Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/uapi/drm/habanalabs_accel.h
26282 views
1
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
2
*
3
* Copyright 2016-2023 HabanaLabs, Ltd.
4
* All Rights Reserved.
5
*
6
*/
7
8
#ifndef HABANALABS_H_
9
#define HABANALABS_H_
10
11
#include <drm/drm.h>
12
13
/*
14
* Defines that are asic-specific but constitutes as ABI between kernel driver
15
* and userspace
16
*/
17
#define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START 0x8000 /* 32KB */
18
#define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START 0x80 /* 128 bytes */
19
20
/*
21
* 128 SOBs reserved for collective wait
22
* 16 SOBs reserved for sync stream
23
*/
24
#define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT 144
25
26
/*
27
* 64 monitors reserved for collective wait
28
* 8 monitors reserved for sync stream
29
*/
30
#define GAUDI_FIRST_AVAILABLE_W_S_MONITOR 72
31
32
/* Max number of elements in timestamps registration buffers */
33
#define TS_MAX_ELEMENTS_NUM (1 << 20) /* 1MB */
34
35
/*
36
* Goya queue Numbering
37
*
38
* The external queues (PCI DMA channels) MUST be before the internal queues
39
* and each group (PCI DMA channels and internal) must be contiguous inside
40
* itself but there can be a gap between the two groups (although not
41
* recommended)
42
*/
43
44
enum goya_queue_id {
45
GOYA_QUEUE_ID_DMA_0 = 0,
46
GOYA_QUEUE_ID_DMA_1 = 1,
47
GOYA_QUEUE_ID_DMA_2 = 2,
48
GOYA_QUEUE_ID_DMA_3 = 3,
49
GOYA_QUEUE_ID_DMA_4 = 4,
50
GOYA_QUEUE_ID_CPU_PQ = 5,
51
GOYA_QUEUE_ID_MME = 6, /* Internal queues start here */
52
GOYA_QUEUE_ID_TPC0 = 7,
53
GOYA_QUEUE_ID_TPC1 = 8,
54
GOYA_QUEUE_ID_TPC2 = 9,
55
GOYA_QUEUE_ID_TPC3 = 10,
56
GOYA_QUEUE_ID_TPC4 = 11,
57
GOYA_QUEUE_ID_TPC5 = 12,
58
GOYA_QUEUE_ID_TPC6 = 13,
59
GOYA_QUEUE_ID_TPC7 = 14,
60
GOYA_QUEUE_ID_SIZE
61
};
62
63
/*
64
* Gaudi queue Numbering
65
* External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
66
* Except one CPU queue, all the rest are internal queues.
67
*/
68
69
enum gaudi_queue_id {
70
GAUDI_QUEUE_ID_DMA_0_0 = 0, /* external */
71
GAUDI_QUEUE_ID_DMA_0_1 = 1, /* external */
72
GAUDI_QUEUE_ID_DMA_0_2 = 2, /* external */
73
GAUDI_QUEUE_ID_DMA_0_3 = 3, /* external */
74
GAUDI_QUEUE_ID_DMA_1_0 = 4, /* external */
75
GAUDI_QUEUE_ID_DMA_1_1 = 5, /* external */
76
GAUDI_QUEUE_ID_DMA_1_2 = 6, /* external */
77
GAUDI_QUEUE_ID_DMA_1_3 = 7, /* external */
78
GAUDI_QUEUE_ID_CPU_PQ = 8, /* CPU */
79
GAUDI_QUEUE_ID_DMA_2_0 = 9, /* internal */
80
GAUDI_QUEUE_ID_DMA_2_1 = 10, /* internal */
81
GAUDI_QUEUE_ID_DMA_2_2 = 11, /* internal */
82
GAUDI_QUEUE_ID_DMA_2_3 = 12, /* internal */
83
GAUDI_QUEUE_ID_DMA_3_0 = 13, /* internal */
84
GAUDI_QUEUE_ID_DMA_3_1 = 14, /* internal */
85
GAUDI_QUEUE_ID_DMA_3_2 = 15, /* internal */
86
GAUDI_QUEUE_ID_DMA_3_3 = 16, /* internal */
87
GAUDI_QUEUE_ID_DMA_4_0 = 17, /* internal */
88
GAUDI_QUEUE_ID_DMA_4_1 = 18, /* internal */
89
GAUDI_QUEUE_ID_DMA_4_2 = 19, /* internal */
90
GAUDI_QUEUE_ID_DMA_4_3 = 20, /* internal */
91
GAUDI_QUEUE_ID_DMA_5_0 = 21, /* internal */
92
GAUDI_QUEUE_ID_DMA_5_1 = 22, /* internal */
93
GAUDI_QUEUE_ID_DMA_5_2 = 23, /* internal */
94
GAUDI_QUEUE_ID_DMA_5_3 = 24, /* internal */
95
GAUDI_QUEUE_ID_DMA_6_0 = 25, /* internal */
96
GAUDI_QUEUE_ID_DMA_6_1 = 26, /* internal */
97
GAUDI_QUEUE_ID_DMA_6_2 = 27, /* internal */
98
GAUDI_QUEUE_ID_DMA_6_3 = 28, /* internal */
99
GAUDI_QUEUE_ID_DMA_7_0 = 29, /* internal */
100
GAUDI_QUEUE_ID_DMA_7_1 = 30, /* internal */
101
GAUDI_QUEUE_ID_DMA_7_2 = 31, /* internal */
102
GAUDI_QUEUE_ID_DMA_7_3 = 32, /* internal */
103
GAUDI_QUEUE_ID_MME_0_0 = 33, /* internal */
104
GAUDI_QUEUE_ID_MME_0_1 = 34, /* internal */
105
GAUDI_QUEUE_ID_MME_0_2 = 35, /* internal */
106
GAUDI_QUEUE_ID_MME_0_3 = 36, /* internal */
107
GAUDI_QUEUE_ID_MME_1_0 = 37, /* internal */
108
GAUDI_QUEUE_ID_MME_1_1 = 38, /* internal */
109
GAUDI_QUEUE_ID_MME_1_2 = 39, /* internal */
110
GAUDI_QUEUE_ID_MME_1_3 = 40, /* internal */
111
GAUDI_QUEUE_ID_TPC_0_0 = 41, /* internal */
112
GAUDI_QUEUE_ID_TPC_0_1 = 42, /* internal */
113
GAUDI_QUEUE_ID_TPC_0_2 = 43, /* internal */
114
GAUDI_QUEUE_ID_TPC_0_3 = 44, /* internal */
115
GAUDI_QUEUE_ID_TPC_1_0 = 45, /* internal */
116
GAUDI_QUEUE_ID_TPC_1_1 = 46, /* internal */
117
GAUDI_QUEUE_ID_TPC_1_2 = 47, /* internal */
118
GAUDI_QUEUE_ID_TPC_1_3 = 48, /* internal */
119
GAUDI_QUEUE_ID_TPC_2_0 = 49, /* internal */
120
GAUDI_QUEUE_ID_TPC_2_1 = 50, /* internal */
121
GAUDI_QUEUE_ID_TPC_2_2 = 51, /* internal */
122
GAUDI_QUEUE_ID_TPC_2_3 = 52, /* internal */
123
GAUDI_QUEUE_ID_TPC_3_0 = 53, /* internal */
124
GAUDI_QUEUE_ID_TPC_3_1 = 54, /* internal */
125
GAUDI_QUEUE_ID_TPC_3_2 = 55, /* internal */
126
GAUDI_QUEUE_ID_TPC_3_3 = 56, /* internal */
127
GAUDI_QUEUE_ID_TPC_4_0 = 57, /* internal */
128
GAUDI_QUEUE_ID_TPC_4_1 = 58, /* internal */
129
GAUDI_QUEUE_ID_TPC_4_2 = 59, /* internal */
130
GAUDI_QUEUE_ID_TPC_4_3 = 60, /* internal */
131
GAUDI_QUEUE_ID_TPC_5_0 = 61, /* internal */
132
GAUDI_QUEUE_ID_TPC_5_1 = 62, /* internal */
133
GAUDI_QUEUE_ID_TPC_5_2 = 63, /* internal */
134
GAUDI_QUEUE_ID_TPC_5_3 = 64, /* internal */
135
GAUDI_QUEUE_ID_TPC_6_0 = 65, /* internal */
136
GAUDI_QUEUE_ID_TPC_6_1 = 66, /* internal */
137
GAUDI_QUEUE_ID_TPC_6_2 = 67, /* internal */
138
GAUDI_QUEUE_ID_TPC_6_3 = 68, /* internal */
139
GAUDI_QUEUE_ID_TPC_7_0 = 69, /* internal */
140
GAUDI_QUEUE_ID_TPC_7_1 = 70, /* internal */
141
GAUDI_QUEUE_ID_TPC_7_2 = 71, /* internal */
142
GAUDI_QUEUE_ID_TPC_7_3 = 72, /* internal */
143
GAUDI_QUEUE_ID_NIC_0_0 = 73, /* internal */
144
GAUDI_QUEUE_ID_NIC_0_1 = 74, /* internal */
145
GAUDI_QUEUE_ID_NIC_0_2 = 75, /* internal */
146
GAUDI_QUEUE_ID_NIC_0_3 = 76, /* internal */
147
GAUDI_QUEUE_ID_NIC_1_0 = 77, /* internal */
148
GAUDI_QUEUE_ID_NIC_1_1 = 78, /* internal */
149
GAUDI_QUEUE_ID_NIC_1_2 = 79, /* internal */
150
GAUDI_QUEUE_ID_NIC_1_3 = 80, /* internal */
151
GAUDI_QUEUE_ID_NIC_2_0 = 81, /* internal */
152
GAUDI_QUEUE_ID_NIC_2_1 = 82, /* internal */
153
GAUDI_QUEUE_ID_NIC_2_2 = 83, /* internal */
154
GAUDI_QUEUE_ID_NIC_2_3 = 84, /* internal */
155
GAUDI_QUEUE_ID_NIC_3_0 = 85, /* internal */
156
GAUDI_QUEUE_ID_NIC_3_1 = 86, /* internal */
157
GAUDI_QUEUE_ID_NIC_3_2 = 87, /* internal */
158
GAUDI_QUEUE_ID_NIC_3_3 = 88, /* internal */
159
GAUDI_QUEUE_ID_NIC_4_0 = 89, /* internal */
160
GAUDI_QUEUE_ID_NIC_4_1 = 90, /* internal */
161
GAUDI_QUEUE_ID_NIC_4_2 = 91, /* internal */
162
GAUDI_QUEUE_ID_NIC_4_3 = 92, /* internal */
163
GAUDI_QUEUE_ID_NIC_5_0 = 93, /* internal */
164
GAUDI_QUEUE_ID_NIC_5_1 = 94, /* internal */
165
GAUDI_QUEUE_ID_NIC_5_2 = 95, /* internal */
166
GAUDI_QUEUE_ID_NIC_5_3 = 96, /* internal */
167
GAUDI_QUEUE_ID_NIC_6_0 = 97, /* internal */
168
GAUDI_QUEUE_ID_NIC_6_1 = 98, /* internal */
169
GAUDI_QUEUE_ID_NIC_6_2 = 99, /* internal */
170
GAUDI_QUEUE_ID_NIC_6_3 = 100, /* internal */
171
GAUDI_QUEUE_ID_NIC_7_0 = 101, /* internal */
172
GAUDI_QUEUE_ID_NIC_7_1 = 102, /* internal */
173
GAUDI_QUEUE_ID_NIC_7_2 = 103, /* internal */
174
GAUDI_QUEUE_ID_NIC_7_3 = 104, /* internal */
175
GAUDI_QUEUE_ID_NIC_8_0 = 105, /* internal */
176
GAUDI_QUEUE_ID_NIC_8_1 = 106, /* internal */
177
GAUDI_QUEUE_ID_NIC_8_2 = 107, /* internal */
178
GAUDI_QUEUE_ID_NIC_8_3 = 108, /* internal */
179
GAUDI_QUEUE_ID_NIC_9_0 = 109, /* internal */
180
GAUDI_QUEUE_ID_NIC_9_1 = 110, /* internal */
181
GAUDI_QUEUE_ID_NIC_9_2 = 111, /* internal */
182
GAUDI_QUEUE_ID_NIC_9_3 = 112, /* internal */
183
GAUDI_QUEUE_ID_SIZE
184
};
185
186
/*
187
* In GAUDI2 we have two modes of operation in regard to queues:
188
* 1. Legacy mode, where each QMAN exposes 4 streams to the user
189
* 2. F/W mode, where we use F/W to schedule the JOBS to the different queues.
190
*
191
* When in legacy mode, the user sends the queue id per JOB according to
192
* enum gaudi2_queue_id below.
193
*
194
* When in F/W mode, the user sends a stream id per Command Submission. The
195
* stream id is a running number from 0 up to (N-1), where N is the number
196
* of streams the F/W exposes and is passed to the user in
197
* struct hl_info_hw_ip_info
198
*/
199
200
enum gaudi2_queue_id {
201
GAUDI2_QUEUE_ID_PDMA_0_0 = 0,
202
GAUDI2_QUEUE_ID_PDMA_0_1 = 1,
203
GAUDI2_QUEUE_ID_PDMA_0_2 = 2,
204
GAUDI2_QUEUE_ID_PDMA_0_3 = 3,
205
GAUDI2_QUEUE_ID_PDMA_1_0 = 4,
206
GAUDI2_QUEUE_ID_PDMA_1_1 = 5,
207
GAUDI2_QUEUE_ID_PDMA_1_2 = 6,
208
GAUDI2_QUEUE_ID_PDMA_1_3 = 7,
209
GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8,
210
GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9,
211
GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10,
212
GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11,
213
GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12,
214
GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13,
215
GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14,
216
GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15,
217
GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16,
218
GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17,
219
GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18,
220
GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19,
221
GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20,
222
GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21,
223
GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22,
224
GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23,
225
GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24,
226
GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25,
227
GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26,
228
GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27,
229
GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28,
230
GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29,
231
GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30,
232
GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31,
233
GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32,
234
GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33,
235
GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34,
236
GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35,
237
GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36,
238
GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37,
239
GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38,
240
GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39,
241
GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40,
242
GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41,
243
GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42,
244
GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43,
245
GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44,
246
GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45,
247
GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46,
248
GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47,
249
GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48,
250
GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49,
251
GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50,
252
GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51,
253
GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52,
254
GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53,
255
GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54,
256
GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55,
257
GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56,
258
GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57,
259
GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58,
260
GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59,
261
GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60,
262
GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61,
263
GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62,
264
GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63,
265
GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64,
266
GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65,
267
GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66,
268
GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67,
269
GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68,
270
GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69,
271
GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70,
272
GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71,
273
GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72,
274
GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73,
275
GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74,
276
GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75,
277
GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76,
278
GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77,
279
GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78,
280
GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79,
281
GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80,
282
GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81,
283
GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82,
284
GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83,
285
GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84,
286
GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85,
287
GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86,
288
GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87,
289
GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88,
290
GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89,
291
GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90,
292
GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91,
293
GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92,
294
GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93,
295
GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94,
296
GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95,
297
GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96,
298
GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97,
299
GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98,
300
GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99,
301
GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100,
302
GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101,
303
GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102,
304
GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103,
305
GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104,
306
GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105,
307
GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106,
308
GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107,
309
GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108,
310
GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109,
311
GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110,
312
GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111,
313
GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112,
314
GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113,
315
GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114,
316
GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115,
317
GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116,
318
GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117,
319
GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118,
320
GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119,
321
GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120,
322
GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121,
323
GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122,
324
GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123,
325
GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124,
326
GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125,
327
GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126,
328
GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127,
329
GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128,
330
GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129,
331
GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130,
332
GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131,
333
GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132,
334
GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133,
335
GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134,
336
GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135,
337
GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136,
338
GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137,
339
GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138,
340
GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139,
341
GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140,
342
GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141,
343
GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142,
344
GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143,
345
GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144,
346
GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145,
347
GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146,
348
GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147,
349
GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148,
350
GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149,
351
GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150,
352
GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151,
353
GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152,
354
GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153,
355
GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154,
356
GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155,
357
GAUDI2_QUEUE_ID_NIC_0_0 = 156,
358
GAUDI2_QUEUE_ID_NIC_0_1 = 157,
359
GAUDI2_QUEUE_ID_NIC_0_2 = 158,
360
GAUDI2_QUEUE_ID_NIC_0_3 = 159,
361
GAUDI2_QUEUE_ID_NIC_1_0 = 160,
362
GAUDI2_QUEUE_ID_NIC_1_1 = 161,
363
GAUDI2_QUEUE_ID_NIC_1_2 = 162,
364
GAUDI2_QUEUE_ID_NIC_1_3 = 163,
365
GAUDI2_QUEUE_ID_NIC_2_0 = 164,
366
GAUDI2_QUEUE_ID_NIC_2_1 = 165,
367
GAUDI2_QUEUE_ID_NIC_2_2 = 166,
368
GAUDI2_QUEUE_ID_NIC_2_3 = 167,
369
GAUDI2_QUEUE_ID_NIC_3_0 = 168,
370
GAUDI2_QUEUE_ID_NIC_3_1 = 169,
371
GAUDI2_QUEUE_ID_NIC_3_2 = 170,
372
GAUDI2_QUEUE_ID_NIC_3_3 = 171,
373
GAUDI2_QUEUE_ID_NIC_4_0 = 172,
374
GAUDI2_QUEUE_ID_NIC_4_1 = 173,
375
GAUDI2_QUEUE_ID_NIC_4_2 = 174,
376
GAUDI2_QUEUE_ID_NIC_4_3 = 175,
377
GAUDI2_QUEUE_ID_NIC_5_0 = 176,
378
GAUDI2_QUEUE_ID_NIC_5_1 = 177,
379
GAUDI2_QUEUE_ID_NIC_5_2 = 178,
380
GAUDI2_QUEUE_ID_NIC_5_3 = 179,
381
GAUDI2_QUEUE_ID_NIC_6_0 = 180,
382
GAUDI2_QUEUE_ID_NIC_6_1 = 181,
383
GAUDI2_QUEUE_ID_NIC_6_2 = 182,
384
GAUDI2_QUEUE_ID_NIC_6_3 = 183,
385
GAUDI2_QUEUE_ID_NIC_7_0 = 184,
386
GAUDI2_QUEUE_ID_NIC_7_1 = 185,
387
GAUDI2_QUEUE_ID_NIC_7_2 = 186,
388
GAUDI2_QUEUE_ID_NIC_7_3 = 187,
389
GAUDI2_QUEUE_ID_NIC_8_0 = 188,
390
GAUDI2_QUEUE_ID_NIC_8_1 = 189,
391
GAUDI2_QUEUE_ID_NIC_8_2 = 190,
392
GAUDI2_QUEUE_ID_NIC_8_3 = 191,
393
GAUDI2_QUEUE_ID_NIC_9_0 = 192,
394
GAUDI2_QUEUE_ID_NIC_9_1 = 193,
395
GAUDI2_QUEUE_ID_NIC_9_2 = 194,
396
GAUDI2_QUEUE_ID_NIC_9_3 = 195,
397
GAUDI2_QUEUE_ID_NIC_10_0 = 196,
398
GAUDI2_QUEUE_ID_NIC_10_1 = 197,
399
GAUDI2_QUEUE_ID_NIC_10_2 = 198,
400
GAUDI2_QUEUE_ID_NIC_10_3 = 199,
401
GAUDI2_QUEUE_ID_NIC_11_0 = 200,
402
GAUDI2_QUEUE_ID_NIC_11_1 = 201,
403
GAUDI2_QUEUE_ID_NIC_11_2 = 202,
404
GAUDI2_QUEUE_ID_NIC_11_3 = 203,
405
GAUDI2_QUEUE_ID_NIC_12_0 = 204,
406
GAUDI2_QUEUE_ID_NIC_12_1 = 205,
407
GAUDI2_QUEUE_ID_NIC_12_2 = 206,
408
GAUDI2_QUEUE_ID_NIC_12_3 = 207,
409
GAUDI2_QUEUE_ID_NIC_13_0 = 208,
410
GAUDI2_QUEUE_ID_NIC_13_1 = 209,
411
GAUDI2_QUEUE_ID_NIC_13_2 = 210,
412
GAUDI2_QUEUE_ID_NIC_13_3 = 211,
413
GAUDI2_QUEUE_ID_NIC_14_0 = 212,
414
GAUDI2_QUEUE_ID_NIC_14_1 = 213,
415
GAUDI2_QUEUE_ID_NIC_14_2 = 214,
416
GAUDI2_QUEUE_ID_NIC_14_3 = 215,
417
GAUDI2_QUEUE_ID_NIC_15_0 = 216,
418
GAUDI2_QUEUE_ID_NIC_15_1 = 217,
419
GAUDI2_QUEUE_ID_NIC_15_2 = 218,
420
GAUDI2_QUEUE_ID_NIC_15_3 = 219,
421
GAUDI2_QUEUE_ID_NIC_16_0 = 220,
422
GAUDI2_QUEUE_ID_NIC_16_1 = 221,
423
GAUDI2_QUEUE_ID_NIC_16_2 = 222,
424
GAUDI2_QUEUE_ID_NIC_16_3 = 223,
425
GAUDI2_QUEUE_ID_NIC_17_0 = 224,
426
GAUDI2_QUEUE_ID_NIC_17_1 = 225,
427
GAUDI2_QUEUE_ID_NIC_17_2 = 226,
428
GAUDI2_QUEUE_ID_NIC_17_3 = 227,
429
GAUDI2_QUEUE_ID_NIC_18_0 = 228,
430
GAUDI2_QUEUE_ID_NIC_18_1 = 229,
431
GAUDI2_QUEUE_ID_NIC_18_2 = 230,
432
GAUDI2_QUEUE_ID_NIC_18_3 = 231,
433
GAUDI2_QUEUE_ID_NIC_19_0 = 232,
434
GAUDI2_QUEUE_ID_NIC_19_1 = 233,
435
GAUDI2_QUEUE_ID_NIC_19_2 = 234,
436
GAUDI2_QUEUE_ID_NIC_19_3 = 235,
437
GAUDI2_QUEUE_ID_NIC_20_0 = 236,
438
GAUDI2_QUEUE_ID_NIC_20_1 = 237,
439
GAUDI2_QUEUE_ID_NIC_20_2 = 238,
440
GAUDI2_QUEUE_ID_NIC_20_3 = 239,
441
GAUDI2_QUEUE_ID_NIC_21_0 = 240,
442
GAUDI2_QUEUE_ID_NIC_21_1 = 241,
443
GAUDI2_QUEUE_ID_NIC_21_2 = 242,
444
GAUDI2_QUEUE_ID_NIC_21_3 = 243,
445
GAUDI2_QUEUE_ID_NIC_22_0 = 244,
446
GAUDI2_QUEUE_ID_NIC_22_1 = 245,
447
GAUDI2_QUEUE_ID_NIC_22_2 = 246,
448
GAUDI2_QUEUE_ID_NIC_22_3 = 247,
449
GAUDI2_QUEUE_ID_NIC_23_0 = 248,
450
GAUDI2_QUEUE_ID_NIC_23_1 = 249,
451
GAUDI2_QUEUE_ID_NIC_23_2 = 250,
452
GAUDI2_QUEUE_ID_NIC_23_3 = 251,
453
GAUDI2_QUEUE_ID_ROT_0_0 = 252,
454
GAUDI2_QUEUE_ID_ROT_0_1 = 253,
455
GAUDI2_QUEUE_ID_ROT_0_2 = 254,
456
GAUDI2_QUEUE_ID_ROT_0_3 = 255,
457
GAUDI2_QUEUE_ID_ROT_1_0 = 256,
458
GAUDI2_QUEUE_ID_ROT_1_1 = 257,
459
GAUDI2_QUEUE_ID_ROT_1_2 = 258,
460
GAUDI2_QUEUE_ID_ROT_1_3 = 259,
461
GAUDI2_QUEUE_ID_CPU_PQ = 260,
462
GAUDI2_QUEUE_ID_SIZE
463
};
464
465
/*
466
* Engine Numbering
467
*
468
* Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
469
*/
470
471
enum goya_engine_id {
472
GOYA_ENGINE_ID_DMA_0 = 0,
473
GOYA_ENGINE_ID_DMA_1,
474
GOYA_ENGINE_ID_DMA_2,
475
GOYA_ENGINE_ID_DMA_3,
476
GOYA_ENGINE_ID_DMA_4,
477
GOYA_ENGINE_ID_MME_0,
478
GOYA_ENGINE_ID_TPC_0,
479
GOYA_ENGINE_ID_TPC_1,
480
GOYA_ENGINE_ID_TPC_2,
481
GOYA_ENGINE_ID_TPC_3,
482
GOYA_ENGINE_ID_TPC_4,
483
GOYA_ENGINE_ID_TPC_5,
484
GOYA_ENGINE_ID_TPC_6,
485
GOYA_ENGINE_ID_TPC_7,
486
GOYA_ENGINE_ID_SIZE
487
};
488
489
enum gaudi_engine_id {
490
GAUDI_ENGINE_ID_DMA_0 = 0,
491
GAUDI_ENGINE_ID_DMA_1,
492
GAUDI_ENGINE_ID_DMA_2,
493
GAUDI_ENGINE_ID_DMA_3,
494
GAUDI_ENGINE_ID_DMA_4,
495
GAUDI_ENGINE_ID_DMA_5,
496
GAUDI_ENGINE_ID_DMA_6,
497
GAUDI_ENGINE_ID_DMA_7,
498
GAUDI_ENGINE_ID_MME_0,
499
GAUDI_ENGINE_ID_MME_1,
500
GAUDI_ENGINE_ID_MME_2,
501
GAUDI_ENGINE_ID_MME_3,
502
GAUDI_ENGINE_ID_TPC_0,
503
GAUDI_ENGINE_ID_TPC_1,
504
GAUDI_ENGINE_ID_TPC_2,
505
GAUDI_ENGINE_ID_TPC_3,
506
GAUDI_ENGINE_ID_TPC_4,
507
GAUDI_ENGINE_ID_TPC_5,
508
GAUDI_ENGINE_ID_TPC_6,
509
GAUDI_ENGINE_ID_TPC_7,
510
GAUDI_ENGINE_ID_NIC_0,
511
GAUDI_ENGINE_ID_NIC_1,
512
GAUDI_ENGINE_ID_NIC_2,
513
GAUDI_ENGINE_ID_NIC_3,
514
GAUDI_ENGINE_ID_NIC_4,
515
GAUDI_ENGINE_ID_NIC_5,
516
GAUDI_ENGINE_ID_NIC_6,
517
GAUDI_ENGINE_ID_NIC_7,
518
GAUDI_ENGINE_ID_NIC_8,
519
GAUDI_ENGINE_ID_NIC_9,
520
GAUDI_ENGINE_ID_SIZE
521
};
522
523
enum gaudi2_engine_id {
524
GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0,
525
GAUDI2_DCORE0_ENGINE_ID_EDMA_1,
526
GAUDI2_DCORE0_ENGINE_ID_MME,
527
GAUDI2_DCORE0_ENGINE_ID_TPC_0,
528
GAUDI2_DCORE0_ENGINE_ID_TPC_1,
529
GAUDI2_DCORE0_ENGINE_ID_TPC_2,
530
GAUDI2_DCORE0_ENGINE_ID_TPC_3,
531
GAUDI2_DCORE0_ENGINE_ID_TPC_4,
532
GAUDI2_DCORE0_ENGINE_ID_TPC_5,
533
GAUDI2_DCORE0_ENGINE_ID_DEC_0,
534
GAUDI2_DCORE0_ENGINE_ID_DEC_1,
535
GAUDI2_DCORE1_ENGINE_ID_EDMA_0,
536
GAUDI2_DCORE1_ENGINE_ID_EDMA_1,
537
GAUDI2_DCORE1_ENGINE_ID_MME,
538
GAUDI2_DCORE1_ENGINE_ID_TPC_0,
539
GAUDI2_DCORE1_ENGINE_ID_TPC_1,
540
GAUDI2_DCORE1_ENGINE_ID_TPC_2,
541
GAUDI2_DCORE1_ENGINE_ID_TPC_3,
542
GAUDI2_DCORE1_ENGINE_ID_TPC_4,
543
GAUDI2_DCORE1_ENGINE_ID_TPC_5,
544
GAUDI2_DCORE1_ENGINE_ID_DEC_0,
545
GAUDI2_DCORE1_ENGINE_ID_DEC_1,
546
GAUDI2_DCORE2_ENGINE_ID_EDMA_0,
547
GAUDI2_DCORE2_ENGINE_ID_EDMA_1,
548
GAUDI2_DCORE2_ENGINE_ID_MME,
549
GAUDI2_DCORE2_ENGINE_ID_TPC_0,
550
GAUDI2_DCORE2_ENGINE_ID_TPC_1,
551
GAUDI2_DCORE2_ENGINE_ID_TPC_2,
552
GAUDI2_DCORE2_ENGINE_ID_TPC_3,
553
GAUDI2_DCORE2_ENGINE_ID_TPC_4,
554
GAUDI2_DCORE2_ENGINE_ID_TPC_5,
555
GAUDI2_DCORE2_ENGINE_ID_DEC_0,
556
GAUDI2_DCORE2_ENGINE_ID_DEC_1,
557
GAUDI2_DCORE3_ENGINE_ID_EDMA_0,
558
GAUDI2_DCORE3_ENGINE_ID_EDMA_1,
559
GAUDI2_DCORE3_ENGINE_ID_MME,
560
GAUDI2_DCORE3_ENGINE_ID_TPC_0,
561
GAUDI2_DCORE3_ENGINE_ID_TPC_1,
562
GAUDI2_DCORE3_ENGINE_ID_TPC_2,
563
GAUDI2_DCORE3_ENGINE_ID_TPC_3,
564
GAUDI2_DCORE3_ENGINE_ID_TPC_4,
565
GAUDI2_DCORE3_ENGINE_ID_TPC_5,
566
GAUDI2_DCORE3_ENGINE_ID_DEC_0,
567
GAUDI2_DCORE3_ENGINE_ID_DEC_1,
568
GAUDI2_DCORE0_ENGINE_ID_TPC_6,
569
GAUDI2_ENGINE_ID_PDMA_0,
570
GAUDI2_ENGINE_ID_PDMA_1,
571
GAUDI2_ENGINE_ID_ROT_0,
572
GAUDI2_ENGINE_ID_ROT_1,
573
GAUDI2_PCIE_ENGINE_ID_DEC_0,
574
GAUDI2_PCIE_ENGINE_ID_DEC_1,
575
GAUDI2_ENGINE_ID_NIC0_0,
576
GAUDI2_ENGINE_ID_NIC0_1,
577
GAUDI2_ENGINE_ID_NIC1_0,
578
GAUDI2_ENGINE_ID_NIC1_1,
579
GAUDI2_ENGINE_ID_NIC2_0,
580
GAUDI2_ENGINE_ID_NIC2_1,
581
GAUDI2_ENGINE_ID_NIC3_0,
582
GAUDI2_ENGINE_ID_NIC3_1,
583
GAUDI2_ENGINE_ID_NIC4_0,
584
GAUDI2_ENGINE_ID_NIC4_1,
585
GAUDI2_ENGINE_ID_NIC5_0,
586
GAUDI2_ENGINE_ID_NIC5_1,
587
GAUDI2_ENGINE_ID_NIC6_0,
588
GAUDI2_ENGINE_ID_NIC6_1,
589
GAUDI2_ENGINE_ID_NIC7_0,
590
GAUDI2_ENGINE_ID_NIC7_1,
591
GAUDI2_ENGINE_ID_NIC8_0,
592
GAUDI2_ENGINE_ID_NIC8_1,
593
GAUDI2_ENGINE_ID_NIC9_0,
594
GAUDI2_ENGINE_ID_NIC9_1,
595
GAUDI2_ENGINE_ID_NIC10_0,
596
GAUDI2_ENGINE_ID_NIC10_1,
597
GAUDI2_ENGINE_ID_NIC11_0,
598
GAUDI2_ENGINE_ID_NIC11_1,
599
GAUDI2_ENGINE_ID_PCIE,
600
GAUDI2_ENGINE_ID_PSOC,
601
GAUDI2_ENGINE_ID_ARC_FARM,
602
GAUDI2_ENGINE_ID_KDMA,
603
GAUDI2_ENGINE_ID_SIZE
604
};
605
606
/*
607
* ASIC specific PLL index
608
*
609
* Used to retrieve in frequency info of different IPs via HL_INFO_PLL_FREQUENCY under
610
* DRM_IOCTL_HL_INFO IOCTL.
611
* The enums need to be used as an index in struct hl_pll_frequency_info.
612
*/
613
614
enum hl_goya_pll_index {
615
HL_GOYA_CPU_PLL = 0,
616
HL_GOYA_IC_PLL,
617
HL_GOYA_MC_PLL,
618
HL_GOYA_MME_PLL,
619
HL_GOYA_PCI_PLL,
620
HL_GOYA_EMMC_PLL,
621
HL_GOYA_TPC_PLL,
622
HL_GOYA_PLL_MAX
623
};
624
625
enum hl_gaudi_pll_index {
626
HL_GAUDI_CPU_PLL = 0,
627
HL_GAUDI_PCI_PLL,
628
HL_GAUDI_SRAM_PLL,
629
HL_GAUDI_HBM_PLL,
630
HL_GAUDI_NIC_PLL,
631
HL_GAUDI_DMA_PLL,
632
HL_GAUDI_MESH_PLL,
633
HL_GAUDI_MME_PLL,
634
HL_GAUDI_TPC_PLL,
635
HL_GAUDI_IF_PLL,
636
HL_GAUDI_PLL_MAX
637
};
638
639
enum hl_gaudi2_pll_index {
640
HL_GAUDI2_CPU_PLL = 0,
641
HL_GAUDI2_PCI_PLL,
642
HL_GAUDI2_SRAM_PLL,
643
HL_GAUDI2_HBM_PLL,
644
HL_GAUDI2_NIC_PLL,
645
HL_GAUDI2_DMA_PLL,
646
HL_GAUDI2_MESH_PLL,
647
HL_GAUDI2_MME_PLL,
648
HL_GAUDI2_TPC_PLL,
649
HL_GAUDI2_IF_PLL,
650
HL_GAUDI2_VID_PLL,
651
HL_GAUDI2_MSS_PLL,
652
HL_GAUDI2_PLL_MAX
653
};
654
655
/**
656
* enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is
657
* submitted to the GOYA's DMA QMAN. This attribute is not relevant
658
* to the H/W but the kernel driver use it to parse the packet's
659
* addresses and patch/validate them.
660
* @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR.
661
* @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM.
662
* @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM.
663
* @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR.
664
* @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory.
665
* @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory.
666
* @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR.
667
* @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM.
668
* @HL_DMA_ENUM_MAX: number of values in enum
669
*/
670
enum hl_goya_dma_direction {
671
HL_DMA_HOST_TO_DRAM,
672
HL_DMA_HOST_TO_SRAM,
673
HL_DMA_DRAM_TO_SRAM,
674
HL_DMA_SRAM_TO_DRAM,
675
HL_DMA_SRAM_TO_HOST,
676
HL_DMA_DRAM_TO_HOST,
677
HL_DMA_DRAM_TO_DRAM,
678
HL_DMA_SRAM_TO_SRAM,
679
HL_DMA_ENUM_MAX
680
};
681
682
/**
683
* enum hl_device_status - Device status information.
684
* @HL_DEVICE_STATUS_OPERATIONAL: Device is operational.
685
* @HL_DEVICE_STATUS_IN_RESET: Device is currently during reset.
686
* @HL_DEVICE_STATUS_MALFUNCTION: Device is unusable.
687
* @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled.
688
* @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in
689
* progress.
690
* @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was
691
* triggered because the user released the device
692
* @HL_DEVICE_STATUS_LAST: Last status.
693
*/
694
enum hl_device_status {
695
HL_DEVICE_STATUS_OPERATIONAL,
696
HL_DEVICE_STATUS_IN_RESET,
697
HL_DEVICE_STATUS_MALFUNCTION,
698
HL_DEVICE_STATUS_NEEDS_RESET,
699
HL_DEVICE_STATUS_IN_DEVICE_CREATION,
700
HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE,
701
HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE
702
};
703
704
enum hl_server_type {
705
HL_SERVER_TYPE_UNKNOWN = 0,
706
HL_SERVER_GAUDI_HLS1 = 1,
707
HL_SERVER_GAUDI_HLS1H = 2,
708
HL_SERVER_GAUDI_TYPE1 = 3,
709
HL_SERVER_GAUDI_TYPE2 = 4,
710
HL_SERVER_GAUDI2_HLS2 = 5,
711
HL_SERVER_GAUDI2_TYPE1 = 7
712
};
713
714
/*
715
* Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command
716
*
717
* HL_NOTIFIER_EVENT_TPC_ASSERT - Indicates TPC assert event
718
* HL_NOTIFIER_EVENT_UNDEFINED_OPCODE - Indicates undefined operation code
719
* HL_NOTIFIER_EVENT_DEVICE_RESET - Indicates device requires a reset
720
* HL_NOTIFIER_EVENT_CS_TIMEOUT - Indicates CS timeout error
721
* HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE - Indicates device is unavailable
722
* HL_NOTIFIER_EVENT_USER_ENGINE_ERR - Indicates device engine in error state
723
* HL_NOTIFIER_EVENT_GENERAL_HW_ERR - Indicates device HW error
724
* HL_NOTIFIER_EVENT_RAZWI - Indicates razwi happened
725
* HL_NOTIFIER_EVENT_PAGE_FAULT - Indicates page fault happened
726
* HL_NOTIFIER_EVENT_CRITICAL_HW_ERR - Indicates a HW error that requires SW abort and
727
* HW reset
728
* HL_NOTIFIER_EVENT_CRITICAL_FW_ERR - Indicates a FW error that requires SW abort and
729
* HW reset
730
*/
731
#define HL_NOTIFIER_EVENT_TPC_ASSERT (1ULL << 0)
732
#define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE (1ULL << 1)
733
#define HL_NOTIFIER_EVENT_DEVICE_RESET (1ULL << 2)
734
#define HL_NOTIFIER_EVENT_CS_TIMEOUT (1ULL << 3)
735
#define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE (1ULL << 4)
736
#define HL_NOTIFIER_EVENT_USER_ENGINE_ERR (1ULL << 5)
737
#define HL_NOTIFIER_EVENT_GENERAL_HW_ERR (1ULL << 6)
738
#define HL_NOTIFIER_EVENT_RAZWI (1ULL << 7)
739
#define HL_NOTIFIER_EVENT_PAGE_FAULT (1ULL << 8)
740
#define HL_NOTIFIER_EVENT_CRITICL_HW_ERR (1ULL << 9)
741
#define HL_NOTIFIER_EVENT_CRITICL_FW_ERR (1ULL << 10)
742
743
/* Opcode for management ioctl
744
*
745
* HW_IP_INFO - Receive information about different IP blocks in the
746
* device.
747
* HL_INFO_HW_EVENTS - Receive an array describing how many times each event
748
* occurred since the last hard reset.
749
* HL_INFO_DRAM_USAGE - Retrieve the dram usage inside the device and of the
750
* specific context. This is relevant only for devices
751
* where the dram is managed by the kernel driver
752
* HL_INFO_HW_IDLE - Retrieve information about the idle status of each
753
* internal engine.
754
* HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
755
* require an open context.
756
* HL_INFO_DEVICE_UTILIZATION - Retrieve the total utilization of the device
757
* over the last period specified by the user.
758
* The period can be between 100ms to 1s, in
759
* resolution of 100ms. The return value is a
760
* percentage of the utilization rate.
761
* HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
762
* event occurred since the driver was loaded.
763
* HL_INFO_CLK_RATE - Retrieve the current and maximum clock rate
764
* of the device in MHz. The maximum clock rate is
765
* configurable via sysfs parameter
766
* HL_INFO_RESET_COUNT - Retrieve the counts of the soft and hard reset
767
* operations performed on the device since the last
768
* time the driver was loaded.
769
* HL_INFO_TIME_SYNC - Retrieve the device's time alongside the host's time
770
* for synchronization.
771
* HL_INFO_CS_COUNTERS - Retrieve command submission counters
772
* HL_INFO_PCI_COUNTERS - Retrieve PCI counters
773
* HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
774
* HL_INFO_SYNC_MANAGER - Retrieve sync manager info per dcore
775
* HL_INFO_TOTAL_ENERGY - Retrieve total energy consumption
776
* HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
777
* HL_INFO_POWER - Retrieve power information
778
* HL_INFO_OPEN_STATS - Retrieve info regarding recent device open calls
779
* HL_INFO_DRAM_REPLACED_ROWS - Retrieve DRAM replaced rows info
780
* HL_INFO_DRAM_PENDING_ROWS - Retrieve DRAM pending rows num
781
* HL_INFO_LAST_ERR_OPEN_DEV_TIME - Retrieve timestamp of the last time the device was opened
782
* and CS timeout or razwi error occurred.
783
* HL_INFO_CS_TIMEOUT_EVENT - Retrieve CS timeout timestamp and its related CS sequence number.
784
* HL_INFO_RAZWI_EVENT - Retrieve parameters of razwi:
785
* Timestamp of razwi.
786
* The address which accessing it caused the razwi.
787
* Razwi initiator.
788
* Razwi cause, was it a page fault or MMU access error.
789
* May return 0 even though no new data is available, in that case
790
* timestamp will be 0.
791
* HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES - Retrieve valid page sizes for device memory allocation
792
* HL_INFO_SECURED_ATTESTATION - Retrieve attestation report of the boot.
793
* HL_INFO_REGISTER_EVENTFD - Register eventfd for event notifications.
794
* HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd
795
* HL_INFO_GET_EVENTS - Retrieve the last occurred events
796
* HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information.
797
* May return 0 even though no new data is available, in that case
798
* timestamp will be 0.
799
* HL_INFO_ENGINE_STATUS - Retrieve the status of all the h/w engines in the asic.
800
* HL_INFO_PAGE_FAULT_EVENT - Retrieve parameters of captured page fault.
801
* May return 0 even though no new data is available, in that case
802
* timestamp will be 0.
803
* HL_INFO_USER_MAPPINGS - Retrieve user mappings, captured after page fault event.
804
* HL_INFO_FW_GENERIC_REQ - Send generic request to FW.
805
* HL_INFO_HW_ERR_EVENT - Retrieve information on the reported HW error.
806
* May return 0 even though no new data is available, in that case
807
* timestamp will be 0.
808
* HL_INFO_FW_ERR_EVENT - Retrieve information on the reported FW error.
809
* May return 0 even though no new data is available, in that case
810
* timestamp will be 0.
811
* HL_INFO_USER_ENGINE_ERR_EVENT - Retrieve the last engine id that reported an error.
812
*/
813
#define HL_INFO_HW_IP_INFO 0
814
#define HL_INFO_HW_EVENTS 1
815
#define HL_INFO_DRAM_USAGE 2
816
#define HL_INFO_HW_IDLE 3
817
#define HL_INFO_DEVICE_STATUS 4
818
#define HL_INFO_DEVICE_UTILIZATION 6
819
#define HL_INFO_HW_EVENTS_AGGREGATE 7
820
#define HL_INFO_CLK_RATE 8
821
#define HL_INFO_RESET_COUNT 9
822
#define HL_INFO_TIME_SYNC 10
823
#define HL_INFO_CS_COUNTERS 11
824
#define HL_INFO_PCI_COUNTERS 12
825
#define HL_INFO_CLK_THROTTLE_REASON 13
826
#define HL_INFO_SYNC_MANAGER 14
827
#define HL_INFO_TOTAL_ENERGY 15
828
#define HL_INFO_PLL_FREQUENCY 16
829
#define HL_INFO_POWER 17
830
#define HL_INFO_OPEN_STATS 18
831
#define HL_INFO_DRAM_REPLACED_ROWS 21
832
#define HL_INFO_DRAM_PENDING_ROWS 22
833
#define HL_INFO_LAST_ERR_OPEN_DEV_TIME 23
834
#define HL_INFO_CS_TIMEOUT_EVENT 24
835
#define HL_INFO_RAZWI_EVENT 25
836
#define HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES 26
837
#define HL_INFO_SECURED_ATTESTATION 27
838
#define HL_INFO_REGISTER_EVENTFD 28
839
#define HL_INFO_UNREGISTER_EVENTFD 29
840
#define HL_INFO_GET_EVENTS 30
841
#define HL_INFO_UNDEFINED_OPCODE_EVENT 31
842
#define HL_INFO_ENGINE_STATUS 32
843
#define HL_INFO_PAGE_FAULT_EVENT 33
844
#define HL_INFO_USER_MAPPINGS 34
845
#define HL_INFO_FW_GENERIC_REQ 35
846
#define HL_INFO_HW_ERR_EVENT 36
847
#define HL_INFO_FW_ERR_EVENT 37
848
#define HL_INFO_USER_ENGINE_ERR_EVENT 38
849
#define HL_INFO_DEV_SIGNED 40
850
851
#define HL_INFO_VERSION_MAX_LEN 128
852
#define HL_INFO_CARD_NAME_MAX_LEN 16
853
854
/* Maximum buffer size for retrieving engines status */
855
#define HL_ENGINES_DATA_MAX_SIZE SZ_1M
856
857
/**
858
* struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC
859
* @sram_base_address: The first SRAM physical base address that is free to be
860
* used by the user.
861
* @dram_base_address: The first DRAM virtual or physical base address that is
862
* free to be used by the user.
863
* @dram_size: The DRAM size that is available to the user.
864
* @sram_size: The SRAM size that is available to the user.
865
* @num_of_events: The number of events that can be received from the f/w. This
866
* is needed so the user can what is the size of the h/w events
867
* array he needs to pass to the kernel when he wants to fetch
868
* the event counters.
869
* @device_id: PCI device ID of the ASIC.
870
* @module_id: Module ID of the ASIC for mezzanine cards in servers
871
* (From OCP spec).
872
* @decoder_enabled_mask: Bit-mask that represents which decoders are enabled.
873
* @first_available_interrupt_id: The first available interrupt ID for the user
874
* to be used when it works with user interrupts.
875
* Relevant for Gaudi2 and later.
876
* @server_type: Server type that the Gaudi ASIC is currently installed in.
877
* The value is according to enum hl_server_type
878
* @cpld_version: CPLD version on the board.
879
* @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs.
880
* @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs.
881
* @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs.
882
* @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler
883
* in some ASICs.
884
* @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant
885
* for Goya/Gaudi only.
886
* @dram_enabled: Whether the DRAM is enabled.
887
* @security_enabled: Whether security is enabled on device.
888
* @mme_master_slave_mode: Indicate whether the MME is working in master/slave
889
* configuration. Relevant for Gaudi2 and later.
890
* @cpucp_version: The CPUCP f/w version.
891
* @card_name: The card name as passed by the f/w.
892
* @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled.
893
* Relevant for Gaudi2 and later.
894
* @dram_page_size: The DRAM physical page size.
895
* @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled.
896
* Relevant for Gaudi2 and later.
897
* @number_of_user_interrupts: The number of interrupts that are available to the userspace
898
* application to use. Relevant for Gaudi2 and later.
899
* @device_mem_alloc_default_page_size: default page size used in device memory allocation.
900
* @revision_id: PCI revision ID of the ASIC.
901
* @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
902
* @rotator_enabled_mask: Bit-mask that represents which rotators are enabled.
903
* Relevant for Gaudi3 and later.
904
* @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
905
* in order to raise events toward FW.
906
* @reserved_dram_size: DRAM size reserved for driver and firmware.
907
*/
908
struct hl_info_hw_ip_info {
909
__u64 sram_base_address;
910
__u64 dram_base_address;
911
__u64 dram_size;
912
__u32 sram_size;
913
__u32 num_of_events;
914
__u32 device_id;
915
__u32 module_id;
916
__u32 decoder_enabled_mask;
917
__u16 first_available_interrupt_id;
918
__u16 server_type;
919
__u32 cpld_version;
920
__u32 psoc_pci_pll_nr;
921
__u32 psoc_pci_pll_nf;
922
__u32 psoc_pci_pll_od;
923
__u32 psoc_pci_pll_div_factor;
924
__u8 tpc_enabled_mask;
925
__u8 dram_enabled;
926
__u8 security_enabled;
927
__u8 mme_master_slave_mode;
928
__u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
929
__u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
930
__u64 tpc_enabled_mask_ext;
931
__u64 dram_page_size;
932
__u32 edma_enabled_mask;
933
__u16 number_of_user_interrupts;
934
__u8 reserved1;
935
__u8 reserved2;
936
__u64 reserved3;
937
__u64 device_mem_alloc_default_page_size;
938
__u64 reserved4;
939
__u64 reserved5;
940
__u32 reserved6;
941
__u8 reserved7;
942
__u8 revision_id;
943
__u16 tpc_interrupt_id;
944
__u32 rotator_enabled_mask;
945
__u32 reserved9;
946
__u64 engine_core_interrupt_reg_addr;
947
__u64 reserved_dram_size;
948
};
949
950
struct hl_info_dram_usage {
951
__u64 dram_free_mem;
952
__u64 ctx_dram_mem;
953
};
954
955
#define HL_BUSY_ENGINES_MASK_EXT_SIZE 4
956
957
struct hl_info_hw_idle {
958
__u32 is_idle;
959
/*
960
* Bitmask of busy engines.
961
* Bits definition is according to `enum <chip>_engine_id'.
962
*/
963
__u32 busy_engines_mask;
964
965
/*
966
* Extended Bitmask of busy engines.
967
* Bits definition is according to `enum <chip>_engine_id'.
968
*/
969
__u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
970
};
971
972
struct hl_info_device_status {
973
__u32 status;
974
__u32 pad;
975
};
976
977
struct hl_info_device_utilization {
978
__u32 utilization;
979
__u32 pad;
980
};
981
982
struct hl_info_clk_rate {
983
__u32 cur_clk_rate_mhz;
984
__u32 max_clk_rate_mhz;
985
};
986
987
struct hl_info_reset_count {
988
__u32 hard_reset_cnt;
989
__u32 soft_reset_cnt;
990
};
991
992
struct hl_info_time_sync {
993
__u64 device_time;
994
__u64 host_time;
995
__u64 tsc_time;
996
};
997
998
/**
999
* struct hl_info_pci_counters - pci counters
1000
* @rx_throughput: PCI rx throughput KBps
1001
* @tx_throughput: PCI tx throughput KBps
1002
* @replay_cnt: PCI replay counter
1003
*/
1004
struct hl_info_pci_counters {
1005
__u64 rx_throughput;
1006
__u64 tx_throughput;
1007
__u64 replay_cnt;
1008
};
1009
1010
enum hl_clk_throttling_type {
1011
HL_CLK_THROTTLE_TYPE_POWER,
1012
HL_CLK_THROTTLE_TYPE_THERMAL,
1013
HL_CLK_THROTTLE_TYPE_MAX
1014
};
1015
1016
/* clk_throttling_reason masks */
1017
#define HL_CLK_THROTTLE_POWER (1 << HL_CLK_THROTTLE_TYPE_POWER)
1018
#define HL_CLK_THROTTLE_THERMAL (1 << HL_CLK_THROTTLE_TYPE_THERMAL)
1019
1020
/**
1021
* struct hl_info_clk_throttle - clock throttling reason
1022
* @clk_throttling_reason: each bit represents a clk throttling reason
1023
* @clk_throttling_timestamp_us: represents CPU timestamp in microseconds of the start-event
1024
* @clk_throttling_duration_ns: the clock throttle time in nanosec
1025
*/
1026
struct hl_info_clk_throttle {
1027
__u32 clk_throttling_reason;
1028
__u32 pad;
1029
__u64 clk_throttling_timestamp_us[HL_CLK_THROTTLE_TYPE_MAX];
1030
__u64 clk_throttling_duration_ns[HL_CLK_THROTTLE_TYPE_MAX];
1031
};
1032
1033
/**
1034
* struct hl_info_energy - device energy information
1035
* @total_energy_consumption: total device energy consumption
1036
*/
1037
struct hl_info_energy {
1038
__u64 total_energy_consumption;
1039
};
1040
1041
#define HL_PLL_NUM_OUTPUTS 4
1042
1043
struct hl_pll_frequency_info {
1044
__u16 output[HL_PLL_NUM_OUTPUTS];
1045
};
1046
1047
/**
1048
* struct hl_open_stats_info - device open statistics information
1049
* @open_counter: ever growing counter, increased on each successful dev open
1050
* @last_open_period_ms: duration (ms) device was open last time
1051
* @is_compute_ctx_active: Whether there is an active compute context executing
1052
* @compute_ctx_in_release: true if the current compute context is being released
1053
*/
1054
struct hl_open_stats_info {
1055
__u64 open_counter;
1056
__u64 last_open_period_ms;
1057
__u8 is_compute_ctx_active;
1058
__u8 compute_ctx_in_release;
1059
__u8 pad[6];
1060
};
1061
1062
/**
1063
* struct hl_power_info - power information
1064
* @power: power consumption
1065
*/
1066
struct hl_power_info {
1067
__u64 power;
1068
};
1069
1070
/**
1071
* struct hl_info_sync_manager - sync manager information
1072
* @first_available_sync_object: first available sob
1073
* @first_available_monitor: first available monitor
1074
* @first_available_cq: first available cq
1075
*/
1076
struct hl_info_sync_manager {
1077
__u32 first_available_sync_object;
1078
__u32 first_available_monitor;
1079
__u32 first_available_cq;
1080
__u32 reserved;
1081
};
1082
1083
/**
1084
* struct hl_info_cs_counters - command submission counters
1085
* @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
1086
* @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
1087
* @total_parsing_drop_cnt: total dropped due to error in packet parsing
1088
* @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
1089
* @total_queue_full_drop_cnt: total dropped due to queue full
1090
* @ctx_queue_full_drop_cnt: context dropped due to queue full
1091
* @total_device_in_reset_drop_cnt: total dropped due to device in reset
1092
* @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
1093
* @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
1094
* @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
1095
* @total_validation_drop_cnt: total dropped due to validation error
1096
* @ctx_validation_drop_cnt: context dropped due to validation error
1097
*/
1098
struct hl_info_cs_counters {
1099
__u64 total_out_of_mem_drop_cnt;
1100
__u64 ctx_out_of_mem_drop_cnt;
1101
__u64 total_parsing_drop_cnt;
1102
__u64 ctx_parsing_drop_cnt;
1103
__u64 total_queue_full_drop_cnt;
1104
__u64 ctx_queue_full_drop_cnt;
1105
__u64 total_device_in_reset_drop_cnt;
1106
__u64 ctx_device_in_reset_drop_cnt;
1107
__u64 total_max_cs_in_flight_drop_cnt;
1108
__u64 ctx_max_cs_in_flight_drop_cnt;
1109
__u64 total_validation_drop_cnt;
1110
__u64 ctx_validation_drop_cnt;
1111
};
1112
1113
/**
1114
* struct hl_info_last_err_open_dev_time - last error boot information.
1115
* @timestamp: timestamp of last time the device was opened and error occurred.
1116
*/
1117
struct hl_info_last_err_open_dev_time {
1118
__s64 timestamp;
1119
};
1120
1121
/**
1122
* struct hl_info_cs_timeout_event - last CS timeout information.
1123
* @timestamp: timestamp when last CS timeout event occurred.
1124
* @seq: sequence number of last CS timeout event.
1125
*/
1126
struct hl_info_cs_timeout_event {
1127
__s64 timestamp;
1128
__u64 seq;
1129
};
1130
1131
#define HL_RAZWI_NA_ENG_ID U16_MAX
1132
#define HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR 128
1133
#define HL_RAZWI_READ BIT(0)
1134
#define HL_RAZWI_WRITE BIT(1)
1135
#define HL_RAZWI_LBW BIT(2)
1136
#define HL_RAZWI_HBW BIT(3)
1137
#define HL_RAZWI_RR BIT(4)
1138
#define HL_RAZWI_ADDR_DEC BIT(5)
1139
1140
/**
1141
* struct hl_info_razwi_event - razwi information.
1142
* @timestamp: timestamp of razwi.
1143
* @addr: address which accessing it caused razwi.
1144
* @engine_id: engine id of the razwi initiator, if it was initiated by engine that does not
1145
* have engine id it will be set to HL_RAZWI_NA_ENG_ID. If there are several possible
1146
* engines which caused the razwi, it will hold all of them.
1147
* @num_of_possible_engines: contains number of possible engine ids. In some asics, razwi indication
1148
* might be common for several engines and there is no way to get the
1149
* exact engine. In this way, engine_id array will be filled with all
1150
* possible engines caused this razwi. Also, there might be possibility
1151
* in gaudi, where we don't indication on specific engine, in that case
1152
* the value of this parameter will be zero.
1153
* @flags: bitmask for additional data: HL_RAZWI_READ - razwi caused by read operation
1154
* HL_RAZWI_WRITE - razwi caused by write operation
1155
* HL_RAZWI_LBW - razwi caused by lbw fabric transaction
1156
* HL_RAZWI_HBW - razwi caused by hbw fabric transaction
1157
* HL_RAZWI_RR - razwi caused by range register
1158
* HL_RAZWI_ADDR_DEC - razwi caused by address decode error
1159
* Note: this data is not supported by all asics, in that case the relevant bits will not
1160
* be set.
1161
*/
1162
struct hl_info_razwi_event {
1163
__s64 timestamp;
1164
__u64 addr;
1165
__u16 engine_id[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR];
1166
__u16 num_of_possible_engines;
1167
__u8 flags;
1168
__u8 pad[5];
1169
};
1170
1171
#define MAX_QMAN_STREAMS_INFO 4
1172
#define OPCODE_INFO_MAX_ADDR_SIZE 8
1173
/**
1174
* struct hl_info_undefined_opcode_event - info about last undefined opcode error
1175
* @timestamp: timestamp of the undefined opcode error
1176
* @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
1177
* entries. In case all streams array entries are
1178
* filled with values, it means the execution was in Lower-CP.
1179
* @cq_addr: the address of the current handled command buffer
1180
* @cq_size: the size of the current handled command buffer
1181
* @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
1182
* should be equal to 1 in case of undefined opcode
1183
* in Upper-CP (specific stream) and equal to 4 incase
1184
* of undefined opcode in Lower-CP.
1185
* @engine_id: engine-id that the error occurred on
1186
* @stream_id: the stream id the error occurred on. In case the stream equals to
1187
* MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
1188
*/
1189
struct hl_info_undefined_opcode_event {
1190
__s64 timestamp;
1191
__u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
1192
__u64 cq_addr;
1193
__u32 cq_size;
1194
__u32 cb_addr_streams_len;
1195
__u32 engine_id;
1196
__u32 stream_id;
1197
};
1198
1199
/**
1200
* struct hl_info_hw_err_event - info about HW error
1201
* @timestamp: timestamp of error occurrence
1202
* @event_id: The async event ID (specific to each device type).
1203
* @pad: size padding for u64 granularity.
1204
*/
1205
struct hl_info_hw_err_event {
1206
__s64 timestamp;
1207
__u16 event_id;
1208
__u16 pad[3];
1209
};
1210
1211
/* FW error definition for event_type in struct hl_info_fw_err_event */
1212
enum hl_info_fw_err_type {
1213
HL_INFO_FW_HEARTBEAT_ERR,
1214
HL_INFO_FW_REPORTED_ERR,
1215
};
1216
1217
/**
1218
* struct hl_info_fw_err_event - info about FW error
1219
* @timestamp: time-stamp of error occurrence
1220
* @err_type: The type of event as defined in hl_info_fw_err_type.
1221
* @event_id: The async event ID (specific to each device type, applicable only when event type is
1222
* HL_INFO_FW_REPORTED_ERR).
1223
* @pad: size padding for u64 granularity.
1224
*/
1225
struct hl_info_fw_err_event {
1226
__s64 timestamp;
1227
__u16 err_type;
1228
__u16 event_id;
1229
__u32 pad;
1230
};
1231
1232
/**
1233
* struct hl_info_engine_err_event - engine error info
1234
* @timestamp: time-stamp of error occurrence
1235
* @engine_id: engine id who reported the error.
1236
* @error_count: Amount of errors reported.
1237
* @pad: size padding for u64 granularity.
1238
*/
1239
struct hl_info_engine_err_event {
1240
__s64 timestamp;
1241
__u16 engine_id;
1242
__u16 error_count;
1243
__u32 pad;
1244
};
1245
1246
/**
1247
* struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information.
1248
* @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size
1249
* (e.g. 0x2100000 means that 1MB and 32MB pages are supported).
1250
*/
1251
struct hl_info_dev_memalloc_page_sizes {
1252
__u64 page_order_bitmask;
1253
};
1254
1255
#define SEC_PCR_DATA_BUF_SZ 256
1256
#define SEC_PCR_QUOTE_BUF_SZ 510 /* (512 - 2) 2 bytes used for size */
1257
#define SEC_SIGNATURE_BUF_SZ 255 /* (256 - 1) 1 byte used for size */
1258
#define SEC_PUB_DATA_BUF_SZ 510 /* (512 - 2) 2 bytes used for size */
1259
#define SEC_CERTIFICATE_BUF_SZ 2046 /* (2048 - 2) 2 bytes used for size */
1260
#define SEC_DEV_INFO_BUF_SZ 5120
1261
1262
/*
1263
* struct hl_info_sec_attest - attestation report of the boot
1264
* @nonce: number only used once. random number provided by host. this also passed to the quote
1265
* command as a qualifying data.
1266
* @pcr_quote_len: length of the attestation quote data (bytes)
1267
* @pub_data_len: length of the public data (bytes)
1268
* @certificate_len: length of the certificate (bytes)
1269
* @pcr_num_reg: number of PCR registers in the pcr_data array
1270
* @pcr_reg_len: length of each PCR register in the pcr_data array (bytes)
1271
* @quote_sig_len: length of the attestation report signature (bytes)
1272
* @pcr_data: raw values of the PCR registers
1273
* @pcr_quote: attestation report data structure
1274
* @quote_sig: signature structure of the attestation report
1275
* @public_data: public key for the signed attestation
1276
* (outPublic + name + qualifiedName)
1277
* @certificate: certificate for the attestation signing key
1278
*/
1279
struct hl_info_sec_attest {
1280
__u32 nonce;
1281
__u16 pcr_quote_len;
1282
__u16 pub_data_len;
1283
__u16 certificate_len;
1284
__u8 pcr_num_reg;
1285
__u8 pcr_reg_len;
1286
__u8 quote_sig_len;
1287
__u8 pcr_data[SEC_PCR_DATA_BUF_SZ];
1288
__u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ];
1289
__u8 quote_sig[SEC_SIGNATURE_BUF_SZ];
1290
__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1291
__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1292
__u8 pad0[2];
1293
};
1294
1295
/*
1296
* struct hl_info_signed - device information signed by a secured device.
1297
* @nonce: number only used once. random number provided by host. this also passed to the quote
1298
* command as a qualifying data.
1299
* @pub_data_len: length of the public data (bytes)
1300
* @certificate_len: length of the certificate (bytes)
1301
* @info_sig_len: length of the attestation signature (bytes)
1302
* @public_data: public key info signed info data (outPublic + name + qualifiedName)
1303
* @certificate: certificate for the signing key
1304
* @info_sig: signature of the info + nonce data.
1305
* @dev_info_len: length of device info (bytes)
1306
* @dev_info: device info as byte array.
1307
*/
1308
struct hl_info_signed {
1309
__u32 nonce;
1310
__u16 pub_data_len;
1311
__u16 certificate_len;
1312
__u8 info_sig_len;
1313
__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1314
__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1315
__u8 info_sig[SEC_SIGNATURE_BUF_SZ];
1316
__u16 dev_info_len;
1317
__u8 dev_info[SEC_DEV_INFO_BUF_SZ];
1318
__u8 pad[2];
1319
};
1320
1321
/**
1322
* struct hl_page_fault_info - page fault information.
1323
* @timestamp: timestamp of page fault.
1324
* @addr: address which accessing it caused page fault.
1325
* @engine_id: engine id which caused the page fault, supported only in gaudi3.
1326
*/
1327
struct hl_page_fault_info {
1328
__s64 timestamp;
1329
__u64 addr;
1330
__u16 engine_id;
1331
__u8 pad[6];
1332
};
1333
1334
/**
1335
* struct hl_user_mapping - user mapping information.
1336
* @dev_va: device virtual address.
1337
* @size: virtual address mapping size.
1338
*/
1339
struct hl_user_mapping {
1340
__u64 dev_va;
1341
__u64 size;
1342
};
1343
1344
enum gaudi_dcores {
1345
HL_GAUDI_WS_DCORE,
1346
HL_GAUDI_WN_DCORE,
1347
HL_GAUDI_EN_DCORE,
1348
HL_GAUDI_ES_DCORE
1349
};
1350
1351
/**
1352
* struct hl_info_args - Main structure to retrieve device related information.
1353
* @return_pointer: User space address of the relevant structure related to HL_INFO_* operation
1354
* mentioned in @op.
1355
* @return_size: Size of the structure used in @return_pointer, just like "size" in "snprintf", it
1356
* limits how many bytes the kernel can write. For hw_events array, the size should be
1357
* hl_info_hw_ip_info.num_of_events * sizeof(__u32).
1358
* @op: Defines which type of information to be retrieved. Refer HL_INFO_* for details.
1359
* @dcore_id: DCORE id for which the information is relevant (for Gaudi refer to enum gaudi_dcores).
1360
* @ctx_id: Context ID of the user. Currently not in use.
1361
* @period_ms: Period value, in milliseconds, for utilization rate in range 100ms - 1000ms in 100 ms
1362
* resolution. Currently not in use.
1363
* @pll_index: Index as defined in hl_<asic type>_pll_index enumeration.
1364
* @eventfd: event file descriptor for event notifications.
1365
* @user_buffer_actual_size: Actual data size which was copied to user allocated buffer by the
1366
* driver. It is possible for the user to allocate buffer larger than
1367
* needed, hence updating this variable so user will know the exact amount
1368
* of bytes copied by the kernel to the buffer.
1369
* @sec_attest_nonce: Nonce number used for attestation report.
1370
* @array_size: Number of array members copied to user buffer.
1371
* Relevant for HL_INFO_USER_MAPPINGS info ioctl.
1372
* @fw_sub_opcode: generic requests sub opcodes.
1373
* @pad: Padding to 64 bit.
1374
*/
1375
struct hl_info_args {
1376
__u64 return_pointer;
1377
__u32 return_size;
1378
__u32 op;
1379
1380
union {
1381
__u32 dcore_id;
1382
__u32 ctx_id;
1383
__u32 period_ms;
1384
__u32 pll_index;
1385
__u32 eventfd;
1386
__u32 user_buffer_actual_size;
1387
__u32 sec_attest_nonce;
1388
__u32 array_size;
1389
__u32 fw_sub_opcode;
1390
};
1391
1392
__u32 pad;
1393
};
1394
1395
/* Opcode to create a new command buffer */
1396
#define HL_CB_OP_CREATE 0
1397
/* Opcode to destroy previously created command buffer */
1398
#define HL_CB_OP_DESTROY 1
1399
/* Opcode to retrieve information about a command buffer */
1400
#define HL_CB_OP_INFO 2
1401
1402
/* 2MB minus 32 bytes for 2xMSG_PROT */
1403
#define HL_MAX_CB_SIZE (0x200000 - 32)
1404
1405
/* Indicates whether the command buffer should be mapped to the device's MMU */
1406
#define HL_CB_FLAGS_MAP 0x1
1407
1408
/* Used with HL_CB_OP_INFO opcode to get the device va address for kernel mapped CB */
1409
#define HL_CB_FLAGS_GET_DEVICE_VA 0x2
1410
1411
struct hl_cb_in {
1412
/* Handle of CB or 0 if we want to create one */
1413
__u64 cb_handle;
1414
/* HL_CB_OP_* */
1415
__u32 op;
1416
1417
/* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
1418
* will be allocated, regardless of this parameter's value, is PAGE_SIZE
1419
*/
1420
__u32 cb_size;
1421
1422
/* Context ID - Currently not in use */
1423
__u32 ctx_id;
1424
/* HL_CB_FLAGS_* */
1425
__u32 flags;
1426
};
1427
1428
struct hl_cb_out {
1429
union {
1430
/* Handle of CB */
1431
__u64 cb_handle;
1432
1433
union {
1434
/* Information about CB */
1435
struct {
1436
/* Usage count of CB */
1437
__u32 usage_cnt;
1438
__u32 pad;
1439
};
1440
1441
/* CB mapped address to device MMU */
1442
__u64 device_va;
1443
};
1444
};
1445
};
1446
1447
union hl_cb_args {
1448
struct hl_cb_in in;
1449
struct hl_cb_out out;
1450
};
1451
1452
/* HL_CS_CHUNK_FLAGS_ values
1453
*
1454
* HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
1455
* Indicates if the CB was allocated and mapped by userspace
1456
* (relevant to Gaudi2 and later). User allocated CB is a command buffer,
1457
* allocated by the user, via malloc (or similar). After allocating the
1458
* CB, the user invokes - “memory ioctl” to map the user memory into a
1459
* device virtual address. The user provides this address via the
1460
* cb_handle field. The interface provides the ability to create a
1461
* large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it
1462
* increases the PCI-DMA queues throughput. This CB allocation method
1463
* also reduces the use of Linux DMA-able memory pool. Which are limited
1464
* and used by other Linux sub-systems.
1465
*/
1466
#define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
1467
1468
/*
1469
* This structure size must always be fixed to 64-bytes for backward
1470
* compatibility
1471
*/
1472
struct hl_cs_chunk {
1473
union {
1474
/* Goya/Gaudi:
1475
* For external queue, this represents a Handle of CB on the
1476
* Host.
1477
* For internal queue in Goya, this represents an SRAM or
1478
* a DRAM address of the internal CB. In Gaudi, this might also
1479
* represent a mapped host address of the CB.
1480
*
1481
* Gaudi2 onwards:
1482
* For H/W queue, this represents either a Handle of CB on the
1483
* Host, or an SRAM, a DRAM, or a mapped host address of the CB.
1484
*
1485
* A mapped host address is in the device address space, after
1486
* a host address was mapped by the device MMU.
1487
*/
1488
__u64 cb_handle;
1489
1490
/* Relevant only when HL_CS_FLAGS_WAIT or
1491
* HL_CS_FLAGS_COLLECTIVE_WAIT is set
1492
* This holds address of array of u64 values that contain
1493
* signal CS sequence numbers. The wait described by
1494
* this job will listen on all those signals
1495
* (wait event per signal)
1496
*/
1497
__u64 signal_seq_arr;
1498
1499
/*
1500
* Relevant only when HL_CS_FLAGS_WAIT or
1501
* HL_CS_FLAGS_COLLECTIVE_WAIT is set
1502
* along with HL_CS_FLAGS_ENCAP_SIGNALS.
1503
* This is the CS sequence which has the encapsulated signals.
1504
*/
1505
__u64 encaps_signal_seq;
1506
};
1507
1508
/* Index of queue to put the CB on */
1509
__u32 queue_index;
1510
1511
union {
1512
/*
1513
* Size of command buffer with valid packets
1514
* Can be smaller then actual CB size
1515
*/
1516
__u32 cb_size;
1517
1518
/* Relevant only when HL_CS_FLAGS_WAIT or
1519
* HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1520
* Number of entries in signal_seq_arr
1521
*/
1522
__u32 num_signal_seq_arr;
1523
1524
/* Relevant only when HL_CS_FLAGS_WAIT or
1525
* HL_CS_FLAGS_COLLECTIVE_WAIT is set along
1526
* with HL_CS_FLAGS_ENCAP_SIGNALS
1527
* This set the signals range that the user want to wait for
1528
* out of the whole reserved signals range.
1529
* e.g if the signals range is 20, and user don't want
1530
* to wait for signal 8, so he set this offset to 7, then
1531
* he call the API again with 9 and so on till 20.
1532
*/
1533
__u32 encaps_signal_offset;
1534
};
1535
1536
/* HL_CS_CHUNK_FLAGS_* */
1537
__u32 cs_chunk_flags;
1538
1539
/* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1540
* This holds the collective engine ID. The wait described by this job
1541
* will sync with this engine and with all NICs before completion.
1542
*/
1543
__u32 collective_engine_id;
1544
1545
/* Align structure to 64 bytes */
1546
__u32 pad[10];
1547
};
1548
1549
/* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
1550
#define HL_CS_FLAGS_FORCE_RESTORE 0x1
1551
#define HL_CS_FLAGS_SIGNAL 0x2
1552
#define HL_CS_FLAGS_WAIT 0x4
1553
#define HL_CS_FLAGS_COLLECTIVE_WAIT 0x8
1554
1555
#define HL_CS_FLAGS_TIMESTAMP 0x20
1556
#define HL_CS_FLAGS_STAGED_SUBMISSION 0x40
1557
#define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST 0x80
1558
#define HL_CS_FLAGS_STAGED_SUBMISSION_LAST 0x100
1559
#define HL_CS_FLAGS_CUSTOM_TIMEOUT 0x200
1560
#define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT 0x400
1561
1562
/*
1563
* The encapsulated signals CS is merged into the existing CS ioctls.
1564
* In order to use this feature need to follow the below procedure:
1565
* 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY
1566
* the output of this API will be the SOB offset from CFG_BASE.
1567
* this address will be used to patch CB cmds to do the signaling for this
1568
* SOB by incrementing it's value.
1569
* for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY
1570
* CS type, note that this might fail if out-of-sync happened to the SOB
1571
* value, in case other signaling request to the same SOB occurred between
1572
* reserve-unreserve calls.
1573
* 2. Use the staged CS to do the encapsulated signaling jobs.
1574
* use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1575
* along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset
1576
* field. This offset allows app to wait on part of the reserved signals.
1577
* 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag
1578
* to wait for the encapsulated signals.
1579
*/
1580
#define HL_CS_FLAGS_ENCAP_SIGNALS 0x800
1581
#define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY 0x1000
1582
#define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY 0x2000
1583
1584
/*
1585
* The engine cores CS is merged into the existing CS ioctls.
1586
* Use it to control the engine cores mode.
1587
*/
1588
#define HL_CS_FLAGS_ENGINE_CORE_COMMAND 0x4000
1589
1590
/*
1591
* The flush HBW PCI writes is merged into the existing CS ioctls.
1592
* Used to flush all HBW PCI writes.
1593
* This is a blocking operation and for this reason the user shall not use
1594
* the return sequence number (which will be invalid anyway)
1595
*/
1596
#define HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES 0x8000
1597
1598
/*
1599
* The engines CS is merged into the existing CS ioctls.
1600
* Use it to control engines modes.
1601
*/
1602
#define HL_CS_FLAGS_ENGINES_COMMAND 0x10000
1603
1604
#define HL_CS_STATUS_SUCCESS 0
1605
1606
#define HL_MAX_JOBS_PER_CS 512
1607
1608
/*
1609
* enum hl_engine_command - engine command
1610
*
1611
* @HL_ENGINE_CORE_HALT: engine core halt
1612
* @HL_ENGINE_CORE_RUN: engine core run
1613
* @HL_ENGINE_STALL: user engine/s stall
1614
* @HL_ENGINE_RESUME: user engine/s resume
1615
*/
1616
enum hl_engine_command {
1617
HL_ENGINE_CORE_HALT = 1,
1618
HL_ENGINE_CORE_RUN = 2,
1619
HL_ENGINE_STALL = 3,
1620
HL_ENGINE_RESUME = 4,
1621
HL_ENGINE_COMMAND_MAX
1622
};
1623
1624
struct hl_cs_in {
1625
1626
union {
1627
struct {
1628
/* this holds address of array of hl_cs_chunk for restore phase */
1629
__u64 chunks_restore;
1630
1631
/* holds address of array of hl_cs_chunk for execution phase */
1632
__u64 chunks_execute;
1633
};
1634
1635
/* Valid only when HL_CS_FLAGS_ENGINE_CORE_COMMAND is set */
1636
struct {
1637
/* this holds address of array of uint32 for engine_cores */
1638
__u64 engine_cores;
1639
1640
/* number of engine cores in engine_cores array */
1641
__u32 num_engine_cores;
1642
1643
/* the core command to be sent towards engine cores */
1644
__u32 core_command;
1645
};
1646
1647
/* Valid only when HL_CS_FLAGS_ENGINES_COMMAND is set */
1648
struct {
1649
/* this holds address of array of uint32 for engines */
1650
__u64 engines;
1651
1652
/* number of engines in engines array */
1653
__u32 num_engines;
1654
1655
/* the engine command to be sent towards engines */
1656
__u32 engine_command;
1657
};
1658
};
1659
1660
union {
1661
/*
1662
* Sequence number of a staged submission CS
1663
* valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and
1664
* HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset.
1665
*/
1666
__u64 seq;
1667
1668
/*
1669
* Encapsulated signals handle id
1670
* Valid for two flows:
1671
* 1. CS with encapsulated signals:
1672
* when HL_CS_FLAGS_STAGED_SUBMISSION and
1673
* HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1674
* and HL_CS_FLAGS_ENCAP_SIGNALS are set.
1675
* 2. unreserve signals:
1676
* valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set.
1677
*/
1678
__u32 encaps_sig_handle_id;
1679
1680
/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1681
struct {
1682
/* Encapsulated signals number */
1683
__u32 encaps_signals_count;
1684
1685
/* Encapsulated signals queue index (stream) */
1686
__u32 encaps_signals_q_idx;
1687
};
1688
};
1689
1690
/* Number of chunks in restore phase array. Maximum number is
1691
* HL_MAX_JOBS_PER_CS
1692
*/
1693
__u32 num_chunks_restore;
1694
1695
/* Number of chunks in execution array. Maximum number is
1696
* HL_MAX_JOBS_PER_CS
1697
*/
1698
__u32 num_chunks_execute;
1699
1700
/* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
1701
* is set
1702
*/
1703
__u32 timeout;
1704
1705
/* HL_CS_FLAGS_* */
1706
__u32 cs_flags;
1707
1708
/* Context ID - Currently not in use */
1709
__u32 ctx_id;
1710
__u8 pad[4];
1711
};
1712
1713
struct hl_cs_out {
1714
union {
1715
/*
1716
* seq holds the sequence number of the CS to pass to wait
1717
* ioctl. All values are valid except for 0 and ULLONG_MAX
1718
*/
1719
__u64 seq;
1720
1721
/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1722
struct {
1723
/* This is the reserved signal handle id */
1724
__u32 handle_id;
1725
1726
/* This is the signals count */
1727
__u32 count;
1728
};
1729
};
1730
1731
/* HL_CS_STATUS */
1732
__u32 status;
1733
1734
/*
1735
* SOB base address offset
1736
* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY or HL_CS_FLAGS_SIGNAL is set
1737
*/
1738
__u32 sob_base_addr_offset;
1739
1740
/*
1741
* Count of completed signals in SOB before current signal submission.
1742
* Valid only when (HL_CS_FLAGS_ENCAP_SIGNALS & HL_CS_FLAGS_STAGED_SUBMISSION)
1743
* or HL_CS_FLAGS_SIGNAL is set
1744
*/
1745
__u16 sob_count_before_submission;
1746
__u16 pad[3];
1747
};
1748
1749
union hl_cs_args {
1750
struct hl_cs_in in;
1751
struct hl_cs_out out;
1752
};
1753
1754
#define HL_WAIT_CS_FLAGS_INTERRUPT 0x2
1755
#define HL_WAIT_CS_FLAGS_INTERRUPT_MASK 0xFFF00000
1756
#define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT 0xFFF00000
1757
#define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT 0xFFE00000
1758
#define HL_WAIT_CS_FLAGS_MULTI_CS 0x4
1759
#define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ 0x10
1760
#define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT 0x20
1761
1762
#define HL_WAIT_MULTI_CS_LIST_MAX_LEN 32
1763
1764
struct hl_wait_cs_in {
1765
union {
1766
struct {
1767
/*
1768
* In case of wait_cs holds the CS sequence number.
1769
* In case of wait for multi CS hold a user pointer to
1770
* an array of CS sequence numbers
1771
*/
1772
__u64 seq;
1773
/* Absolute timeout to wait for command submission
1774
* in microseconds
1775
*/
1776
__u64 timeout_us;
1777
};
1778
1779
struct {
1780
union {
1781
/* User address for completion comparison.
1782
* upon interrupt, driver will compare the value pointed
1783
* by this address with the supplied target value.
1784
* in order not to perform any comparison, set address
1785
* to all 1s.
1786
* Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1787
*/
1788
__u64 addr;
1789
1790
/* cq_counters_handle to a kernel mapped cb which contains
1791
* cq counters.
1792
* Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1793
*/
1794
__u64 cq_counters_handle;
1795
};
1796
1797
/* Target value for completion comparison */
1798
__u64 target;
1799
};
1800
};
1801
1802
/* Context ID - Currently not in use */
1803
__u32 ctx_id;
1804
1805
/* HL_WAIT_CS_FLAGS_*
1806
* If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
1807
* interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK
1808
*
1809
* in order to wait for any CQ interrupt, set interrupt value to
1810
* HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT.
1811
*
1812
* in order to wait for any decoder interrupt, set interrupt value to
1813
* HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT.
1814
*/
1815
__u32 flags;
1816
1817
union {
1818
struct {
1819
/* Multi CS API info- valid entries in multi-CS array */
1820
__u8 seq_arr_len;
1821
__u8 pad[7];
1822
};
1823
1824
/* Absolute timeout to wait for an interrupt in microseconds.
1825
* Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1826
*/
1827
__u64 interrupt_timeout_us;
1828
};
1829
1830
/*
1831
* cq counter offset inside the counters cb pointed by cq_counters_handle above.
1832
* upon interrupt, driver will compare the value pointed
1833
* by this address (cq_counters_handle + cq_counters_offset)
1834
* with the supplied target value.
1835
* relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1836
*/
1837
__u64 cq_counters_offset;
1838
1839
/*
1840
* Timestamp_handle timestamps buffer handle.
1841
* relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1842
*/
1843
__u64 timestamp_handle;
1844
1845
/*
1846
* Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above.
1847
* upon interrupt, if the cq reached the target value then driver will write
1848
* timestamp to this offset.
1849
* relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1850
*/
1851
__u64 timestamp_offset;
1852
};
1853
1854
#define HL_WAIT_CS_STATUS_COMPLETED 0
1855
#define HL_WAIT_CS_STATUS_BUSY 1
1856
#define HL_WAIT_CS_STATUS_TIMEDOUT 2
1857
#define HL_WAIT_CS_STATUS_ABORTED 3
1858
1859
#define HL_WAIT_CS_STATUS_FLAG_GONE 0x1
1860
#define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD 0x2
1861
1862
struct hl_wait_cs_out {
1863
/* HL_WAIT_CS_STATUS_* */
1864
__u32 status;
1865
/* HL_WAIT_CS_STATUS_FLAG* */
1866
__u32 flags;
1867
/*
1868
* valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set
1869
* for wait_cs: timestamp of CS completion
1870
* for wait_multi_cs: timestamp of FIRST CS completion
1871
*/
1872
__s64 timestamp_nsec;
1873
/* multi CS completion bitmap */
1874
__u32 cs_completion_map;
1875
__u32 pad;
1876
};
1877
1878
union hl_wait_cs_args {
1879
struct hl_wait_cs_in in;
1880
struct hl_wait_cs_out out;
1881
};
1882
1883
/* Opcode to allocate device memory */
1884
#define HL_MEM_OP_ALLOC 0
1885
1886
/* Opcode to free previously allocated device memory */
1887
#define HL_MEM_OP_FREE 1
1888
1889
/* Opcode to map host and device memory */
1890
#define HL_MEM_OP_MAP 2
1891
1892
/* Opcode to unmap previously mapped host and device memory */
1893
#define HL_MEM_OP_UNMAP 3
1894
1895
/* Opcode to map a hw block */
1896
#define HL_MEM_OP_MAP_BLOCK 4
1897
1898
/* Opcode to create DMA-BUF object for an existing device memory allocation
1899
* and to export an FD of that DMA-BUF back to the caller
1900
*/
1901
#define HL_MEM_OP_EXPORT_DMABUF_FD 5
1902
1903
/* Opcode to create timestamps pool for user interrupts registration support
1904
* The memory will be allocated by the kernel driver, A timestamp buffer which the user
1905
* will get handle to it for mmap, and another internal buffer used by the
1906
* driver for registration management
1907
* The memory will be freed when the user closes the file descriptor(ctx close)
1908
*/
1909
#define HL_MEM_OP_TS_ALLOC 6
1910
1911
/* Memory flags */
1912
#define HL_MEM_CONTIGUOUS 0x1
1913
#define HL_MEM_SHARED 0x2
1914
#define HL_MEM_USERPTR 0x4
1915
#define HL_MEM_FORCE_HINT 0x8
1916
#define HL_MEM_PREFETCH 0x40
1917
1918
/**
1919
* structure hl_mem_in - structure that handle input args for memory IOCTL
1920
* @union arg: union of structures to be used based on the input operation
1921
* @op: specify the requested memory operation (one of the HL_MEM_OP_* definitions).
1922
* @flags: flags for the memory operation (one of the HL_MEM_* definitions).
1923
* For the HL_MEM_OP_EXPORT_DMABUF_FD opcode, this field holds the DMA-BUF file/FD flags.
1924
* @ctx_id: context ID - currently not in use.
1925
* @num_of_elements: number of timestamp elements used only with HL_MEM_OP_TS_ALLOC opcode.
1926
*/
1927
struct hl_mem_in {
1928
union {
1929
/**
1930
* structure for device memory allocation (used with the HL_MEM_OP_ALLOC op)
1931
* @mem_size: memory size to allocate
1932
* @page_size: page size to use on allocation. when the value is 0 the default page
1933
* size will be taken.
1934
*/
1935
struct {
1936
__u64 mem_size;
1937
__u64 page_size;
1938
} alloc;
1939
1940
/**
1941
* structure for free-ing device memory (used with the HL_MEM_OP_FREE op)
1942
* @handle: handle returned from HL_MEM_OP_ALLOC
1943
*/
1944
struct {
1945
__u64 handle;
1946
} free;
1947
1948
/**
1949
* structure for mapping device memory (used with the HL_MEM_OP_MAP op)
1950
* @hint_addr: requested virtual address of mapped memory.
1951
* the driver will try to map the requested region to this hint
1952
* address, as long as the address is valid and not already mapped.
1953
* the user should check the returned address of the IOCTL to make
1954
* sure he got the hint address.
1955
* passing 0 here means that the driver will choose the address itself.
1956
* @handle: handle returned from HL_MEM_OP_ALLOC.
1957
*/
1958
struct {
1959
__u64 hint_addr;
1960
__u64 handle;
1961
} map_device;
1962
1963
/**
1964
* structure for mapping host memory (used with the HL_MEM_OP_MAP op)
1965
* @host_virt_addr: address of allocated host memory.
1966
* @hint_addr: requested virtual address of mapped memory.
1967
* the driver will try to map the requested region to this hint
1968
* address, as long as the address is valid and not already mapped.
1969
* the user should check the returned address of the IOCTL to make
1970
* sure he got the hint address.
1971
* passing 0 here means that the driver will choose the address itself.
1972
* @size: size of allocated host memory.
1973
*/
1974
struct {
1975
__u64 host_virt_addr;
1976
__u64 hint_addr;
1977
__u64 mem_size;
1978
} map_host;
1979
1980
/**
1981
* structure for mapping hw block (used with the HL_MEM_OP_MAP_BLOCK op)
1982
* @block_addr:HW block address to map, a handle and size will be returned
1983
* to the user and will be used to mmap the relevant block.
1984
* only addresses from configuration space are allowed.
1985
*/
1986
struct {
1987
__u64 block_addr;
1988
} map_block;
1989
1990
/**
1991
* structure for unmapping host memory (used with the HL_MEM_OP_UNMAP op)
1992
* @device_virt_addr: virtual address returned from HL_MEM_OP_MAP
1993
*/
1994
struct {
1995
__u64 device_virt_addr;
1996
} unmap;
1997
1998
/**
1999
* structure for exporting DMABUF object (used with
2000
* the HL_MEM_OP_EXPORT_DMABUF_FD op)
2001
* @addr: for Gaudi1, the driver expects a physical address
2002
* inside the device's DRAM. this is because in Gaudi1
2003
* we don't have MMU that covers the device's DRAM.
2004
* for all other ASICs, the driver expects a device
2005
* virtual address that represents the start address of
2006
* a mapped DRAM memory area inside the device.
2007
* the address must be the same as was received from the
2008
* driver during a previous HL_MEM_OP_MAP operation.
2009
* @mem_size: size of memory to export.
2010
* @offset: for Gaudi1, this value must be 0. For all other ASICs,
2011
* the driver expects an offset inside of the memory area
2012
* describe by addr. the offset represents the start
2013
* address of that the exported dma-buf object describes.
2014
*/
2015
struct {
2016
__u64 addr;
2017
__u64 mem_size;
2018
__u64 offset;
2019
} export_dmabuf_fd;
2020
};
2021
2022
__u32 op;
2023
__u32 flags;
2024
__u32 ctx_id;
2025
__u32 num_of_elements;
2026
};
2027
2028
struct hl_mem_out {
2029
union {
2030
/*
2031
* Used for HL_MEM_OP_MAP as the virtual address that was
2032
* assigned in the device VA space.
2033
* A value of 0 means the requested operation failed.
2034
*/
2035
__u64 device_virt_addr;
2036
2037
/*
2038
* Used in HL_MEM_OP_ALLOC
2039
* This is the assigned handle for the allocated memory
2040
*/
2041
__u64 handle;
2042
2043
struct {
2044
/*
2045
* Used in HL_MEM_OP_MAP_BLOCK.
2046
* This is the assigned handle for the mapped block
2047
*/
2048
__u64 block_handle;
2049
2050
/*
2051
* Used in HL_MEM_OP_MAP_BLOCK
2052
* This is the size of the mapped block
2053
*/
2054
__u32 block_size;
2055
2056
__u32 pad;
2057
};
2058
2059
/* Returned in HL_MEM_OP_EXPORT_DMABUF_FD. Represents the
2060
* DMA-BUF object that was created to describe a memory
2061
* allocation on the device's memory space. The FD should be
2062
* passed to the importer driver
2063
*/
2064
__s32 fd;
2065
};
2066
};
2067
2068
union hl_mem_args {
2069
struct hl_mem_in in;
2070
struct hl_mem_out out;
2071
};
2072
2073
#define HL_DEBUG_MAX_AUX_VALUES 10
2074
2075
struct hl_debug_params_etr {
2076
/* Address in memory to allocate buffer */
2077
__u64 buffer_address;
2078
2079
/* Size of buffer to allocate */
2080
__u64 buffer_size;
2081
2082
/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2083
__u32 sink_mode;
2084
__u32 pad;
2085
};
2086
2087
struct hl_debug_params_etf {
2088
/* Address in memory to allocate buffer */
2089
__u64 buffer_address;
2090
2091
/* Size of buffer to allocate */
2092
__u64 buffer_size;
2093
2094
/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2095
__u32 sink_mode;
2096
__u32 pad;
2097
};
2098
2099
struct hl_debug_params_stm {
2100
/* Two bit masks for HW event and Stimulus Port */
2101
__u64 he_mask;
2102
__u64 sp_mask;
2103
2104
/* Trace source ID */
2105
__u32 id;
2106
2107
/* Frequency for the timestamp register */
2108
__u32 frequency;
2109
};
2110
2111
struct hl_debug_params_bmon {
2112
/* Two address ranges that the user can request to filter */
2113
__u64 start_addr0;
2114
__u64 addr_mask0;
2115
2116
__u64 start_addr1;
2117
__u64 addr_mask1;
2118
2119
/* Capture window configuration */
2120
__u32 bw_win;
2121
__u32 win_capture;
2122
2123
/* Trace source ID */
2124
__u32 id;
2125
2126
/* Control register */
2127
__u32 control;
2128
2129
/* Two more address ranges that the user can request to filter */
2130
__u64 start_addr2;
2131
__u64 end_addr2;
2132
2133
__u64 start_addr3;
2134
__u64 end_addr3;
2135
};
2136
2137
struct hl_debug_params_spmu {
2138
/* Event types selection */
2139
__u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
2140
2141
/* Number of event types selection */
2142
__u32 event_types_num;
2143
2144
/* TRC configuration register values */
2145
__u32 pmtrc_val;
2146
__u32 trc_ctrl_host_val;
2147
__u32 trc_en_host_val;
2148
};
2149
2150
/* Opcode for ETR component */
2151
#define HL_DEBUG_OP_ETR 0
2152
/* Opcode for ETF component */
2153
#define HL_DEBUG_OP_ETF 1
2154
/* Opcode for STM component */
2155
#define HL_DEBUG_OP_STM 2
2156
/* Opcode for FUNNEL component */
2157
#define HL_DEBUG_OP_FUNNEL 3
2158
/* Opcode for BMON component */
2159
#define HL_DEBUG_OP_BMON 4
2160
/* Opcode for SPMU component */
2161
#define HL_DEBUG_OP_SPMU 5
2162
/* Opcode for timestamp (deprecated) */
2163
#define HL_DEBUG_OP_TIMESTAMP 6
2164
/* Opcode for setting the device into or out of debug mode. The enable
2165
* variable should be 1 for enabling debug mode and 0 for disabling it
2166
*/
2167
#define HL_DEBUG_OP_SET_MODE 7
2168
2169
struct hl_debug_args {
2170
/*
2171
* Pointer to user input structure.
2172
* This field is relevant to specific opcodes.
2173
*/
2174
__u64 input_ptr;
2175
/* Pointer to user output structure */
2176
__u64 output_ptr;
2177
/* Size of user input structure */
2178
__u32 input_size;
2179
/* Size of user output structure */
2180
__u32 output_size;
2181
/* HL_DEBUG_OP_* */
2182
__u32 op;
2183
/*
2184
* Register index in the component, taken from the debug_regs_index enum
2185
* in the various ASIC header files
2186
*/
2187
__u32 reg_idx;
2188
/* Enable/disable */
2189
__u32 enable;
2190
/* Context ID - Currently not in use */
2191
__u32 ctx_id;
2192
};
2193
2194
#define HL_IOCTL_INFO 0x00
2195
#define HL_IOCTL_CB 0x01
2196
#define HL_IOCTL_CS 0x02
2197
#define HL_IOCTL_WAIT_CS 0x03
2198
#define HL_IOCTL_MEMORY 0x04
2199
#define HL_IOCTL_DEBUG 0x05
2200
2201
/*
2202
* Various information operations such as:
2203
* - H/W IP information
2204
* - Current dram usage
2205
*
2206
* The user calls this IOCTL with an opcode that describes the required
2207
* information. The user should supply a pointer to a user-allocated memory
2208
* chunk, which will be filled by the driver with the requested information.
2209
*
2210
* The user supplies the maximum amount of size to copy into the user's memory,
2211
* in order to prevent data corruption in case of differences between the
2212
* definitions of structures in kernel and userspace, e.g. in case of old
2213
* userspace and new kernel driver
2214
*/
2215
#define DRM_IOCTL_HL_INFO DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_INFO, struct hl_info_args)
2216
2217
/*
2218
* Command Buffer
2219
* - Request a Command Buffer
2220
* - Destroy a Command Buffer
2221
*
2222
* The command buffers are memory blocks that reside in DMA-able address
2223
* space and are physically contiguous so they can be accessed by the device
2224
* directly. They are allocated using the coherent DMA API.
2225
*
2226
* When creating a new CB, the IOCTL returns a handle of it, and the user-space
2227
* process needs to use that handle to mmap the buffer so it can access them.
2228
*
2229
* In some instances, the device must access the command buffer through the
2230
* device's MMU, and thus its memory should be mapped. In these cases, user can
2231
* indicate the driver that such a mapping is required.
2232
* The resulting device virtual address will be used internally by the driver,
2233
* and won't be returned to user.
2234
*
2235
*/
2236
#define DRM_IOCTL_HL_CB DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CB, union hl_cb_args)
2237
2238
/*
2239
* Command Submission
2240
*
2241
* To submit work to the device, the user need to call this IOCTL with a set
2242
* of JOBS. That set of JOBS constitutes a CS object.
2243
* Each JOB will be enqueued on a specific queue, according to the user's input.
2244
* There can be more then one JOB per queue.
2245
*
2246
* The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
2247
* and a second set is for "execution" phase.
2248
* The JOBS on the "restore" phase are enqueued only after context-switch
2249
* (or if its the first CS for this context). The user can also order the
2250
* driver to run the "restore" phase explicitly
2251
*
2252
* Goya/Gaudi:
2253
* There are two types of queues - external and internal. External queues
2254
* are DMA queues which transfer data from/to the Host. All other queues are
2255
* internal. The driver will get completion notifications from the device only
2256
* on JOBS which are enqueued in the external queues.
2257
*
2258
* Gaudi2 onwards:
2259
* There is a single type of queue for all types of engines, either DMA engines
2260
* for transfers from/to the host or inside the device, or compute engines.
2261
* The driver will get completion notifications from the device for all queues.
2262
*
2263
* For jobs on external queues, the user needs to create command buffers
2264
* through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
2265
* internal queues, the user needs to prepare a "command buffer" with packets
2266
* on either the device SRAM/DRAM or the host, and give the device address of
2267
* that buffer to the CS ioctl.
2268
* For jobs on H/W queues both options of command buffers are valid.
2269
*
2270
* This IOCTL is asynchronous in regard to the actual execution of the CS. This
2271
* means it returns immediately after ALL the JOBS were enqueued on their
2272
* relevant queues. Therefore, the user mustn't assume the CS has been completed
2273
* or has even started to execute.
2274
*
2275
* Upon successful enqueue, the IOCTL returns a sequence number which the user
2276
* can use with the "Wait for CS" IOCTL to check whether the handle's CS
2277
* non-internal JOBS have been completed. Note that if the CS has internal JOBS
2278
* which can execute AFTER the external JOBS have finished, the driver might
2279
* report that the CS has finished executing BEFORE the internal JOBS have
2280
* actually finished executing.
2281
*
2282
* Even though the sequence number increments per CS, the user can NOT
2283
* automatically assume that if CS with sequence number N finished, then CS
2284
* with sequence number N-1 also finished. The user can make this assumption if
2285
* and only if CS N and CS N-1 are exactly the same (same CBs for the same
2286
* queues).
2287
*/
2288
#define DRM_IOCTL_HL_CS DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_CS, union hl_cs_args)
2289
2290
/*
2291
* Wait for Command Submission
2292
*
2293
* The user can call this IOCTL with a handle it received from the CS IOCTL
2294
* to wait until the handle's CS has finished executing. The user will wait
2295
* inside the kernel until the CS has finished or until the user-requested
2296
* timeout has expired.
2297
*
2298
* If the timeout value is 0, the driver won't sleep at all. It will check
2299
* the status of the CS and return immediately
2300
*
2301
* The return value of the IOCTL is a standard Linux error code. The possible
2302
* values are:
2303
*
2304
* EINTR - Kernel waiting has been interrupted, e.g. due to OS signal
2305
* that the user process received
2306
* ETIMEDOUT - The CS has caused a timeout on the device
2307
* EIO - The CS was aborted (usually because the device was reset)
2308
* ENODEV - The device wants to do hard-reset (so user need to close FD)
2309
*
2310
* The driver also returns a custom define in case the IOCTL call returned 0.
2311
* The define can be one of the following:
2312
*
2313
* HL_WAIT_CS_STATUS_COMPLETED - The CS has been completed successfully (0)
2314
* HL_WAIT_CS_STATUS_BUSY - The CS is still executing (0)
2315
* HL_WAIT_CS_STATUS_TIMEDOUT - The CS has caused a timeout on the device
2316
* (ETIMEDOUT)
2317
* HL_WAIT_CS_STATUS_ABORTED - The CS was aborted, usually because the
2318
* device was reset (EIO)
2319
*/
2320
#define DRM_IOCTL_HL_WAIT_CS DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_WAIT_CS, union hl_wait_cs_args)
2321
2322
/*
2323
* Memory
2324
* - Map host memory to device MMU
2325
* - Unmap host memory from device MMU
2326
*
2327
* This IOCTL allows the user to map host memory to the device MMU
2328
*
2329
* For host memory, the IOCTL doesn't allocate memory. The user is supposed
2330
* to allocate the memory in user-space (malloc/new). The driver pins the
2331
* physical pages (up to the allowed limit by the OS), assigns a virtual
2332
* address in the device VA space and initializes the device MMU.
2333
*
2334
* There is an option for the user to specify the requested virtual address.
2335
*
2336
*/
2337
#define DRM_IOCTL_HL_MEMORY DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_MEMORY, union hl_mem_args)
2338
2339
/*
2340
* Debug
2341
* - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
2342
*
2343
* This IOCTL allows the user to get debug traces from the chip.
2344
*
2345
* Before the user can send configuration requests of the various
2346
* debug/profile engines, it needs to set the device into debug mode.
2347
* This is because the debug/profile infrastructure is shared component in the
2348
* device and we can't allow multiple users to access it at the same time.
2349
*
2350
* Once a user set the device into debug mode, the driver won't allow other
2351
* users to "work" with the device, i.e. open a FD. If there are multiple users
2352
* opened on the device, the driver won't allow any user to debug the device.
2353
*
2354
* For each configuration request, the user needs to provide the register index
2355
* and essential data such as buffer address and size.
2356
*
2357
* Once the user has finished using the debug/profile engines, he should
2358
* set the device into non-debug mode, i.e. disable debug mode.
2359
*
2360
* The driver can decide to "kick out" the user if he abuses this interface.
2361
*
2362
*/
2363
#define DRM_IOCTL_HL_DEBUG DRM_IOWR(DRM_COMMAND_BASE + HL_IOCTL_DEBUG, struct hl_debug_args)
2364
2365
#define HL_COMMAND_START (DRM_COMMAND_BASE + HL_IOCTL_INFO)
2366
#define HL_COMMAND_END (DRM_COMMAND_BASE + HL_IOCTL_DEBUG + 1)
2367
2368
#endif /* HABANALABS_H_ */
2369
2370