/*1* Copyright 2011 Intel Corporation2*3* Permission is hereby granted, free of charge, to any person obtaining a4* copy of this software and associated documentation files (the "Software"),5* to deal in the Software without restriction, including without limitation6* the rights to use, copy, modify, merge, publish, distribute, sublicense,7* and/or sell copies of the Software, and to permit persons to whom the8* Software is furnished to do so, subject to the following conditions:9*10* The above copyright notice and this permission notice (including the next11* paragraph) shall be included in all copies or substantial portions of the12* Software.13*14* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR15* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,16* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL17* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR18* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,19* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR20* OTHER DEALINGS IN THE SOFTWARE.21*/2223#ifndef DRM_FOURCC_H24#define DRM_FOURCC_H2526#include "drm.h"2728#if defined(__cplusplus)29extern "C" {30#endif3132/**33* DOC: overview34*35* In the DRM subsystem, framebuffer pixel formats are described using the36* fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the37* fourcc code, a Format Modifier may optionally be provided, in order to38* further describe the buffer's format - for example tiling or compression.39*40* Format Modifiers41* ----------------42*43* Format modifiers are used in conjunction with a fourcc code, forming a44* unique fourcc:modifier pair. This format:modifier pair must fully define the45* format and data layout of the buffer, and should be the only way to describe46* that particular buffer.47*48* Having multiple fourcc:modifier pairs which describe the same layout should49* be avoided, as such aliases run the risk of different drivers exposing50* different names for the same data format, forcing userspace to understand51* that they are aliases.52*53* Format modifiers may change any property of the buffer, including the number54* of planes and/or the required allocation size. Format modifiers are55* vendor-namespaced, and as such the relationship between a fourcc code and a56* modifier is specific to the modifier being used. For example, some modifiers57* may preserve meaning - such as number of planes - from the fourcc code,58* whereas others may not.59*60* Modifiers must uniquely encode buffer layout. In other words, a buffer must61* match only a single modifier. A modifier must not be a subset of layouts of62* another modifier. For instance, it's incorrect to encode pitch alignment in63* a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel64* aligned modifier. That said, modifiers can have implicit minimal65* requirements.66*67* For modifiers where the combination of fourcc code and modifier can alias,68* a canonical pair needs to be defined and used by all drivers. Preferred69* combinations are also encouraged where all combinations might lead to70* confusion and unnecessarily reduced interoperability. An example for the71* latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.72*73* There are two kinds of modifier users:74*75* - Kernel and user-space drivers: for drivers it's important that modifiers76* don't alias, otherwise two drivers might support the same format but use77* different aliases, preventing them from sharing buffers in an efficient78* format.79* - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users80* see modifiers as opaque tokens they can check for equality and intersect.81* These users mustn't need to know to reason about the modifier value82* (i.e. they are not expected to extract information out of the modifier).83*84* Vendors should document their modifier usage in as much detail as85* possible, to ensure maximum compatibility across devices, drivers and86* applications.87*88* The authoritative list of format modifier codes is found in89* `include/uapi/drm/drm_fourcc.h`90*91* Open Source User Waiver92* -----------------------93*94* Because this is the authoritative source for pixel formats and modifiers95* referenced by GL, Vulkan extensions and other standards and hence used both96* by open source and closed source driver stacks, the usual requirement for an97* upstream in-kernel or open source userspace user does not apply.98*99* To ensure, as much as feasible, compatibility across stacks and avoid100* confusion with incompatible enumerations stakeholders for all relevant driver101* stacks should approve additions.102*/103104#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \105((__u32)(c) << 16) | ((__u32)(d) << 24))106107#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */108109/* Reserve 0 for the invalid format specifier */110#define DRM_FORMAT_INVALID 0111112/* color index */113#define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */114#define DRM_FORMAT_C2 fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */115#define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */116#define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */117118/* 1 bpp Darkness (inverse relationship between channel value and brightness) */119#define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */120121/* 2 bpp Darkness (inverse relationship between channel value and brightness) */122#define DRM_FORMAT_D2 fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */123124/* 4 bpp Darkness (inverse relationship between channel value and brightness) */125#define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */126127/* 8 bpp Darkness (inverse relationship between channel value and brightness) */128#define DRM_FORMAT_D8 fourcc_code('D', '8', ' ', ' ') /* [7:0] D */129130/* 1 bpp Red (direct relationship between channel value and brightness) */131#define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */132133/* 2 bpp Red (direct relationship between channel value and brightness) */134#define DRM_FORMAT_R2 fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */135136/* 4 bpp Red (direct relationship between channel value and brightness) */137#define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */138139/* 8 bpp Red (direct relationship between channel value and brightness) */140#define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */141142/* 10 bpp Red (direct relationship between channel value and brightness) */143#define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */144145/* 12 bpp Red (direct relationship between channel value and brightness) */146#define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */147148/* 16 bpp Red (direct relationship between channel value and brightness) */149#define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */150151/* 16 bpp RG */152#define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */153#define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */154155/* 32 bpp RG */156#define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */157#define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */158159/* 8 bpp RGB */160#define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */161#define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */162163/* 16 bpp RGB */164#define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */165#define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */166#define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */167#define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */168169#define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */170#define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */171#define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */172#define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */173174#define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */175#define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */176#define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */177#define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */178179#define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */180#define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */181#define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */182#define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */183184#define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */185#define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */186187/* 24 bpp RGB */188#define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */189#define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */190191/* 32 bpp RGB */192#define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */193#define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */194#define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */195#define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */196197#define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */198#define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */199#define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */200#define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */201202#define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */203#define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */204#define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */205#define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */206207#define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */208#define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */209#define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */210#define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */211212/* 48 bpp RGB */213#define DRM_FORMAT_RGB161616 fourcc_code('R', 'G', '4', '8') /* [47:0] R:G:B 16:16:16 little endian */214#define DRM_FORMAT_BGR161616 fourcc_code('B', 'G', '4', '8') /* [47:0] B:G:R 16:16:16 little endian */215216/* 64 bpp RGB */217#define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */218#define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */219220#define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */221#define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */222223/*224* Half-Floating point - 16b/component225* IEEE 754-2008 binary16 half-precision float226* [15:0] sign:exponent:mantissa 1:5:10227*/228#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */229#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */230231#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */232#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */233234#define DRM_FORMAT_R16F fourcc_code('R', ' ', ' ', 'H') /* [15:0] R 16 little endian */235#define DRM_FORMAT_GR1616F fourcc_code('G', 'R', ' ', 'H') /* [31:0] G:R 16:16 little endian */236#define DRM_FORMAT_BGR161616F fourcc_code('B', 'G', 'R', 'H') /* [47:0] B:G:R 16:16:16 little endian */237238/*239* Floating point - 32b/component240* IEEE 754-2008 binary32 float241* [31:0] sign:exponent:mantissa 1:8:23242*/243#define DRM_FORMAT_R32F fourcc_code('R', ' ', ' ', 'F') /* [31:0] R 32 little endian */244#define DRM_FORMAT_GR3232F fourcc_code('G', 'R', ' ', 'F') /* [63:0] R:G 32:32 little endian */245#define DRM_FORMAT_BGR323232F fourcc_code('B', 'G', 'R', 'F') /* [95:0] R:G:B 32:32:32 little endian */246#define DRM_FORMAT_ABGR32323232F fourcc_code('A', 'B', '8', 'F') /* [127:0] R:G:B:A 32:32:32:32 little endian */247248/*249* RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits250* of unused padding per component:251*/252#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */253254/* packed YCbCr */255#define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */256#define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */257#define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */258#define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */259260#define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */261#define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */262#define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */263#define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */264#define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */265#define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */266267/*268* packed Y2xx indicate for each component, xx valid data occupy msb269* 16-xx padding occupy lsb270*/271#define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */272#define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */273#define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */274275/*276* packed Y4xx indicate for each component, xx valid data occupy msb277* 16-xx padding occupy lsb except Y410278*/279#define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */280#define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */281#define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */282283#define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */284#define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */285#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */286287/*288* packed YCbCr420 2x2 tiled formats289* first 64 bits will contain Y,Cb,Cr components for a 2x2 tile290*/291/* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */292#define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')293/* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */294#define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')295296/* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */297#define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')298/* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */299#define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')300301/*302* 1-plane YUV 4:2:0303* In these formats, the component ordering is specified (Y, followed by U304* then V), but the exact Linear layout is undefined.305* These formats can only be used with a non-Linear modifier.306*/307#define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')308#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')309310/*311* 2 plane RGB + A312* index 0 = RGB plane, same format as the corresponding non _A8 format has313* index 1 = A plane, [7:0] A314*/315#define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')316#define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')317#define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')318#define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')319#define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')320#define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')321#define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')322#define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')323324/*325* 2 plane YCbCr326* index 0 = Y plane, [7:0] Y327* index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian328* or329* index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian330*/331#define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */332#define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */333#define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */334#define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */335#define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */336#define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */337/*338* 2 plane YCbCr339* index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian340* index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian341*/342#define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */343#define DRM_FORMAT_NV20 fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */344#define DRM_FORMAT_NV30 fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */345346/*347* 2 plane YCbCr MSB aligned348* index 0 = Y plane, [15:0] Y:x [10:6] little endian349* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian350*/351#define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */352353/*354* 2 plane YCbCr MSB aligned355* index 0 = Y plane, [15:0] Y:x [10:6] little endian356* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian357*/358#define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */359360/*361* 2 plane YCbCr MSB aligned362* index 0 = Y plane, [15:0] Y:x [12:4] little endian363* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian364*/365#define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */366367/*368* 2 plane YCbCr MSB aligned369* index 0 = Y plane, [15:0] Y little endian370* index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian371*/372#define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */373374/* 2 plane YCbCr420.375* 3 10 bit components and 2 padding bits packed into 4 bytes.376* index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian377* index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian378*/379#define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */380381/* 3 plane non-subsampled (444) YCbCr382* 16 bits per component, but only 10 bits are used and 6 bits are padded383* index 0: Y plane, [15:0] Y:x [10:6] little endian384* index 1: Cb plane, [15:0] Cb:x [10:6] little endian385* index 2: Cr plane, [15:0] Cr:x [10:6] little endian386*/387#define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')388389/* 3 plane non-subsampled (444) YCrCb390* 16 bits per component, but only 10 bits are used and 6 bits are padded391* index 0: Y plane, [15:0] Y:x [10:6] little endian392* index 1: Cr plane, [15:0] Cr:x [10:6] little endian393* index 2: Cb plane, [15:0] Cb:x [10:6] little endian394*/395#define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')396397/*398* 3 plane YCbCr LSB aligned399* In order to use these formats in a similar fashion to MSB aligned ones400* implementation can multiply the values by 2^6=64. For that reason the padding401* must only contain zeros.402* index 0 = Y plane, [15:0] z:Y [6:10] little endian403* index 1 = Cr plane, [15:0] z:Cr [6:10] little endian404* index 2 = Cb plane, [15:0] z:Cb [6:10] little endian405*/406#define DRM_FORMAT_S010 fourcc_code('S', '0', '1', '0') /* 2x2 subsampled Cb (1) and Cr (2) planes 10 bits per channel */407#define DRM_FORMAT_S210 fourcc_code('S', '2', '1', '0') /* 2x1 subsampled Cb (1) and Cr (2) planes 10 bits per channel */408#define DRM_FORMAT_S410 fourcc_code('S', '4', '1', '0') /* non-subsampled Cb (1) and Cr (2) planes 10 bits per channel */409410/*411* 3 plane YCbCr LSB aligned412* In order to use these formats in a similar fashion to MSB aligned ones413* implementation can multiply the values by 2^4=16. For that reason the padding414* must only contain zeros.415* index 0 = Y plane, [15:0] z:Y [4:12] little endian416* index 1 = Cr plane, [15:0] z:Cr [4:12] little endian417* index 2 = Cb plane, [15:0] z:Cb [4:12] little endian418*/419#define DRM_FORMAT_S012 fourcc_code('S', '0', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes 12 bits per channel */420#define DRM_FORMAT_S212 fourcc_code('S', '2', '1', '2') /* 2x1 subsampled Cb (1) and Cr (2) planes 12 bits per channel */421#define DRM_FORMAT_S412 fourcc_code('S', '4', '1', '2') /* non-subsampled Cb (1) and Cr (2) planes 12 bits per channel */422423/*424* 3 plane YCbCr425* index 0 = Y plane, [15:0] Y little endian426* index 1 = Cr plane, [15:0] Cr little endian427* index 2 = Cb plane, [15:0] Cb little endian428*/429#define DRM_FORMAT_S016 fourcc_code('S', '0', '1', '6') /* 2x2 subsampled Cb (1) and Cr (2) planes 16 bits per channel */430#define DRM_FORMAT_S216 fourcc_code('S', '2', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes 16 bits per channel */431#define DRM_FORMAT_S416 fourcc_code('S', '4', '1', '6') /* non-subsampled Cb (1) and Cr (2) planes 16 bits per channel */432433/*434* 3 plane YCbCr435* index 0: Y plane, [7:0] Y436* index 1: Cb plane, [7:0] Cb437* index 2: Cr plane, [7:0] Cr438* or439* index 1: Cr plane, [7:0] Cr440* index 2: Cb plane, [7:0] Cb441*/442#define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */443#define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */444#define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */445#define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */446#define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */447#define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */448#define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */449#define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */450#define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */451#define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */452453454/*455* Format Modifiers:456*457* Format modifiers describe, typically, a re-ordering or modification458* of the data in a plane of an FB. This can be used to express tiled/459* swizzled formats, or compression, or a combination of the two.460*461* The upper 8 bits of the format modifier are a vendor-id as assigned462* below. The lower 56 bits are assigned as vendor sees fit.463*/464465/* Vendor Ids: */466#define DRM_FORMAT_MOD_VENDOR_NONE 0467#define DRM_FORMAT_MOD_VENDOR_INTEL 0x01468#define DRM_FORMAT_MOD_VENDOR_AMD 0x02469#define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03470#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04471#define DRM_FORMAT_MOD_VENDOR_QCOM 0x05472#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06473#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07474#define DRM_FORMAT_MOD_VENDOR_ARM 0x08475#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09476#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a477#define DRM_FORMAT_MOD_VENDOR_MTK 0x0b478#define DRM_FORMAT_MOD_VENDOR_APPLE 0x0c479480/* add more to the end as needed */481482#define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)483484#define fourcc_mod_get_vendor(modifier) \485(((modifier) >> 56) & 0xff)486487#define fourcc_mod_is_vendor(modifier, vendor) \488(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)489490#define fourcc_mod_code(vendor, val) \491((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))492493/*494* Format Modifier tokens:495*496* When adding a new token please document the layout with a code comment,497* similar to the fourcc codes above. drm_fourcc.h is considered the498* authoritative source for all of these.499*500* Generic modifier names:501*502* DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names503* for layouts which are common across multiple vendors. To preserve504* compatibility, in cases where a vendor-specific definition already exists and505* a generic name for it is desired, the common name is a purely symbolic alias506* and must use the same numerical value as the original definition.507*508* Note that generic names should only be used for modifiers which describe509* generic layouts (such as pixel re-ordering), which may have510* independently-developed support across multiple vendors.511*512* In future cases where a generic layout is identified before merging with a513* vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor514* 'NONE' could be considered. This should only be for obvious, exceptional515* cases to avoid polluting the 'GENERIC' namespace with modifiers which only516* apply to a single vendor.517*518* Generic names should not be used for cases where multiple hardware vendors519* have implementations of the same standardised compression scheme (such as520* AFBC). In those cases, all implementations should use the same format521* modifier(s), reflecting the vendor of the standard.522*/523524#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE525526/*527* Invalid Modifier528*529* This modifier can be used as a sentinel to terminate the format modifiers530* list, or to initialize a variable with an invalid modifier. It might also be531* used to report an error back to userspace for certain APIs.532*/533#define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)534535/*536* Linear Layout537*538* Just plain linear layout. Note that this is different from no specifying any539* modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),540* which tells the driver to also take driver-internal information into account541* and so might actually result in a tiled framebuffer.542*/543#define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)544545/*546* Deprecated: use DRM_FORMAT_MOD_LINEAR instead547*548* The "none" format modifier doesn't actually mean that the modifier is549* implicit, instead it means that the layout is linear. Whether modifiers are550* used is out-of-band information carried in an API-specific way (e.g. in a551* flag for drm_mode_fb_cmd2).552*/553#define DRM_FORMAT_MOD_NONE 0554555/* Intel framebuffer modifiers */556557/*558* Intel X-tiling layout559*560* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)561* in row-major layout. Within the tile bytes are laid out row-major, with562* a platform-dependent stride. On top of that the memory can apply563* platform-depending swizzling of some higher address bits into bit6.564*565* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.566* On earlier platforms the is highly platforms specific and not useful for567* cross-driver sharing. It exists since on a given platform it does uniquely568* identify the layout in a simple way for i915-specific userspace, which569* facilitated conversion of userspace to modifiers. Additionally the exact570* format on some really old platforms is not known.571*/572#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)573574/*575* Intel Y-tiling layout576*577* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)578* in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)579* chunks column-major, with a platform-dependent height. On top of that the580* memory can apply platform-depending swizzling of some higher address bits581* into bit6.582*583* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.584* On earlier platforms the is highly platforms specific and not useful for585* cross-driver sharing. It exists since on a given platform it does uniquely586* identify the layout in a simple way for i915-specific userspace, which587* facilitated conversion of userspace to modifiers. Additionally the exact588* format on some really old platforms is not known.589*/590#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)591592/*593* Intel Yf-tiling layout594*595* This is a tiled layout using 4Kb tiles in row-major layout.596* Within the tile pixels are laid out in 16 256 byte units / sub-tiles which597* are arranged in four groups (two wide, two high) with column-major layout.598* Each group therefore consists out of four 256 byte units, which are also laid599* out as 2x2 column-major.600* 256 byte units are made out of four 64 byte blocks of pixels, producing601* either a square block or a 2:1 unit.602* 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width603* in pixel depends on the pixel depth.604*/605#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)606607/*608* Intel color control surface (CCS) for render compression609*610* The framebuffer format must be one of the 8:8:8:8 RGB formats.611* The main surface will be plane index 0 and must be Y/Yf-tiled,612* the CCS will be plane index 1.613*614* Each CCS tile matches a 1024x512 pixel area of the main surface.615* To match certain aspects of the 3D hardware the CCS is616* considered to be made up of normal 128Bx32 Y tiles, Thus617* the CCS pitch must be specified in multiples of 128 bytes.618*619* In reality the CCS tile appears to be a 64Bx64 Y tile, composed620* of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.621* But that fact is not relevant unless the memory is accessed622* directly.623*/624#define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)625#define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)626627/*628* Intel color control surfaces (CCS) for Gen-12 render compression.629*630* The main surface is Y-tiled and at plane index 0, the CCS is linear and631* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in632* main surface. In other words, 4 bits in CCS map to a main surface cache633* line pair. The main surface pitch is required to be a multiple of four634* Y-tile widths.635*/636#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)637638/*639* Intel color control surfaces (CCS) for Gen-12 media compression640*641* The main surface is Y-tiled and at plane index 0, the CCS is linear and642* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in643* main surface. In other words, 4 bits in CCS map to a main surface cache644* line pair. The main surface pitch is required to be a multiple of four645* Y-tile widths. For semi-planar formats like NV12, CCS planes follow the646* Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,647* planes 2 and 3 for the respective CCS.648*/649#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)650651/*652* Intel Color Control Surface with Clear Color (CCS) for Gen-12 render653* compression.654*655* The main surface is Y-tiled and is at plane index 0 whereas CCS is linear656* and at index 1. The clear color is stored at index 2, and the pitch should657* be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits658* represents Raw Clear Color Red, Green, Blue and Alpha color each represented659* by 32 bits. The raw clear color is consumed by the 3d engine and generates660* the converted clear color of size 64 bits. The first 32 bits store the Lower661* Converted Clear Color value and the next 32 bits store the Higher Converted662* Clear Color value when applicable. The Converted Clear Color values are663* consumed by the DE. The last 64 bits are used to store Color Discard Enable664* and Depth Clear Value Valid which are ignored by the DE. A CCS cache line665* corresponds to an area of 4x1 tiles in the main surface. The main surface666* pitch is required to be a multiple of 4 tile widths.667*/668#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)669670/*671* Intel Tile 4 layout672*673* This is a tiled layout using 4KB tiles in a row-major layout. It has the same674* shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It675* only differs from Tile Y at the 256B granularity in between. At this676* granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape677* of 64B x 8 rows.678*/679#define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9)680681/*682* Intel color control surfaces (CCS) for DG2 render compression.683*684* The main surface is Tile 4 and at plane index 0. The CCS data is stored685* outside of the GEM object in a reserved memory area dedicated for the686* storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The687* main surface pitch is required to be a multiple of four Tile 4 widths.688*/689#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)690691/*692* Intel color control surfaces (CCS) for DG2 media compression.693*694* The main surface is Tile 4 and at plane index 0. For semi-planar formats695* like NV12, the Y and UV planes are Tile 4 and are located at plane indices696* 0 and 1, respectively. The CCS for all planes are stored outside of the697* GEM object in a reserved memory area dedicated for the storage of the698* CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface699* pitch is required to be a multiple of four Tile 4 widths.700*/701#define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)702703/*704* Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.705*706* The main surface is Tile 4 and at plane index 0. The CCS data is stored707* outside of the GEM object in a reserved memory area dedicated for the708* storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The709* main surface pitch is required to be a multiple of four Tile 4 widths. The710* clear color is stored at plane index 1 and the pitch should be 64 bytes711* aligned. The format of the 256 bits of clear color data matches the one used712* for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description713* for details.714*/715#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)716717/*718* Intel Color Control Surfaces (CCS) for display ver. 14 render compression.719*720* The main surface is tile4 and at plane index 0, the CCS is linear and721* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in722* main surface. In other words, 4 bits in CCS map to a main surface cache723* line pair. The main surface pitch is required to be a multiple of four724* tile4 widths.725*/726#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)727728/*729* Intel Color Control Surfaces (CCS) for display ver. 14 media compression730*731* The main surface is tile4 and at plane index 0, the CCS is linear and732* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in733* main surface. In other words, 4 bits in CCS map to a main surface cache734* line pair. The main surface pitch is required to be a multiple of four735* tile4 widths. For semi-planar formats like NV12, CCS planes follow the736* Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,737* planes 2 and 3 for the respective CCS.738*/739#define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)740741/*742* Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render743* compression.744*745* The main surface is tile4 and is at plane index 0 whereas CCS is linear746* and at index 1. The clear color is stored at index 2, and the pitch should747* be ignored. The clear color structure is 256 bits. The first 128 bits748* represents Raw Clear Color Red, Green, Blue and Alpha color each represented749* by 32 bits. The raw clear color is consumed by the 3d engine and generates750* the converted clear color of size 64 bits. The first 32 bits store the Lower751* Converted Clear Color value and the next 32 bits store the Higher Converted752* Clear Color value when applicable. The Converted Clear Color values are753* consumed by the DE. The last 64 bits are used to store Color Discard Enable754* and Depth Clear Value Valid which are ignored by the DE. A CCS cache line755* corresponds to an area of 4x1 tiles in the main surface. The main surface756* pitch is required to be a multiple of 4 tile widths.757*/758#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)759760/*761* Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression762* on integrated graphics763*764* The main surface is Tile 4 and at plane index 0. For semi-planar formats765* like NV12, the Y and UV planes are Tile 4 and are located at plane indices766* 0 and 1, respectively. The CCS for all planes are stored outside of the767* GEM object in a reserved memory area dedicated for the storage of the768* CCS data for all compressible GEM objects.769*/770#define I915_FORMAT_MOD_4_TILED_LNL_CCS fourcc_mod_code(INTEL, 16)771772/*773* Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression774* on discrete graphics775*776* The main surface is Tile 4 and at plane index 0. For semi-planar formats777* like NV12, the Y and UV planes are Tile 4 and are located at plane indices778* 0 and 1, respectively. The CCS for all planes are stored outside of the779* GEM object in a reserved memory area dedicated for the storage of the780* CCS data for all compressible GEM objects. The GEM object must be stored in781* contiguous memory with a size aligned to 64KB782*/783#define I915_FORMAT_MOD_4_TILED_BMG_CCS fourcc_mod_code(INTEL, 17)784785/*786* Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks787*788* Macroblocks are laid in a Z-shape, and each pixel data is following the789* standard NV12 style.790* As for NV12, an image is the result of two frame buffers: one for Y,791* one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).792* Alignment requirements are (for each buffer):793* - multiple of 128 pixels for the width794* - multiple of 32 pixels for the height795*796* For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html797*/798#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)799800/*801* Tiled, 16 (pixels) x 16 (lines) - sized macroblocks802*803* This is a simple tiled layout using tiles of 16x16 pixels in a row-major804* layout. For YCbCr formats Cb/Cr components are taken in such a way that805* they correspond to their 16x16 luma block.806*/807#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)808809/*810* Qualcomm Compressed Format811*812* Refers to a compressed variant of the base format that is compressed.813* Implementation may be platform and base-format specific.814*815* Each macrotile consists of m x n (mostly 4 x 4) tiles.816* Pixel data pitch/stride is aligned with macrotile width.817* Pixel data height is aligned with macrotile height.818* Entire pixel data buffer is aligned with 4k(bytes).819*/820#define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)821822/*823* Qualcomm Tiled Format824*825* Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.826* Implementation may be platform and base-format specific.827*828* Each macrotile consists of m x n (mostly 4 x 4) tiles.829* Pixel data pitch/stride is aligned with macrotile width.830* Pixel data height is aligned with macrotile height.831* Entire pixel data buffer is aligned with 4k(bytes).832*/833#define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3)834835/*836* Qualcomm Alternate Tiled Format837*838* Alternate tiled format typically only used within GMEM.839* Implementation may be platform and base-format specific.840*/841#define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2)842843844/* Vivante framebuffer modifiers */845846/*847* Vivante 4x4 tiling layout848*849* This is a simple tiled layout using tiles of 4x4 pixels in a row-major850* layout.851*/852#define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)853854/*855* Vivante 64x64 super-tiling layout856*857* This is a tiled layout using 64x64 pixel super-tiles, where each super-tile858* contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-859* major layout.860*861* For more information: see862* https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling863*/864#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)865866/*867* Vivante 4x4 tiling layout for dual-pipe868*869* Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a870* different base address. Offsets from the base addresses are therefore halved871* compared to the non-split tiled layout.872*/873#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)874875/*876* Vivante 64x64 super-tiling layout for dual-pipe877*878* Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile879* starts at a different base address. Offsets from the base addresses are880* therefore halved compared to the non-split super-tiled layout.881*/882#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)883884/*885* Vivante TS (tile-status) buffer modifiers. They can be combined with all of886* the color buffer tiling modifiers defined above. When TS is present it's a887* separate buffer containing the clear/compression status of each tile. The888* modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer889* tile size in bytes covered by one entry in the status buffer and s is the890* number of status bits per entry.891* We reserve the top 8 bits of the Vivante modifier space for tile status892* clear/compression modifiers, as future cores might add some more TS layout893* variations.894*/895#define VIVANTE_MOD_TS_64_4 (1ULL << 48)896#define VIVANTE_MOD_TS_64_2 (2ULL << 48)897#define VIVANTE_MOD_TS_128_4 (3ULL << 48)898#define VIVANTE_MOD_TS_256_4 (4ULL << 48)899#define VIVANTE_MOD_TS_MASK (0xfULL << 48)900901/*902* Vivante compression modifiers. Those depend on a TS modifier being present903* as the TS bits get reinterpreted as compression tags instead of simple904* clear markers when compression is enabled.905*/906#define VIVANTE_MOD_COMP_DEC400 (1ULL << 52)907#define VIVANTE_MOD_COMP_MASK (0xfULL << 52)908909/* Masking out the extension bits will yield the base modifier. */910#define VIVANTE_MOD_EXT_MASK (VIVANTE_MOD_TS_MASK | \911VIVANTE_MOD_COMP_MASK)912913/* NVIDIA frame buffer modifiers */914915/*916* Tegra Tiled Layout, used by Tegra 2, 3 and 4.917*918* Pixels are arranged in simple tiles of 16 x 16 bytes.919*/920#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)921922/*923* Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,924* and Tegra GPUs starting with Tegra K1.925*926* Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies927* based on the architecture generation. GOBs themselves are then arranged in928* 3D blocks, with the block dimensions (in terms of GOBs) always being a power929* of two, and hence expressible as their log2 equivalent (E.g., "2" represents930* a block depth or height of "4").931*932* Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format933* in full detail.934*935* Macro936* Bits Param Description937* ---- ----- -----------------------------------------------------------------938*939* 3:0 h log2(height) of each block, in GOBs. Placed here for940* compatibility with the existing941* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.942*943* 4:4 - Must be 1, to indicate block-linear layout. Necessary for944* compatibility with the existing945* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.946*947* 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block948* size). Must be zero.949*950* Note there is no log2(width) parameter. Some portions of the951* hardware support a block width of two gobs, but it is impractical952* to use due to lack of support elsewhere, and has no known953* benefits.954*955* 11:9 - Reserved (To support 2D-array textures with variable array stride956* in blocks, specified via log2(tile width in blocks)). Must be957* zero.958*959* 19:12 k Page Kind. This value directly maps to a field in the page960* tables of all GPUs >= NV50. It affects the exact layout of bits961* in memory and can be derived from the tuple962*963* (format, GPU model, compression type, samples per pixel)964*965* Where compression type is defined below. If GPU model were966* implied by the format modifier, format, or memory buffer, page967* kind would not need to be included in the modifier itself, but968* since the modifier should define the layout of the associated969* memory buffer independent from any device or other context, it970* must be included here.971*972* 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed973* starting with Fermi GPUs. Additionally, the mapping between page974* kind and bit layout has changed at various points.975*976* 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping977* 1 = Gob Height 4, G80 - GT2XX Page Kind mapping978* 2 = Gob Height 8, Turing+ Page Kind mapping979* 3 = Reserved for future use.980*981* 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further982* bit remapping step that occurs at an even lower level than the983* page kind and block linear swizzles. This causes the layout of984* surfaces mapped in those SOC's GPUs to be incompatible with the985* equivalent mapping on other GPUs in the same system.986*987* 0 = Tegra K1 - Tegra Parker/TX2 Layout.988* 1 = Desktop GPU and Tegra Xavier+ Layout989*990* 25:23 c Lossless Framebuffer Compression type.991*992* 0 = none993* 1 = ROP/3D, layout 1, exact compression format implied by Page994* Kind field995* 2 = ROP/3D, layout 2, exact compression format implied by Page996* Kind field997* 3 = CDE horizontal998* 4 = CDE vertical999* 5 = Reserved for future use1000* 6 = Reserved for future use1001* 7 = Reserved for future use1002*1003* 55:25 - Reserved for future use. Must be zero.1004*/1005#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \1006fourcc_mod_code(NVIDIA, (0x10 | \1007((h) & 0xf) | \1008(((k) & 0xff) << 12) | \1009(((g) & 0x3) << 20) | \1010(((s) & 0x1) << 22) | \1011(((c) & 0x7) << 23)))10121013/* To grandfather in prior block linear format modifiers to the above layout,1014* the page kind "0", which corresponds to "pitch/linear" and hence is unusable1015* with block-linear layouts, is remapped within drivers to the value 0xfe,1016* which corresponds to the "generic" kind used for simple single-sample1017* uncompressed color formats on Fermi - Volta GPUs.1018*/1019static inline __u641020drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)1021{1022if (!(modifier & 0x10) || (modifier & (0xff << 12)))1023return modifier;1024else1025return modifier | (0xfe << 12);1026}10271028/*1029* 16Bx2 Block Linear layout, used by Tegra K1 and later1030*1031* Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked1032* vertically by a power of 2 (1 to 32 GOBs) to form a block.1033*1034* Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.1035*1036* Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.1037* Valid values are:1038*1039* 0 == ONE_GOB1040* 1 == TWO_GOBS1041* 2 == FOUR_GOBS1042* 3 == EIGHT_GOBS1043* 4 == SIXTEEN_GOBS1044* 5 == THIRTYTWO_GOBS1045*1046* Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format1047* in full detail.1048*/1049#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \1050DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))10511052#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \1053DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)1054#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \1055DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)1056#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \1057DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)1058#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \1059DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)1060#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \1061DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)1062#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \1063DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)10641065/*1066* Some Broadcom modifiers take parameters, for example the number of1067* vertical lines in the image. Reserve the lower 32 bits for modifier1068* type, and the next 24 bits for parameters. Top 8 bits are the1069* vendor code.1070*/1071#define __fourcc_mod_broadcom_param_shift 81072#define __fourcc_mod_broadcom_param_bits 481073#define fourcc_mod_broadcom_code(val, params) \1074fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))1075#define fourcc_mod_broadcom_param(m) \1076((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \1077((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))1078#define fourcc_mod_broadcom_mod(m) \1079((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \1080__fourcc_mod_broadcom_param_shift))10811082/*1083* Broadcom VC4 "T" format1084*1085* This is the primary layout that the V3D GPU can texture from (it1086* can't do linear). The T format has:1087*1088* - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x41089* pixels at 32 bit depth.1090*1091* - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually1092* 16x16 pixels).1093*1094* - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On1095* even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows1096* they're (TR, BR, BL, TL), where bottom left is start of memory.1097*1098* - an image made of 4k tiles in rows either left-to-right (even rows of 4k1099* tiles) or right-to-left (odd rows of 4k tiles).1100*/1101#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)11021103/*1104* Broadcom SAND format1105*1106* This is the native format that the H.264 codec block uses. For VC41107* HVS, it is only valid for H.264 (NV12/21) and RGBA modes.1108*1109* The image can be considered to be split into columns, and the1110* columns are placed consecutively into memory. The width of those1111* columns can be either 32, 64, 128, or 256 pixels, but in practice1112* only 128 pixel columns are used.1113*1114* The pitch between the start of each column is set to optimally1115* switch between SDRAM banks. This is passed as the number of lines1116* of column width in the modifier (we can't use the stride value due1117* to various core checks that look at it , so you should set the1118* stride to width*cpp).1119*1120* Note that the column height for this format modifier is the same1121* for all of the planes, assuming that each column contains both Y1122* and UV. Some SAND-using hardware stores UV in a separate tiled1123* image from Y to reduce the column height, which is not supported1124* with these modifiers.1125*1126* The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also1127* supported for DRM_FORMAT_P030 where the columns remain as 128 bytes1128* wide, but as this is a 10 bpp format that translates to 96 pixels.1129*/11301131#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \1132fourcc_mod_broadcom_code(2, v)1133#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \1134fourcc_mod_broadcom_code(3, v)1135#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \1136fourcc_mod_broadcom_code(4, v)1137#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \1138fourcc_mod_broadcom_code(5, v)11391140#define DRM_FORMAT_MOD_BROADCOM_SAND32 \1141DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)1142#define DRM_FORMAT_MOD_BROADCOM_SAND64 \1143DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)1144#define DRM_FORMAT_MOD_BROADCOM_SAND128 \1145DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)1146#define DRM_FORMAT_MOD_BROADCOM_SAND256 \1147DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)11481149/* Broadcom UIF format1150*1151* This is the common format for the current Broadcom multimedia1152* blocks, including V3D 3.x and newer, newer video codecs, and1153* displays.1154*1155* The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),1156* and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are1157* stored in columns, with padding between the columns to ensure that1158* moving from one column to the next doesn't hit the same SDRAM page1159* bank.1160*1161* To calculate the padding, it is assumed that each hardware block1162* and the software driving it knows the platform's SDRAM page size,1163* number of banks, and XOR address, and that it's identical between1164* all blocks using the format. This tiling modifier will use XOR as1165* necessary to reduce the padding. If a hardware block can't do XOR,1166* the assumption is that a no-XOR tiling modifier will be created.1167*/1168#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)11691170/*1171* Arm Framebuffer Compression (AFBC) modifiers1172*1173* AFBC is a proprietary lossless image compression protocol and format.1174* It provides fine-grained random access and minimizes the amount of data1175* transferred between IP blocks.1176*1177* AFBC has several features which may be supported and/or used, which are1178* represented using bits in the modifier. Not all combinations are valid,1179* and different devices or use-cases may support different combinations.1180*1181* Further information on the use of AFBC modifiers can be found in1182* Documentation/gpu/afbc.rst1183*/11841185/*1186* The top 4 bits (out of the 56 bits allotted for specifying vendor specific1187* modifiers) denote the category for modifiers. Currently we have three1188* categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of1189* sixteen different categories.1190*/1191#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \1192fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))11931194#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x001195#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x0111961197#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \1198DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)11991200/*1201* AFBC superblock size1202*1203* Indicates the superblock size(s) used for the AFBC buffer. The buffer1204* size (in pixels) must be aligned to a multiple of the superblock size.1205* Four lowest significant bits(LSBs) are reserved for block size.1206*1207* Where one superblock size is specified, it applies to all planes of the1208* buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,1209* the first applies to the Luma plane and the second applies to the Chroma1210* plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).1211* Multiple superblock sizes are only valid for multi-plane YCbCr formats.1212*/1213#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf1214#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)1215#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)1216#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)1217#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)12181219/*1220* AFBC lossless colorspace transform1221*1222* Indicates that the buffer makes use of the AFBC lossless colorspace1223* transform.1224*/1225#define AFBC_FORMAT_MOD_YTR (1ULL << 4)12261227/*1228* AFBC block-split1229*1230* Indicates that the payload of each superblock is split. The second1231* half of the payload is positioned at a predefined offset from the start1232* of the superblock payload.1233*/1234#define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)12351236/*1237* AFBC sparse layout1238*1239* This flag indicates that the payload of each superblock must be stored at a1240* predefined position relative to the other superblocks in the same AFBC1241* buffer. This order is the same order used by the header buffer. In this mode1242* each superblock is given the same amount of space as an uncompressed1243* superblock of the particular format would require, rounding up to the next1244* multiple of 128 bytes in size.1245*/1246#define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)12471248/*1249* AFBC copy-block restrict1250*1251* Buffers with this flag must obey the copy-block restriction. The restriction1252* is such that there are no copy-blocks referring across the border of 8x81253* blocks. For the subsampled data the 8x8 limitation is also subsampled.1254*/1255#define AFBC_FORMAT_MOD_CBR (1ULL << 7)12561257/*1258* AFBC tiled layout1259*1260* The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all1261* superblocks inside a tile are stored together in memory. 8x8 tiles are used1262* for pixel formats up to and including 32 bpp while 4x4 tiles are used for1263* larger bpp formats. The order between the tiles is scan line.1264* When the tiled layout is used, the buffer size (in pixels) must be aligned1265* to the tile size.1266*/1267#define AFBC_FORMAT_MOD_TILED (1ULL << 8)12681269/*1270* AFBC solid color blocks1271*1272* Indicates that the buffer makes use of solid-color blocks, whereby bandwidth1273* can be reduced if a whole superblock is a single color.1274*/1275#define AFBC_FORMAT_MOD_SC (1ULL << 9)12761277/*1278* AFBC double-buffer1279*1280* Indicates that the buffer is allocated in a layout safe for front-buffer1281* rendering.1282*/1283#define AFBC_FORMAT_MOD_DB (1ULL << 10)12841285/*1286* AFBC buffer content hints1287*1288* Indicates that the buffer includes per-superblock content hints.1289*/1290#define AFBC_FORMAT_MOD_BCH (1ULL << 11)12911292/* AFBC uncompressed storage mode1293*1294* Indicates that the buffer is using AFBC uncompressed storage mode.1295* In this mode all superblock payloads in the buffer use the uncompressed1296* storage mode, which is usually only used for data which cannot be compressed.1297* The buffer layout is the same as for AFBC buffers without USM set, this only1298* affects the storage mode of the individual superblocks. Note that even a1299* buffer without USM set may use uncompressed storage mode for some or all1300* superblocks, USM just guarantees it for all.1301*/1302#define AFBC_FORMAT_MOD_USM (1ULL << 12)13031304/*1305* Arm Fixed-Rate Compression (AFRC) modifiers1306*1307* AFRC is a proprietary fixed rate image compression protocol and format,1308* designed to provide guaranteed bandwidth and memory footprint1309* reductions in graphics and media use-cases.1310*1311* AFRC buffers consist of one or more planes, with the same components1312* and meaning as an uncompressed buffer using the same pixel format.1313*1314* Within each plane, the pixel/luma/chroma values are grouped into1315* "coding unit" blocks which are individually compressed to a1316* fixed size (in bytes). All coding units within a given plane of a buffer1317* store the same number of values, and have the same compressed size.1318*1319* The coding unit size is configurable, allowing different rates of compression.1320*1321* The start of each AFRC buffer plane must be aligned to an alignment granule which1322* depends on the coding unit size.1323*1324* Coding Unit Size Plane Alignment1325* ---------------- ---------------1326* 16 bytes 1024 bytes1327* 24 bytes 512 bytes1328* 32 bytes 2048 bytes1329*1330* Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned1331* to a multiple of the paging tile dimensions.1332* The dimensions of each paging tile depend on whether the buffer is optimised for1333* scanline (SCAN layout) or rotated (ROT layout) access.1334*1335* Layout Paging Tile Width Paging Tile Height1336* ------ ----------------- ------------------1337* SCAN 16 coding units 4 coding units1338* ROT 8 coding units 8 coding units1339*1340* The dimensions of each coding unit depend on the number of components1341* in the compressed plane and whether the buffer is optimised for1342* scanline (SCAN layout) or rotated (ROT layout) access.1343*1344* Number of Components in Plane Layout Coding Unit Width Coding Unit Height1345* ----------------------------- --------- ----------------- ------------------1346* 1 SCAN 16 samples 4 samples1347* Example: 16x4 luma samples in a 'Y' plane1348* 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer1349* ----------------------------- --------- ----------------- ------------------1350* 1 ROT 8 samples 8 samples1351* Example: 8x8 luma samples in a 'Y' plane1352* 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer1353* ----------------------------- --------- ----------------- ------------------1354* 2 DONT CARE 8 samples 4 samples1355* Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer1356* ----------------------------- --------- ----------------- ------------------1357* 3 DONT CARE 4 samples 4 samples1358* Example: 4x4 pixels in an RGB buffer without alpha1359* ----------------------------- --------- ----------------- ------------------1360* 4 DONT CARE 4 samples 4 samples1361* Example: 4x4 pixels in an RGB buffer with alpha1362*/13631364#define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x0213651366#define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \1367DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)13681369/*1370* AFRC coding unit size modifier.1371*1372* Indicates the number of bytes used to store each compressed coding unit for1373* one or more planes in an AFRC encoded buffer. The coding unit size for chrominance1374* is the same for both Cb and Cr, which may be stored in separate planes.1375*1376* AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store1377* each compressed coding unit in the first plane of the buffer. For RGBA buffers1378* this is the only plane, while for semi-planar and fully-planar YUV buffers,1379* this corresponds to the luma plane.1380*1381* AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store1382* each compressed coding unit in the second and third planes in the buffer.1383* For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).1384*1385* For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified1386* and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.1387* For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and1388* AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.1389*/1390#define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf1391#define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)1392#define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)1393#define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)13941395#define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)1396#define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)13971398/*1399* AFRC scanline memory layout.1400*1401* Indicates if the buffer uses the scanline-optimised layout1402* for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.1403* The memory layout is the same for all planes.1404*/1405#define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)14061407/*1408* Arm 16x16 Block U-Interleaved modifier1409*1410* This is used by Arm Mali Utgard and Midgard GPUs. It divides the image1411* into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels1412* in the block are reordered.1413*/1414#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \1415DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)14161417/*1418* Allwinner tiled modifier1419*1420* This tiling mode is implemented by the VPU found on all Allwinner platforms,1421* codenamed sunxi. It is associated with a YUV format that uses either 2 or 31422* planes.1423*1424* With this tiling, the luminance samples are disposed in tiles representing1425* 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.1426* The pixel order in each tile is linear and the tiles are disposed linearly,1427* both in row-major order.1428*/1429#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)14301431/*1432* Amlogic Video Framebuffer Compression modifiers1433*1434* Amlogic uses a proprietary lossless image compression protocol and format1435* for their hardware video codec accelerators, either video decoders or1436* video input encoders.1437*1438* It considerably reduces memory bandwidth while writing and reading1439* frames in memory.1440*1441* The underlying storage is considered to be 3 components, 8bit or 10-bit1442* per component YCbCr 420, single plane :1443* - DRM_FORMAT_YUV420_8BIT1444* - DRM_FORMAT_YUV420_10BIT1445*1446* The first 8 bits of the mode defines the layout, then the following 8 bits1447* defines the options changing the layout.1448*1449* Not all combinations are valid, and different SoCs may support different1450* combinations of layout and options.1451*/1452#define __fourcc_mod_amlogic_layout_mask 0xff1453#define __fourcc_mod_amlogic_options_shift 81454#define __fourcc_mod_amlogic_options_mask 0xff14551456#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \1457fourcc_mod_code(AMLOGIC, \1458((__layout) & __fourcc_mod_amlogic_layout_mask) | \1459(((__options) & __fourcc_mod_amlogic_options_mask) \1460<< __fourcc_mod_amlogic_options_shift))14611462/* Amlogic FBC Layouts */14631464/*1465* Amlogic FBC Basic Layout1466*1467* The basic layout is composed of:1468* - a body content organized in 64x32 superblocks with 4096 bytes per1469* superblock in default mode.1470* - a 32 bytes per 128x64 header block1471*1472* This layout is transferrable between Amlogic SoCs supporting this modifier.1473*/1474#define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)14751476/*1477* Amlogic FBC Scatter Memory layout1478*1479* Indicates the header contains IOMMU references to the compressed1480* frames content to optimize memory access and layout.1481*1482* In this mode, only the header memory address is needed, thus the1483* content memory organization is tied to the current producer1484* execution and cannot be saved/dumped neither transferrable between1485* Amlogic SoCs supporting this modifier.1486*1487* Due to the nature of the layout, these buffers are not expected to1488* be accessible by the user-space clients, but only accessible by the1489* hardware producers and consumers.1490*1491* The user-space clients should expect a failure while trying to mmap1492* the DMA-BUF handle returned by the producer.1493*/1494#define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)14951496/* Amlogic FBC Layout Options Bit Mask */14971498/*1499* Amlogic FBC Memory Saving mode1500*1501* Indicates the storage is packed when pixel size is multiple of word1502* boundaries, i.e. 8bit should be stored in this mode to save allocation1503* memory.1504*1505* This mode reduces body layout to 3072 bytes per 64x32 superblock with1506* the basic layout and 3200 bytes per 64x32 superblock combined with1507* the scatter layout.1508*/1509#define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)15101511/* MediaTek modifiers1512* Bits Parameter Notes1513* ----- ------------------------ ---------------------------------------------1514* 7: 0 TILE LAYOUT Values are MTK_FMT_MOD_TILE_*1515* 15: 8 COMPRESSION Values are MTK_FMT_MOD_COMPRESS_*1516* 23:16 10 BIT LAYOUT Values are MTK_FMT_MOD_10BIT_LAYOUT_*1517*1518*/15191520#define DRM_FORMAT_MOD_MTK(__flags) fourcc_mod_code(MTK, __flags)15211522/*1523* MediaTek Tiled Modifier1524* The lowest 8 bits of the modifier is used to specify the tiling1525* layout. Only the 16L_32S tiling is used for now, but we define an1526* "untiled" version and leave room for future expansion.1527*/1528#define MTK_FMT_MOD_TILE_MASK 0xf1529#define MTK_FMT_MOD_TILE_NONE 0x01530#define MTK_FMT_MOD_TILE_16L32S 0x115311532/*1533* Bits 8-15 specify compression options1534*/1535#define MTK_FMT_MOD_COMPRESS_MASK (0xf << 8)1536#define MTK_FMT_MOD_COMPRESS_NONE (0x0 << 8)1537#define MTK_FMT_MOD_COMPRESS_V1 (0x1 << 8)15381539/*1540* Bits 16-23 specify how the bits of 10 bit formats are1541* stored out in memory1542*/1543#define MTK_FMT_MOD_10BIT_LAYOUT_MASK (0xf << 16)1544#define MTK_FMT_MOD_10BIT_LAYOUT_PACKED (0x0 << 16)1545#define MTK_FMT_MOD_10BIT_LAYOUT_LSBTILED (0x1 << 16)1546#define MTK_FMT_MOD_10BIT_LAYOUT_LSBRASTER (0x2 << 16)15471548/* alias for the most common tiling format */1549#define DRM_FORMAT_MOD_MTK_16L_32S_TILE DRM_FORMAT_MOD_MTK(MTK_FMT_MOD_TILE_16L32S)15501551/*1552* Apple GPU-tiled layouts.1553*1554* Apple GPUs support nonlinear tilings with optional lossless compression.1555*1556* GPU-tiled images are divided into 16KiB tiles:1557*1558* Bytes per pixel Tile size1559* --------------- ---------1560* 1 128x1281561* 2 128x641562* 4 64x641563* 8 64x321564* 16 32x321565*1566* Tiles are raster-order. Pixels within a tile are interleaved (Morton order).1567*1568* Compressed images pad the body to 128-bytes and are immediately followed by a1569* metadata section. The metadata section rounds the image dimensions to1570* powers-of-two and contains 8 bytes for each 16x16 compression subtile.1571* Subtiles are interleaved (Morton order).1572*1573* All images are 128-byte aligned.1574*1575* These layouts fundamentally do not have meaningful strides. No matter how we1576* specify strides for these layouts, userspace unaware of Apple image layouts1577* will be unable to use correctly the specified stride for any purpose.1578* Userspace aware of the image layouts do not use strides. The most "correct"1579* convention would be setting the image stride to 0. Unfortunately, some1580* software assumes the stride is at least (width * bytes per pixel). We1581* therefore require that stride equals (width * bytes per pixel). Since the1582* stride is arbitrary here, we pick the simplest convention.1583*1584* Although containing two sections, compressed image layouts are treated in1585* software as a single plane. This is modelled after AFBC, a similar1586* scheme. Attempting to separate the sections to be "explicit" in DRM would1587* only generate more confusion, as software does not treat the image this way.1588*1589* For detailed information on the hardware image layouts, see1590* https://docs.mesa3d.org/drivers/asahi.html#image-layouts1591*/1592#define DRM_FORMAT_MOD_APPLE_GPU_TILED fourcc_mod_code(APPLE, 1)1593#define DRM_FORMAT_MOD_APPLE_GPU_TILED_COMPRESSED fourcc_mod_code(APPLE, 2)15941595/*1596* AMD modifiers1597*1598* Memory layout:1599*1600* without DCC:1601* - main surface1602*1603* with DCC & without DCC_RETILE:1604* - main surface in plane 01605* - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)1606*1607* with DCC & DCC_RETILE:1608* - main surface in plane 01609* - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)1610* - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)1611*1612* For multi-plane formats the above surfaces get merged into one plane for1613* each format plane, based on the required alignment only.1614*1615* Bits Parameter Notes1616* ----- ------------------------ ---------------------------------------------1617*1618* 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_*1619* 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_*1620* 13 DCC1621* 14 DCC_RETILE1622* 15 DCC_PIPE_ALIGN1623* 16 DCC_INDEPENDENT_64B1624* 17 DCC_INDEPENDENT_128B1625* 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*1626* 20 DCC_CONSTANT_ENCODE1627* 23:21 PIPE_XOR_BITS Only for some chips1628* 26:24 BANK_XOR_BITS Only for some chips1629* 29:27 PACKERS Only for some chips1630* 32:30 RB Only for some chips1631* 35:33 PIPE Only for some chips1632* 55:36 - Reserved for future use, must be zero1633*/1634#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)16351636#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)16371638/* Reserve 0 for GFX8 and older */1639#define AMD_FMT_MOD_TILE_VER_GFX9 11640#define AMD_FMT_MOD_TILE_VER_GFX10 21641#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 31642#define AMD_FMT_MOD_TILE_VER_GFX11 41643#define AMD_FMT_MOD_TILE_VER_GFX12 516441645/*1646* 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical1647* version.1648*/1649#define AMD_FMT_MOD_TILE_GFX9_64K_S 916501651/*1652* 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has1653* GFX9 as canonical version.1654*1655* 64K_D_2D on GFX12 is identical to 64K_D on GFX11.1656*/1657#define AMD_FMT_MOD_TILE_GFX9_64K_D 101658#define AMD_FMT_MOD_TILE_GFX9_4K_D_X 221659#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 251660#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 261661#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 271662#define AMD_FMT_MOD_TILE_GFX11_256K_R_X 3116631664/* Gfx12 swizzle modes:1665* 0 - LINEAR1666* 1 - 256B_2D - 2D block dimensions1667* 2 - 4KB_2D1668* 3 - 64KB_2D1669* 4 - 256KB_2D1670* 5 - 4KB_3D - 3D block dimensions1671* 6 - 64KB_3D1672* 7 - 256KB_3D1673*/1674#define AMD_FMT_MOD_TILE_GFX12_256B_2D 11675#define AMD_FMT_MOD_TILE_GFX12_4K_2D 21676#define AMD_FMT_MOD_TILE_GFX12_64K_2D 31677#define AMD_FMT_MOD_TILE_GFX12_256K_2D 416781679#define AMD_FMT_MOD_DCC_BLOCK_64B 01680#define AMD_FMT_MOD_DCC_BLOCK_128B 11681#define AMD_FMT_MOD_DCC_BLOCK_256B 216821683#define AMD_FMT_MOD_TILE_VERSION_SHIFT 01684#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF1685#define AMD_FMT_MOD_TILE_SHIFT 81686#define AMD_FMT_MOD_TILE_MASK 0x1F16871688/* Whether DCC compression is enabled. */1689#define AMD_FMT_MOD_DCC_SHIFT 131690#define AMD_FMT_MOD_DCC_MASK 0x116911692/*1693* Whether to include two DCC surfaces, one which is rb & pipe aligned, and1694* one which is not-aligned.1695*/1696#define AMD_FMT_MOD_DCC_RETILE_SHIFT 141697#define AMD_FMT_MOD_DCC_RETILE_MASK 0x116981699/* Only set if DCC_RETILE = false */1700#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 151701#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x117021703#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 161704#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x11705#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 171706#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x11707#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 181708#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x317091710/*1711* DCC supports embedding some clear colors directly in the DCC surface.1712* However, on older GPUs the rendering HW ignores the embedded clear color1713* and prefers the driver provided color. This necessitates doing a fastclear1714* eliminate operation before a process transfers control.1715*1716* If this bit is set that means the fastclear eliminate is not needed for these1717* embeddable colors.1718*/1719#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 201720#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x117211722/*1723* The below fields are for accounting for per GPU differences. These are only1724* relevant for GFX9 and later and if the tile field is *_X/_T.1725*1726* PIPE_XOR_BITS = always needed1727* BANK_XOR_BITS = only for TILE_VER_GFX91728* PACKERS = only for TILE_VER_GFX10_RBPLUS1729* RB = only for TILE_VER_GFX9 & DCC1730* PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)1731*/1732#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 211733#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x71734#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 241735#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x71736#define AMD_FMT_MOD_PACKERS_SHIFT 271737#define AMD_FMT_MOD_PACKERS_MASK 0x71738#define AMD_FMT_MOD_RB_SHIFT 301739#define AMD_FMT_MOD_RB_MASK 0x71740#define AMD_FMT_MOD_PIPE_SHIFT 331741#define AMD_FMT_MOD_PIPE_MASK 0x717421743#define AMD_FMT_MOD_SET(field, value) \1744((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)1745#define AMD_FMT_MOD_GET(field, value) \1746(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)1747#define AMD_FMT_MOD_CLEAR(field) \1748(~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))17491750#if defined(__cplusplus)1751}1752#endif17531754#endif /* DRM_FOURCC_H */175517561757