system
4833
* and add their gids, as needed, to the relevant RoCE devices.
4834
*
4835
* @device: the rdma device
4836
*/
4837
void rdma_roce_rescan_device(struct ib_device *ibdev);
4838
void rdma_roce_rescan_port(struct ib_device *ib_dev, u32 port);
4839
void roce_del_all_netdev_gids(struct ib_device *ib_dev,
4840
u32 port, struct net_device *ndev);
4841
4842
struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4843
4844
#if IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)
4845
int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4846
bool rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs);
4847
#else
4848
static inline int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs)
4849
{
4850
return 0;
4851
}
4852
static inline bool
4853
rdma_uattrs_has_raw_cap(const struct uverbs_attr_bundle *attrs)
4854
{
4855
return false;
4856
}
4857
#endif
4858
4859
struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4860
enum rdma_netdev_t type, const char *name,
4861
unsigned char name_assign_type,
4862
void (*setup)(struct net_device *));
4863
4864
int rdma_init_netdev(struct ib_device *device, u32 port_num,
4865
enum rdma_netdev_t type, const char *name,
4866
unsigned char name_assign_type,
4867
void (*setup)(struct net_device *),
4868
struct net_device *netdev);
4869
4870
/**
4871
* rdma_device_to_ibdev - Get ib_device pointer from device pointer
4872
*
4873
* @device: device pointer for which ib_device pointer to retrieve
4874
*
4875
* rdma_device_to_ibdev() retrieves ib_device pointer from device.
4876
*
4877
*/
4878
static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4879
{
4880
struct ib_core_device *coredev =
4881
container_of(device, struct ib_core_device, dev);
4882
4883
return coredev->owner;
4884
}
4885
4886
/**
4887
* ibdev_to_node - return the NUMA node for a given ib_device
4888
* @dev: device to get the NUMA node for.
4889
*/
4890
static inline int ibdev_to_node(struct ib_device *ibdev)
4891
{
4892
struct device *parent = ibdev->dev.parent;
4893
4894
if (!parent)
4895
return NUMA_NO_NODE;
4896
return dev_to_node(parent);
4897
}
4898
4899
/**
4900
* rdma_device_to_drv_device - Helper macro to reach back to driver's
4901
* ib_device holder structure from device pointer.
4902
*
4903
* NOTE: New drivers should not make use of this API; This API is only for
4904
* existing drivers who have exposed sysfs entries using
4905
* ops->device_group.
4906
*/
4907
#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \
4908
container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4909
4910
bool rdma_dev_access_netns(const struct ib_device *device,
4911
const struct net *net);
4912
4913
bool rdma_dev_has_raw_cap(const struct ib_device *dev);
4914
static inline struct net *rdma_dev_net(struct ib_device *device)
4915
{
4916
return read_pnet(&device->coredev.rdma_net);
4917
}
4918
4919
#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4920
#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4921
#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4922
4923
/**
4924
* rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4925
* on the flow_label
4926
*
4927
* This function will convert the 20 bit flow_label input to a valid RoCE v2
4928
* UDP src port 14 bit value. All RoCE V2 drivers should use this same
4929
* convention.
4930
*/
4931
static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4932
{
4933
u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4934
4935
fl_low ^= fl_high >> 14;
4936
return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4937
}
4938
4939
/**
4940
* rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4941
* local and remote qpn values
4942
*
4943
* This function folded the multiplication results of two qpns, 24 bit each,
4944
* fields, and converts it to a 20 bit results.
4945
*
4946
* This function will create symmetric flow_label value based on the local
4947
* and remote qpn values. this will allow both the requester and responder
4948
* to calculate the same flow_label for a given connection.
4949
*
4950
* This helper function should be used by driver in case the upper layer
4951
* provide a zero flow_label value. This is to improve entropy of RDMA
4952
* traffic in the network.
4953
*/
4954
static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4955
{
4956
u64 v = (u64)lqpn * rqpn;
4957
4958
v ^= v >> 20;
4959
v ^= v >> 40;
4960
4961
return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4962
}
4963
4964
/**
4965
* rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4966
* label. If flow label is not defined in GRH then
4967
* calculate it based on lqpn/rqpn.
4968
*
4969
* @fl: flow label from GRH
4970
* @lqpn: local qp number
4971
* @rqpn: remote qp number
4972
*/
4973
static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4974
{
4975
if (!fl)
4976
fl = rdma_calc_flow_label(lqpn, rqpn);
4977
4978
return rdma_flow_label_to_udp_sport(fl);
4979
}
4980
4981
const struct ib_port_immutable*
4982
ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4983
4984
/** ib_add_sub_device - Add a sub IB device on an existing one
4985
*
4986
* @parent: The IB device that needs to add a sub device
4987
* @type: The type of the new sub device
4988
* @name: The name of the new sub device
4989
*
4990
*
4991
* Return 0 on success, an error code otherwise
4992
*/
4993
int ib_add_sub_device(struct ib_device *parent,
4994
enum rdma_nl_dev_type type,
4995
const char *name);
4996
4997
4998
/** ib_del_sub_device_and_put - Delect an IB sub device while holding a 'get'
4999
*
5000
* @sub: The sub device that is going to be deleted
5001
*
5002
* Return 0 on success, an error code otherwise
5003
*/
5004
int ib_del_sub_device_and_put(struct ib_device *sub);
5005
5006
static inline void ib_mark_name_assigned_by_user(struct ib_device *ibdev)
5007
{
5008
ibdev->name_assign_type = RDMA_NAME_ASSIGN_TYPE_USER;
5009
}
5010
5011
#endif /* IB_VERBS_H */
5012
5013