Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/soc/fsl/qman.h
26288 views
1
/* Copyright 2008 - 2016 Freescale Semiconductor, Inc.
2
*
3
* Redistribution and use in source and binary forms, with or without
4
* modification, are permitted provided that the following conditions are met:
5
* * Redistributions of source code must retain the above copyright
6
* notice, this list of conditions and the following disclaimer.
7
* * Redistributions in binary form must reproduce the above copyright
8
* notice, this list of conditions and the following disclaimer in the
9
* documentation and/or other materials provided with the distribution.
10
* * Neither the name of Freescale Semiconductor nor the
11
* names of its contributors may be used to endorse or promote products
12
* derived from this software without specific prior written permission.
13
*
14
* ALTERNATIVELY, this software may be distributed under the terms of the
15
* GNU General Public License ("GPL") as published by the Free Software
16
* Foundation, either version 2 of that License or (at your option) any
17
* later version.
18
*
19
* THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22
* DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
*/
30
31
#ifndef __FSL_QMAN_H
32
#define __FSL_QMAN_H
33
34
#include <linux/bitops.h>
35
#include <linux/device.h>
36
37
/* Hardware constants */
38
#define QM_CHANNEL_SWPORTAL0 0
39
#define QMAN_CHANNEL_POOL1 0x21
40
#define QMAN_CHANNEL_CAAM 0x80
41
#define QMAN_CHANNEL_POOL1_REV3 0x401
42
#define QMAN_CHANNEL_CAAM_REV3 0x840
43
extern u16 qm_channel_pool1;
44
extern u16 qm_channel_caam;
45
46
/* Portal processing (interrupt) sources */
47
#define QM_PIRQ_CSCI 0x00100000 /* Congestion State Change */
48
#define QM_PIRQ_EQCI 0x00080000 /* Enqueue Command Committed */
49
#define QM_PIRQ_EQRI 0x00040000 /* EQCR Ring (below threshold) */
50
#define QM_PIRQ_DQRI 0x00020000 /* DQRR Ring (non-empty) */
51
#define QM_PIRQ_MRI 0x00010000 /* MR Ring (non-empty) */
52
/*
53
* This mask contains all the interrupt sources that need handling except DQRI,
54
* ie. that if present should trigger slow-path processing.
55
*/
56
#define QM_PIRQ_SLOW (QM_PIRQ_CSCI | QM_PIRQ_EQCI | QM_PIRQ_EQRI | \
57
QM_PIRQ_MRI)
58
59
/* For qman_static_dequeue_*** APIs */
60
#define QM_SDQCR_CHANNELS_POOL_MASK 0x00007fff
61
/* for n in [1,15] */
62
#define QM_SDQCR_CHANNELS_POOL(n) (0x00008000 >> (n))
63
/* for conversion from n of qm_channel */
64
static inline u32 QM_SDQCR_CHANNELS_POOL_CONV(u16 channel)
65
{
66
return QM_SDQCR_CHANNELS_POOL(channel + 1 - qm_channel_pool1);
67
}
68
69
/* --- QMan data structures (and associated constants) --- */
70
71
/* "Frame Descriptor (FD)" */
72
struct qm_fd {
73
union {
74
struct {
75
u8 cfg8b_w1;
76
u8 bpid; /* Buffer Pool ID */
77
u8 cfg8b_w3;
78
u8 addr_hi; /* high 8-bits of 40-bit address */
79
__be32 addr_lo; /* low 32-bits of 40-bit address */
80
} __packed;
81
__be64 data;
82
};
83
__be32 cfg; /* format, offset, length / congestion */
84
union {
85
__be32 cmd;
86
__be32 status;
87
};
88
} __aligned(8);
89
90
#define QM_FD_FORMAT_SG BIT(31)
91
#define QM_FD_FORMAT_LONG BIT(30)
92
#define QM_FD_FORMAT_COMPOUND BIT(29)
93
#define QM_FD_FORMAT_MASK GENMASK(31, 29)
94
#define QM_FD_OFF_SHIFT 20
95
#define QM_FD_OFF_MASK GENMASK(28, 20)
96
#define QM_FD_LEN_MASK GENMASK(19, 0)
97
#define QM_FD_LEN_BIG_MASK GENMASK(28, 0)
98
99
enum qm_fd_format {
100
/*
101
* 'contig' implies a contiguous buffer, whereas 'sg' implies a
102
* scatter-gather table. 'big' implies a 29-bit length with no offset
103
* field, otherwise length is 20-bit and offset is 9-bit. 'compound'
104
* implies a s/g-like table, where each entry itself represents a frame
105
* (contiguous or scatter-gather) and the 29-bit "length" is
106
* interpreted purely for congestion calculations, ie. a "congestion
107
* weight".
108
*/
109
qm_fd_contig = 0,
110
qm_fd_contig_big = QM_FD_FORMAT_LONG,
111
qm_fd_sg = QM_FD_FORMAT_SG,
112
qm_fd_sg_big = QM_FD_FORMAT_SG | QM_FD_FORMAT_LONG,
113
qm_fd_compound = QM_FD_FORMAT_COMPOUND
114
};
115
116
static inline dma_addr_t qm_fd_addr(const struct qm_fd *fd)
117
{
118
return be64_to_cpu(fd->data) & 0xffffffffffLLU;
119
}
120
121
static inline u64 qm_fd_addr_get64(const struct qm_fd *fd)
122
{
123
return be64_to_cpu(fd->data) & 0xffffffffffLLU;
124
}
125
126
static inline void qm_fd_addr_set64(struct qm_fd *fd, u64 addr)
127
{
128
fd->addr_hi = upper_32_bits(addr);
129
fd->addr_lo = cpu_to_be32(lower_32_bits(addr));
130
}
131
132
/*
133
* The 'format' field indicates the interpretation of the remaining
134
* 29 bits of the 32-bit word.
135
* If 'format' is _contig or _sg, 20b length and 9b offset.
136
* If 'format' is _contig_big or _sg_big, 29b length.
137
* If 'format' is _compound, 29b "congestion weight".
138
*/
139
static inline enum qm_fd_format qm_fd_get_format(const struct qm_fd *fd)
140
{
141
return be32_to_cpu(fd->cfg) & QM_FD_FORMAT_MASK;
142
}
143
144
static inline int qm_fd_get_offset(const struct qm_fd *fd)
145
{
146
return (be32_to_cpu(fd->cfg) & QM_FD_OFF_MASK) >> QM_FD_OFF_SHIFT;
147
}
148
149
static inline int qm_fd_get_length(const struct qm_fd *fd)
150
{
151
return be32_to_cpu(fd->cfg) & QM_FD_LEN_MASK;
152
}
153
154
static inline int qm_fd_get_len_big(const struct qm_fd *fd)
155
{
156
return be32_to_cpu(fd->cfg) & QM_FD_LEN_BIG_MASK;
157
}
158
159
static inline void qm_fd_set_param(struct qm_fd *fd, enum qm_fd_format fmt,
160
int off, int len)
161
{
162
fd->cfg = cpu_to_be32(fmt | (len & QM_FD_LEN_BIG_MASK) |
163
((off << QM_FD_OFF_SHIFT) & QM_FD_OFF_MASK));
164
}
165
166
#define qm_fd_set_contig(fd, off, len) \
167
qm_fd_set_param(fd, qm_fd_contig, off, len)
168
#define qm_fd_set_sg(fd, off, len) qm_fd_set_param(fd, qm_fd_sg, off, len)
169
#define qm_fd_set_contig_big(fd, len) \
170
qm_fd_set_param(fd, qm_fd_contig_big, 0, len)
171
#define qm_fd_set_sg_big(fd, len) qm_fd_set_param(fd, qm_fd_sg_big, 0, len)
172
#define qm_fd_set_compound(fd, len) qm_fd_set_param(fd, qm_fd_compound, 0, len)
173
174
static inline void qm_fd_clear_fd(struct qm_fd *fd)
175
{
176
fd->data = 0;
177
fd->cfg = 0;
178
fd->cmd = 0;
179
}
180
181
/* Scatter/Gather table entry */
182
struct qm_sg_entry {
183
union {
184
struct {
185
u8 __reserved1[3];
186
u8 addr_hi; /* high 8-bits of 40-bit address */
187
__be32 addr_lo; /* low 32-bits of 40-bit address */
188
};
189
__be64 data;
190
};
191
__be32 cfg; /* E bit, F bit, length */
192
u8 __reserved2;
193
u8 bpid;
194
__be16 offset; /* 13-bit, _res[13-15]*/
195
} __packed;
196
197
#define QM_SG_LEN_MASK GENMASK(29, 0)
198
#define QM_SG_OFF_MASK GENMASK(12, 0)
199
#define QM_SG_FIN BIT(30)
200
#define QM_SG_EXT BIT(31)
201
202
static inline dma_addr_t qm_sg_addr(const struct qm_sg_entry *sg)
203
{
204
return be64_to_cpu(sg->data) & 0xffffffffffLLU;
205
}
206
207
static inline u64 qm_sg_entry_get64(const struct qm_sg_entry *sg)
208
{
209
return be64_to_cpu(sg->data) & 0xffffffffffLLU;
210
}
211
212
static inline void qm_sg_entry_set64(struct qm_sg_entry *sg, u64 addr)
213
{
214
sg->addr_hi = upper_32_bits(addr);
215
sg->addr_lo = cpu_to_be32(lower_32_bits(addr));
216
}
217
218
static inline bool qm_sg_entry_is_final(const struct qm_sg_entry *sg)
219
{
220
return be32_to_cpu(sg->cfg) & QM_SG_FIN;
221
}
222
223
static inline bool qm_sg_entry_is_ext(const struct qm_sg_entry *sg)
224
{
225
return be32_to_cpu(sg->cfg) & QM_SG_EXT;
226
}
227
228
static inline int qm_sg_entry_get_len(const struct qm_sg_entry *sg)
229
{
230
return be32_to_cpu(sg->cfg) & QM_SG_LEN_MASK;
231
}
232
233
static inline void qm_sg_entry_set_len(struct qm_sg_entry *sg, int len)
234
{
235
sg->cfg = cpu_to_be32(len & QM_SG_LEN_MASK);
236
}
237
238
static inline void qm_sg_entry_set_f(struct qm_sg_entry *sg, int len)
239
{
240
sg->cfg = cpu_to_be32(QM_SG_FIN | (len & QM_SG_LEN_MASK));
241
}
242
243
static inline int qm_sg_entry_get_off(const struct qm_sg_entry *sg)
244
{
245
return be16_to_cpu(sg->offset) & QM_SG_OFF_MASK;
246
}
247
248
/* "Frame Dequeue Response" */
249
struct qm_dqrr_entry {
250
u8 verb;
251
u8 stat;
252
__be16 seqnum; /* 15-bit */
253
u8 tok;
254
u8 __reserved2[3];
255
__be32 fqid; /* 24-bit */
256
__be32 context_b;
257
struct qm_fd fd;
258
u8 __reserved4[32];
259
} __packed __aligned(64);
260
#define QM_DQRR_VERB_VBIT 0x80
261
#define QM_DQRR_VERB_MASK 0x7f /* where the verb contains; */
262
#define QM_DQRR_VERB_FRAME_DEQUEUE 0x60 /* "this format" */
263
#define QM_DQRR_STAT_FQ_EMPTY 0x80 /* FQ empty */
264
#define QM_DQRR_STAT_FQ_HELDACTIVE 0x40 /* FQ held active */
265
#define QM_DQRR_STAT_FQ_FORCEELIGIBLE 0x20 /* FQ was force-eligible'd */
266
#define QM_DQRR_STAT_FD_VALID 0x10 /* has a non-NULL FD */
267
#define QM_DQRR_STAT_UNSCHEDULED 0x02 /* Unscheduled dequeue */
268
#define QM_DQRR_STAT_DQCR_EXPIRED 0x01 /* VDQCR or PDQCR expired*/
269
270
/* 'fqid' is a 24-bit field in every h/w descriptor */
271
#define QM_FQID_MASK GENMASK(23, 0)
272
#define qm_fqid_set(p, v) ((p)->fqid = cpu_to_be32((v) & QM_FQID_MASK))
273
#define qm_fqid_get(p) (be32_to_cpu((p)->fqid) & QM_FQID_MASK)
274
275
/* "ERN Message Response" */
276
/* "FQ State Change Notification" */
277
union qm_mr_entry {
278
struct {
279
u8 verb;
280
u8 __reserved[63];
281
};
282
struct {
283
u8 verb;
284
u8 dca;
285
__be16 seqnum;
286
u8 rc; /* Rej Code: 8-bit */
287
u8 __reserved[3];
288
__be32 fqid; /* 24-bit */
289
__be32 tag;
290
struct qm_fd fd;
291
u8 __reserved1[32];
292
} __packed __aligned(64) ern;
293
struct {
294
u8 verb;
295
u8 fqs; /* Frame Queue Status */
296
u8 __reserved1[6];
297
__be32 fqid; /* 24-bit */
298
__be32 context_b;
299
u8 __reserved2[48];
300
} __packed fq; /* FQRN/FQRNI/FQRL/FQPN */
301
};
302
#define QM_MR_VERB_VBIT 0x80
303
/*
304
* ERNs originating from direct-connect portals ("dcern") use 0x20 as a verb
305
* which would be invalid as a s/w enqueue verb. A s/w ERN can be distinguished
306
* from the other MR types by noting if the 0x20 bit is unset.
307
*/
308
#define QM_MR_VERB_TYPE_MASK 0x27
309
#define QM_MR_VERB_DC_ERN 0x20
310
#define QM_MR_VERB_FQRN 0x21
311
#define QM_MR_VERB_FQRNI 0x22
312
#define QM_MR_VERB_FQRL 0x23
313
#define QM_MR_VERB_FQPN 0x24
314
#define QM_MR_RC_MASK 0xf0 /* contains one of; */
315
#define QM_MR_RC_CGR_TAILDROP 0x00
316
#define QM_MR_RC_WRED 0x10
317
#define QM_MR_RC_ERROR 0x20
318
#define QM_MR_RC_ORPWINDOW_EARLY 0x30
319
#define QM_MR_RC_ORPWINDOW_LATE 0x40
320
#define QM_MR_RC_FQ_TAILDROP 0x50
321
#define QM_MR_RC_ORPWINDOW_RETIRED 0x60
322
#define QM_MR_RC_ORP_ZERO 0x70
323
#define QM_MR_FQS_ORLPRESENT 0x02 /* ORL fragments to come */
324
#define QM_MR_FQS_NOTEMPTY 0x01 /* FQ has enqueued frames */
325
326
/*
327
* An identical structure of FQD fields is present in the "Init FQ" command and
328
* the "Query FQ" result, it's suctioned out into the "struct qm_fqd" type.
329
* Within that, the 'stashing' and 'taildrop' pieces are also factored out, the
330
* latter has two inlines to assist with converting to/from the mant+exp
331
* representation.
332
*/
333
struct qm_fqd_stashing {
334
/* See QM_STASHING_EXCL_<...> */
335
u8 exclusive;
336
/* Numbers of cachelines */
337
u8 cl; /* _res[6-7], as[4-5], ds[2-3], cs[0-1] */
338
};
339
340
struct qm_fqd_oac {
341
/* "Overhead Accounting Control", see QM_OAC_<...> */
342
u8 oac; /* oac[6-7], _res[0-5] */
343
/* Two's-complement value (-128 to +127) */
344
s8 oal; /* "Overhead Accounting Length" */
345
};
346
347
struct qm_fqd {
348
/* _res[6-7], orprws[3-5], oa[2], olws[0-1] */
349
u8 orpc;
350
u8 cgid;
351
__be16 fq_ctrl; /* See QM_FQCTRL_<...> */
352
__be16 dest_wq; /* channel[3-15], wq[0-2] */
353
__be16 ics_cred; /* 15-bit */
354
/*
355
* For "Initialize Frame Queue" commands, the write-enable mask
356
* determines whether 'td' or 'oac_init' is observed. For query
357
* commands, this field is always 'td', and 'oac_query' (below) reflects
358
* the Overhead ACcounting values.
359
*/
360
union {
361
__be16 td; /* "Taildrop": _res[13-15], mant[5-12], exp[0-4] */
362
struct qm_fqd_oac oac_init;
363
};
364
__be32 context_b;
365
union {
366
/* Treat it as 64-bit opaque */
367
__be64 opaque;
368
struct {
369
__be32 hi;
370
__be32 lo;
371
};
372
/* Treat it as s/w portal stashing config */
373
/* see "FQD Context_A field used for [...]" */
374
struct {
375
struct qm_fqd_stashing stashing;
376
/*
377
* 48-bit address of FQ context to
378
* stash, must be cacheline-aligned
379
*/
380
__be16 context_hi;
381
__be32 context_lo;
382
} __packed;
383
} context_a;
384
struct qm_fqd_oac oac_query;
385
} __packed;
386
387
#define QM_FQD_CHAN_OFF 3
388
#define QM_FQD_WQ_MASK GENMASK(2, 0)
389
#define QM_FQD_TD_EXP_MASK GENMASK(4, 0)
390
#define QM_FQD_TD_MANT_OFF 5
391
#define QM_FQD_TD_MANT_MASK GENMASK(12, 5)
392
#define QM_FQD_TD_MAX 0xe0000000
393
#define QM_FQD_TD_MANT_MAX 0xff
394
#define QM_FQD_OAC_OFF 6
395
#define QM_FQD_AS_OFF 4
396
#define QM_FQD_DS_OFF 2
397
#define QM_FQD_XS_MASK 0x3
398
399
/* 64-bit converters for context_hi/lo */
400
static inline u64 qm_fqd_stashing_get64(const struct qm_fqd *fqd)
401
{
402
return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
403
}
404
405
static inline dma_addr_t qm_fqd_stashing_addr(const struct qm_fqd *fqd)
406
{
407
return be64_to_cpu(fqd->context_a.opaque) & 0xffffffffffffULL;
408
}
409
410
static inline u64 qm_fqd_context_a_get64(const struct qm_fqd *fqd)
411
{
412
return qm_fqd_stashing_get64(fqd);
413
}
414
415
static inline void qm_fqd_stashing_set64(struct qm_fqd *fqd, u64 addr)
416
{
417
fqd->context_a.context_hi = cpu_to_be16(upper_32_bits(addr));
418
fqd->context_a.context_lo = cpu_to_be32(lower_32_bits(addr));
419
}
420
421
static inline void qm_fqd_context_a_set64(struct qm_fqd *fqd, u64 addr)
422
{
423
fqd->context_a.hi = cpu_to_be32(upper_32_bits(addr));
424
fqd->context_a.lo = cpu_to_be32(lower_32_bits(addr));
425
}
426
427
/* convert a threshold value into mant+exp representation */
428
static inline int qm_fqd_set_taildrop(struct qm_fqd *fqd, u32 val,
429
int roundup)
430
{
431
u32 e = 0;
432
int td, oddbit = 0;
433
434
if (val > QM_FQD_TD_MAX)
435
return -ERANGE;
436
437
while (val > QM_FQD_TD_MANT_MAX) {
438
oddbit = val & 1;
439
val >>= 1;
440
e++;
441
if (roundup && oddbit)
442
val++;
443
}
444
445
td = (val << QM_FQD_TD_MANT_OFF) & QM_FQD_TD_MANT_MASK;
446
td |= (e & QM_FQD_TD_EXP_MASK);
447
fqd->td = cpu_to_be16(td);
448
return 0;
449
}
450
/* and the other direction */
451
static inline int qm_fqd_get_taildrop(const struct qm_fqd *fqd)
452
{
453
int td = be16_to_cpu(fqd->td);
454
455
return ((td & QM_FQD_TD_MANT_MASK) >> QM_FQD_TD_MANT_OFF)
456
<< (td & QM_FQD_TD_EXP_MASK);
457
}
458
459
static inline void qm_fqd_set_stashing(struct qm_fqd *fqd, u8 as, u8 ds, u8 cs)
460
{
461
struct qm_fqd_stashing *st = &fqd->context_a.stashing;
462
463
st->cl = ((as & QM_FQD_XS_MASK) << QM_FQD_AS_OFF) |
464
((ds & QM_FQD_XS_MASK) << QM_FQD_DS_OFF) |
465
(cs & QM_FQD_XS_MASK);
466
}
467
468
static inline u8 qm_fqd_get_stashing(const struct qm_fqd *fqd)
469
{
470
return fqd->context_a.stashing.cl;
471
}
472
473
static inline void qm_fqd_set_oac(struct qm_fqd *fqd, u8 val)
474
{
475
fqd->oac_init.oac = val << QM_FQD_OAC_OFF;
476
}
477
478
static inline void qm_fqd_set_oal(struct qm_fqd *fqd, s8 val)
479
{
480
fqd->oac_init.oal = val;
481
}
482
483
static inline void qm_fqd_set_destwq(struct qm_fqd *fqd, int ch, int wq)
484
{
485
fqd->dest_wq = cpu_to_be16((ch << QM_FQD_CHAN_OFF) |
486
(wq & QM_FQD_WQ_MASK));
487
}
488
489
static inline int qm_fqd_get_chan(const struct qm_fqd *fqd)
490
{
491
return be16_to_cpu(fqd->dest_wq) >> QM_FQD_CHAN_OFF;
492
}
493
494
static inline int qm_fqd_get_wq(const struct qm_fqd *fqd)
495
{
496
return be16_to_cpu(fqd->dest_wq) & QM_FQD_WQ_MASK;
497
}
498
499
/* See "Frame Queue Descriptor (FQD)" */
500
/* Frame Queue Descriptor (FQD) field 'fq_ctrl' uses these constants */
501
#define QM_FQCTRL_MASK 0x07ff /* 'fq_ctrl' flags; */
502
#define QM_FQCTRL_CGE 0x0400 /* Congestion Group Enable */
503
#define QM_FQCTRL_TDE 0x0200 /* Tail-Drop Enable */
504
#define QM_FQCTRL_CTXASTASHING 0x0080 /* Context-A stashing */
505
#define QM_FQCTRL_CPCSTASH 0x0040 /* CPC Stash Enable */
506
#define QM_FQCTRL_FORCESFDR 0x0008 /* High-priority SFDRs */
507
#define QM_FQCTRL_AVOIDBLOCK 0x0004 /* Don't block active */
508
#define QM_FQCTRL_HOLDACTIVE 0x0002 /* Hold active in portal */
509
#define QM_FQCTRL_PREFERINCACHE 0x0001 /* Aggressively cache FQD */
510
#define QM_FQCTRL_LOCKINCACHE QM_FQCTRL_PREFERINCACHE /* older naming */
511
512
/* See "FQD Context_A field used for [...] */
513
/* Frame Queue Descriptor (FQD) field 'CONTEXT_A' uses these constants */
514
#define QM_STASHING_EXCL_ANNOTATION 0x04
515
#define QM_STASHING_EXCL_DATA 0x02
516
#define QM_STASHING_EXCL_CTX 0x01
517
518
/* See "Intra Class Scheduling" */
519
/* FQD field 'OAC' (Overhead ACcounting) uses these constants */
520
#define QM_OAC_ICS 0x2 /* Accounting for Intra-Class Scheduling */
521
#define QM_OAC_CG 0x1 /* Accounting for Congestion Groups */
522
523
/*
524
* This struct represents the 32-bit "WR_PARM_[GYR]" parameters in CGR fields
525
* and associated commands/responses. The WRED parameters are calculated from
526
* these fields as follows;
527
* MaxTH = MA * (2 ^ Mn)
528
* Slope = SA / (2 ^ Sn)
529
* MaxP = 4 * (Pn + 1)
530
*/
531
struct qm_cgr_wr_parm {
532
/* MA[24-31], Mn[19-23], SA[12-18], Sn[6-11], Pn[0-5] */
533
__be32 word;
534
};
535
/*
536
* This struct represents the 13-bit "CS_THRES" CGR field. In the corresponding
537
* management commands, this is padded to a 16-bit structure field, so that's
538
* how we represent it here. The congestion state threshold is calculated from
539
* these fields as follows;
540
* CS threshold = TA * (2 ^ Tn)
541
*/
542
struct qm_cgr_cs_thres {
543
/* _res[13-15], TA[5-12], Tn[0-4] */
544
__be16 word;
545
};
546
/*
547
* This identical structure of CGR fields is present in the "Init/Modify CGR"
548
* commands and the "Query CGR" result. It's suctioned out here into its own
549
* struct.
550
*/
551
struct __qm_mc_cgr {
552
struct qm_cgr_wr_parm wr_parm_g;
553
struct qm_cgr_wr_parm wr_parm_y;
554
struct qm_cgr_wr_parm wr_parm_r;
555
u8 wr_en_g; /* boolean, use QM_CGR_EN */
556
u8 wr_en_y; /* boolean, use QM_CGR_EN */
557
u8 wr_en_r; /* boolean, use QM_CGR_EN */
558
u8 cscn_en; /* boolean, use QM_CGR_EN */
559
union {
560
struct {
561
__be16 cscn_targ_upd_ctrl; /* use QM_CGR_TARG_UDP_* */
562
__be16 cscn_targ_dcp_low;
563
};
564
__be32 cscn_targ; /* use QM_CGR_TARG_* */
565
};
566
u8 cstd_en; /* boolean, use QM_CGR_EN */
567
u8 cs; /* boolean, only used in query response */
568
struct qm_cgr_cs_thres cs_thres; /* use qm_cgr_cs_thres_set64() */
569
u8 mode; /* QMAN_CGR_MODE_FRAME not supported in rev1.0 */
570
} __packed;
571
#define QM_CGR_EN 0x01 /* For wr_en_*, cscn_en, cstd_en */
572
#define QM_CGR_TARG_UDP_CTRL_WRITE_BIT 0x8000 /* value written to portal bit*/
573
#define QM_CGR_TARG_UDP_CTRL_DCP 0x4000 /* 0: SWP, 1: DCP */
574
#define QM_CGR_TARG_PORTAL(n) (0x80000000 >> (n)) /* s/w portal, 0-9 */
575
#define QM_CGR_TARG_FMAN0 0x00200000 /* direct-connect portal: fman0 */
576
#define QM_CGR_TARG_FMAN1 0x00100000 /* : fman1 */
577
/* Convert CGR thresholds to/from "cs_thres" format */
578
static inline u64 qm_cgr_cs_thres_get64(const struct qm_cgr_cs_thres *th)
579
{
580
int thres = be16_to_cpu(th->word);
581
582
return ((thres >> 5) & 0xff) << (thres & 0x1f);
583
}
584
585
static inline int qm_cgr_cs_thres_set64(struct qm_cgr_cs_thres *th, u64 val,
586
int roundup)
587
{
588
u32 e = 0;
589
int oddbit = 0;
590
591
while (val > 0xff) {
592
oddbit = val & 1;
593
val >>= 1;
594
e++;
595
if (roundup && oddbit)
596
val++;
597
}
598
th->word = cpu_to_be16(((val & 0xff) << 5) | (e & 0x1f));
599
return 0;
600
}
601
602
/* "Initialize FQ" */
603
struct qm_mcc_initfq {
604
u8 __reserved1[2];
605
__be16 we_mask; /* Write Enable Mask */
606
__be32 fqid; /* 24-bit */
607
__be16 count; /* Initialises 'count+1' FQDs */
608
struct qm_fqd fqd; /* the FQD fields go here */
609
u8 __reserved2[30];
610
} __packed;
611
/* "Initialize/Modify CGR" */
612
struct qm_mcc_initcgr {
613
u8 __reserve1[2];
614
__be16 we_mask; /* Write Enable Mask */
615
struct __qm_mc_cgr cgr; /* CGR fields */
616
u8 __reserved2[2];
617
u8 cgid;
618
u8 __reserved3[32];
619
} __packed;
620
621
/* INITFQ-specific flags */
622
#define QM_INITFQ_WE_MASK 0x01ff /* 'Write Enable' flags; */
623
#define QM_INITFQ_WE_OAC 0x0100
624
#define QM_INITFQ_WE_ORPC 0x0080
625
#define QM_INITFQ_WE_CGID 0x0040
626
#define QM_INITFQ_WE_FQCTRL 0x0020
627
#define QM_INITFQ_WE_DESTWQ 0x0010
628
#define QM_INITFQ_WE_ICSCRED 0x0008
629
#define QM_INITFQ_WE_TDTHRESH 0x0004
630
#define QM_INITFQ_WE_CONTEXTB 0x0002
631
#define QM_INITFQ_WE_CONTEXTA 0x0001
632
/* INITCGR/MODIFYCGR-specific flags */
633
#define QM_CGR_WE_MASK 0x07ff /* 'Write Enable Mask'; */
634
#define QM_CGR_WE_WR_PARM_G 0x0400
635
#define QM_CGR_WE_WR_PARM_Y 0x0200
636
#define QM_CGR_WE_WR_PARM_R 0x0100
637
#define QM_CGR_WE_WR_EN_G 0x0080
638
#define QM_CGR_WE_WR_EN_Y 0x0040
639
#define QM_CGR_WE_WR_EN_R 0x0020
640
#define QM_CGR_WE_CSCN_EN 0x0010
641
#define QM_CGR_WE_CSCN_TARG 0x0008
642
#define QM_CGR_WE_CSTD_EN 0x0004
643
#define QM_CGR_WE_CS_THRES 0x0002
644
#define QM_CGR_WE_MODE 0x0001
645
646
#define QMAN_CGR_FLAG_USE_INIT 0x00000001
647
#define QMAN_CGR_MODE_FRAME 0x00000001
648
649
/* Portal and Frame Queues */
650
/* Represents a managed portal */
651
struct qman_portal;
652
653
/*
654
* This object type represents QMan frame queue descriptors (FQD), it is
655
* cacheline-aligned, and initialised by qman_create_fq(). The structure is
656
* defined further down.
657
*/
658
struct qman_fq;
659
660
/*
661
* This object type represents a QMan congestion group, it is defined further
662
* down.
663
*/
664
struct qman_cgr;
665
666
/*
667
* This enum, and the callback type that returns it, are used when handling
668
* dequeued frames via DQRR. Note that for "null" callbacks registered with the
669
* portal object (for handling dequeues that do not demux because context_b is
670
* NULL), the return value *MUST* be qman_cb_dqrr_consume.
671
*/
672
enum qman_cb_dqrr_result {
673
/* DQRR entry can be consumed */
674
qman_cb_dqrr_consume,
675
/* Like _consume, but requests parking - FQ must be held-active */
676
qman_cb_dqrr_park,
677
/* Does not consume, for DCA mode only. */
678
qman_cb_dqrr_defer,
679
/*
680
* Stop processing without consuming this ring entry. Exits the current
681
* qman_p_poll_dqrr() or interrupt-handling, as appropriate. If within
682
* an interrupt handler, the callback would typically call
683
* qman_irqsource_remove(QM_PIRQ_DQRI) before returning this value,
684
* otherwise the interrupt will reassert immediately.
685
*/
686
qman_cb_dqrr_stop,
687
/* Like qman_cb_dqrr_stop, but consumes the current entry. */
688
qman_cb_dqrr_consume_stop
689
};
690
typedef enum qman_cb_dqrr_result (*qman_cb_dqrr)(struct qman_portal *qm,
691
struct qman_fq *fq,
692
const struct qm_dqrr_entry *dqrr,
693
bool sched_napi);
694
695
/*
696
* This callback type is used when handling ERNs, FQRNs and FQRLs via MR. They
697
* are always consumed after the callback returns.
698
*/
699
typedef void (*qman_cb_mr)(struct qman_portal *qm, struct qman_fq *fq,
700
const union qm_mr_entry *msg);
701
702
/*
703
* s/w-visible states. Ie. tentatively scheduled + truly scheduled + active +
704
* held-active + held-suspended are just "sched". Things like "retired" will not
705
* be assumed until it is complete (ie. QMAN_FQ_STATE_CHANGING is set until
706
* then, to indicate it's completing and to gate attempts to retry the retire
707
* command). Note, park commands do not set QMAN_FQ_STATE_CHANGING because it's
708
* technically impossible in the case of enqueue DCAs (which refer to DQRR ring
709
* index rather than the FQ that ring entry corresponds to), so repeated park
710
* commands are allowed (if you're silly enough to try) but won't change FQ
711
* state, and the resulting park notifications move FQs from "sched" to
712
* "parked".
713
*/
714
enum qman_fq_state {
715
qman_fq_state_oos,
716
qman_fq_state_parked,
717
qman_fq_state_sched,
718
qman_fq_state_retired
719
};
720
721
#define QMAN_FQ_STATE_CHANGING 0x80000000 /* 'state' is changing */
722
#define QMAN_FQ_STATE_NE 0x40000000 /* retired FQ isn't empty */
723
#define QMAN_FQ_STATE_ORL 0x20000000 /* retired FQ has ORL */
724
#define QMAN_FQ_STATE_BLOCKOOS 0xe0000000 /* if any are set, no OOS */
725
#define QMAN_FQ_STATE_CGR_EN 0x10000000 /* CGR enabled */
726
#define QMAN_FQ_STATE_VDQCR 0x08000000 /* being volatile dequeued */
727
728
/*
729
* Frame queue objects (struct qman_fq) are stored within memory passed to
730
* qman_create_fq(), as this allows stashing of caller-provided demux callback
731
* pointers at no extra cost to stashing of (driver-internal) FQ state. If the
732
* caller wishes to add per-FQ state and have it benefit from dequeue-stashing,
733
* they should;
734
*
735
* (a) extend the qman_fq structure with their state; eg.
736
*
737
* // myfq is allocated and driver_fq callbacks filled in;
738
* struct my_fq {
739
* struct qman_fq base;
740
* int an_extra_field;
741
* [ ... add other fields to be associated with each FQ ...]
742
* } *myfq = some_my_fq_allocator();
743
* struct qman_fq *fq = qman_create_fq(fqid, flags, &myfq->base);
744
*
745
* // in a dequeue callback, access extra fields from 'fq' via a cast;
746
* struct my_fq *myfq = (struct my_fq *)fq;
747
* do_something_with(myfq->an_extra_field);
748
* [...]
749
*
750
* (b) when and if configuring the FQ for context stashing, specify how ever
751
* many cachelines are required to stash 'struct my_fq', to accelerate not
752
* only the QMan driver but the callback as well.
753
*/
754
755
struct qman_fq_cb {
756
qman_cb_dqrr dqrr; /* for dequeued frames */
757
qman_cb_mr ern; /* for s/w ERNs */
758
qman_cb_mr fqs; /* frame-queue state changes*/
759
};
760
761
struct qman_fq {
762
/* Caller of qman_create_fq() provides these demux callbacks */
763
struct qman_fq_cb cb;
764
/*
765
* These are internal to the driver, don't touch. In particular, they
766
* may change, be removed, or extended (so you shouldn't rely on
767
* sizeof(qman_fq) being a constant).
768
*/
769
u32 fqid, idx;
770
unsigned long flags;
771
enum qman_fq_state state;
772
int cgr_groupid;
773
};
774
775
/*
776
* This callback type is used when handling congestion group entry/exit.
777
* 'congested' is non-zero on congestion-entry, and zero on congestion-exit.
778
*/
779
typedef void (*qman_cb_cgr)(struct qman_portal *qm,
780
struct qman_cgr *cgr, int congested);
781
782
struct qman_cgr {
783
/* Set these prior to qman_create_cgr() */
784
u32 cgrid; /* 0..255, but u32 to allow specials like -1, 256, etc.*/
785
qman_cb_cgr cb;
786
/* These are private to the driver */
787
u16 chan; /* portal channel this object is created on */
788
struct list_head node;
789
};
790
791
/* Flags to qman_create_fq() */
792
#define QMAN_FQ_FLAG_NO_ENQUEUE 0x00000001 /* can't enqueue */
793
#define QMAN_FQ_FLAG_NO_MODIFY 0x00000002 /* can only enqueue */
794
#define QMAN_FQ_FLAG_TO_DCPORTAL 0x00000004 /* consumed by CAAM/PME/Fman */
795
#define QMAN_FQ_FLAG_DYNAMIC_FQID 0x00000020 /* (de)allocate fqid */
796
797
/* Flags to qman_init_fq() */
798
#define QMAN_INITFQ_FLAG_SCHED 0x00000001 /* schedule rather than park */
799
#define QMAN_INITFQ_FLAG_LOCAL 0x00000004 /* set dest portal */
800
801
/*
802
* For qman_volatile_dequeue(); Choose one PRECEDENCE. EXACT is optional. Use
803
* NUMFRAMES(n) (6-bit) or NUMFRAMES_TILLEMPTY to fill in the frame-count. Use
804
* FQID(n) to fill in the frame queue ID.
805
*/
806
#define QM_VDQCR_PRECEDENCE_VDQCR 0x0
807
#define QM_VDQCR_PRECEDENCE_SDQCR 0x80000000
808
#define QM_VDQCR_EXACT 0x40000000
809
#define QM_VDQCR_NUMFRAMES_MASK 0x3f000000
810
#define QM_VDQCR_NUMFRAMES_SET(n) (((n) & 0x3f) << 24)
811
#define QM_VDQCR_NUMFRAMES_GET(n) (((n) >> 24) & 0x3f)
812
#define QM_VDQCR_NUMFRAMES_TILLEMPTY QM_VDQCR_NUMFRAMES_SET(0)
813
814
#define QMAN_VOLATILE_FLAG_WAIT 0x00000001 /* wait if VDQCR is in use */
815
#define QMAN_VOLATILE_FLAG_WAIT_INT 0x00000002 /* if wait, interruptible? */
816
#define QMAN_VOLATILE_FLAG_FINISH 0x00000004 /* wait till VDQCR completes */
817
818
/* "Query FQ Non-Programmable Fields" */
819
struct qm_mcr_queryfq_np {
820
u8 verb;
821
u8 result;
822
u8 __reserved1;
823
u8 state; /* QM_MCR_NP_STATE_*** */
824
u32 fqd_link; /* 24-bit, _res2[24-31] */
825
u16 odp_seq; /* 14-bit, _res3[14-15] */
826
u16 orp_nesn; /* 14-bit, _res4[14-15] */
827
u16 orp_ea_hseq; /* 15-bit, _res5[15] */
828
u16 orp_ea_tseq; /* 15-bit, _res6[15] */
829
u32 orp_ea_hptr; /* 24-bit, _res7[24-31] */
830
u32 orp_ea_tptr; /* 24-bit, _res8[24-31] */
831
u32 pfdr_hptr; /* 24-bit, _res9[24-31] */
832
u32 pfdr_tptr; /* 24-bit, _res10[24-31] */
833
u8 __reserved2[5];
834
u8 is; /* 1-bit, _res12[1-7] */
835
u16 ics_surp;
836
u32 byte_cnt;
837
u32 frm_cnt; /* 24-bit, _res13[24-31] */
838
u32 __reserved3;
839
u16 ra1_sfdr; /* QM_MCR_NP_RA1_*** */
840
u16 ra2_sfdr; /* QM_MCR_NP_RA2_*** */
841
u16 __reserved4;
842
u16 od1_sfdr; /* QM_MCR_NP_OD1_*** */
843
u16 od2_sfdr; /* QM_MCR_NP_OD2_*** */
844
u16 od3_sfdr; /* QM_MCR_NP_OD3_*** */
845
} __packed;
846
847
#define QM_MCR_NP_STATE_FE 0x10
848
#define QM_MCR_NP_STATE_R 0x08
849
#define QM_MCR_NP_STATE_MASK 0x07 /* Reads FQD::STATE; */
850
#define QM_MCR_NP_STATE_OOS 0x00
851
#define QM_MCR_NP_STATE_RETIRED 0x01
852
#define QM_MCR_NP_STATE_TEN_SCHED 0x02
853
#define QM_MCR_NP_STATE_TRU_SCHED 0x03
854
#define QM_MCR_NP_STATE_PARKED 0x04
855
#define QM_MCR_NP_STATE_ACTIVE 0x05
856
#define QM_MCR_NP_PTR_MASK 0x07ff /* for RA[12] & OD[123] */
857
#define QM_MCR_NP_RA1_NRA(v) (((v) >> 14) & 0x3) /* FQD::NRA */
858
#define QM_MCR_NP_RA2_IT(v) (((v) >> 14) & 0x1) /* FQD::IT */
859
#define QM_MCR_NP_OD1_NOD(v) (((v) >> 14) & 0x3) /* FQD::NOD */
860
#define QM_MCR_NP_OD3_NPC(v) (((v) >> 14) & 0x3) /* FQD::NPC */
861
862
enum qm_mcr_queryfq_np_masks {
863
qm_mcr_fqd_link_mask = BIT(24) - 1,
864
qm_mcr_odp_seq_mask = BIT(14) - 1,
865
qm_mcr_orp_nesn_mask = BIT(14) - 1,
866
qm_mcr_orp_ea_hseq_mask = BIT(15) - 1,
867
qm_mcr_orp_ea_tseq_mask = BIT(15) - 1,
868
qm_mcr_orp_ea_hptr_mask = BIT(24) - 1,
869
qm_mcr_orp_ea_tptr_mask = BIT(24) - 1,
870
qm_mcr_pfdr_hptr_mask = BIT(24) - 1,
871
qm_mcr_pfdr_tptr_mask = BIT(24) - 1,
872
qm_mcr_is_mask = BIT(1) - 1,
873
qm_mcr_frm_cnt_mask = BIT(24) - 1,
874
};
875
876
#define qm_mcr_np_get(np, field) \
877
((np)->field & (qm_mcr_##field##_mask))
878
879
/* Portal Management */
880
/**
881
* qman_p_irqsource_add - add processing sources to be interrupt-driven
882
* @bits: bitmask of QM_PIRQ_**I processing sources
883
*
884
* Adds processing sources that should be interrupt-driven (rather than
885
* processed via qman_poll_***() functions).
886
*/
887
void qman_p_irqsource_add(struct qman_portal *p, u32 bits);
888
889
/**
890
* qman_p_irqsource_remove - remove processing sources from being int-driven
891
* @bits: bitmask of QM_PIRQ_**I processing sources
892
*
893
* Removes processing sources from being interrupt-driven, so that they will
894
* instead be processed via qman_poll_***() functions.
895
*/
896
void qman_p_irqsource_remove(struct qman_portal *p, u32 bits);
897
898
/**
899
* qman_affine_cpus - return a mask of cpus that have affine portals
900
*/
901
const cpumask_t *qman_affine_cpus(void);
902
903
/**
904
* qman_affine_channel - return the channel ID of an portal
905
* @cpu: the cpu whose affine portal is the subject of the query
906
*
907
* If @cpu is -1, the affine portal for the current CPU will be used. It is a
908
* bug to call this function for any value of @cpu (other than -1) that is not a
909
* member of the mask returned from qman_affine_cpus().
910
*/
911
u16 qman_affine_channel(int cpu);
912
913
/**
914
* qman_get_affine_portal - return the portal pointer affine to cpu
915
* @cpu: the cpu whose affine portal is the subject of the query
916
*/
917
struct qman_portal *qman_get_affine_portal(int cpu);
918
919
/**
920
* qman_start_using_portal - register a device link for the portal user
921
* @p: the portal that will be in use
922
* @dev: the device that will use the portal
923
*
924
* Makes sure that the devices that use the portal are unbound when the
925
* portal is unbound
926
*/
927
int qman_start_using_portal(struct qman_portal *p, struct device *dev);
928
929
/**
930
* qman_p_poll_dqrr - process DQRR (fast-path) entries
931
* @limit: the maximum number of DQRR entries to process
932
*
933
* Use of this function requires that DQRR processing not be interrupt-driven.
934
* The return value represents the number of DQRR entries processed.
935
*/
936
int qman_p_poll_dqrr(struct qman_portal *p, unsigned int limit);
937
938
/**
939
* qman_p_static_dequeue_add - Add pool channels to the portal SDQCR
940
* @pools: bit-mask of pool channels, using QM_SDQCR_CHANNELS_POOL(n)
941
*
942
* Adds a set of pool channels to the portal's static dequeue command register
943
* (SDQCR). The requested pools are limited to those the portal has dequeue
944
* access to.
945
*/
946
void qman_p_static_dequeue_add(struct qman_portal *p, u32 pools);
947
948
/* FQ management */
949
/**
950
* qman_create_fq - Allocates a FQ
951
* @fqid: the index of the FQD to encapsulate, must be "Out of Service"
952
* @flags: bit-mask of QMAN_FQ_FLAG_*** options
953
* @fq: memory for storing the 'fq', with callbacks filled in
954
*
955
* Creates a frame queue object for the given @fqid, unless the
956
* QMAN_FQ_FLAG_DYNAMIC_FQID flag is set in @flags, in which case a FQID is
957
* dynamically allocated (or the function fails if none are available). Once
958
* created, the caller should not touch the memory at 'fq' except as extended to
959
* adjacent memory for user-defined fields (see the definition of "struct
960
* qman_fq" for more info). NO_MODIFY is only intended for enqueuing to
961
* pre-existing frame-queues that aren't to be otherwise interfered with, it
962
* prevents all other modifications to the frame queue. The TO_DCPORTAL flag
963
* causes the driver to honour any context_b modifications requested in the
964
* qm_init_fq() API, as this indicates the frame queue will be consumed by a
965
* direct-connect portal (PME, CAAM, or Fman). When frame queues are consumed by
966
* software portals, the context_b field is controlled by the driver and can't
967
* be modified by the caller.
968
*/
969
int qman_create_fq(u32 fqid, u32 flags, struct qman_fq *fq);
970
971
/**
972
* qman_destroy_fq - Deallocates a FQ
973
* @fq: the frame queue object to release
974
*
975
* The memory for this frame queue object ('fq' provided in qman_create_fq()) is
976
* not deallocated but the caller regains ownership, to do with as desired. The
977
* FQ must be in the 'out-of-service' or in the 'parked' state.
978
*/
979
void qman_destroy_fq(struct qman_fq *fq);
980
981
/**
982
* qman_fq_fqid - Queries the frame queue ID of a FQ object
983
* @fq: the frame queue object to query
984
*/
985
u32 qman_fq_fqid(struct qman_fq *fq);
986
987
/**
988
* qman_init_fq - Initialises FQ fields, leaves the FQ "parked" or "scheduled"
989
* @fq: the frame queue object to modify, must be 'parked' or new.
990
* @flags: bit-mask of QMAN_INITFQ_FLAG_*** options
991
* @opts: the FQ-modification settings, as defined in the low-level API
992
*
993
* The @opts parameter comes from the low-level portal API. Select
994
* QMAN_INITFQ_FLAG_SCHED in @flags to cause the frame queue to be scheduled
995
* rather than parked. NB, @opts can be NULL.
996
*
997
* Note that some fields and options within @opts may be ignored or overwritten
998
* by the driver;
999
* 1. the 'count' and 'fqid' fields are always ignored (this operation only
1000
* affects one frame queue: @fq).
1001
* 2. the QM_INITFQ_WE_CONTEXTB option of the 'we_mask' field and the associated
1002
* 'fqd' structure's 'context_b' field are sometimes overwritten;
1003
* - if @fq was not created with QMAN_FQ_FLAG_TO_DCPORTAL, then context_b is
1004
* initialised to a value used by the driver for demux.
1005
* - if context_b is initialised for demux, so is context_a in case stashing
1006
* is requested (see item 4).
1007
* (So caller control of context_b is only possible for TO_DCPORTAL frame queue
1008
* objects.)
1009
* 3. if @flags contains QMAN_INITFQ_FLAG_LOCAL, the 'fqd' structure's
1010
* 'dest::channel' field will be overwritten to match the portal used to issue
1011
* the command. If the WE_DESTWQ write-enable bit had already been set by the
1012
* caller, the channel workqueue will be left as-is, otherwise the write-enable
1013
* bit is set and the workqueue is set to a default of 4. If the "LOCAL" flag
1014
* isn't set, the destination channel/workqueue fields and the write-enable bit
1015
* are left as-is.
1016
* 4. if the driver overwrites context_a/b for demux, then if
1017
* QM_INITFQ_WE_CONTEXTA is set, the driver will only overwrite
1018
* context_a.address fields and will leave the stashing fields provided by the
1019
* user alone, otherwise it will zero out the context_a.stashing fields.
1020
*/
1021
int qman_init_fq(struct qman_fq *fq, u32 flags, struct qm_mcc_initfq *opts);
1022
1023
/**
1024
* qman_schedule_fq - Schedules a FQ
1025
* @fq: the frame queue object to schedule, must be 'parked'
1026
*
1027
* Schedules the frame queue, which must be Parked, which takes it to
1028
* Tentatively-Scheduled or Truly-Scheduled depending on its fill-level.
1029
*/
1030
int qman_schedule_fq(struct qman_fq *fq);
1031
1032
/**
1033
* qman_retire_fq - Retires a FQ
1034
* @fq: the frame queue object to retire
1035
* @flags: FQ flags (QMAN_FQ_STATE*) if retirement completes immediately
1036
*
1037
* Retires the frame queue. This returns zero if it succeeds immediately, +1 if
1038
* the retirement was started asynchronously, otherwise it returns negative for
1039
* failure. When this function returns zero, @flags is set to indicate whether
1040
* the retired FQ is empty and/or whether it has any ORL fragments (to show up
1041
* as ERNs). Otherwise the corresponding flags will be known when a subsequent
1042
* FQRN message shows up on the portal's message ring.
1043
*
1044
* NB, if the retirement is asynchronous (the FQ was in the Truly Scheduled or
1045
* Active state), the completion will be via the message ring as a FQRN - but
1046
* the corresponding callback may occur before this function returns!! Ie. the
1047
* caller should be prepared to accept the callback as the function is called,
1048
* not only once it has returned.
1049
*/
1050
int qman_retire_fq(struct qman_fq *fq, u32 *flags);
1051
1052
/**
1053
* qman_oos_fq - Puts a FQ "out of service"
1054
* @fq: the frame queue object to be put out-of-service, must be 'retired'
1055
*
1056
* The frame queue must be retired and empty, and if any order restoration list
1057
* was released as ERNs at the time of retirement, they must all be consumed.
1058
*/
1059
int qman_oos_fq(struct qman_fq *fq);
1060
1061
/*
1062
* qman_volatile_dequeue - Issue a volatile dequeue command
1063
* @fq: the frame queue object to dequeue from
1064
* @flags: a bit-mask of QMAN_VOLATILE_FLAG_*** options
1065
* @vdqcr: bit mask of QM_VDQCR_*** options, as per qm_dqrr_vdqcr_set()
1066
*
1067
* Attempts to lock access to the portal's VDQCR volatile dequeue functionality.
1068
* The function will block and sleep if QMAN_VOLATILE_FLAG_WAIT is specified and
1069
* the VDQCR is already in use, otherwise returns non-zero for failure. If
1070
* QMAN_VOLATILE_FLAG_FINISH is specified, the function will only return once
1071
* the VDQCR command has finished executing (ie. once the callback for the last
1072
* DQRR entry resulting from the VDQCR command has been called). If not using
1073
* the FINISH flag, completion can be determined either by detecting the
1074
* presence of the QM_DQRR_STAT_UNSCHEDULED and QM_DQRR_STAT_DQCR_EXPIRED bits
1075
* in the "stat" parameter passed to the FQ's dequeue callback, or by waiting
1076
* for the QMAN_FQ_STATE_VDQCR bit to disappear.
1077
*/
1078
int qman_volatile_dequeue(struct qman_fq *fq, u32 flags, u32 vdqcr);
1079
1080
/**
1081
* qman_enqueue - Enqueue a frame to a frame queue
1082
* @fq: the frame queue object to enqueue to
1083
* @fd: a descriptor of the frame to be enqueued
1084
*
1085
* Fills an entry in the EQCR of portal @qm to enqueue the frame described by
1086
* @fd. The descriptor details are copied from @fd to the EQCR entry, the 'pid'
1087
* field is ignored. The return value is non-zero on error, such as ring full.
1088
*/
1089
int qman_enqueue(struct qman_fq *fq, const struct qm_fd *fd);
1090
1091
/**
1092
* qman_alloc_fqid_range - Allocate a contiguous range of FQIDs
1093
* @result: is set by the API to the base FQID of the allocated range
1094
* @count: the number of FQIDs required
1095
*
1096
* Returns 0 on success, or a negative error code.
1097
*/
1098
int qman_alloc_fqid_range(u32 *result, u32 count);
1099
#define qman_alloc_fqid(result) qman_alloc_fqid_range(result, 1)
1100
1101
/**
1102
* qman_release_fqid - Release the specified frame queue ID
1103
* @fqid: the FQID to be released back to the resource pool
1104
*
1105
* This function can also be used to seed the allocator with
1106
* FQID ranges that it can subsequently allocate from.
1107
* Returns 0 on success, or a negative error code.
1108
*/
1109
int qman_release_fqid(u32 fqid);
1110
1111
/**
1112
* qman_query_fq_np - Queries non-programmable FQD fields
1113
* @fq: the frame queue object to be queried
1114
* @np: storage for the queried FQD fields
1115
*/
1116
int qman_query_fq_np(struct qman_fq *fq, struct qm_mcr_queryfq_np *np);
1117
1118
/* Pool-channel management */
1119
/**
1120
* qman_alloc_pool_range - Allocate a contiguous range of pool-channel IDs
1121
* @result: is set by the API to the base pool-channel ID of the allocated range
1122
* @count: the number of pool-channel IDs required
1123
*
1124
* Returns 0 on success, or a negative error code.
1125
*/
1126
int qman_alloc_pool_range(u32 *result, u32 count);
1127
#define qman_alloc_pool(result) qman_alloc_pool_range(result, 1)
1128
1129
/**
1130
* qman_release_pool - Release the specified pool-channel ID
1131
* @id: the pool-chan ID to be released back to the resource pool
1132
*
1133
* This function can also be used to seed the allocator with
1134
* pool-channel ID ranges that it can subsequently allocate from.
1135
* Returns 0 on success, or a negative error code.
1136
*/
1137
int qman_release_pool(u32 id);
1138
1139
/* CGR management */
1140
/**
1141
* qman_create_cgr - Register a congestion group object
1142
* @cgr: the 'cgr' object, with fields filled in
1143
* @flags: QMAN_CGR_FLAG_* values
1144
* @opts: optional state of CGR settings
1145
*
1146
* Registers this object to receiving congestion entry/exit callbacks on the
1147
* portal affine to the cpu portal on which this API is executed. If opts is
1148
* NULL then only the callback (cgr->cb) function is registered. If @flags
1149
* contains QMAN_CGR_FLAG_USE_INIT, then an init hw command (which will reset
1150
* any unspecified parameters) will be used rather than a modify hw hardware
1151
* (which only modifies the specified parameters).
1152
*/
1153
int qman_create_cgr(struct qman_cgr *cgr, u32 flags,
1154
struct qm_mcc_initcgr *opts);
1155
1156
/**
1157
* qman_delete_cgr - Deregisters a congestion group object
1158
* @cgr: the 'cgr' object to deregister
1159
*
1160
* "Unplugs" this CGR object from the portal affine to the cpu on which this API
1161
* is executed. This must be excuted on the same affine portal on which it was
1162
* created.
1163
*/
1164
int qman_delete_cgr(struct qman_cgr *cgr);
1165
1166
/**
1167
* qman_delete_cgr_safe - Deregisters a congestion group object from any CPU
1168
* @cgr: the 'cgr' object to deregister
1169
*
1170
* This will select the proper CPU and run there qman_delete_cgr().
1171
*/
1172
void qman_delete_cgr_safe(struct qman_cgr *cgr);
1173
1174
/**
1175
* qman_update_cgr_safe - Modifies a congestion group object from any CPU
1176
* @cgr: the 'cgr' object to modify
1177
* @opts: state of the CGR settings
1178
*
1179
* This will select the proper CPU and modify the CGR settings.
1180
*/
1181
int qman_update_cgr_safe(struct qman_cgr *cgr, struct qm_mcc_initcgr *opts);
1182
1183
/**
1184
* qman_query_cgr_congested - Queries CGR's congestion status
1185
* @cgr: the 'cgr' object to query
1186
* @result: returns 'cgr's congestion status, 1 (true) if congested
1187
*/
1188
int qman_query_cgr_congested(struct qman_cgr *cgr, bool *result);
1189
1190
/**
1191
* qman_alloc_cgrid_range - Allocate a contiguous range of CGR IDs
1192
* @result: is set by the API to the base CGR ID of the allocated range
1193
* @count: the number of CGR IDs required
1194
*
1195
* Returns 0 on success, or a negative error code.
1196
*/
1197
int qman_alloc_cgrid_range(u32 *result, u32 count);
1198
#define qman_alloc_cgrid(result) qman_alloc_cgrid_range(result, 1)
1199
1200
/**
1201
* qman_release_cgrid - Release the specified CGR ID
1202
* @id: the CGR ID to be released back to the resource pool
1203
*
1204
* This function can also be used to seed the allocator with
1205
* CGR ID ranges that it can subsequently allocate from.
1206
* Returns 0 on success, or a negative error code.
1207
*/
1208
int qman_release_cgrid(u32 id);
1209
1210
/**
1211
* qman_is_probed - Check if qman is probed
1212
*
1213
* Returns 1 if the qman driver successfully probed, -1 if the qman driver
1214
* failed to probe or 0 if the qman driver did not probed yet.
1215
*/
1216
int qman_is_probed(void);
1217
1218
/**
1219
* qman_portals_probed - Check if all cpu bound qman portals are probed
1220
*
1221
* Returns 1 if all the required cpu bound qman portals successfully probed,
1222
* -1 if probe errors appeared or 0 if the qman portals did not yet finished
1223
* probing.
1224
*/
1225
int qman_portals_probed(void);
1226
1227
/**
1228
* qman_dqrr_get_ithresh - Get coalesce interrupt threshold
1229
* @portal: portal to get the value for
1230
* @ithresh: threshold pointer
1231
*/
1232
void qman_dqrr_get_ithresh(struct qman_portal *portal, u8 *ithresh);
1233
1234
/**
1235
* qman_dqrr_set_ithresh - Set coalesce interrupt threshold
1236
* @portal: portal to set the new value on
1237
* @ithresh: new threshold value
1238
*
1239
* Returns 0 on success, or a negative error code.
1240
*/
1241
int qman_dqrr_set_ithresh(struct qman_portal *portal, u8 ithresh);
1242
1243
/**
1244
* qman_dqrr_get_iperiod - Get coalesce interrupt period
1245
* @portal: portal to get the value for
1246
* @iperiod: period pointer
1247
*/
1248
void qman_portal_get_iperiod(struct qman_portal *portal, u32 *iperiod);
1249
1250
/**
1251
* qman_dqrr_set_iperiod - Set coalesce interrupt period
1252
* @portal: portal to set the new value on
1253
* @ithresh: new period value
1254
*
1255
* Returns 0 on success, or a negative error code.
1256
*/
1257
int qman_portal_set_iperiod(struct qman_portal *portal, u32 iperiod);
1258
1259
#endif /* __FSL_QMAN_H */
1260
1261