Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/uapi/drm/drm_fourcc.h
26282 views
1
/*
2
* Copyright 2011 Intel Corporation
3
*
4
* Permission is hereby granted, free of charge, to any person obtaining a
5
* copy of this software and associated documentation files (the "Software"),
6
* to deal in the Software without restriction, including without limitation
7
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
8
* and/or sell copies of the Software, and to permit persons to whom the
9
* Software is furnished to do so, subject to the following conditions:
10
*
11
* The above copyright notice and this permission notice (including the next
12
* paragraph) shall be included in all copies or substantial portions of the
13
* Software.
14
*
15
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
19
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21
* OTHER DEALINGS IN THE SOFTWARE.
22
*/
23
24
#ifndef DRM_FOURCC_H
25
#define DRM_FOURCC_H
26
27
#include "drm.h"
28
29
#if defined(__cplusplus)
30
extern "C" {
31
#endif
32
33
/**
34
* DOC: overview
35
*
36
* In the DRM subsystem, framebuffer pixel formats are described using the
37
* fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
38
* fourcc code, a Format Modifier may optionally be provided, in order to
39
* further describe the buffer's format - for example tiling or compression.
40
*
41
* Format Modifiers
42
* ----------------
43
*
44
* Format modifiers are used in conjunction with a fourcc code, forming a
45
* unique fourcc:modifier pair. This format:modifier pair must fully define the
46
* format and data layout of the buffer, and should be the only way to describe
47
* that particular buffer.
48
*
49
* Having multiple fourcc:modifier pairs which describe the same layout should
50
* be avoided, as such aliases run the risk of different drivers exposing
51
* different names for the same data format, forcing userspace to understand
52
* that they are aliases.
53
*
54
* Format modifiers may change any property of the buffer, including the number
55
* of planes and/or the required allocation size. Format modifiers are
56
* vendor-namespaced, and as such the relationship between a fourcc code and a
57
* modifier is specific to the modifier being used. For example, some modifiers
58
* may preserve meaning - such as number of planes - from the fourcc code,
59
* whereas others may not.
60
*
61
* Modifiers must uniquely encode buffer layout. In other words, a buffer must
62
* match only a single modifier. A modifier must not be a subset of layouts of
63
* another modifier. For instance, it's incorrect to encode pitch alignment in
64
* a modifier: a buffer may match a 64-pixel aligned modifier and a 32-pixel
65
* aligned modifier. That said, modifiers can have implicit minimal
66
* requirements.
67
*
68
* For modifiers where the combination of fourcc code and modifier can alias,
69
* a canonical pair needs to be defined and used by all drivers. Preferred
70
* combinations are also encouraged where all combinations might lead to
71
* confusion and unnecessarily reduced interoperability. An example for the
72
* latter is AFBC, where the ABGR layouts are preferred over ARGB layouts.
73
*
74
* There are two kinds of modifier users:
75
*
76
* - Kernel and user-space drivers: for drivers it's important that modifiers
77
* don't alias, otherwise two drivers might support the same format but use
78
* different aliases, preventing them from sharing buffers in an efficient
79
* format.
80
* - Higher-level programs interfacing with KMS/GBM/EGL/Vulkan/etc: these users
81
* see modifiers as opaque tokens they can check for equality and intersect.
82
* These users mustn't need to know to reason about the modifier value
83
* (i.e. they are not expected to extract information out of the modifier).
84
*
85
* Vendors should document their modifier usage in as much detail as
86
* possible, to ensure maximum compatibility across devices, drivers and
87
* applications.
88
*
89
* The authoritative list of format modifier codes is found in
90
* `include/uapi/drm/drm_fourcc.h`
91
*
92
* Open Source User Waiver
93
* -----------------------
94
*
95
* Because this is the authoritative source for pixel formats and modifiers
96
* referenced by GL, Vulkan extensions and other standards and hence used both
97
* by open source and closed source driver stacks, the usual requirement for an
98
* upstream in-kernel or open source userspace user does not apply.
99
*
100
* To ensure, as much as feasible, compatibility across stacks and avoid
101
* confusion with incompatible enumerations stakeholders for all relevant driver
102
* stacks should approve additions.
103
*/
104
105
#define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
106
((__u32)(c) << 16) | ((__u32)(d) << 24))
107
108
#define DRM_FORMAT_BIG_ENDIAN (1U<<31) /* format is big endian instead of little endian */
109
110
/* Reserve 0 for the invalid format specifier */
111
#define DRM_FORMAT_INVALID 0
112
113
/* color index */
114
#define DRM_FORMAT_C1 fourcc_code('C', '1', ' ', ' ') /* [7:0] C0:C1:C2:C3:C4:C5:C6:C7 1:1:1:1:1:1:1:1 eight pixels/byte */
115
#define DRM_FORMAT_C2 fourcc_code('C', '2', ' ', ' ') /* [7:0] C0:C1:C2:C3 2:2:2:2 four pixels/byte */
116
#define DRM_FORMAT_C4 fourcc_code('C', '4', ' ', ' ') /* [7:0] C0:C1 4:4 two pixels/byte */
117
#define DRM_FORMAT_C8 fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
118
119
/* 1 bpp Darkness (inverse relationship between channel value and brightness) */
120
#define DRM_FORMAT_D1 fourcc_code('D', '1', ' ', ' ') /* [7:0] D0:D1:D2:D3:D4:D5:D6:D7 1:1:1:1:1:1:1:1 eight pixels/byte */
121
122
/* 2 bpp Darkness (inverse relationship between channel value and brightness) */
123
#define DRM_FORMAT_D2 fourcc_code('D', '2', ' ', ' ') /* [7:0] D0:D1:D2:D3 2:2:2:2 four pixels/byte */
124
125
/* 4 bpp Darkness (inverse relationship between channel value and brightness) */
126
#define DRM_FORMAT_D4 fourcc_code('D', '4', ' ', ' ') /* [7:0] D0:D1 4:4 two pixels/byte */
127
128
/* 8 bpp Darkness (inverse relationship between channel value and brightness) */
129
#define DRM_FORMAT_D8 fourcc_code('D', '8', ' ', ' ') /* [7:0] D */
130
131
/* 1 bpp Red (direct relationship between channel value and brightness) */
132
#define DRM_FORMAT_R1 fourcc_code('R', '1', ' ', ' ') /* [7:0] R0:R1:R2:R3:R4:R5:R6:R7 1:1:1:1:1:1:1:1 eight pixels/byte */
133
134
/* 2 bpp Red (direct relationship between channel value and brightness) */
135
#define DRM_FORMAT_R2 fourcc_code('R', '2', ' ', ' ') /* [7:0] R0:R1:R2:R3 2:2:2:2 four pixels/byte */
136
137
/* 4 bpp Red (direct relationship between channel value and brightness) */
138
#define DRM_FORMAT_R4 fourcc_code('R', '4', ' ', ' ') /* [7:0] R0:R1 4:4 two pixels/byte */
139
140
/* 8 bpp Red (direct relationship between channel value and brightness) */
141
#define DRM_FORMAT_R8 fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
142
143
/* 10 bpp Red (direct relationship between channel value and brightness) */
144
#define DRM_FORMAT_R10 fourcc_code('R', '1', '0', ' ') /* [15:0] x:R 6:10 little endian */
145
146
/* 12 bpp Red (direct relationship between channel value and brightness) */
147
#define DRM_FORMAT_R12 fourcc_code('R', '1', '2', ' ') /* [15:0] x:R 4:12 little endian */
148
149
/* 16 bpp Red (direct relationship between channel value and brightness) */
150
#define DRM_FORMAT_R16 fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
151
152
/* 16 bpp RG */
153
#define DRM_FORMAT_RG88 fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
154
#define DRM_FORMAT_GR88 fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
155
156
/* 32 bpp RG */
157
#define DRM_FORMAT_RG1616 fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
158
#define DRM_FORMAT_GR1616 fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
159
160
/* 8 bpp RGB */
161
#define DRM_FORMAT_RGB332 fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
162
#define DRM_FORMAT_BGR233 fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
163
164
/* 16 bpp RGB */
165
#define DRM_FORMAT_XRGB4444 fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
166
#define DRM_FORMAT_XBGR4444 fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
167
#define DRM_FORMAT_RGBX4444 fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
168
#define DRM_FORMAT_BGRX4444 fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
169
170
#define DRM_FORMAT_ARGB4444 fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
171
#define DRM_FORMAT_ABGR4444 fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
172
#define DRM_FORMAT_RGBA4444 fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
173
#define DRM_FORMAT_BGRA4444 fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
174
175
#define DRM_FORMAT_XRGB1555 fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
176
#define DRM_FORMAT_XBGR1555 fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
177
#define DRM_FORMAT_RGBX5551 fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
178
#define DRM_FORMAT_BGRX5551 fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
179
180
#define DRM_FORMAT_ARGB1555 fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
181
#define DRM_FORMAT_ABGR1555 fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
182
#define DRM_FORMAT_RGBA5551 fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
183
#define DRM_FORMAT_BGRA5551 fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
184
185
#define DRM_FORMAT_RGB565 fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
186
#define DRM_FORMAT_BGR565 fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
187
188
/* 24 bpp RGB */
189
#define DRM_FORMAT_RGB888 fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
190
#define DRM_FORMAT_BGR888 fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
191
192
/* 32 bpp RGB */
193
#define DRM_FORMAT_XRGB8888 fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
194
#define DRM_FORMAT_XBGR8888 fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
195
#define DRM_FORMAT_RGBX8888 fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
196
#define DRM_FORMAT_BGRX8888 fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
197
198
#define DRM_FORMAT_ARGB8888 fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
199
#define DRM_FORMAT_ABGR8888 fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
200
#define DRM_FORMAT_RGBA8888 fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
201
#define DRM_FORMAT_BGRA8888 fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
202
203
#define DRM_FORMAT_XRGB2101010 fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
204
#define DRM_FORMAT_XBGR2101010 fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
205
#define DRM_FORMAT_RGBX1010102 fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
206
#define DRM_FORMAT_BGRX1010102 fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
207
208
#define DRM_FORMAT_ARGB2101010 fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
209
#define DRM_FORMAT_ABGR2101010 fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
210
#define DRM_FORMAT_RGBA1010102 fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
211
#define DRM_FORMAT_BGRA1010102 fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
212
213
/* 48 bpp RGB */
214
#define DRM_FORMAT_RGB161616 fourcc_code('R', 'G', '4', '8') /* [47:0] R:G:B 16:16:16 little endian */
215
#define DRM_FORMAT_BGR161616 fourcc_code('B', 'G', '4', '8') /* [47:0] B:G:R 16:16:16 little endian */
216
217
/* 64 bpp RGB */
218
#define DRM_FORMAT_XRGB16161616 fourcc_code('X', 'R', '4', '8') /* [63:0] x:R:G:B 16:16:16:16 little endian */
219
#define DRM_FORMAT_XBGR16161616 fourcc_code('X', 'B', '4', '8') /* [63:0] x:B:G:R 16:16:16:16 little endian */
220
221
#define DRM_FORMAT_ARGB16161616 fourcc_code('A', 'R', '4', '8') /* [63:0] A:R:G:B 16:16:16:16 little endian */
222
#define DRM_FORMAT_ABGR16161616 fourcc_code('A', 'B', '4', '8') /* [63:0] A:B:G:R 16:16:16:16 little endian */
223
224
/*
225
* Half-Floating point - 16b/component
226
* IEEE 754-2008 binary16 half-precision float
227
* [15:0] sign:exponent:mantissa 1:5:10
228
*/
229
#define DRM_FORMAT_XRGB16161616F fourcc_code('X', 'R', '4', 'H') /* [63:0] x:R:G:B 16:16:16:16 little endian */
230
#define DRM_FORMAT_XBGR16161616F fourcc_code('X', 'B', '4', 'H') /* [63:0] x:B:G:R 16:16:16:16 little endian */
231
232
#define DRM_FORMAT_ARGB16161616F fourcc_code('A', 'R', '4', 'H') /* [63:0] A:R:G:B 16:16:16:16 little endian */
233
#define DRM_FORMAT_ABGR16161616F fourcc_code('A', 'B', '4', 'H') /* [63:0] A:B:G:R 16:16:16:16 little endian */
234
235
#define DRM_FORMAT_R16F fourcc_code('R', ' ', ' ', 'H') /* [15:0] R 16 little endian */
236
#define DRM_FORMAT_GR1616F fourcc_code('G', 'R', ' ', 'H') /* [31:0] G:R 16:16 little endian */
237
#define DRM_FORMAT_BGR161616F fourcc_code('B', 'G', 'R', 'H') /* [47:0] B:G:R 16:16:16 little endian */
238
239
/*
240
* Floating point - 32b/component
241
* IEEE 754-2008 binary32 float
242
* [31:0] sign:exponent:mantissa 1:8:23
243
*/
244
#define DRM_FORMAT_R32F fourcc_code('R', ' ', ' ', 'F') /* [31:0] R 32 little endian */
245
#define DRM_FORMAT_GR3232F fourcc_code('G', 'R', ' ', 'F') /* [63:0] R:G 32:32 little endian */
246
#define DRM_FORMAT_BGR323232F fourcc_code('B', 'G', 'R', 'F') /* [95:0] R:G:B 32:32:32 little endian */
247
#define DRM_FORMAT_ABGR32323232F fourcc_code('A', 'B', '8', 'F') /* [127:0] R:G:B:A 32:32:32:32 little endian */
248
249
/*
250
* RGBA format with 10-bit components packed in 64-bit per pixel, with 6 bits
251
* of unused padding per component:
252
*/
253
#define DRM_FORMAT_AXBXGXRX106106106106 fourcc_code('A', 'B', '1', '0') /* [63:0] A:x:B:x:G:x:R:x 10:6:10:6:10:6:10:6 little endian */
254
255
/* packed YCbCr */
256
#define DRM_FORMAT_YUYV fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
257
#define DRM_FORMAT_YVYU fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
258
#define DRM_FORMAT_UYVY fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
259
#define DRM_FORMAT_VYUY fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
260
261
#define DRM_FORMAT_AYUV fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
262
#define DRM_FORMAT_AVUY8888 fourcc_code('A', 'V', 'U', 'Y') /* [31:0] A:Cr:Cb:Y 8:8:8:8 little endian */
263
#define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
264
#define DRM_FORMAT_XVUY8888 fourcc_code('X', 'V', 'U', 'Y') /* [31:0] X:Cr:Cb:Y 8:8:8:8 little endian */
265
#define DRM_FORMAT_VUY888 fourcc_code('V', 'U', '2', '4') /* [23:0] Cr:Cb:Y 8:8:8 little endian */
266
#define DRM_FORMAT_VUY101010 fourcc_code('V', 'U', '3', '0') /* Y followed by U then V, 10:10:10. Non-linear modifier only */
267
268
/*
269
* packed Y2xx indicate for each component, xx valid data occupy msb
270
* 16-xx padding occupy lsb
271
*/
272
#define DRM_FORMAT_Y210 fourcc_code('Y', '2', '1', '0') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 10:6:10:6:10:6:10:6 little endian per 2 Y pixels */
273
#define DRM_FORMAT_Y212 fourcc_code('Y', '2', '1', '2') /* [63:0] Cr0:0:Y1:0:Cb0:0:Y0:0 12:4:12:4:12:4:12:4 little endian per 2 Y pixels */
274
#define DRM_FORMAT_Y216 fourcc_code('Y', '2', '1', '6') /* [63:0] Cr0:Y1:Cb0:Y0 16:16:16:16 little endian per 2 Y pixels */
275
276
/*
277
* packed Y4xx indicate for each component, xx valid data occupy msb
278
* 16-xx padding occupy lsb except Y410
279
*/
280
#define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0') /* [31:0] A:Cr:Y:Cb 2:10:10:10 little endian */
281
#define DRM_FORMAT_Y412 fourcc_code('Y', '4', '1', '2') /* [63:0] A:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
282
#define DRM_FORMAT_Y416 fourcc_code('Y', '4', '1', '6') /* [63:0] A:Cr:Y:Cb 16:16:16:16 little endian */
283
284
#define DRM_FORMAT_XVYU2101010 fourcc_code('X', 'V', '3', '0') /* [31:0] X:Cr:Y:Cb 2:10:10:10 little endian */
285
#define DRM_FORMAT_XVYU12_16161616 fourcc_code('X', 'V', '3', '6') /* [63:0] X:0:Cr:0:Y:0:Cb:0 12:4:12:4:12:4:12:4 little endian */
286
#define DRM_FORMAT_XVYU16161616 fourcc_code('X', 'V', '4', '8') /* [63:0] X:Cr:Y:Cb 16:16:16:16 little endian */
287
288
/*
289
* packed YCbCr420 2x2 tiled formats
290
* first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
291
*/
292
/* [63:0] A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
293
#define DRM_FORMAT_Y0L0 fourcc_code('Y', '0', 'L', '0')
294
/* [63:0] X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0 1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
295
#define DRM_FORMAT_X0L0 fourcc_code('X', '0', 'L', '0')
296
297
/* [63:0] A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
298
#define DRM_FORMAT_Y0L2 fourcc_code('Y', '0', 'L', '2')
299
/* [63:0] X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0 1:1:10:10:10:1:1:10:10:10 little endian */
300
#define DRM_FORMAT_X0L2 fourcc_code('X', '0', 'L', '2')
301
302
/*
303
* 1-plane YUV 4:2:0
304
* In these formats, the component ordering is specified (Y, followed by U
305
* then V), but the exact Linear layout is undefined.
306
* These formats can only be used with a non-Linear modifier.
307
*/
308
#define DRM_FORMAT_YUV420_8BIT fourcc_code('Y', 'U', '0', '8')
309
#define DRM_FORMAT_YUV420_10BIT fourcc_code('Y', 'U', '1', '0')
310
311
/*
312
* 2 plane RGB + A
313
* index 0 = RGB plane, same format as the corresponding non _A8 format has
314
* index 1 = A plane, [7:0] A
315
*/
316
#define DRM_FORMAT_XRGB8888_A8 fourcc_code('X', 'R', 'A', '8')
317
#define DRM_FORMAT_XBGR8888_A8 fourcc_code('X', 'B', 'A', '8')
318
#define DRM_FORMAT_RGBX8888_A8 fourcc_code('R', 'X', 'A', '8')
319
#define DRM_FORMAT_BGRX8888_A8 fourcc_code('B', 'X', 'A', '8')
320
#define DRM_FORMAT_RGB888_A8 fourcc_code('R', '8', 'A', '8')
321
#define DRM_FORMAT_BGR888_A8 fourcc_code('B', '8', 'A', '8')
322
#define DRM_FORMAT_RGB565_A8 fourcc_code('R', '5', 'A', '8')
323
#define DRM_FORMAT_BGR565_A8 fourcc_code('B', '5', 'A', '8')
324
325
/*
326
* 2 plane YCbCr
327
* index 0 = Y plane, [7:0] Y
328
* index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
329
* or
330
* index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
331
*/
332
#define DRM_FORMAT_NV12 fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
333
#define DRM_FORMAT_NV21 fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
334
#define DRM_FORMAT_NV16 fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
335
#define DRM_FORMAT_NV61 fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
336
#define DRM_FORMAT_NV24 fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
337
#define DRM_FORMAT_NV42 fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
338
/*
339
* 2 plane YCbCr
340
* index 0 = Y plane, [39:0] Y3:Y2:Y1:Y0 little endian
341
* index 1 = Cr:Cb plane, [39:0] Cr1:Cb1:Cr0:Cb0 little endian
342
*/
343
#define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5') /* 2x2 subsampled Cr:Cb plane */
344
#define DRM_FORMAT_NV20 fourcc_code('N', 'V', '2', '0') /* 2x1 subsampled Cr:Cb plane */
345
#define DRM_FORMAT_NV30 fourcc_code('N', 'V', '3', '0') /* non-subsampled Cr:Cb plane */
346
347
/*
348
* 2 plane YCbCr MSB aligned
349
* index 0 = Y plane, [15:0] Y:x [10:6] little endian
350
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
351
*/
352
#define DRM_FORMAT_P210 fourcc_code('P', '2', '1', '0') /* 2x1 subsampled Cr:Cb plane, 10 bit per channel */
353
354
/*
355
* 2 plane YCbCr MSB aligned
356
* index 0 = Y plane, [15:0] Y:x [10:6] little endian
357
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [10:6:10:6] little endian
358
*/
359
#define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel */
360
361
/*
362
* 2 plane YCbCr MSB aligned
363
* index 0 = Y plane, [15:0] Y:x [12:4] little endian
364
* index 1 = Cr:Cb plane, [31:0] Cr:x:Cb:x [12:4:12:4] little endian
365
*/
366
#define DRM_FORMAT_P012 fourcc_code('P', '0', '1', '2') /* 2x2 subsampled Cr:Cb plane 12 bits per channel */
367
368
/*
369
* 2 plane YCbCr MSB aligned
370
* index 0 = Y plane, [15:0] Y little endian
371
* index 1 = Cr:Cb plane, [31:0] Cr:Cb [16:16] little endian
372
*/
373
#define DRM_FORMAT_P016 fourcc_code('P', '0', '1', '6') /* 2x2 subsampled Cr:Cb plane 16 bits per channel */
374
375
/* 2 plane YCbCr420.
376
* 3 10 bit components and 2 padding bits packed into 4 bytes.
377
* index 0 = Y plane, [31:0] x:Y2:Y1:Y0 2:10:10:10 little endian
378
* index 1 = Cr:Cb plane, [63:0] x:Cr2:Cb2:Cr1:x:Cb1:Cr0:Cb0 [2:10:10:10:2:10:10:10] little endian
379
*/
380
#define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0') /* 2x2 subsampled Cr:Cb plane 10 bits per channel packed */
381
382
/* 3 plane non-subsampled (444) YCbCr
383
* 16 bits per component, but only 10 bits are used and 6 bits are padded
384
* index 0: Y plane, [15:0] Y:x [10:6] little endian
385
* index 1: Cb plane, [15:0] Cb:x [10:6] little endian
386
* index 2: Cr plane, [15:0] Cr:x [10:6] little endian
387
*/
388
#define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
389
390
/* 3 plane non-subsampled (444) YCrCb
391
* 16 bits per component, but only 10 bits are used and 6 bits are padded
392
* index 0: Y plane, [15:0] Y:x [10:6] little endian
393
* index 1: Cr plane, [15:0] Cr:x [10:6] little endian
394
* index 2: Cb plane, [15:0] Cb:x [10:6] little endian
395
*/
396
#define DRM_FORMAT_Q401 fourcc_code('Q', '4', '0', '1')
397
398
/*
399
* 3 plane YCbCr LSB aligned
400
* In order to use these formats in a similar fashion to MSB aligned ones
401
* implementation can multiply the values by 2^6=64. For that reason the padding
402
* must only contain zeros.
403
* index 0 = Y plane, [15:0] z:Y [6:10] little endian
404
* index 1 = Cr plane, [15:0] z:Cr [6:10] little endian
405
* index 2 = Cb plane, [15:0] z:Cb [6:10] little endian
406
*/
407
#define DRM_FORMAT_S010 fourcc_code('S', '0', '1', '0') /* 2x2 subsampled Cb (1) and Cr (2) planes 10 bits per channel */
408
#define DRM_FORMAT_S210 fourcc_code('S', '2', '1', '0') /* 2x1 subsampled Cb (1) and Cr (2) planes 10 bits per channel */
409
#define DRM_FORMAT_S410 fourcc_code('S', '4', '1', '0') /* non-subsampled Cb (1) and Cr (2) planes 10 bits per channel */
410
411
/*
412
* 3 plane YCbCr LSB aligned
413
* In order to use these formats in a similar fashion to MSB aligned ones
414
* implementation can multiply the values by 2^4=16. For that reason the padding
415
* must only contain zeros.
416
* index 0 = Y plane, [15:0] z:Y [4:12] little endian
417
* index 1 = Cr plane, [15:0] z:Cr [4:12] little endian
418
* index 2 = Cb plane, [15:0] z:Cb [4:12] little endian
419
*/
420
#define DRM_FORMAT_S012 fourcc_code('S', '0', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes 12 bits per channel */
421
#define DRM_FORMAT_S212 fourcc_code('S', '2', '1', '2') /* 2x1 subsampled Cb (1) and Cr (2) planes 12 bits per channel */
422
#define DRM_FORMAT_S412 fourcc_code('S', '4', '1', '2') /* non-subsampled Cb (1) and Cr (2) planes 12 bits per channel */
423
424
/*
425
* 3 plane YCbCr
426
* index 0 = Y plane, [15:0] Y little endian
427
* index 1 = Cr plane, [15:0] Cr little endian
428
* index 2 = Cb plane, [15:0] Cb little endian
429
*/
430
#define DRM_FORMAT_S016 fourcc_code('S', '0', '1', '6') /* 2x2 subsampled Cb (1) and Cr (2) planes 16 bits per channel */
431
#define DRM_FORMAT_S216 fourcc_code('S', '2', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes 16 bits per channel */
432
#define DRM_FORMAT_S416 fourcc_code('S', '4', '1', '6') /* non-subsampled Cb (1) and Cr (2) planes 16 bits per channel */
433
434
/*
435
* 3 plane YCbCr
436
* index 0: Y plane, [7:0] Y
437
* index 1: Cb plane, [7:0] Cb
438
* index 2: Cr plane, [7:0] Cr
439
* or
440
* index 1: Cr plane, [7:0] Cr
441
* index 2: Cb plane, [7:0] Cb
442
*/
443
#define DRM_FORMAT_YUV410 fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
444
#define DRM_FORMAT_YVU410 fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
445
#define DRM_FORMAT_YUV411 fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
446
#define DRM_FORMAT_YVU411 fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
447
#define DRM_FORMAT_YUV420 fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
448
#define DRM_FORMAT_YVU420 fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
449
#define DRM_FORMAT_YUV422 fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
450
#define DRM_FORMAT_YVU422 fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
451
#define DRM_FORMAT_YUV444 fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
452
#define DRM_FORMAT_YVU444 fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
453
454
455
/*
456
* Format Modifiers:
457
*
458
* Format modifiers describe, typically, a re-ordering or modification
459
* of the data in a plane of an FB. This can be used to express tiled/
460
* swizzled formats, or compression, or a combination of the two.
461
*
462
* The upper 8 bits of the format modifier are a vendor-id as assigned
463
* below. The lower 56 bits are assigned as vendor sees fit.
464
*/
465
466
/* Vendor Ids: */
467
#define DRM_FORMAT_MOD_VENDOR_NONE 0
468
#define DRM_FORMAT_MOD_VENDOR_INTEL 0x01
469
#define DRM_FORMAT_MOD_VENDOR_AMD 0x02
470
#define DRM_FORMAT_MOD_VENDOR_NVIDIA 0x03
471
#define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
472
#define DRM_FORMAT_MOD_VENDOR_QCOM 0x05
473
#define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
474
#define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
475
#define DRM_FORMAT_MOD_VENDOR_ARM 0x08
476
#define DRM_FORMAT_MOD_VENDOR_ALLWINNER 0x09
477
#define DRM_FORMAT_MOD_VENDOR_AMLOGIC 0x0a
478
#define DRM_FORMAT_MOD_VENDOR_MTK 0x0b
479
#define DRM_FORMAT_MOD_VENDOR_APPLE 0x0c
480
481
/* add more to the end as needed */
482
483
#define DRM_FORMAT_RESERVED ((1ULL << 56) - 1)
484
485
#define fourcc_mod_get_vendor(modifier) \
486
(((modifier) >> 56) & 0xff)
487
488
#define fourcc_mod_is_vendor(modifier, vendor) \
489
(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
490
491
#define fourcc_mod_code(vendor, val) \
492
((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
493
494
/*
495
* Format Modifier tokens:
496
*
497
* When adding a new token please document the layout with a code comment,
498
* similar to the fourcc codes above. drm_fourcc.h is considered the
499
* authoritative source for all of these.
500
*
501
* Generic modifier names:
502
*
503
* DRM_FORMAT_MOD_GENERIC_* definitions are used to provide vendor-neutral names
504
* for layouts which are common across multiple vendors. To preserve
505
* compatibility, in cases where a vendor-specific definition already exists and
506
* a generic name for it is desired, the common name is a purely symbolic alias
507
* and must use the same numerical value as the original definition.
508
*
509
* Note that generic names should only be used for modifiers which describe
510
* generic layouts (such as pixel re-ordering), which may have
511
* independently-developed support across multiple vendors.
512
*
513
* In future cases where a generic layout is identified before merging with a
514
* vendor-specific modifier, a new 'GENERIC' vendor or modifier using vendor
515
* 'NONE' could be considered. This should only be for obvious, exceptional
516
* cases to avoid polluting the 'GENERIC' namespace with modifiers which only
517
* apply to a single vendor.
518
*
519
* Generic names should not be used for cases where multiple hardware vendors
520
* have implementations of the same standardised compression scheme (such as
521
* AFBC). In those cases, all implementations should use the same format
522
* modifier(s), reflecting the vendor of the standard.
523
*/
524
525
#define DRM_FORMAT_MOD_GENERIC_16_16_TILE DRM_FORMAT_MOD_SAMSUNG_16_16_TILE
526
527
/*
528
* Invalid Modifier
529
*
530
* This modifier can be used as a sentinel to terminate the format modifiers
531
* list, or to initialize a variable with an invalid modifier. It might also be
532
* used to report an error back to userspace for certain APIs.
533
*/
534
#define DRM_FORMAT_MOD_INVALID fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
535
536
/*
537
* Linear Layout
538
*
539
* Just plain linear layout. Note that this is different from no specifying any
540
* modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
541
* which tells the driver to also take driver-internal information into account
542
* and so might actually result in a tiled framebuffer.
543
*/
544
#define DRM_FORMAT_MOD_LINEAR fourcc_mod_code(NONE, 0)
545
546
/*
547
* Deprecated: use DRM_FORMAT_MOD_LINEAR instead
548
*
549
* The "none" format modifier doesn't actually mean that the modifier is
550
* implicit, instead it means that the layout is linear. Whether modifiers are
551
* used is out-of-band information carried in an API-specific way (e.g. in a
552
* flag for drm_mode_fb_cmd2).
553
*/
554
#define DRM_FORMAT_MOD_NONE 0
555
556
/* Intel framebuffer modifiers */
557
558
/*
559
* Intel X-tiling layout
560
*
561
* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
562
* in row-major layout. Within the tile bytes are laid out row-major, with
563
* a platform-dependent stride. On top of that the memory can apply
564
* platform-depending swizzling of some higher address bits into bit6.
565
*
566
* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
567
* On earlier platforms the is highly platforms specific and not useful for
568
* cross-driver sharing. It exists since on a given platform it does uniquely
569
* identify the layout in a simple way for i915-specific userspace, which
570
* facilitated conversion of userspace to modifiers. Additionally the exact
571
* format on some really old platforms is not known.
572
*/
573
#define I915_FORMAT_MOD_X_TILED fourcc_mod_code(INTEL, 1)
574
575
/*
576
* Intel Y-tiling layout
577
*
578
* This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
579
* in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
580
* chunks column-major, with a platform-dependent height. On top of that the
581
* memory can apply platform-depending swizzling of some higher address bits
582
* into bit6.
583
*
584
* Note that this layout is only accurate on intel gen 8+ or valleyview chipsets.
585
* On earlier platforms the is highly platforms specific and not useful for
586
* cross-driver sharing. It exists since on a given platform it does uniquely
587
* identify the layout in a simple way for i915-specific userspace, which
588
* facilitated conversion of userspace to modifiers. Additionally the exact
589
* format on some really old platforms is not known.
590
*/
591
#define I915_FORMAT_MOD_Y_TILED fourcc_mod_code(INTEL, 2)
592
593
/*
594
* Intel Yf-tiling layout
595
*
596
* This is a tiled layout using 4Kb tiles in row-major layout.
597
* Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
598
* are arranged in four groups (two wide, two high) with column-major layout.
599
* Each group therefore consists out of four 256 byte units, which are also laid
600
* out as 2x2 column-major.
601
* 256 byte units are made out of four 64 byte blocks of pixels, producing
602
* either a square block or a 2:1 unit.
603
* 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
604
* in pixel depends on the pixel depth.
605
*/
606
#define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
607
608
/*
609
* Intel color control surface (CCS) for render compression
610
*
611
* The framebuffer format must be one of the 8:8:8:8 RGB formats.
612
* The main surface will be plane index 0 and must be Y/Yf-tiled,
613
* the CCS will be plane index 1.
614
*
615
* Each CCS tile matches a 1024x512 pixel area of the main surface.
616
* To match certain aspects of the 3D hardware the CCS is
617
* considered to be made up of normal 128Bx32 Y tiles, Thus
618
* the CCS pitch must be specified in multiples of 128 bytes.
619
*
620
* In reality the CCS tile appears to be a 64Bx64 Y tile, composed
621
* of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
622
* But that fact is not relevant unless the memory is accessed
623
* directly.
624
*/
625
#define I915_FORMAT_MOD_Y_TILED_CCS fourcc_mod_code(INTEL, 4)
626
#define I915_FORMAT_MOD_Yf_TILED_CCS fourcc_mod_code(INTEL, 5)
627
628
/*
629
* Intel color control surfaces (CCS) for Gen-12 render compression.
630
*
631
* The main surface is Y-tiled and at plane index 0, the CCS is linear and
632
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
633
* main surface. In other words, 4 bits in CCS map to a main surface cache
634
* line pair. The main surface pitch is required to be a multiple of four
635
* Y-tile widths.
636
*/
637
#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS fourcc_mod_code(INTEL, 6)
638
639
/*
640
* Intel color control surfaces (CCS) for Gen-12 media compression
641
*
642
* The main surface is Y-tiled and at plane index 0, the CCS is linear and
643
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
644
* main surface. In other words, 4 bits in CCS map to a main surface cache
645
* line pair. The main surface pitch is required to be a multiple of four
646
* Y-tile widths. For semi-planar formats like NV12, CCS planes follow the
647
* Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
648
* planes 2 and 3 for the respective CCS.
649
*/
650
#define I915_FORMAT_MOD_Y_TILED_GEN12_MC_CCS fourcc_mod_code(INTEL, 7)
651
652
/*
653
* Intel Color Control Surface with Clear Color (CCS) for Gen-12 render
654
* compression.
655
*
656
* The main surface is Y-tiled and is at plane index 0 whereas CCS is linear
657
* and at index 1. The clear color is stored at index 2, and the pitch should
658
* be 64 bytes aligned. The clear color structure is 256 bits. The first 128 bits
659
* represents Raw Clear Color Red, Green, Blue and Alpha color each represented
660
* by 32 bits. The raw clear color is consumed by the 3d engine and generates
661
* the converted clear color of size 64 bits. The first 32 bits store the Lower
662
* Converted Clear Color value and the next 32 bits store the Higher Converted
663
* Clear Color value when applicable. The Converted Clear Color values are
664
* consumed by the DE. The last 64 bits are used to store Color Discard Enable
665
* and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
666
* corresponds to an area of 4x1 tiles in the main surface. The main surface
667
* pitch is required to be a multiple of 4 tile widths.
668
*/
669
#define I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC fourcc_mod_code(INTEL, 8)
670
671
/*
672
* Intel Tile 4 layout
673
*
674
* This is a tiled layout using 4KB tiles in a row-major layout. It has the same
675
* shape as Tile Y at two granularities: 4KB (128B x 32) and 64B (16B x 4). It
676
* only differs from Tile Y at the 256B granularity in between. At this
677
* granularity, Tile Y has a shape of 16B x 32 rows, but this tiling has a shape
678
* of 64B x 8 rows.
679
*/
680
#define I915_FORMAT_MOD_4_TILED fourcc_mod_code(INTEL, 9)
681
682
/*
683
* Intel color control surfaces (CCS) for DG2 render compression.
684
*
685
* The main surface is Tile 4 and at plane index 0. The CCS data is stored
686
* outside of the GEM object in a reserved memory area dedicated for the
687
* storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
688
* main surface pitch is required to be a multiple of four Tile 4 widths.
689
*/
690
#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS fourcc_mod_code(INTEL, 10)
691
692
/*
693
* Intel color control surfaces (CCS) for DG2 media compression.
694
*
695
* The main surface is Tile 4 and at plane index 0. For semi-planar formats
696
* like NV12, the Y and UV planes are Tile 4 and are located at plane indices
697
* 0 and 1, respectively. The CCS for all planes are stored outside of the
698
* GEM object in a reserved memory area dedicated for the storage of the
699
* CCS data for all RC/RC_CC/MC compressible GEM objects. The main surface
700
* pitch is required to be a multiple of four Tile 4 widths.
701
*/
702
#define I915_FORMAT_MOD_4_TILED_DG2_MC_CCS fourcc_mod_code(INTEL, 11)
703
704
/*
705
* Intel Color Control Surface with Clear Color (CCS) for DG2 render compression.
706
*
707
* The main surface is Tile 4 and at plane index 0. The CCS data is stored
708
* outside of the GEM object in a reserved memory area dedicated for the
709
* storage of the CCS data for all RC/RC_CC/MC compressible GEM objects. The
710
* main surface pitch is required to be a multiple of four Tile 4 widths. The
711
* clear color is stored at plane index 1 and the pitch should be 64 bytes
712
* aligned. The format of the 256 bits of clear color data matches the one used
713
* for the I915_FORMAT_MOD_Y_TILED_GEN12_RC_CCS_CC modifier, see its description
714
* for details.
715
*/
716
#define I915_FORMAT_MOD_4_TILED_DG2_RC_CCS_CC fourcc_mod_code(INTEL, 12)
717
718
/*
719
* Intel Color Control Surfaces (CCS) for display ver. 14 render compression.
720
*
721
* The main surface is tile4 and at plane index 0, the CCS is linear and
722
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
723
* main surface. In other words, 4 bits in CCS map to a main surface cache
724
* line pair. The main surface pitch is required to be a multiple of four
725
* tile4 widths.
726
*/
727
#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS fourcc_mod_code(INTEL, 13)
728
729
/*
730
* Intel Color Control Surfaces (CCS) for display ver. 14 media compression
731
*
732
* The main surface is tile4 and at plane index 0, the CCS is linear and
733
* at index 1. A 64B CCS cache line corresponds to an area of 4x1 tiles in
734
* main surface. In other words, 4 bits in CCS map to a main surface cache
735
* line pair. The main surface pitch is required to be a multiple of four
736
* tile4 widths. For semi-planar formats like NV12, CCS planes follow the
737
* Y and UV planes i.e., planes 0 and 1 are used for Y and UV surfaces,
738
* planes 2 and 3 for the respective CCS.
739
*/
740
#define I915_FORMAT_MOD_4_TILED_MTL_MC_CCS fourcc_mod_code(INTEL, 14)
741
742
/*
743
* Intel Color Control Surface with Clear Color (CCS) for display ver. 14 render
744
* compression.
745
*
746
* The main surface is tile4 and is at plane index 0 whereas CCS is linear
747
* and at index 1. The clear color is stored at index 2, and the pitch should
748
* be ignored. The clear color structure is 256 bits. The first 128 bits
749
* represents Raw Clear Color Red, Green, Blue and Alpha color each represented
750
* by 32 bits. The raw clear color is consumed by the 3d engine and generates
751
* the converted clear color of size 64 bits. The first 32 bits store the Lower
752
* Converted Clear Color value and the next 32 bits store the Higher Converted
753
* Clear Color value when applicable. The Converted Clear Color values are
754
* consumed by the DE. The last 64 bits are used to store Color Discard Enable
755
* and Depth Clear Value Valid which are ignored by the DE. A CCS cache line
756
* corresponds to an area of 4x1 tiles in the main surface. The main surface
757
* pitch is required to be a multiple of 4 tile widths.
758
*/
759
#define I915_FORMAT_MOD_4_TILED_MTL_RC_CCS_CC fourcc_mod_code(INTEL, 15)
760
761
/*
762
* Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
763
* on integrated graphics
764
*
765
* The main surface is Tile 4 and at plane index 0. For semi-planar formats
766
* like NV12, the Y and UV planes are Tile 4 and are located at plane indices
767
* 0 and 1, respectively. The CCS for all planes are stored outside of the
768
* GEM object in a reserved memory area dedicated for the storage of the
769
* CCS data for all compressible GEM objects.
770
*/
771
#define I915_FORMAT_MOD_4_TILED_LNL_CCS fourcc_mod_code(INTEL, 16)
772
773
/*
774
* Intel Color Control Surfaces (CCS) for graphics ver. 20 unified compression
775
* on discrete graphics
776
*
777
* The main surface is Tile 4 and at plane index 0. For semi-planar formats
778
* like NV12, the Y and UV planes are Tile 4 and are located at plane indices
779
* 0 and 1, respectively. The CCS for all planes are stored outside of the
780
* GEM object in a reserved memory area dedicated for the storage of the
781
* CCS data for all compressible GEM objects. The GEM object must be stored in
782
* contiguous memory with a size aligned to 64KB
783
*/
784
#define I915_FORMAT_MOD_4_TILED_BMG_CCS fourcc_mod_code(INTEL, 17)
785
786
/*
787
* Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
788
*
789
* Macroblocks are laid in a Z-shape, and each pixel data is following the
790
* standard NV12 style.
791
* As for NV12, an image is the result of two frame buffers: one for Y,
792
* one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
793
* Alignment requirements are (for each buffer):
794
* - multiple of 128 pixels for the width
795
* - multiple of 32 pixels for the height
796
*
797
* For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
798
*/
799
#define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE fourcc_mod_code(SAMSUNG, 1)
800
801
/*
802
* Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
803
*
804
* This is a simple tiled layout using tiles of 16x16 pixels in a row-major
805
* layout. For YCbCr formats Cb/Cr components are taken in such a way that
806
* they correspond to their 16x16 luma block.
807
*/
808
#define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE fourcc_mod_code(SAMSUNG, 2)
809
810
/*
811
* Qualcomm Compressed Format
812
*
813
* Refers to a compressed variant of the base format that is compressed.
814
* Implementation may be platform and base-format specific.
815
*
816
* Each macrotile consists of m x n (mostly 4 x 4) tiles.
817
* Pixel data pitch/stride is aligned with macrotile width.
818
* Pixel data height is aligned with macrotile height.
819
* Entire pixel data buffer is aligned with 4k(bytes).
820
*/
821
#define DRM_FORMAT_MOD_QCOM_COMPRESSED fourcc_mod_code(QCOM, 1)
822
823
/*
824
* Qualcomm Tiled Format
825
*
826
* Similar to DRM_FORMAT_MOD_QCOM_COMPRESSED but not compressed.
827
* Implementation may be platform and base-format specific.
828
*
829
* Each macrotile consists of m x n (mostly 4 x 4) tiles.
830
* Pixel data pitch/stride is aligned with macrotile width.
831
* Pixel data height is aligned with macrotile height.
832
* Entire pixel data buffer is aligned with 4k(bytes).
833
*/
834
#define DRM_FORMAT_MOD_QCOM_TILED3 fourcc_mod_code(QCOM, 3)
835
836
/*
837
* Qualcomm Alternate Tiled Format
838
*
839
* Alternate tiled format typically only used within GMEM.
840
* Implementation may be platform and base-format specific.
841
*/
842
#define DRM_FORMAT_MOD_QCOM_TILED2 fourcc_mod_code(QCOM, 2)
843
844
845
/* Vivante framebuffer modifiers */
846
847
/*
848
* Vivante 4x4 tiling layout
849
*
850
* This is a simple tiled layout using tiles of 4x4 pixels in a row-major
851
* layout.
852
*/
853
#define DRM_FORMAT_MOD_VIVANTE_TILED fourcc_mod_code(VIVANTE, 1)
854
855
/*
856
* Vivante 64x64 super-tiling layout
857
*
858
* This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
859
* contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
860
* major layout.
861
*
862
* For more information: see
863
* https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
864
*/
865
#define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED fourcc_mod_code(VIVANTE, 2)
866
867
/*
868
* Vivante 4x4 tiling layout for dual-pipe
869
*
870
* Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
871
* different base address. Offsets from the base addresses are therefore halved
872
* compared to the non-split tiled layout.
873
*/
874
#define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED fourcc_mod_code(VIVANTE, 3)
875
876
/*
877
* Vivante 64x64 super-tiling layout for dual-pipe
878
*
879
* Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
880
* starts at a different base address. Offsets from the base addresses are
881
* therefore halved compared to the non-split super-tiled layout.
882
*/
883
#define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
884
885
/*
886
* Vivante TS (tile-status) buffer modifiers. They can be combined with all of
887
* the color buffer tiling modifiers defined above. When TS is present it's a
888
* separate buffer containing the clear/compression status of each tile. The
889
* modifiers are defined as VIVANTE_MOD_TS_c_s, where c is the color buffer
890
* tile size in bytes covered by one entry in the status buffer and s is the
891
* number of status bits per entry.
892
* We reserve the top 8 bits of the Vivante modifier space for tile status
893
* clear/compression modifiers, as future cores might add some more TS layout
894
* variations.
895
*/
896
#define VIVANTE_MOD_TS_64_4 (1ULL << 48)
897
#define VIVANTE_MOD_TS_64_2 (2ULL << 48)
898
#define VIVANTE_MOD_TS_128_4 (3ULL << 48)
899
#define VIVANTE_MOD_TS_256_4 (4ULL << 48)
900
#define VIVANTE_MOD_TS_MASK (0xfULL << 48)
901
902
/*
903
* Vivante compression modifiers. Those depend on a TS modifier being present
904
* as the TS bits get reinterpreted as compression tags instead of simple
905
* clear markers when compression is enabled.
906
*/
907
#define VIVANTE_MOD_COMP_DEC400 (1ULL << 52)
908
#define VIVANTE_MOD_COMP_MASK (0xfULL << 52)
909
910
/* Masking out the extension bits will yield the base modifier. */
911
#define VIVANTE_MOD_EXT_MASK (VIVANTE_MOD_TS_MASK | \
912
VIVANTE_MOD_COMP_MASK)
913
914
/* NVIDIA frame buffer modifiers */
915
916
/*
917
* Tegra Tiled Layout, used by Tegra 2, 3 and 4.
918
*
919
* Pixels are arranged in simple tiles of 16 x 16 bytes.
920
*/
921
#define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
922
923
/*
924
* Generalized Block Linear layout, used by desktop GPUs starting with NV50/G80,
925
* and Tegra GPUs starting with Tegra K1.
926
*
927
* Pixels are arranged in Groups of Bytes (GOBs). GOB size and layout varies
928
* based on the architecture generation. GOBs themselves are then arranged in
929
* 3D blocks, with the block dimensions (in terms of GOBs) always being a power
930
* of two, and hence expressible as their log2 equivalent (E.g., "2" represents
931
* a block depth or height of "4").
932
*
933
* Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
934
* in full detail.
935
*
936
* Macro
937
* Bits Param Description
938
* ---- ----- -----------------------------------------------------------------
939
*
940
* 3:0 h log2(height) of each block, in GOBs. Placed here for
941
* compatibility with the existing
942
* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
943
*
944
* 4:4 - Must be 1, to indicate block-linear layout. Necessary for
945
* compatibility with the existing
946
* DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK()-based modifiers.
947
*
948
* 8:5 - Reserved (To support 3D-surfaces with variable log2(depth) block
949
* size). Must be zero.
950
*
951
* Note there is no log2(width) parameter. Some portions of the
952
* hardware support a block width of two gobs, but it is impractical
953
* to use due to lack of support elsewhere, and has no known
954
* benefits.
955
*
956
* 11:9 - Reserved (To support 2D-array textures with variable array stride
957
* in blocks, specified via log2(tile width in blocks)). Must be
958
* zero.
959
*
960
* 19:12 k Page Kind. This value directly maps to a field in the page
961
* tables of all GPUs >= NV50. It affects the exact layout of bits
962
* in memory and can be derived from the tuple
963
*
964
* (format, GPU model, compression type, samples per pixel)
965
*
966
* Where compression type is defined below. If GPU model were
967
* implied by the format modifier, format, or memory buffer, page
968
* kind would not need to be included in the modifier itself, but
969
* since the modifier should define the layout of the associated
970
* memory buffer independent from any device or other context, it
971
* must be included here.
972
*
973
* 21:20 g GOB Height and Page Kind Generation. The height of a GOB changed
974
* starting with Fermi GPUs. Additionally, the mapping between page
975
* kind and bit layout has changed at various points.
976
*
977
* 0 = Gob Height 8, Fermi - Volta, Tegra K1+ Page Kind mapping
978
* 1 = Gob Height 4, G80 - GT2XX Page Kind mapping
979
* 2 = Gob Height 8, Turing+ Page Kind mapping
980
* 3 = Reserved for future use.
981
*
982
* 22:22 s Sector layout. On Tegra GPUs prior to Xavier, there is a further
983
* bit remapping step that occurs at an even lower level than the
984
* page kind and block linear swizzles. This causes the layout of
985
* surfaces mapped in those SOC's GPUs to be incompatible with the
986
* equivalent mapping on other GPUs in the same system.
987
*
988
* 0 = Tegra K1 - Tegra Parker/TX2 Layout.
989
* 1 = Desktop GPU and Tegra Xavier+ Layout
990
*
991
* 25:23 c Lossless Framebuffer Compression type.
992
*
993
* 0 = none
994
* 1 = ROP/3D, layout 1, exact compression format implied by Page
995
* Kind field
996
* 2 = ROP/3D, layout 2, exact compression format implied by Page
997
* Kind field
998
* 3 = CDE horizontal
999
* 4 = CDE vertical
1000
* 5 = Reserved for future use
1001
* 6 = Reserved for future use
1002
* 7 = Reserved for future use
1003
*
1004
* 55:25 - Reserved for future use. Must be zero.
1005
*/
1006
#define DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(c, s, g, k, h) \
1007
fourcc_mod_code(NVIDIA, (0x10 | \
1008
((h) & 0xf) | \
1009
(((k) & 0xff) << 12) | \
1010
(((g) & 0x3) << 20) | \
1011
(((s) & 0x1) << 22) | \
1012
(((c) & 0x7) << 23)))
1013
1014
/* To grandfather in prior block linear format modifiers to the above layout,
1015
* the page kind "0", which corresponds to "pitch/linear" and hence is unusable
1016
* with block-linear layouts, is remapped within drivers to the value 0xfe,
1017
* which corresponds to the "generic" kind used for simple single-sample
1018
* uncompressed color formats on Fermi - Volta GPUs.
1019
*/
1020
static inline __u64
1021
drm_fourcc_canonicalize_nvidia_format_mod(__u64 modifier)
1022
{
1023
if (!(modifier & 0x10) || (modifier & (0xff << 12)))
1024
return modifier;
1025
else
1026
return modifier | (0xfe << 12);
1027
}
1028
1029
/*
1030
* 16Bx2 Block Linear layout, used by Tegra K1 and later
1031
*
1032
* Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
1033
* vertically by a power of 2 (1 to 32 GOBs) to form a block.
1034
*
1035
* Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
1036
*
1037
* Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
1038
* Valid values are:
1039
*
1040
* 0 == ONE_GOB
1041
* 1 == TWO_GOBS
1042
* 2 == FOUR_GOBS
1043
* 3 == EIGHT_GOBS
1044
* 4 == SIXTEEN_GOBS
1045
* 5 == THIRTYTWO_GOBS
1046
*
1047
* Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
1048
* in full detail.
1049
*/
1050
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
1051
DRM_FORMAT_MOD_NVIDIA_BLOCK_LINEAR_2D(0, 0, 0, 0, (v))
1052
1053
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
1054
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0)
1055
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
1056
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1)
1057
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
1058
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2)
1059
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
1060
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3)
1061
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
1062
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4)
1063
#define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
1064
DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5)
1065
1066
/*
1067
* Some Broadcom modifiers take parameters, for example the number of
1068
* vertical lines in the image. Reserve the lower 32 bits for modifier
1069
* type, and the next 24 bits for parameters. Top 8 bits are the
1070
* vendor code.
1071
*/
1072
#define __fourcc_mod_broadcom_param_shift 8
1073
#define __fourcc_mod_broadcom_param_bits 48
1074
#define fourcc_mod_broadcom_code(val, params) \
1075
fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
1076
#define fourcc_mod_broadcom_param(m) \
1077
((int)(((m) >> __fourcc_mod_broadcom_param_shift) & \
1078
((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
1079
#define fourcc_mod_broadcom_mod(m) \
1080
((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) << \
1081
__fourcc_mod_broadcom_param_shift))
1082
1083
/*
1084
* Broadcom VC4 "T" format
1085
*
1086
* This is the primary layout that the V3D GPU can texture from (it
1087
* can't do linear). The T format has:
1088
*
1089
* - 64b utiles of pixels in a raster-order grid according to cpp. It's 4x4
1090
* pixels at 32 bit depth.
1091
*
1092
* - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
1093
* 16x16 pixels).
1094
*
1095
* - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels). On
1096
* even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
1097
* they're (TR, BR, BL, TL), where bottom left is start of memory.
1098
*
1099
* - an image made of 4k tiles in rows either left-to-right (even rows of 4k
1100
* tiles) or right-to-left (odd rows of 4k tiles).
1101
*/
1102
#define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
1103
1104
/*
1105
* Broadcom SAND format
1106
*
1107
* This is the native format that the H.264 codec block uses. For VC4
1108
* HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
1109
*
1110
* The image can be considered to be split into columns, and the
1111
* columns are placed consecutively into memory. The width of those
1112
* columns can be either 32, 64, 128, or 256 pixels, but in practice
1113
* only 128 pixel columns are used.
1114
*
1115
* The pitch between the start of each column is set to optimally
1116
* switch between SDRAM banks. This is passed as the number of lines
1117
* of column width in the modifier (we can't use the stride value due
1118
* to various core checks that look at it , so you should set the
1119
* stride to width*cpp).
1120
*
1121
* Note that the column height for this format modifier is the same
1122
* for all of the planes, assuming that each column contains both Y
1123
* and UV. Some SAND-using hardware stores UV in a separate tiled
1124
* image from Y to reduce the column height, which is not supported
1125
* with these modifiers.
1126
*
1127
* The DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT modifier is also
1128
* supported for DRM_FORMAT_P030 where the columns remain as 128 bytes
1129
* wide, but as this is a 10 bpp format that translates to 96 pixels.
1130
*/
1131
1132
#define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
1133
fourcc_mod_broadcom_code(2, v)
1134
#define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
1135
fourcc_mod_broadcom_code(3, v)
1136
#define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
1137
fourcc_mod_broadcom_code(4, v)
1138
#define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
1139
fourcc_mod_broadcom_code(5, v)
1140
1141
#define DRM_FORMAT_MOD_BROADCOM_SAND32 \
1142
DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
1143
#define DRM_FORMAT_MOD_BROADCOM_SAND64 \
1144
DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
1145
#define DRM_FORMAT_MOD_BROADCOM_SAND128 \
1146
DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
1147
#define DRM_FORMAT_MOD_BROADCOM_SAND256 \
1148
DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
1149
1150
/* Broadcom UIF format
1151
*
1152
* This is the common format for the current Broadcom multimedia
1153
* blocks, including V3D 3.x and newer, newer video codecs, and
1154
* displays.
1155
*
1156
* The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
1157
* and macroblocks (4x4 UIF blocks). Those 4x4 UIF block groups are
1158
* stored in columns, with padding between the columns to ensure that
1159
* moving from one column to the next doesn't hit the same SDRAM page
1160
* bank.
1161
*
1162
* To calculate the padding, it is assumed that each hardware block
1163
* and the software driving it knows the platform's SDRAM page size,
1164
* number of banks, and XOR address, and that it's identical between
1165
* all blocks using the format. This tiling modifier will use XOR as
1166
* necessary to reduce the padding. If a hardware block can't do XOR,
1167
* the assumption is that a no-XOR tiling modifier will be created.
1168
*/
1169
#define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
1170
1171
/*
1172
* Arm Framebuffer Compression (AFBC) modifiers
1173
*
1174
* AFBC is a proprietary lossless image compression protocol and format.
1175
* It provides fine-grained random access and minimizes the amount of data
1176
* transferred between IP blocks.
1177
*
1178
* AFBC has several features which may be supported and/or used, which are
1179
* represented using bits in the modifier. Not all combinations are valid,
1180
* and different devices or use-cases may support different combinations.
1181
*
1182
* Further information on the use of AFBC modifiers can be found in
1183
* Documentation/gpu/afbc.rst
1184
*/
1185
1186
/*
1187
* The top 4 bits (out of the 56 bits allotted for specifying vendor specific
1188
* modifiers) denote the category for modifiers. Currently we have three
1189
* categories of modifiers ie AFBC, MISC and AFRC. We can have a maximum of
1190
* sixteen different categories.
1191
*/
1192
#define DRM_FORMAT_MOD_ARM_CODE(__type, __val) \
1193
fourcc_mod_code(ARM, ((__u64)(__type) << 52) | ((__val) & 0x000fffffffffffffULL))
1194
1195
#define DRM_FORMAT_MOD_ARM_TYPE_AFBC 0x00
1196
#define DRM_FORMAT_MOD_ARM_TYPE_MISC 0x01
1197
1198
#define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode) \
1199
DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFBC, __afbc_mode)
1200
1201
/*
1202
* AFBC superblock size
1203
*
1204
* Indicates the superblock size(s) used for the AFBC buffer. The buffer
1205
* size (in pixels) must be aligned to a multiple of the superblock size.
1206
* Four lowest significant bits(LSBs) are reserved for block size.
1207
*
1208
* Where one superblock size is specified, it applies to all planes of the
1209
* buffer (e.g. 16x16, 32x8). When multiple superblock sizes are specified,
1210
* the first applies to the Luma plane and the second applies to the Chroma
1211
* plane(s). e.g. (32x8_64x4 means 32x8 Luma, with 64x4 Chroma).
1212
* Multiple superblock sizes are only valid for multi-plane YCbCr formats.
1213
*/
1214
#define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK 0xf
1215
#define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16 (1ULL)
1216
#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8 (2ULL)
1217
#define AFBC_FORMAT_MOD_BLOCK_SIZE_64x4 (3ULL)
1218
#define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8_64x4 (4ULL)
1219
1220
/*
1221
* AFBC lossless colorspace transform
1222
*
1223
* Indicates that the buffer makes use of the AFBC lossless colorspace
1224
* transform.
1225
*/
1226
#define AFBC_FORMAT_MOD_YTR (1ULL << 4)
1227
1228
/*
1229
* AFBC block-split
1230
*
1231
* Indicates that the payload of each superblock is split. The second
1232
* half of the payload is positioned at a predefined offset from the start
1233
* of the superblock payload.
1234
*/
1235
#define AFBC_FORMAT_MOD_SPLIT (1ULL << 5)
1236
1237
/*
1238
* AFBC sparse layout
1239
*
1240
* This flag indicates that the payload of each superblock must be stored at a
1241
* predefined position relative to the other superblocks in the same AFBC
1242
* buffer. This order is the same order used by the header buffer. In this mode
1243
* each superblock is given the same amount of space as an uncompressed
1244
* superblock of the particular format would require, rounding up to the next
1245
* multiple of 128 bytes in size.
1246
*/
1247
#define AFBC_FORMAT_MOD_SPARSE (1ULL << 6)
1248
1249
/*
1250
* AFBC copy-block restrict
1251
*
1252
* Buffers with this flag must obey the copy-block restriction. The restriction
1253
* is such that there are no copy-blocks referring across the border of 8x8
1254
* blocks. For the subsampled data the 8x8 limitation is also subsampled.
1255
*/
1256
#define AFBC_FORMAT_MOD_CBR (1ULL << 7)
1257
1258
/*
1259
* AFBC tiled layout
1260
*
1261
* The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
1262
* superblocks inside a tile are stored together in memory. 8x8 tiles are used
1263
* for pixel formats up to and including 32 bpp while 4x4 tiles are used for
1264
* larger bpp formats. The order between the tiles is scan line.
1265
* When the tiled layout is used, the buffer size (in pixels) must be aligned
1266
* to the tile size.
1267
*/
1268
#define AFBC_FORMAT_MOD_TILED (1ULL << 8)
1269
1270
/*
1271
* AFBC solid color blocks
1272
*
1273
* Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
1274
* can be reduced if a whole superblock is a single color.
1275
*/
1276
#define AFBC_FORMAT_MOD_SC (1ULL << 9)
1277
1278
/*
1279
* AFBC double-buffer
1280
*
1281
* Indicates that the buffer is allocated in a layout safe for front-buffer
1282
* rendering.
1283
*/
1284
#define AFBC_FORMAT_MOD_DB (1ULL << 10)
1285
1286
/*
1287
* AFBC buffer content hints
1288
*
1289
* Indicates that the buffer includes per-superblock content hints.
1290
*/
1291
#define AFBC_FORMAT_MOD_BCH (1ULL << 11)
1292
1293
/* AFBC uncompressed storage mode
1294
*
1295
* Indicates that the buffer is using AFBC uncompressed storage mode.
1296
* In this mode all superblock payloads in the buffer use the uncompressed
1297
* storage mode, which is usually only used for data which cannot be compressed.
1298
* The buffer layout is the same as for AFBC buffers without USM set, this only
1299
* affects the storage mode of the individual superblocks. Note that even a
1300
* buffer without USM set may use uncompressed storage mode for some or all
1301
* superblocks, USM just guarantees it for all.
1302
*/
1303
#define AFBC_FORMAT_MOD_USM (1ULL << 12)
1304
1305
/*
1306
* Arm Fixed-Rate Compression (AFRC) modifiers
1307
*
1308
* AFRC is a proprietary fixed rate image compression protocol and format,
1309
* designed to provide guaranteed bandwidth and memory footprint
1310
* reductions in graphics and media use-cases.
1311
*
1312
* AFRC buffers consist of one or more planes, with the same components
1313
* and meaning as an uncompressed buffer using the same pixel format.
1314
*
1315
* Within each plane, the pixel/luma/chroma values are grouped into
1316
* "coding unit" blocks which are individually compressed to a
1317
* fixed size (in bytes). All coding units within a given plane of a buffer
1318
* store the same number of values, and have the same compressed size.
1319
*
1320
* The coding unit size is configurable, allowing different rates of compression.
1321
*
1322
* The start of each AFRC buffer plane must be aligned to an alignment granule which
1323
* depends on the coding unit size.
1324
*
1325
* Coding Unit Size Plane Alignment
1326
* ---------------- ---------------
1327
* 16 bytes 1024 bytes
1328
* 24 bytes 512 bytes
1329
* 32 bytes 2048 bytes
1330
*
1331
* Coding units are grouped into paging tiles. AFRC buffer dimensions must be aligned
1332
* to a multiple of the paging tile dimensions.
1333
* The dimensions of each paging tile depend on whether the buffer is optimised for
1334
* scanline (SCAN layout) or rotated (ROT layout) access.
1335
*
1336
* Layout Paging Tile Width Paging Tile Height
1337
* ------ ----------------- ------------------
1338
* SCAN 16 coding units 4 coding units
1339
* ROT 8 coding units 8 coding units
1340
*
1341
* The dimensions of each coding unit depend on the number of components
1342
* in the compressed plane and whether the buffer is optimised for
1343
* scanline (SCAN layout) or rotated (ROT layout) access.
1344
*
1345
* Number of Components in Plane Layout Coding Unit Width Coding Unit Height
1346
* ----------------------------- --------- ----------------- ------------------
1347
* 1 SCAN 16 samples 4 samples
1348
* Example: 16x4 luma samples in a 'Y' plane
1349
* 16x4 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1350
* ----------------------------- --------- ----------------- ------------------
1351
* 1 ROT 8 samples 8 samples
1352
* Example: 8x8 luma samples in a 'Y' plane
1353
* 8x8 chroma 'V' values, in the 'V' plane of a fully-planar YUV buffer
1354
* ----------------------------- --------- ----------------- ------------------
1355
* 2 DONT CARE 8 samples 4 samples
1356
* Example: 8x4 chroma pairs in the 'UV' plane of a semi-planar YUV buffer
1357
* ----------------------------- --------- ----------------- ------------------
1358
* 3 DONT CARE 4 samples 4 samples
1359
* Example: 4x4 pixels in an RGB buffer without alpha
1360
* ----------------------------- --------- ----------------- ------------------
1361
* 4 DONT CARE 4 samples 4 samples
1362
* Example: 4x4 pixels in an RGB buffer with alpha
1363
*/
1364
1365
#define DRM_FORMAT_MOD_ARM_TYPE_AFRC 0x02
1366
1367
#define DRM_FORMAT_MOD_ARM_AFRC(__afrc_mode) \
1368
DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_AFRC, __afrc_mode)
1369
1370
/*
1371
* AFRC coding unit size modifier.
1372
*
1373
* Indicates the number of bytes used to store each compressed coding unit for
1374
* one or more planes in an AFRC encoded buffer. The coding unit size for chrominance
1375
* is the same for both Cb and Cr, which may be stored in separate planes.
1376
*
1377
* AFRC_FORMAT_MOD_CU_SIZE_P0 indicates the number of bytes used to store
1378
* each compressed coding unit in the first plane of the buffer. For RGBA buffers
1379
* this is the only plane, while for semi-planar and fully-planar YUV buffers,
1380
* this corresponds to the luma plane.
1381
*
1382
* AFRC_FORMAT_MOD_CU_SIZE_P12 indicates the number of bytes used to store
1383
* each compressed coding unit in the second and third planes in the buffer.
1384
* For semi-planar and fully-planar YUV buffers, this corresponds to the chroma plane(s).
1385
*
1386
* For single-plane buffers, AFRC_FORMAT_MOD_CU_SIZE_P0 must be specified
1387
* and AFRC_FORMAT_MOD_CU_SIZE_P12 must be zero.
1388
* For semi-planar and fully-planar buffers, both AFRC_FORMAT_MOD_CU_SIZE_P0 and
1389
* AFRC_FORMAT_MOD_CU_SIZE_P12 must be specified.
1390
*/
1391
#define AFRC_FORMAT_MOD_CU_SIZE_MASK 0xf
1392
#define AFRC_FORMAT_MOD_CU_SIZE_16 (1ULL)
1393
#define AFRC_FORMAT_MOD_CU_SIZE_24 (2ULL)
1394
#define AFRC_FORMAT_MOD_CU_SIZE_32 (3ULL)
1395
1396
#define AFRC_FORMAT_MOD_CU_SIZE_P0(__afrc_cu_size) (__afrc_cu_size)
1397
#define AFRC_FORMAT_MOD_CU_SIZE_P12(__afrc_cu_size) ((__afrc_cu_size) << 4)
1398
1399
/*
1400
* AFRC scanline memory layout.
1401
*
1402
* Indicates if the buffer uses the scanline-optimised layout
1403
* for an AFRC encoded buffer, otherwise, it uses the rotation-optimised layout.
1404
* The memory layout is the same for all planes.
1405
*/
1406
#define AFRC_FORMAT_MOD_LAYOUT_SCAN (1ULL << 8)
1407
1408
/*
1409
* Arm 16x16 Block U-Interleaved modifier
1410
*
1411
* This is used by Arm Mali Utgard and Midgard GPUs. It divides the image
1412
* into 16x16 pixel blocks. Blocks are stored linearly in order, but pixels
1413
* in the block are reordered.
1414
*/
1415
#define DRM_FORMAT_MOD_ARM_16X16_BLOCK_U_INTERLEAVED \
1416
DRM_FORMAT_MOD_ARM_CODE(DRM_FORMAT_MOD_ARM_TYPE_MISC, 1ULL)
1417
1418
/*
1419
* Allwinner tiled modifier
1420
*
1421
* This tiling mode is implemented by the VPU found on all Allwinner platforms,
1422
* codenamed sunxi. It is associated with a YUV format that uses either 2 or 3
1423
* planes.
1424
*
1425
* With this tiling, the luminance samples are disposed in tiles representing
1426
* 32x32 pixels and the chrominance samples in tiles representing 32x64 pixels.
1427
* The pixel order in each tile is linear and the tiles are disposed linearly,
1428
* both in row-major order.
1429
*/
1430
#define DRM_FORMAT_MOD_ALLWINNER_TILED fourcc_mod_code(ALLWINNER, 1)
1431
1432
/*
1433
* Amlogic Video Framebuffer Compression modifiers
1434
*
1435
* Amlogic uses a proprietary lossless image compression protocol and format
1436
* for their hardware video codec accelerators, either video decoders or
1437
* video input encoders.
1438
*
1439
* It considerably reduces memory bandwidth while writing and reading
1440
* frames in memory.
1441
*
1442
* The underlying storage is considered to be 3 components, 8bit or 10-bit
1443
* per component YCbCr 420, single plane :
1444
* - DRM_FORMAT_YUV420_8BIT
1445
* - DRM_FORMAT_YUV420_10BIT
1446
*
1447
* The first 8 bits of the mode defines the layout, then the following 8 bits
1448
* defines the options changing the layout.
1449
*
1450
* Not all combinations are valid, and different SoCs may support different
1451
* combinations of layout and options.
1452
*/
1453
#define __fourcc_mod_amlogic_layout_mask 0xff
1454
#define __fourcc_mod_amlogic_options_shift 8
1455
#define __fourcc_mod_amlogic_options_mask 0xff
1456
1457
#define DRM_FORMAT_MOD_AMLOGIC_FBC(__layout, __options) \
1458
fourcc_mod_code(AMLOGIC, \
1459
((__layout) & __fourcc_mod_amlogic_layout_mask) | \
1460
(((__options) & __fourcc_mod_amlogic_options_mask) \
1461
<< __fourcc_mod_amlogic_options_shift))
1462
1463
/* Amlogic FBC Layouts */
1464
1465
/*
1466
* Amlogic FBC Basic Layout
1467
*
1468
* The basic layout is composed of:
1469
* - a body content organized in 64x32 superblocks with 4096 bytes per
1470
* superblock in default mode.
1471
* - a 32 bytes per 128x64 header block
1472
*
1473
* This layout is transferrable between Amlogic SoCs supporting this modifier.
1474
*/
1475
#define AMLOGIC_FBC_LAYOUT_BASIC (1ULL)
1476
1477
/*
1478
* Amlogic FBC Scatter Memory layout
1479
*
1480
* Indicates the header contains IOMMU references to the compressed
1481
* frames content to optimize memory access and layout.
1482
*
1483
* In this mode, only the header memory address is needed, thus the
1484
* content memory organization is tied to the current producer
1485
* execution and cannot be saved/dumped neither transferrable between
1486
* Amlogic SoCs supporting this modifier.
1487
*
1488
* Due to the nature of the layout, these buffers are not expected to
1489
* be accessible by the user-space clients, but only accessible by the
1490
* hardware producers and consumers.
1491
*
1492
* The user-space clients should expect a failure while trying to mmap
1493
* the DMA-BUF handle returned by the producer.
1494
*/
1495
#define AMLOGIC_FBC_LAYOUT_SCATTER (2ULL)
1496
1497
/* Amlogic FBC Layout Options Bit Mask */
1498
1499
/*
1500
* Amlogic FBC Memory Saving mode
1501
*
1502
* Indicates the storage is packed when pixel size is multiple of word
1503
* boundaries, i.e. 8bit should be stored in this mode to save allocation
1504
* memory.
1505
*
1506
* This mode reduces body layout to 3072 bytes per 64x32 superblock with
1507
* the basic layout and 3200 bytes per 64x32 superblock combined with
1508
* the scatter layout.
1509
*/
1510
#define AMLOGIC_FBC_OPTION_MEM_SAVING (1ULL << 0)
1511
1512
/* MediaTek modifiers
1513
* Bits Parameter Notes
1514
* ----- ------------------------ ---------------------------------------------
1515
* 7: 0 TILE LAYOUT Values are MTK_FMT_MOD_TILE_*
1516
* 15: 8 COMPRESSION Values are MTK_FMT_MOD_COMPRESS_*
1517
* 23:16 10 BIT LAYOUT Values are MTK_FMT_MOD_10BIT_LAYOUT_*
1518
*
1519
*/
1520
1521
#define DRM_FORMAT_MOD_MTK(__flags) fourcc_mod_code(MTK, __flags)
1522
1523
/*
1524
* MediaTek Tiled Modifier
1525
* The lowest 8 bits of the modifier is used to specify the tiling
1526
* layout. Only the 16L_32S tiling is used for now, but we define an
1527
* "untiled" version and leave room for future expansion.
1528
*/
1529
#define MTK_FMT_MOD_TILE_MASK 0xf
1530
#define MTK_FMT_MOD_TILE_NONE 0x0
1531
#define MTK_FMT_MOD_TILE_16L32S 0x1
1532
1533
/*
1534
* Bits 8-15 specify compression options
1535
*/
1536
#define MTK_FMT_MOD_COMPRESS_MASK (0xf << 8)
1537
#define MTK_FMT_MOD_COMPRESS_NONE (0x0 << 8)
1538
#define MTK_FMT_MOD_COMPRESS_V1 (0x1 << 8)
1539
1540
/*
1541
* Bits 16-23 specify how the bits of 10 bit formats are
1542
* stored out in memory
1543
*/
1544
#define MTK_FMT_MOD_10BIT_LAYOUT_MASK (0xf << 16)
1545
#define MTK_FMT_MOD_10BIT_LAYOUT_PACKED (0x0 << 16)
1546
#define MTK_FMT_MOD_10BIT_LAYOUT_LSBTILED (0x1 << 16)
1547
#define MTK_FMT_MOD_10BIT_LAYOUT_LSBRASTER (0x2 << 16)
1548
1549
/* alias for the most common tiling format */
1550
#define DRM_FORMAT_MOD_MTK_16L_32S_TILE DRM_FORMAT_MOD_MTK(MTK_FMT_MOD_TILE_16L32S)
1551
1552
/*
1553
* Apple GPU-tiled layouts.
1554
*
1555
* Apple GPUs support nonlinear tilings with optional lossless compression.
1556
*
1557
* GPU-tiled images are divided into 16KiB tiles:
1558
*
1559
* Bytes per pixel Tile size
1560
* --------------- ---------
1561
* 1 128x128
1562
* 2 128x64
1563
* 4 64x64
1564
* 8 64x32
1565
* 16 32x32
1566
*
1567
* Tiles are raster-order. Pixels within a tile are interleaved (Morton order).
1568
*
1569
* Compressed images pad the body to 128-bytes and are immediately followed by a
1570
* metadata section. The metadata section rounds the image dimensions to
1571
* powers-of-two and contains 8 bytes for each 16x16 compression subtile.
1572
* Subtiles are interleaved (Morton order).
1573
*
1574
* All images are 128-byte aligned.
1575
*
1576
* These layouts fundamentally do not have meaningful strides. No matter how we
1577
* specify strides for these layouts, userspace unaware of Apple image layouts
1578
* will be unable to use correctly the specified stride for any purpose.
1579
* Userspace aware of the image layouts do not use strides. The most "correct"
1580
* convention would be setting the image stride to 0. Unfortunately, some
1581
* software assumes the stride is at least (width * bytes per pixel). We
1582
* therefore require that stride equals (width * bytes per pixel). Since the
1583
* stride is arbitrary here, we pick the simplest convention.
1584
*
1585
* Although containing two sections, compressed image layouts are treated in
1586
* software as a single plane. This is modelled after AFBC, a similar
1587
* scheme. Attempting to separate the sections to be "explicit" in DRM would
1588
* only generate more confusion, as software does not treat the image this way.
1589
*
1590
* For detailed information on the hardware image layouts, see
1591
* https://docs.mesa3d.org/drivers/asahi.html#image-layouts
1592
*/
1593
#define DRM_FORMAT_MOD_APPLE_GPU_TILED fourcc_mod_code(APPLE, 1)
1594
#define DRM_FORMAT_MOD_APPLE_GPU_TILED_COMPRESSED fourcc_mod_code(APPLE, 2)
1595
1596
/*
1597
* AMD modifiers
1598
*
1599
* Memory layout:
1600
*
1601
* without DCC:
1602
* - main surface
1603
*
1604
* with DCC & without DCC_RETILE:
1605
* - main surface in plane 0
1606
* - DCC surface in plane 1 (RB-aligned, pipe-aligned if DCC_PIPE_ALIGN is set)
1607
*
1608
* with DCC & DCC_RETILE:
1609
* - main surface in plane 0
1610
* - displayable DCC surface in plane 1 (not RB-aligned & not pipe-aligned)
1611
* - pipe-aligned DCC surface in plane 2 (RB-aligned & pipe-aligned)
1612
*
1613
* For multi-plane formats the above surfaces get merged into one plane for
1614
* each format plane, based on the required alignment only.
1615
*
1616
* Bits Parameter Notes
1617
* ----- ------------------------ ---------------------------------------------
1618
*
1619
* 7:0 TILE_VERSION Values are AMD_FMT_MOD_TILE_VER_*
1620
* 12:8 TILE Values are AMD_FMT_MOD_TILE_<version>_*
1621
* 13 DCC
1622
* 14 DCC_RETILE
1623
* 15 DCC_PIPE_ALIGN
1624
* 16 DCC_INDEPENDENT_64B
1625
* 17 DCC_INDEPENDENT_128B
1626
* 19:18 DCC_MAX_COMPRESSED_BLOCK Values are AMD_FMT_MOD_DCC_BLOCK_*
1627
* 20 DCC_CONSTANT_ENCODE
1628
* 23:21 PIPE_XOR_BITS Only for some chips
1629
* 26:24 BANK_XOR_BITS Only for some chips
1630
* 29:27 PACKERS Only for some chips
1631
* 32:30 RB Only for some chips
1632
* 35:33 PIPE Only for some chips
1633
* 55:36 - Reserved for future use, must be zero
1634
*/
1635
#define AMD_FMT_MOD fourcc_mod_code(AMD, 0)
1636
1637
#define IS_AMD_FMT_MOD(val) (((val) >> 56) == DRM_FORMAT_MOD_VENDOR_AMD)
1638
1639
/* Reserve 0 for GFX8 and older */
1640
#define AMD_FMT_MOD_TILE_VER_GFX9 1
1641
#define AMD_FMT_MOD_TILE_VER_GFX10 2
1642
#define AMD_FMT_MOD_TILE_VER_GFX10_RBPLUS 3
1643
#define AMD_FMT_MOD_TILE_VER_GFX11 4
1644
#define AMD_FMT_MOD_TILE_VER_GFX12 5
1645
1646
/*
1647
* 64K_S is the same for GFX9/GFX10/GFX10_RBPLUS and hence has GFX9 as canonical
1648
* version.
1649
*/
1650
#define AMD_FMT_MOD_TILE_GFX9_64K_S 9
1651
1652
/*
1653
* 64K_D for non-32 bpp is the same for GFX9/GFX10/GFX10_RBPLUS and hence has
1654
* GFX9 as canonical version.
1655
*
1656
* 64K_D_2D on GFX12 is identical to 64K_D on GFX11.
1657
*/
1658
#define AMD_FMT_MOD_TILE_GFX9_64K_D 10
1659
#define AMD_FMT_MOD_TILE_GFX9_4K_D_X 22
1660
#define AMD_FMT_MOD_TILE_GFX9_64K_S_X 25
1661
#define AMD_FMT_MOD_TILE_GFX9_64K_D_X 26
1662
#define AMD_FMT_MOD_TILE_GFX9_64K_R_X 27
1663
#define AMD_FMT_MOD_TILE_GFX11_256K_R_X 31
1664
1665
/* Gfx12 swizzle modes:
1666
* 0 - LINEAR
1667
* 1 - 256B_2D - 2D block dimensions
1668
* 2 - 4KB_2D
1669
* 3 - 64KB_2D
1670
* 4 - 256KB_2D
1671
* 5 - 4KB_3D - 3D block dimensions
1672
* 6 - 64KB_3D
1673
* 7 - 256KB_3D
1674
*/
1675
#define AMD_FMT_MOD_TILE_GFX12_256B_2D 1
1676
#define AMD_FMT_MOD_TILE_GFX12_4K_2D 2
1677
#define AMD_FMT_MOD_TILE_GFX12_64K_2D 3
1678
#define AMD_FMT_MOD_TILE_GFX12_256K_2D 4
1679
1680
#define AMD_FMT_MOD_DCC_BLOCK_64B 0
1681
#define AMD_FMT_MOD_DCC_BLOCK_128B 1
1682
#define AMD_FMT_MOD_DCC_BLOCK_256B 2
1683
1684
#define AMD_FMT_MOD_TILE_VERSION_SHIFT 0
1685
#define AMD_FMT_MOD_TILE_VERSION_MASK 0xFF
1686
#define AMD_FMT_MOD_TILE_SHIFT 8
1687
#define AMD_FMT_MOD_TILE_MASK 0x1F
1688
1689
/* Whether DCC compression is enabled. */
1690
#define AMD_FMT_MOD_DCC_SHIFT 13
1691
#define AMD_FMT_MOD_DCC_MASK 0x1
1692
1693
/*
1694
* Whether to include two DCC surfaces, one which is rb & pipe aligned, and
1695
* one which is not-aligned.
1696
*/
1697
#define AMD_FMT_MOD_DCC_RETILE_SHIFT 14
1698
#define AMD_FMT_MOD_DCC_RETILE_MASK 0x1
1699
1700
/* Only set if DCC_RETILE = false */
1701
#define AMD_FMT_MOD_DCC_PIPE_ALIGN_SHIFT 15
1702
#define AMD_FMT_MOD_DCC_PIPE_ALIGN_MASK 0x1
1703
1704
#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_SHIFT 16
1705
#define AMD_FMT_MOD_DCC_INDEPENDENT_64B_MASK 0x1
1706
#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_SHIFT 17
1707
#define AMD_FMT_MOD_DCC_INDEPENDENT_128B_MASK 0x1
1708
#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_SHIFT 18
1709
#define AMD_FMT_MOD_DCC_MAX_COMPRESSED_BLOCK_MASK 0x3
1710
1711
/*
1712
* DCC supports embedding some clear colors directly in the DCC surface.
1713
* However, on older GPUs the rendering HW ignores the embedded clear color
1714
* and prefers the driver provided color. This necessitates doing a fastclear
1715
* eliminate operation before a process transfers control.
1716
*
1717
* If this bit is set that means the fastclear eliminate is not needed for these
1718
* embeddable colors.
1719
*/
1720
#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_SHIFT 20
1721
#define AMD_FMT_MOD_DCC_CONSTANT_ENCODE_MASK 0x1
1722
1723
/*
1724
* The below fields are for accounting for per GPU differences. These are only
1725
* relevant for GFX9 and later and if the tile field is *_X/_T.
1726
*
1727
* PIPE_XOR_BITS = always needed
1728
* BANK_XOR_BITS = only for TILE_VER_GFX9
1729
* PACKERS = only for TILE_VER_GFX10_RBPLUS
1730
* RB = only for TILE_VER_GFX9 & DCC
1731
* PIPE = only for TILE_VER_GFX9 & DCC & (DCC_RETILE | DCC_PIPE_ALIGN)
1732
*/
1733
#define AMD_FMT_MOD_PIPE_XOR_BITS_SHIFT 21
1734
#define AMD_FMT_MOD_PIPE_XOR_BITS_MASK 0x7
1735
#define AMD_FMT_MOD_BANK_XOR_BITS_SHIFT 24
1736
#define AMD_FMT_MOD_BANK_XOR_BITS_MASK 0x7
1737
#define AMD_FMT_MOD_PACKERS_SHIFT 27
1738
#define AMD_FMT_MOD_PACKERS_MASK 0x7
1739
#define AMD_FMT_MOD_RB_SHIFT 30
1740
#define AMD_FMT_MOD_RB_MASK 0x7
1741
#define AMD_FMT_MOD_PIPE_SHIFT 33
1742
#define AMD_FMT_MOD_PIPE_MASK 0x7
1743
1744
#define AMD_FMT_MOD_SET(field, value) \
1745
((__u64)(value) << AMD_FMT_MOD_##field##_SHIFT)
1746
#define AMD_FMT_MOD_GET(field, value) \
1747
(((value) >> AMD_FMT_MOD_##field##_SHIFT) & AMD_FMT_MOD_##field##_MASK)
1748
#define AMD_FMT_MOD_CLEAR(field) \
1749
(~((__u64)AMD_FMT_MOD_##field##_MASK << AMD_FMT_MOD_##field##_SHIFT))
1750
1751
#if defined(__cplusplus)
1752
}
1753
#endif
1754
1755
#endif /* DRM_FOURCC_H */
1756
1757