Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/uapi/drm/xe_drm.h
48999 views
1
/* SPDX-License-Identifier: MIT */
2
/*
3
* Copyright © 2023 Intel Corporation
4
*/
5
6
#ifndef _UAPI_XE_DRM_H_
7
#define _UAPI_XE_DRM_H_
8
9
#include "drm.h"
10
11
#if defined(__cplusplus)
12
extern "C" {
13
#endif
14
15
/*
16
* Please note that modifications to all structs defined here are
17
* subject to backwards-compatibility constraints.
18
* Sections in this file are organized as follows:
19
* 1. IOCTL definition
20
* 2. Extension definition and helper structs
21
* 3. IOCTL's Query structs in the order of the Query's entries.
22
* 4. The rest of IOCTL structs in the order of IOCTL declaration.
23
*/
24
25
/**
26
* DOC: Xe Device Block Diagram
27
*
28
* The diagram below represents a high-level simplification of a discrete
29
* GPU supported by the Xe driver. It shows some device components which
30
* are necessary to understand this API, as well as how their relations
31
* to each other. This diagram does not represent real hardware::
32
*
33
* ┌──────────────────────────────────────────────────────────────────┐
34
* │ ┌──────────────────────────────────────────────────┐ ┌─────────┐ │
35
* │ │ ┌───────────────────────┐ ┌─────┐ │ │ ┌─────┐ │ │
36
* │ │ │ VRAM0 ├───┤ ... │ │ │ │VRAM1│ │ │
37
* │ │ └───────────┬───────────┘ └─GT1─┘ │ │ └──┬──┘ │ │
38
* │ │ ┌──────────────────┴───────────────────────────┐ │ │ ┌──┴──┐ │ │
39
* │ │ │ ┌─────────────────────┐ ┌─────────────────┐ │ │ │ │ │ │ │
40
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
41
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │RCS0 │ │BCS0 │ │ │ │ │ │ │ │ │
42
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
43
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
44
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VCS0 │ │VCS1 │ │ │ │ │ │ │ │ │
45
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
46
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
47
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │VECS0│ │VECS1│ │ │ │ │ │ ... │ │ │
48
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
49
* │ │ │ │ ┌──┐ ┌──┐ ┌──┐ ┌──┐ │ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
50
* │ │ │ │ │EU│ │EU│ │EU│ │EU│ │ │ │CCS0 │ │CCS1 │ │ │ │ │ │ │ │ │
51
* │ │ │ │ └──┘ └──┘ └──┘ └──┘ │ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
52
* │ │ │ └─────────DSS─────────┘ │ ┌─────┐ ┌─────┐ │ │ │ │ │ │ │ │
53
* │ │ │ │ │CCS2 │ │CCS3 │ │ │ │ │ │ │ │ │
54
* │ │ │ ┌─────┐ ┌─────┐ ┌─────┐ │ └─────┘ └─────┘ │ │ │ │ │ │ │ │
55
* │ │ │ │ ... │ │ ... │ │ ... │ │ │ │ │ │ │ │ │ │
56
* │ │ │ └─DSS─┘ └─DSS─┘ └─DSS─┘ └─────Engines─────┘ │ │ │ │ │ │ │
57
* │ │ └───────────────────────────GT0────────────────┘ │ │ └─GT2─┘ │ │
58
* │ └────────────────────────────Tile0─────────────────┘ └─ Tile1──┘ │
59
* └─────────────────────────────Device0───────┬──────────────────────┘
60
* │
61
* ───────────────────────┴────────── PCI bus
62
*/
63
64
/**
65
* DOC: Xe uAPI Overview
66
*
67
* This section aims to describe the Xe's IOCTL entries, its structs, and other
68
* Xe related uAPI such as uevents and PMU (Platform Monitoring Unit) related
69
* entries and usage.
70
*
71
* List of supported IOCTLs:
72
* - &DRM_IOCTL_XE_DEVICE_QUERY
73
* - &DRM_IOCTL_XE_GEM_CREATE
74
* - &DRM_IOCTL_XE_GEM_MMAP_OFFSET
75
* - &DRM_IOCTL_XE_VM_CREATE
76
* - &DRM_IOCTL_XE_VM_DESTROY
77
* - &DRM_IOCTL_XE_VM_BIND
78
* - &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
79
* - &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
80
* - &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
81
* - &DRM_IOCTL_XE_EXEC
82
* - &DRM_IOCTL_XE_WAIT_USER_FENCE
83
* - &DRM_IOCTL_XE_OBSERVATION
84
* - &DRM_IOCTL_XE_MADVISE
85
* - &DRM_IOCTL_XE_VM_QUERY_MEM_RANGE_ATTRS
86
*/
87
88
/*
89
* xe specific ioctls.
90
*
91
* The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
92
* [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
93
* against DRM_COMMAND_BASE and should be between [0x0, 0x60).
94
*/
95
#define DRM_XE_DEVICE_QUERY 0x00
96
#define DRM_XE_GEM_CREATE 0x01
97
#define DRM_XE_GEM_MMAP_OFFSET 0x02
98
#define DRM_XE_VM_CREATE 0x03
99
#define DRM_XE_VM_DESTROY 0x04
100
#define DRM_XE_VM_BIND 0x05
101
#define DRM_XE_EXEC_QUEUE_CREATE 0x06
102
#define DRM_XE_EXEC_QUEUE_DESTROY 0x07
103
#define DRM_XE_EXEC_QUEUE_GET_PROPERTY 0x08
104
#define DRM_XE_EXEC 0x09
105
#define DRM_XE_WAIT_USER_FENCE 0x0a
106
#define DRM_XE_OBSERVATION 0x0b
107
#define DRM_XE_MADVISE 0x0c
108
#define DRM_XE_VM_QUERY_MEM_RANGE_ATTRS 0x0d
109
110
/* Must be kept compact -- no holes */
111
112
#define DRM_IOCTL_XE_DEVICE_QUERY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_DEVICE_QUERY, struct drm_xe_device_query)
113
#define DRM_IOCTL_XE_GEM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_CREATE, struct drm_xe_gem_create)
114
#define DRM_IOCTL_XE_GEM_MMAP_OFFSET DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_GEM_MMAP_OFFSET, struct drm_xe_gem_mmap_offset)
115
#define DRM_IOCTL_XE_VM_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_CREATE, struct drm_xe_vm_create)
116
#define DRM_IOCTL_XE_VM_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_DESTROY, struct drm_xe_vm_destroy)
117
#define DRM_IOCTL_XE_VM_BIND DRM_IOW(DRM_COMMAND_BASE + DRM_XE_VM_BIND, struct drm_xe_vm_bind)
118
#define DRM_IOCTL_XE_EXEC_QUEUE_CREATE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_CREATE, struct drm_xe_exec_queue_create)
119
#define DRM_IOCTL_XE_EXEC_QUEUE_DESTROY DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_DESTROY, struct drm_xe_exec_queue_destroy)
120
#define DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_EXEC_QUEUE_GET_PROPERTY, struct drm_xe_exec_queue_get_property)
121
#define DRM_IOCTL_XE_EXEC DRM_IOW(DRM_COMMAND_BASE + DRM_XE_EXEC, struct drm_xe_exec)
122
#define DRM_IOCTL_XE_WAIT_USER_FENCE DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_WAIT_USER_FENCE, struct drm_xe_wait_user_fence)
123
#define DRM_IOCTL_XE_OBSERVATION DRM_IOW(DRM_COMMAND_BASE + DRM_XE_OBSERVATION, struct drm_xe_observation_param)
124
#define DRM_IOCTL_XE_MADVISE DRM_IOW(DRM_COMMAND_BASE + DRM_XE_MADVISE, struct drm_xe_madvise)
125
#define DRM_IOCTL_XE_VM_QUERY_MEM_RANGE_ATTRS DRM_IOWR(DRM_COMMAND_BASE + DRM_XE_VM_QUERY_MEM_RANGE_ATTRS, struct drm_xe_vm_query_mem_range_attr)
126
127
/**
128
* DOC: Xe IOCTL Extensions
129
*
130
* Before detailing the IOCTLs and its structs, it is important to highlight
131
* that every IOCTL in Xe is extensible.
132
*
133
* Many interfaces need to grow over time. In most cases we can simply
134
* extend the struct and have userspace pass in more data. Another option,
135
* as demonstrated by Vulkan's approach to providing extensions for forward
136
* and backward compatibility, is to use a list of optional structs to
137
* provide those extra details.
138
*
139
* The key advantage to using an extension chain is that it allows us to
140
* redefine the interface more easily than an ever growing struct of
141
* increasing complexity, and for large parts of that interface to be
142
* entirely optional. The downside is more pointer chasing; chasing across
143
* the __user boundary with pointers encapsulated inside u64.
144
*
145
* Example chaining:
146
*
147
* .. code-block:: C
148
*
149
* struct drm_xe_user_extension ext3 {
150
* .next_extension = 0, // end
151
* .name = ...,
152
* };
153
* struct drm_xe_user_extension ext2 {
154
* .next_extension = (uintptr_t)&ext3,
155
* .name = ...,
156
* };
157
* struct drm_xe_user_extension ext1 {
158
* .next_extension = (uintptr_t)&ext2,
159
* .name = ...,
160
* };
161
*
162
* Typically the struct drm_xe_user_extension would be embedded in some uAPI
163
* struct, and in this case we would feed it the head of the chain(i.e ext1),
164
* which would then apply all of the above extensions.
165
*/
166
167
/**
168
* struct drm_xe_user_extension - Base class for defining a chain of extensions
169
*/
170
struct drm_xe_user_extension {
171
/**
172
* @next_extension:
173
*
174
* Pointer to the next struct drm_xe_user_extension, or zero if the end.
175
*/
176
__u64 next_extension;
177
178
/**
179
* @name: Name of the extension.
180
*
181
* Note that the name here is just some integer.
182
*
183
* Also note that the name space for this is not global for the whole
184
* driver, but rather its scope/meaning is limited to the specific piece
185
* of uAPI which has embedded the struct drm_xe_user_extension.
186
*/
187
__u32 name;
188
189
/**
190
* @pad: MBZ
191
*
192
* All undefined bits must be zero.
193
*/
194
__u32 pad;
195
};
196
197
/**
198
* struct drm_xe_ext_set_property - Generic set property extension
199
*
200
* A generic struct that allows any of the Xe's IOCTL to be extended
201
* with a set_property operation.
202
*/
203
struct drm_xe_ext_set_property {
204
/** @base: base user extension */
205
struct drm_xe_user_extension base;
206
207
/** @property: property to set */
208
__u32 property;
209
210
/** @pad: MBZ */
211
__u32 pad;
212
213
/** @value: property value */
214
__u64 value;
215
216
/** @reserved: Reserved */
217
__u64 reserved[2];
218
};
219
220
/**
221
* struct drm_xe_engine_class_instance - instance of an engine class
222
*
223
* It is returned as part of the @drm_xe_engine, but it also is used as
224
* the input of engine selection for both @drm_xe_exec_queue_create and
225
* @drm_xe_query_engine_cycles
226
*
227
* The @engine_class can be:
228
* - %DRM_XE_ENGINE_CLASS_RENDER
229
* - %DRM_XE_ENGINE_CLASS_COPY
230
* - %DRM_XE_ENGINE_CLASS_VIDEO_DECODE
231
* - %DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE
232
* - %DRM_XE_ENGINE_CLASS_COMPUTE
233
* - %DRM_XE_ENGINE_CLASS_VM_BIND - Kernel only classes (not actual
234
* hardware engine class). Used for creating ordered queues of VM
235
* bind operations.
236
*/
237
struct drm_xe_engine_class_instance {
238
#define DRM_XE_ENGINE_CLASS_RENDER 0
239
#define DRM_XE_ENGINE_CLASS_COPY 1
240
#define DRM_XE_ENGINE_CLASS_VIDEO_DECODE 2
241
#define DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE 3
242
#define DRM_XE_ENGINE_CLASS_COMPUTE 4
243
#define DRM_XE_ENGINE_CLASS_VM_BIND 5
244
/** @engine_class: engine class id */
245
__u16 engine_class;
246
/** @engine_instance: engine instance id */
247
__u16 engine_instance;
248
/** @gt_id: Unique ID of this GT within the PCI Device */
249
__u16 gt_id;
250
/** @pad: MBZ */
251
__u16 pad;
252
};
253
254
/**
255
* struct drm_xe_engine - describe hardware engine
256
*/
257
struct drm_xe_engine {
258
/** @instance: The @drm_xe_engine_class_instance */
259
struct drm_xe_engine_class_instance instance;
260
261
/** @reserved: Reserved */
262
__u64 reserved[3];
263
};
264
265
/**
266
* struct drm_xe_query_engines - describe engines
267
*
268
* If a query is made with a struct @drm_xe_device_query where .query
269
* is equal to %DRM_XE_DEVICE_QUERY_ENGINES, then the reply uses an array of
270
* struct @drm_xe_query_engines in .data.
271
*/
272
struct drm_xe_query_engines {
273
/** @num_engines: number of engines returned in @engines */
274
__u32 num_engines;
275
/** @pad: MBZ */
276
__u32 pad;
277
/** @engines: The returned engines for this device */
278
struct drm_xe_engine engines[];
279
};
280
281
/**
282
* enum drm_xe_memory_class - Supported memory classes.
283
*/
284
enum drm_xe_memory_class {
285
/** @DRM_XE_MEM_REGION_CLASS_SYSMEM: Represents system memory. */
286
DRM_XE_MEM_REGION_CLASS_SYSMEM = 0,
287
/**
288
* @DRM_XE_MEM_REGION_CLASS_VRAM: On discrete platforms, this
289
* represents the memory that is local to the device, which we
290
* call VRAM. Not valid on integrated platforms.
291
*/
292
DRM_XE_MEM_REGION_CLASS_VRAM
293
};
294
295
/**
296
* struct drm_xe_mem_region - Describes some region as known to
297
* the driver.
298
*/
299
struct drm_xe_mem_region {
300
/**
301
* @mem_class: The memory class describing this region.
302
*
303
* See enum drm_xe_memory_class for supported values.
304
*/
305
__u16 mem_class;
306
/**
307
* @instance: The unique ID for this region, which serves as the
308
* index in the placement bitmask used as argument for
309
* &DRM_IOCTL_XE_GEM_CREATE
310
*/
311
__u16 instance;
312
/**
313
* @min_page_size: Min page-size in bytes for this region.
314
*
315
* When the kernel allocates memory for this region, the
316
* underlying pages will be at least @min_page_size in size.
317
* Buffer objects with an allowable placement in this region must be
318
* created with a size aligned to this value.
319
* GPU virtual address mappings of (parts of) buffer objects that
320
* may be placed in this region must also have their GPU virtual
321
* address and range aligned to this value.
322
* Affected IOCTLS will return %-EINVAL if alignment restrictions are
323
* not met.
324
*/
325
__u32 min_page_size;
326
/**
327
* @total_size: The usable size in bytes for this region.
328
*/
329
__u64 total_size;
330
/**
331
* @used: Estimate of the memory used in bytes for this region.
332
*
333
* Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
334
* accounting. Without this the value here will always equal
335
* zero.
336
*/
337
__u64 used;
338
/**
339
* @cpu_visible_size: How much of this region can be CPU
340
* accessed, in bytes.
341
*
342
* This will always be <= @total_size, and the remainder (if
343
* any) will not be CPU accessible. If the CPU accessible part
344
* is smaller than @total_size then this is referred to as a
345
* small BAR system.
346
*
347
* On systems without small BAR (full BAR), the probed_size will
348
* always equal the @total_size, since all of it will be CPU
349
* accessible.
350
*
351
* Note this is only tracked for DRM_XE_MEM_REGION_CLASS_VRAM
352
* regions (for other types the value here will always equal
353
* zero).
354
*/
355
__u64 cpu_visible_size;
356
/**
357
* @cpu_visible_used: Estimate of CPU visible memory used, in
358
* bytes.
359
*
360
* Requires CAP_PERFMON or CAP_SYS_ADMIN to get reliable
361
* accounting. Without this the value here will always equal
362
* zero. Note this is only currently tracked for
363
* DRM_XE_MEM_REGION_CLASS_VRAM regions (for other types the value
364
* here will always be zero).
365
*/
366
__u64 cpu_visible_used;
367
/** @reserved: Reserved */
368
__u64 reserved[6];
369
};
370
371
/**
372
* struct drm_xe_query_mem_regions - describe memory regions
373
*
374
* If a query is made with a struct drm_xe_device_query where .query
375
* is equal to DRM_XE_DEVICE_QUERY_MEM_REGIONS, then the reply uses
376
* struct drm_xe_query_mem_regions in .data.
377
*/
378
struct drm_xe_query_mem_regions {
379
/** @num_mem_regions: number of memory regions returned in @mem_regions */
380
__u32 num_mem_regions;
381
/** @pad: MBZ */
382
__u32 pad;
383
/** @mem_regions: The returned memory regions for this device */
384
struct drm_xe_mem_region mem_regions[];
385
};
386
387
/**
388
* struct drm_xe_query_config - describe the device configuration
389
*
390
* If a query is made with a struct drm_xe_device_query where .query
391
* is equal to DRM_XE_DEVICE_QUERY_CONFIG, then the reply uses
392
* struct drm_xe_query_config in .data.
393
*
394
* The index in @info can be:
395
* - %DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID - Device ID (lower 16 bits)
396
* and the device revision (next 8 bits)
397
* - %DRM_XE_QUERY_CONFIG_FLAGS - Flags describing the device
398
* configuration, see list below
399
*
400
* - %DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM - Flag is set if the device
401
* has usable VRAM
402
* - %DRM_XE_QUERY_CONFIG_FLAG_HAS_LOW_LATENCY - Flag is set if the device
403
* has low latency hint support
404
* - %DRM_XE_QUERY_CONFIG_FLAG_HAS_CPU_ADDR_MIRROR - Flag is set if the
405
* device has CPU address mirroring support
406
* - %DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT - Minimal memory alignment
407
* required by this device, typically SZ_4K or SZ_64K
408
* - %DRM_XE_QUERY_CONFIG_VA_BITS - Maximum bits of a virtual address
409
* - %DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY - Value of the highest
410
* available exec queue priority
411
*/
412
struct drm_xe_query_config {
413
/** @num_params: number of parameters returned in info */
414
__u32 num_params;
415
416
/** @pad: MBZ */
417
__u32 pad;
418
419
#define DRM_XE_QUERY_CONFIG_REV_AND_DEVICE_ID 0
420
#define DRM_XE_QUERY_CONFIG_FLAGS 1
421
#define DRM_XE_QUERY_CONFIG_FLAG_HAS_VRAM (1 << 0)
422
#define DRM_XE_QUERY_CONFIG_FLAG_HAS_LOW_LATENCY (1 << 1)
423
#define DRM_XE_QUERY_CONFIG_FLAG_HAS_CPU_ADDR_MIRROR (1 << 2)
424
#define DRM_XE_QUERY_CONFIG_MIN_ALIGNMENT 2
425
#define DRM_XE_QUERY_CONFIG_VA_BITS 3
426
#define DRM_XE_QUERY_CONFIG_MAX_EXEC_QUEUE_PRIORITY 4
427
/** @info: array of elements containing the config info */
428
__u64 info[];
429
};
430
431
/**
432
* struct drm_xe_gt - describe an individual GT.
433
*
434
* To be used with drm_xe_query_gt_list, which will return a list with all the
435
* existing GT individual descriptions.
436
* Graphics Technology (GT) is a subset of a GPU/tile that is responsible for
437
* implementing graphics and/or media operations.
438
*
439
* The index in @type can be:
440
* - %DRM_XE_QUERY_GT_TYPE_MAIN
441
* - %DRM_XE_QUERY_GT_TYPE_MEDIA
442
*/
443
struct drm_xe_gt {
444
#define DRM_XE_QUERY_GT_TYPE_MAIN 0
445
#define DRM_XE_QUERY_GT_TYPE_MEDIA 1
446
/** @type: GT type: Main or Media */
447
__u16 type;
448
/** @tile_id: Tile ID where this GT lives (Information only) */
449
__u16 tile_id;
450
/** @gt_id: Unique ID of this GT within the PCI Device */
451
__u16 gt_id;
452
/** @pad: MBZ */
453
__u16 pad[3];
454
/** @reference_clock: A clock frequency for timestamp */
455
__u32 reference_clock;
456
/**
457
* @near_mem_regions: Bit mask of instances from
458
* drm_xe_query_mem_regions that are nearest to the current engines
459
* of this GT.
460
* Each index in this mask refers directly to the struct
461
* drm_xe_query_mem_regions' instance, no assumptions should
462
* be made about order. The type of each region is described
463
* by struct drm_xe_query_mem_regions' mem_class.
464
*/
465
__u64 near_mem_regions;
466
/**
467
* @far_mem_regions: Bit mask of instances from
468
* drm_xe_query_mem_regions that are far from the engines of this GT.
469
* In general, they have extra indirections when compared to the
470
* @near_mem_regions. For a discrete device this could mean system
471
* memory and memory living in a different tile.
472
* Each index in this mask refers directly to the struct
473
* drm_xe_query_mem_regions' instance, no assumptions should
474
* be made about order. The type of each region is described
475
* by struct drm_xe_query_mem_regions' mem_class.
476
*/
477
__u64 far_mem_regions;
478
/** @ip_ver_major: Graphics/media IP major version on GMD_ID platforms */
479
__u16 ip_ver_major;
480
/** @ip_ver_minor: Graphics/media IP minor version on GMD_ID platforms */
481
__u16 ip_ver_minor;
482
/** @ip_ver_rev: Graphics/media IP revision version on GMD_ID platforms */
483
__u16 ip_ver_rev;
484
/** @pad2: MBZ */
485
__u16 pad2;
486
/** @reserved: Reserved */
487
__u64 reserved[7];
488
};
489
490
/**
491
* struct drm_xe_query_gt_list - A list with GT description items.
492
*
493
* If a query is made with a struct drm_xe_device_query where .query
494
* is equal to DRM_XE_DEVICE_QUERY_GT_LIST, then the reply uses struct
495
* drm_xe_query_gt_list in .data.
496
*/
497
struct drm_xe_query_gt_list {
498
/** @num_gt: number of GT items returned in gt_list */
499
__u32 num_gt;
500
/** @pad: MBZ */
501
__u32 pad;
502
/** @gt_list: The GT list returned for this device */
503
struct drm_xe_gt gt_list[];
504
};
505
506
/**
507
* struct drm_xe_query_topology_mask - describe the topology mask of a GT
508
*
509
* This is the hardware topology which reflects the internal physical
510
* structure of the GPU.
511
*
512
* If a query is made with a struct drm_xe_device_query where .query
513
* is equal to DRM_XE_DEVICE_QUERY_GT_TOPOLOGY, then the reply uses
514
* struct drm_xe_query_topology_mask in .data.
515
*
516
* The @type can be:
517
* - %DRM_XE_TOPO_DSS_GEOMETRY - To query the mask of Dual Sub Slices
518
* (DSS) available for geometry operations. For example a query response
519
* containing the following in mask:
520
* ``DSS_GEOMETRY ff ff ff ff 00 00 00 00``
521
* means 32 DSS are available for geometry.
522
* - %DRM_XE_TOPO_DSS_COMPUTE - To query the mask of Dual Sub Slices
523
* (DSS) available for compute operations. For example a query response
524
* containing the following in mask:
525
* ``DSS_COMPUTE ff ff ff ff 00 00 00 00``
526
* means 32 DSS are available for compute.
527
* - %DRM_XE_TOPO_L3_BANK - To query the mask of enabled L3 banks. This type
528
* may be omitted if the driver is unable to query the mask from the
529
* hardware.
530
* - %DRM_XE_TOPO_EU_PER_DSS - To query the mask of Execution Units (EU)
531
* available per Dual Sub Slices (DSS). For example a query response
532
* containing the following in mask:
533
* ``EU_PER_DSS ff ff 00 00 00 00 00 00``
534
* means each DSS has 16 SIMD8 EUs. This type may be omitted if device
535
* doesn't have SIMD8 EUs.
536
* - %DRM_XE_TOPO_SIMD16_EU_PER_DSS - To query the mask of SIMD16 Execution
537
* Units (EU) available per Dual Sub Slices (DSS). For example a query
538
* response containing the following in mask:
539
* ``SIMD16_EU_PER_DSS ff ff 00 00 00 00 00 00``
540
* means each DSS has 16 SIMD16 EUs. This type may be omitted if device
541
* doesn't have SIMD16 EUs.
542
*/
543
struct drm_xe_query_topology_mask {
544
/** @gt_id: GT ID the mask is associated with */
545
__u16 gt_id;
546
547
#define DRM_XE_TOPO_DSS_GEOMETRY 1
548
#define DRM_XE_TOPO_DSS_COMPUTE 2
549
#define DRM_XE_TOPO_L3_BANK 3
550
#define DRM_XE_TOPO_EU_PER_DSS 4
551
#define DRM_XE_TOPO_SIMD16_EU_PER_DSS 5
552
/** @type: type of mask */
553
__u16 type;
554
555
/** @num_bytes: number of bytes in requested mask */
556
__u32 num_bytes;
557
558
/** @mask: little-endian mask of @num_bytes */
559
__u8 mask[];
560
};
561
562
/**
563
* struct drm_xe_query_engine_cycles - correlate CPU and GPU timestamps
564
*
565
* If a query is made with a struct drm_xe_device_query where .query is equal to
566
* DRM_XE_DEVICE_QUERY_ENGINE_CYCLES, then the reply uses struct drm_xe_query_engine_cycles
567
* in .data. struct drm_xe_query_engine_cycles is allocated by the user and
568
* .data points to this allocated structure.
569
*
570
* The query returns the engine cycles, which along with GT's @reference_clock,
571
* can be used to calculate the engine timestamp. In addition the
572
* query returns a set of cpu timestamps that indicate when the command
573
* streamer cycle count was captured.
574
*/
575
struct drm_xe_query_engine_cycles {
576
/**
577
* @eci: This is input by the user and is the engine for which command
578
* streamer cycles is queried.
579
*/
580
struct drm_xe_engine_class_instance eci;
581
582
/**
583
* @clockid: This is input by the user and is the reference clock id for
584
* CPU timestamp. For definition, see clock_gettime(2) and
585
* perf_event_open(2). Supported clock ids are CLOCK_MONOTONIC,
586
* CLOCK_MONOTONIC_RAW, CLOCK_REALTIME, CLOCK_BOOTTIME, CLOCK_TAI.
587
*/
588
__s32 clockid;
589
590
/** @width: Width of the engine cycle counter in bits. */
591
__u32 width;
592
593
/**
594
* @engine_cycles: Engine cycles as read from its register
595
* at 0x358 offset.
596
*/
597
__u64 engine_cycles;
598
599
/**
600
* @cpu_timestamp: CPU timestamp in ns. The timestamp is captured before
601
* reading the engine_cycles register using the reference clockid set by the
602
* user.
603
*/
604
__u64 cpu_timestamp;
605
606
/**
607
* @cpu_delta: Time delta in ns captured around reading the lower dword
608
* of the engine_cycles register.
609
*/
610
__u64 cpu_delta;
611
};
612
613
/**
614
* struct drm_xe_query_uc_fw_version - query a micro-controller firmware version
615
*
616
* Given a uc_type this will return the branch, major, minor and patch version
617
* of the micro-controller firmware.
618
*/
619
struct drm_xe_query_uc_fw_version {
620
/** @uc_type: The micro-controller type to query firmware version */
621
#define XE_QUERY_UC_TYPE_GUC_SUBMISSION 0
622
#define XE_QUERY_UC_TYPE_HUC 1
623
__u16 uc_type;
624
625
/** @pad: MBZ */
626
__u16 pad;
627
628
/** @branch_ver: branch uc fw version */
629
__u32 branch_ver;
630
/** @major_ver: major uc fw version */
631
__u32 major_ver;
632
/** @minor_ver: minor uc fw version */
633
__u32 minor_ver;
634
/** @patch_ver: patch uc fw version */
635
__u32 patch_ver;
636
637
/** @pad2: MBZ */
638
__u32 pad2;
639
640
/** @reserved: Reserved */
641
__u64 reserved;
642
};
643
644
/**
645
* struct drm_xe_query_pxp_status - query if PXP is ready
646
*
647
* If PXP is enabled and no fatal error has occurred, the status will be set to
648
* one of the following values:
649
* 0: PXP init still in progress
650
* 1: PXP init complete
651
*
652
* If PXP is not enabled or something has gone wrong, the query will be failed
653
* with one of the following error codes:
654
* -ENODEV: PXP not supported or disabled;
655
* -EIO: fatal error occurred during init, so PXP will never be enabled;
656
* -EINVAL: incorrect value provided as part of the query;
657
* -EFAULT: error copying the memory between kernel and userspace.
658
*
659
* The status can only be 0 in the first few seconds after driver load. If
660
* everything works as expected, the status will transition to init complete in
661
* less than 1 second, while in case of errors the driver might take longer to
662
* start returning an error code, but it should still take less than 10 seconds.
663
*
664
* The supported session type bitmask is based on the values in
665
* enum drm_xe_pxp_session_type. TYPE_NONE is always supported and therefore
666
* is not reported in the bitmask.
667
*
668
*/
669
struct drm_xe_query_pxp_status {
670
/** @status: current PXP status */
671
__u32 status;
672
673
/** @supported_session_types: bitmask of supported PXP session types */
674
__u32 supported_session_types;
675
};
676
677
/**
678
* struct drm_xe_device_query - Input of &DRM_IOCTL_XE_DEVICE_QUERY - main
679
* structure to query device information
680
*
681
* The user selects the type of data to query among DRM_XE_DEVICE_QUERY_*
682
* and sets the value in the query member. This determines the type of
683
* the structure provided by the driver in data, among struct drm_xe_query_*.
684
*
685
* The @query can be:
686
* - %DRM_XE_DEVICE_QUERY_ENGINES
687
* - %DRM_XE_DEVICE_QUERY_MEM_REGIONS
688
* - %DRM_XE_DEVICE_QUERY_CONFIG
689
* - %DRM_XE_DEVICE_QUERY_GT_LIST
690
* - %DRM_XE_DEVICE_QUERY_HWCONFIG - Query type to retrieve the hardware
691
* configuration of the device such as information on slices, memory,
692
* caches, and so on. It is provided as a table of key / value
693
* attributes.
694
* - %DRM_XE_DEVICE_QUERY_GT_TOPOLOGY
695
* - %DRM_XE_DEVICE_QUERY_ENGINE_CYCLES
696
* - %DRM_XE_DEVICE_QUERY_PXP_STATUS
697
*
698
* If size is set to 0, the driver fills it with the required size for
699
* the requested type of data to query. If size is equal to the required
700
* size, the queried information is copied into data. If size is set to
701
* a value different from 0 and different from the required size, the
702
* IOCTL call returns -EINVAL.
703
*
704
* For example the following code snippet allows retrieving and printing
705
* information about the device engines with DRM_XE_DEVICE_QUERY_ENGINES:
706
*
707
* .. code-block:: C
708
*
709
* struct drm_xe_query_engines *engines;
710
* struct drm_xe_device_query query = {
711
* .extensions = 0,
712
* .query = DRM_XE_DEVICE_QUERY_ENGINES,
713
* .size = 0,
714
* .data = 0,
715
* };
716
* ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
717
* engines = malloc(query.size);
718
* query.data = (uintptr_t)engines;
719
* ioctl(fd, DRM_IOCTL_XE_DEVICE_QUERY, &query);
720
* for (int i = 0; i < engines->num_engines; i++) {
721
* printf("Engine %d: %s\n", i,
722
* engines->engines[i].instance.engine_class ==
723
* DRM_XE_ENGINE_CLASS_RENDER ? "RENDER":
724
* engines->engines[i].instance.engine_class ==
725
* DRM_XE_ENGINE_CLASS_COPY ? "COPY":
726
* engines->engines[i].instance.engine_class ==
727
* DRM_XE_ENGINE_CLASS_VIDEO_DECODE ? "VIDEO_DECODE":
728
* engines->engines[i].instance.engine_class ==
729
* DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE ? "VIDEO_ENHANCE":
730
* engines->engines[i].instance.engine_class ==
731
* DRM_XE_ENGINE_CLASS_COMPUTE ? "COMPUTE":
732
* "UNKNOWN");
733
* }
734
* free(engines);
735
*/
736
struct drm_xe_device_query {
737
/** @extensions: Pointer to the first extension struct, if any */
738
__u64 extensions;
739
740
#define DRM_XE_DEVICE_QUERY_ENGINES 0
741
#define DRM_XE_DEVICE_QUERY_MEM_REGIONS 1
742
#define DRM_XE_DEVICE_QUERY_CONFIG 2
743
#define DRM_XE_DEVICE_QUERY_GT_LIST 3
744
#define DRM_XE_DEVICE_QUERY_HWCONFIG 4
745
#define DRM_XE_DEVICE_QUERY_GT_TOPOLOGY 5
746
#define DRM_XE_DEVICE_QUERY_ENGINE_CYCLES 6
747
#define DRM_XE_DEVICE_QUERY_UC_FW_VERSION 7
748
#define DRM_XE_DEVICE_QUERY_OA_UNITS 8
749
#define DRM_XE_DEVICE_QUERY_PXP_STATUS 9
750
#define DRM_XE_DEVICE_QUERY_EU_STALL 10
751
/** @query: The type of data to query */
752
__u32 query;
753
754
/** @size: Size of the queried data */
755
__u32 size;
756
757
/** @data: Queried data is placed here */
758
__u64 data;
759
760
/** @reserved: Reserved */
761
__u64 reserved[2];
762
};
763
764
/**
765
* struct drm_xe_gem_create - Input of &DRM_IOCTL_XE_GEM_CREATE - A structure for
766
* gem creation
767
*
768
* The @flags can be:
769
* - %DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING - Modify the GEM object
770
* allocation strategy by deferring physical memory allocation
771
* until the object is either bound to a virtual memory region via
772
* VM_BIND or accessed by the CPU. As a result, no backing memory is
773
* reserved at the time of GEM object creation.
774
* - %DRM_XE_GEM_CREATE_FLAG_SCANOUT - Indicates that the GEM object is
775
* intended for scanout via the display engine. When set, kernel ensures
776
* that the allocation is placed in a memory region compatible with the
777
* display engine requirements. This may impose restrictions on tiling,
778
* alignment, and memory placement to guarantee proper display functionality.
779
* - %DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM - When using VRAM as a
780
* possible placement, ensure that the corresponding VRAM allocation
781
* will always use the CPU accessible part of VRAM. This is important
782
* for small-bar systems (on full-bar systems this gets turned into a
783
* noop).
784
* Note1: System memory can be used as an extra placement if the kernel
785
* should spill the allocation to system memory, if space can't be made
786
* available in the CPU accessible part of VRAM (giving the same
787
* behaviour as the i915 interface, see
788
* I915_GEM_CREATE_EXT_FLAG_NEEDS_CPU_ACCESS).
789
* Note2: For clear-color CCS surfaces the kernel needs to read the
790
* clear-color value stored in the buffer, and on discrete platforms we
791
* need to use VRAM for display surfaces, therefore the kernel requires
792
* setting this flag for such objects, otherwise an error is thrown on
793
* small-bar systems.
794
*
795
* @cpu_caching supports the following values:
796
* - %DRM_XE_GEM_CPU_CACHING_WB - Allocate the pages with write-back
797
* caching. On iGPU this can't be used for scanout surfaces. Currently
798
* not allowed for objects placed in VRAM.
799
* - %DRM_XE_GEM_CPU_CACHING_WC - Allocate the pages as write-combined. This
800
* is uncached. Scanout surfaces should likely use this. All objects
801
* that can be placed in VRAM must use this.
802
*
803
* This ioctl supports setting the following properties via the
804
* %DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY extension, which uses the
805
* generic @drm_xe_ext_set_property struct:
806
*
807
* - %DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE - set the type of PXP session
808
* this object will be used with. Valid values are listed in enum
809
* drm_xe_pxp_session_type. %DRM_XE_PXP_TYPE_NONE is the default behavior, so
810
* there is no need to explicitly set that. Objects used with session of type
811
* %DRM_XE_PXP_TYPE_HWDRM will be marked as invalid if a PXP invalidation
812
* event occurs after their creation. Attempting to flip an invalid object
813
* will cause a black frame to be displayed instead. Submissions with invalid
814
* objects mapped in the VM will be rejected.
815
*/
816
struct drm_xe_gem_create {
817
#define DRM_XE_GEM_CREATE_EXTENSION_SET_PROPERTY 0
818
#define DRM_XE_GEM_CREATE_SET_PROPERTY_PXP_TYPE 0
819
/** @extensions: Pointer to the first extension struct, if any */
820
__u64 extensions;
821
822
/**
823
* @size: Size of the object to be created, must match region
824
* (system or vram) minimum alignment (&min_page_size).
825
*/
826
__u64 size;
827
828
/**
829
* @placement: A mask of memory instances of where BO can be placed.
830
* Each index in this mask refers directly to the struct
831
* drm_xe_query_mem_regions' instance, no assumptions should
832
* be made about order. The type of each region is described
833
* by struct drm_xe_query_mem_regions' mem_class.
834
*/
835
__u32 placement;
836
837
#define DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING (1 << 0)
838
#define DRM_XE_GEM_CREATE_FLAG_SCANOUT (1 << 1)
839
#define DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM (1 << 2)
840
/**
841
* @flags: Flags, currently a mask of memory instances of where BO can
842
* be placed
843
*/
844
__u32 flags;
845
846
/**
847
* @vm_id: Attached VM, if any
848
*
849
* If a VM is specified, this BO must:
850
*
851
* 1. Only ever be bound to that VM.
852
* 2. Cannot be exported as a PRIME fd.
853
*/
854
__u32 vm_id;
855
856
/**
857
* @handle: Returned handle for the object.
858
*
859
* Object handles are nonzero.
860
*/
861
__u32 handle;
862
863
#define DRM_XE_GEM_CPU_CACHING_WB 1
864
#define DRM_XE_GEM_CPU_CACHING_WC 2
865
/**
866
* @cpu_caching: The CPU caching mode to select for this object. If
867
* mmaping the object the mode selected here will also be used. The
868
* exception is when mapping system memory (including data evicted
869
* to system) on discrete GPUs. The caching mode selected will
870
* then be overridden to DRM_XE_GEM_CPU_CACHING_WB, and coherency
871
* between GPU- and CPU is guaranteed. The caching mode of
872
* existing CPU-mappings will be updated transparently to
873
* user-space clients.
874
*/
875
__u16 cpu_caching;
876
/** @pad: MBZ */
877
__u16 pad[3];
878
879
/** @reserved: Reserved */
880
__u64 reserved[2];
881
};
882
883
/**
884
* struct drm_xe_gem_mmap_offset - Input of &DRM_IOCTL_XE_GEM_MMAP_OFFSET
885
*
886
* The @flags can be:
887
* - %DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER - For user to query special offset
888
* for use in mmap ioctl. Writing to the returned mmap address will generate a
889
* PCI memory barrier with low overhead (avoiding IOCTL call as well as writing
890
* to VRAM which would also add overhead), acting like an MI_MEM_FENCE
891
* instruction.
892
*
893
* Note: The mmap size can be at most 4K, due to HW limitations. As a result
894
* this interface is only supported on CPU architectures that support 4K page
895
* size. The mmap_offset ioctl will detect this and gracefully return an
896
* error, where userspace is expected to have a different fallback method for
897
* triggering a barrier.
898
*
899
* Roughly the usage would be as follows:
900
*
901
* .. code-block:: C
902
*
903
* struct drm_xe_gem_mmap_offset mmo = {
904
* .handle = 0, // must be set to 0
905
* .flags = DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER,
906
* };
907
*
908
* err = ioctl(fd, DRM_IOCTL_XE_GEM_MMAP_OFFSET, &mmo);
909
* map = mmap(NULL, size, PROT_WRITE, MAP_SHARED, fd, mmo.offset);
910
* map[i] = 0xdeadbeaf; // issue barrier
911
*/
912
struct drm_xe_gem_mmap_offset {
913
/** @extensions: Pointer to the first extension struct, if any */
914
__u64 extensions;
915
916
/** @handle: Handle for the object being mapped. */
917
__u32 handle;
918
919
#define DRM_XE_MMAP_OFFSET_FLAG_PCI_BARRIER (1 << 0)
920
/** @flags: Flags */
921
__u32 flags;
922
923
/** @offset: The fake offset to use for subsequent mmap call */
924
__u64 offset;
925
926
/** @reserved: Reserved */
927
__u64 reserved[2];
928
};
929
930
/**
931
* struct drm_xe_vm_create - Input of &DRM_IOCTL_XE_VM_CREATE
932
*
933
* The @flags can be:
934
* - %DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE - Map the whole virtual address
935
* space of the VM to scratch page. A vm_bind would overwrite the scratch
936
* page mapping. This flag is mutually exclusive with the
937
* %DRM_XE_VM_CREATE_FLAG_FAULT_MODE flag, with an exception of on x2 and
938
* xe3 platform.
939
* - %DRM_XE_VM_CREATE_FLAG_LR_MODE - An LR, or Long Running VM accepts
940
* exec submissions to its exec_queues that don't have an upper time
941
* limit on the job execution time. But exec submissions to these
942
* don't allow any of the sync types DRM_XE_SYNC_TYPE_SYNCOBJ,
943
* DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ, used as out-syncobjs, that is,
944
* together with sync flag DRM_XE_SYNC_FLAG_SIGNAL.
945
* LR VMs can be created in recoverable page-fault mode using
946
* DRM_XE_VM_CREATE_FLAG_FAULT_MODE, if the device supports it.
947
* If that flag is omitted, the UMD can not rely on the slightly
948
* different per-VM overcommit semantics that are enabled by
949
* DRM_XE_VM_CREATE_FLAG_FAULT_MODE (see below), but KMD may
950
* still enable recoverable pagefaults if supported by the device.
951
* - %DRM_XE_VM_CREATE_FLAG_FAULT_MODE - Requires also
952
* DRM_XE_VM_CREATE_FLAG_LR_MODE. It allows memory to be allocated on
953
* demand when accessed, and also allows per-VM overcommit of memory.
954
* The xe driver internally uses recoverable pagefaults to implement
955
* this.
956
*/
957
struct drm_xe_vm_create {
958
/** @extensions: Pointer to the first extension struct, if any */
959
__u64 extensions;
960
961
#define DRM_XE_VM_CREATE_FLAG_SCRATCH_PAGE (1 << 0)
962
#define DRM_XE_VM_CREATE_FLAG_LR_MODE (1 << 1)
963
#define DRM_XE_VM_CREATE_FLAG_FAULT_MODE (1 << 2)
964
/** @flags: Flags */
965
__u32 flags;
966
967
/** @vm_id: Returned VM ID */
968
__u32 vm_id;
969
970
/** @reserved: Reserved */
971
__u64 reserved[2];
972
};
973
974
/**
975
* struct drm_xe_vm_destroy - Input of &DRM_IOCTL_XE_VM_DESTROY
976
*/
977
struct drm_xe_vm_destroy {
978
/** @vm_id: VM ID */
979
__u32 vm_id;
980
981
/** @pad: MBZ */
982
__u32 pad;
983
984
/** @reserved: Reserved */
985
__u64 reserved[2];
986
};
987
988
/**
989
* struct drm_xe_vm_bind_op - run bind operations
990
*
991
* The @op can be:
992
* - %DRM_XE_VM_BIND_OP_MAP
993
* - %DRM_XE_VM_BIND_OP_UNMAP
994
* - %DRM_XE_VM_BIND_OP_MAP_USERPTR
995
* - %DRM_XE_VM_BIND_OP_UNMAP_ALL
996
* - %DRM_XE_VM_BIND_OP_PREFETCH
997
*
998
* and the @flags can be:
999
* - %DRM_XE_VM_BIND_FLAG_READONLY - Setup the page tables as read-only
1000
* to ensure write protection
1001
* - %DRM_XE_VM_BIND_FLAG_IMMEDIATE - On a faulting VM, do the
1002
* MAP operation immediately rather than deferring the MAP to the page
1003
* fault handler. This is implied on a non-faulting VM as there is no
1004
* fault handler to defer to.
1005
* - %DRM_XE_VM_BIND_FLAG_NULL - When the NULL flag is set, the page
1006
* tables are setup with a special bit which indicates writes are
1007
* dropped and all reads return zero. In the future, the NULL flags
1008
* will only be valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
1009
* handle MBZ, and the BO offset MBZ. This flag is intended to
1010
* implement VK sparse bindings.
1011
* - %DRM_XE_VM_BIND_FLAG_CHECK_PXP - If the object is encrypted via PXP,
1012
* reject the binding if the encryption key is no longer valid. This
1013
* flag has no effect on BOs that are not marked as using PXP.
1014
* - %DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR - When the CPU address mirror flag is
1015
* set, no mappings are created rather the range is reserved for CPU address
1016
* mirroring which will be populated on GPU page faults or prefetches. Only
1017
* valid on VMs with DRM_XE_VM_CREATE_FLAG_FAULT_MODE set. The CPU address
1018
* mirror flag are only valid for DRM_XE_VM_BIND_OP_MAP operations, the BO
1019
* handle MBZ, and the BO offset MBZ.
1020
* - %DRM_XE_VM_BIND_FLAG_MADVISE_AUTORESET - Can be used in combination with
1021
* %DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR to reset madvises when the underlying
1022
* CPU address space range is unmapped (typically with munmap(2) or brk(2)).
1023
* The madvise values set with &DRM_IOCTL_XE_MADVISE are reset to the values
1024
* that were present immediately after the &DRM_IOCTL_XE_VM_BIND.
1025
* The reset GPU virtual address range is the intersection of the range bound
1026
* using &DRM_IOCTL_XE_VM_BIND and the virtual CPU address space range
1027
* unmapped.
1028
* This functionality is present to mimic the behaviour of CPU address space
1029
* madvises set using madvise(2), which are typically reset on unmap.
1030
* Note: free(3) may or may not call munmap(2) and/or brk(2), and may thus
1031
* not invoke autoreset. Neither will stack variables going out of scope.
1032
* Therefore it's recommended to always explicitly reset the madvises when
1033
* freeing the memory backing a region used in a &DRM_IOCTL_XE_MADVISE call.
1034
*
1035
* The @prefetch_mem_region_instance for %DRM_XE_VM_BIND_OP_PREFETCH can also be:
1036
* - %DRM_XE_CONSULT_MEM_ADVISE_PREF_LOC, which ensures prefetching occurs in
1037
* the memory region advised by madvise.
1038
*/
1039
struct drm_xe_vm_bind_op {
1040
/** @extensions: Pointer to the first extension struct, if any */
1041
__u64 extensions;
1042
1043
/**
1044
* @obj: GEM object to operate on, MBZ for MAP_USERPTR, MBZ for UNMAP
1045
*/
1046
__u32 obj;
1047
1048
/**
1049
* @pat_index: The platform defined @pat_index to use for this mapping.
1050
* The index basically maps to some predefined memory attributes,
1051
* including things like caching, coherency, compression etc. The exact
1052
* meaning of the pat_index is platform specific and defined in the
1053
* Bspec and PRMs. When the KMD sets up the binding the index here is
1054
* encoded into the ppGTT PTE.
1055
*
1056
* For coherency the @pat_index needs to be at least 1way coherent when
1057
* drm_xe_gem_create.cpu_caching is DRM_XE_GEM_CPU_CACHING_WB. The KMD
1058
* will extract the coherency mode from the @pat_index and reject if
1059
* there is a mismatch (see note below for pre-MTL platforms).
1060
*
1061
* Note: On pre-MTL platforms there is only a caching mode and no
1062
* explicit coherency mode, but on such hardware there is always a
1063
* shared-LLC (or is dgpu) so all GT memory accesses are coherent with
1064
* CPU caches even with the caching mode set as uncached. It's only the
1065
* display engine that is incoherent (on dgpu it must be in VRAM which
1066
* is always mapped as WC on the CPU). However to keep the uapi somewhat
1067
* consistent with newer platforms the KMD groups the different cache
1068
* levels into the following coherency buckets on all pre-MTL platforms:
1069
*
1070
* ppGTT UC -> COH_NONE
1071
* ppGTT WC -> COH_NONE
1072
* ppGTT WT -> COH_NONE
1073
* ppGTT WB -> COH_AT_LEAST_1WAY
1074
*
1075
* In practice UC/WC/WT should only ever used for scanout surfaces on
1076
* such platforms (or perhaps in general for dma-buf if shared with
1077
* another device) since it is only the display engine that is actually
1078
* incoherent. Everything else should typically use WB given that we
1079
* have a shared-LLC. On MTL+ this completely changes and the HW
1080
* defines the coherency mode as part of the @pat_index, where
1081
* incoherent GT access is possible.
1082
*
1083
* Note: For userptr and externally imported dma-buf the kernel expects
1084
* either 1WAY or 2WAY for the @pat_index.
1085
*
1086
* For DRM_XE_VM_BIND_FLAG_NULL bindings there are no KMD restrictions
1087
* on the @pat_index. For such mappings there is no actual memory being
1088
* mapped (the address in the PTE is invalid), so the various PAT memory
1089
* attributes likely do not apply. Simply leaving as zero is one
1090
* option (still a valid pat_index). Same applies to
1091
* DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR bindings as for such mapping
1092
* there is no actual memory being mapped.
1093
*/
1094
__u16 pat_index;
1095
1096
/** @pad: MBZ */
1097
__u16 pad;
1098
1099
union {
1100
/**
1101
* @obj_offset: Offset into the object, MBZ for CLEAR_RANGE,
1102
* ignored for unbind
1103
*/
1104
__u64 obj_offset;
1105
1106
/** @userptr: user pointer to bind on */
1107
__u64 userptr;
1108
1109
/**
1110
* @cpu_addr_mirror_offset: Offset from GPU @addr to create
1111
* CPU address mirror mappings. MBZ with current level of
1112
* support (e.g. 1 to 1 mapping between GPU and CPU mappings
1113
* only supported).
1114
*/
1115
__s64 cpu_addr_mirror_offset;
1116
};
1117
1118
/**
1119
* @range: Number of bytes from the object to bind to addr, MBZ for UNMAP_ALL
1120
*/
1121
__u64 range;
1122
1123
/** @addr: Address to operate on, MBZ for UNMAP_ALL */
1124
__u64 addr;
1125
1126
#define DRM_XE_VM_BIND_OP_MAP 0x0
1127
#define DRM_XE_VM_BIND_OP_UNMAP 0x1
1128
#define DRM_XE_VM_BIND_OP_MAP_USERPTR 0x2
1129
#define DRM_XE_VM_BIND_OP_UNMAP_ALL 0x3
1130
#define DRM_XE_VM_BIND_OP_PREFETCH 0x4
1131
/** @op: Bind operation to perform */
1132
__u32 op;
1133
1134
#define DRM_XE_VM_BIND_FLAG_READONLY (1 << 0)
1135
#define DRM_XE_VM_BIND_FLAG_IMMEDIATE (1 << 1)
1136
#define DRM_XE_VM_BIND_FLAG_NULL (1 << 2)
1137
#define DRM_XE_VM_BIND_FLAG_DUMPABLE (1 << 3)
1138
#define DRM_XE_VM_BIND_FLAG_CHECK_PXP (1 << 4)
1139
#define DRM_XE_VM_BIND_FLAG_CPU_ADDR_MIRROR (1 << 5)
1140
#define DRM_XE_VM_BIND_FLAG_MADVISE_AUTORESET (1 << 6)
1141
/** @flags: Bind flags */
1142
__u32 flags;
1143
1144
#define DRM_XE_CONSULT_MEM_ADVISE_PREF_LOC -1
1145
/**
1146
* @prefetch_mem_region_instance: Memory region to prefetch VMA to.
1147
* It is a region instance, not a mask.
1148
* To be used only with %DRM_XE_VM_BIND_OP_PREFETCH operation.
1149
*/
1150
__u32 prefetch_mem_region_instance;
1151
1152
/** @pad2: MBZ */
1153
__u32 pad2;
1154
1155
/** @reserved: Reserved */
1156
__u64 reserved[3];
1157
};
1158
1159
/**
1160
* struct drm_xe_vm_bind - Input of &DRM_IOCTL_XE_VM_BIND
1161
*
1162
* Below is an example of a minimal use of @drm_xe_vm_bind to
1163
* asynchronously bind the buffer `data` at address `BIND_ADDRESS` to
1164
* illustrate `userptr`. It can be synchronized by using the example
1165
* provided for @drm_xe_sync.
1166
*
1167
* .. code-block:: C
1168
*
1169
* data = aligned_alloc(ALIGNMENT, BO_SIZE);
1170
* struct drm_xe_vm_bind bind = {
1171
* .vm_id = vm,
1172
* .num_binds = 1,
1173
* .bind.obj = 0,
1174
* .bind.obj_offset = to_user_pointer(data),
1175
* .bind.range = BO_SIZE,
1176
* .bind.addr = BIND_ADDRESS,
1177
* .bind.op = DRM_XE_VM_BIND_OP_MAP_USERPTR,
1178
* .bind.flags = 0,
1179
* .num_syncs = 1,
1180
* .syncs = &sync,
1181
* .exec_queue_id = 0,
1182
* };
1183
* ioctl(fd, DRM_IOCTL_XE_VM_BIND, &bind);
1184
*
1185
*/
1186
struct drm_xe_vm_bind {
1187
/** @extensions: Pointer to the first extension struct, if any */
1188
__u64 extensions;
1189
1190
/** @vm_id: The ID of the VM to bind to */
1191
__u32 vm_id;
1192
1193
/**
1194
* @exec_queue_id: exec_queue_id, must be of class DRM_XE_ENGINE_CLASS_VM_BIND
1195
* and exec queue must have same vm_id. If zero, the default VM bind engine
1196
* is used.
1197
*/
1198
__u32 exec_queue_id;
1199
1200
/** @pad: MBZ */
1201
__u32 pad;
1202
1203
/** @num_binds: number of binds in this IOCTL */
1204
__u32 num_binds;
1205
1206
union {
1207
/** @bind: used if num_binds == 1 */
1208
struct drm_xe_vm_bind_op bind;
1209
1210
/**
1211
* @vector_of_binds: userptr to array of struct
1212
* drm_xe_vm_bind_op if num_binds > 1
1213
*/
1214
__u64 vector_of_binds;
1215
};
1216
1217
/** @pad2: MBZ */
1218
__u32 pad2;
1219
1220
/** @num_syncs: amount of syncs to wait on */
1221
__u32 num_syncs;
1222
1223
/** @syncs: pointer to struct drm_xe_sync array */
1224
__u64 syncs;
1225
1226
/** @reserved: Reserved */
1227
__u64 reserved[2];
1228
};
1229
1230
/**
1231
* struct drm_xe_exec_queue_create - Input of &DRM_IOCTL_XE_EXEC_QUEUE_CREATE
1232
*
1233
* This ioctl supports setting the following properties via the
1234
* %DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY extension, which uses the
1235
* generic @drm_xe_ext_set_property struct:
1236
*
1237
* - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY - set the queue priority.
1238
* CAP_SYS_NICE is required to set a value above normal.
1239
* - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE - set the queue timeslice
1240
* duration in microseconds.
1241
* - %DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE - set the type of PXP session
1242
* this queue will be used with. Valid values are listed in enum
1243
* drm_xe_pxp_session_type. %DRM_XE_PXP_TYPE_NONE is the default behavior, so
1244
* there is no need to explicitly set that. When a queue of type
1245
* %DRM_XE_PXP_TYPE_HWDRM is created, the PXP default HWDRM session
1246
* (%XE_PXP_HWDRM_DEFAULT_SESSION) will be started, if isn't already running.
1247
* The user is expected to query the PXP status via the query ioctl (see
1248
* %DRM_XE_DEVICE_QUERY_PXP_STATUS) and to wait for PXP to be ready before
1249
* attempting to create a queue with this property. When a queue is created
1250
* before PXP is ready, the ioctl will return -EBUSY if init is still in
1251
* progress or -EIO if init failed.
1252
* Given that going into a power-saving state kills PXP HWDRM sessions,
1253
* runtime PM will be blocked while queues of this type are alive.
1254
* All PXP queues will be killed if a PXP invalidation event occurs.
1255
*
1256
* The example below shows how to use @drm_xe_exec_queue_create to create
1257
* a simple exec_queue (no parallel submission) of class
1258
* &DRM_XE_ENGINE_CLASS_RENDER.
1259
*
1260
* .. code-block:: C
1261
*
1262
* struct drm_xe_engine_class_instance instance = {
1263
* .engine_class = DRM_XE_ENGINE_CLASS_RENDER,
1264
* };
1265
* struct drm_xe_exec_queue_create exec_queue_create = {
1266
* .extensions = 0,
1267
* .vm_id = vm,
1268
* .num_bb_per_exec = 1,
1269
* .num_eng_per_bb = 1,
1270
* .instances = to_user_pointer(&instance),
1271
* };
1272
* ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1273
*
1274
* Allow users to provide a hint to kernel for cases demanding low latency
1275
* profile. Please note it will have impact on power consumption. User can
1276
* indicate low latency hint with flag while creating exec queue as
1277
* mentioned below,
1278
*
1279
* struct drm_xe_exec_queue_create exec_queue_create = {
1280
* .flags = DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT,
1281
* .extensions = 0,
1282
* .vm_id = vm,
1283
* .num_bb_per_exec = 1,
1284
* .num_eng_per_bb = 1,
1285
* .instances = to_user_pointer(&instance),
1286
* };
1287
* ioctl(fd, DRM_IOCTL_XE_EXEC_QUEUE_CREATE, &exec_queue_create);
1288
*
1289
*/
1290
struct drm_xe_exec_queue_create {
1291
#define DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY 0
1292
#define DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY 0
1293
#define DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE 1
1294
#define DRM_XE_EXEC_QUEUE_SET_PROPERTY_PXP_TYPE 2
1295
/** @extensions: Pointer to the first extension struct, if any */
1296
__u64 extensions;
1297
1298
/** @width: submission width (number BB per exec) for this exec queue */
1299
__u16 width;
1300
1301
/** @num_placements: number of valid placements for this exec queue */
1302
__u16 num_placements;
1303
1304
/** @vm_id: VM to use for this exec queue */
1305
__u32 vm_id;
1306
1307
#define DRM_XE_EXEC_QUEUE_LOW_LATENCY_HINT (1 << 0)
1308
/** @flags: flags to use for this exec queue */
1309
__u32 flags;
1310
1311
/** @exec_queue_id: Returned exec queue ID */
1312
__u32 exec_queue_id;
1313
1314
/**
1315
* @instances: user pointer to a 2-d array of struct
1316
* drm_xe_engine_class_instance
1317
*
1318
* length = width (i) * num_placements (j)
1319
* index = j + i * width
1320
*/
1321
__u64 instances;
1322
1323
/** @reserved: Reserved */
1324
__u64 reserved[2];
1325
};
1326
1327
/**
1328
* struct drm_xe_exec_queue_destroy - Input of &DRM_IOCTL_XE_EXEC_QUEUE_DESTROY
1329
*/
1330
struct drm_xe_exec_queue_destroy {
1331
/** @exec_queue_id: Exec queue ID */
1332
__u32 exec_queue_id;
1333
1334
/** @pad: MBZ */
1335
__u32 pad;
1336
1337
/** @reserved: Reserved */
1338
__u64 reserved[2];
1339
};
1340
1341
/**
1342
* struct drm_xe_exec_queue_get_property - Input of &DRM_IOCTL_XE_EXEC_QUEUE_GET_PROPERTY
1343
*
1344
* The @property can be:
1345
* - %DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN
1346
*/
1347
struct drm_xe_exec_queue_get_property {
1348
/** @extensions: Pointer to the first extension struct, if any */
1349
__u64 extensions;
1350
1351
/** @exec_queue_id: Exec queue ID */
1352
__u32 exec_queue_id;
1353
1354
#define DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN 0
1355
/** @property: property to get */
1356
__u32 property;
1357
1358
/** @value: property value */
1359
__u64 value;
1360
1361
/** @reserved: Reserved */
1362
__u64 reserved[2];
1363
};
1364
1365
/**
1366
* struct drm_xe_sync - sync object
1367
*
1368
* The @type can be:
1369
* - %DRM_XE_SYNC_TYPE_SYNCOBJ
1370
* - %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ
1371
* - %DRM_XE_SYNC_TYPE_USER_FENCE
1372
*
1373
* and the @flags can be:
1374
* - %DRM_XE_SYNC_FLAG_SIGNAL
1375
*
1376
* A minimal use of @drm_xe_sync looks like this:
1377
*
1378
* .. code-block:: C
1379
*
1380
* struct drm_xe_sync sync = {
1381
* .flags = DRM_XE_SYNC_FLAG_SIGNAL,
1382
* .type = DRM_XE_SYNC_TYPE_SYNCOBJ,
1383
* };
1384
* struct drm_syncobj_create syncobj_create = { 0 };
1385
* ioctl(fd, DRM_IOCTL_SYNCOBJ_CREATE, &syncobj_create);
1386
* sync.handle = syncobj_create.handle;
1387
* ...
1388
* use of &sync in drm_xe_exec or drm_xe_vm_bind
1389
* ...
1390
* struct drm_syncobj_wait wait = {
1391
* .handles = &sync.handle,
1392
* .timeout_nsec = INT64_MAX,
1393
* .count_handles = 1,
1394
* .flags = 0,
1395
* .first_signaled = 0,
1396
* .pad = 0,
1397
* };
1398
* ioctl(fd, DRM_IOCTL_SYNCOBJ_WAIT, &wait);
1399
*/
1400
struct drm_xe_sync {
1401
/** @extensions: Pointer to the first extension struct, if any */
1402
__u64 extensions;
1403
1404
#define DRM_XE_SYNC_TYPE_SYNCOBJ 0x0
1405
#define DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ 0x1
1406
#define DRM_XE_SYNC_TYPE_USER_FENCE 0x2
1407
/** @type: Type of the this sync object */
1408
__u32 type;
1409
1410
#define DRM_XE_SYNC_FLAG_SIGNAL (1 << 0)
1411
/** @flags: Sync Flags */
1412
__u32 flags;
1413
1414
union {
1415
/** @handle: Handle for the object */
1416
__u32 handle;
1417
1418
/**
1419
* @addr: Address of user fence. When sync is passed in via exec
1420
* IOCTL this is a GPU address in the VM. When sync passed in via
1421
* VM bind IOCTL this is a user pointer. In either case, it is
1422
* the users responsibility that this address is present and
1423
* mapped when the user fence is signalled. Must be qword
1424
* aligned.
1425
*/
1426
__u64 addr;
1427
};
1428
1429
/**
1430
* @timeline_value: Input for the timeline sync object. Needs to be
1431
* different than 0 when used with %DRM_XE_SYNC_TYPE_TIMELINE_SYNCOBJ.
1432
*/
1433
__u64 timeline_value;
1434
1435
/** @reserved: Reserved */
1436
__u64 reserved[2];
1437
};
1438
1439
/**
1440
* struct drm_xe_exec - Input of &DRM_IOCTL_XE_EXEC
1441
*
1442
* This is an example to use @drm_xe_exec for execution of the object
1443
* at BIND_ADDRESS (see example in @drm_xe_vm_bind) by an exec_queue
1444
* (see example in @drm_xe_exec_queue_create). It can be synchronized
1445
* by using the example provided for @drm_xe_sync.
1446
*
1447
* .. code-block:: C
1448
*
1449
* struct drm_xe_exec exec = {
1450
* .exec_queue_id = exec_queue,
1451
* .syncs = &sync,
1452
* .num_syncs = 1,
1453
* .address = BIND_ADDRESS,
1454
* .num_batch_buffer = 1,
1455
* };
1456
* ioctl(fd, DRM_IOCTL_XE_EXEC, &exec);
1457
*
1458
*/
1459
struct drm_xe_exec {
1460
/** @extensions: Pointer to the first extension struct, if any */
1461
__u64 extensions;
1462
1463
/** @exec_queue_id: Exec queue ID for the batch buffer */
1464
__u32 exec_queue_id;
1465
1466
#define DRM_XE_MAX_SYNCS 1024
1467
/** @num_syncs: Amount of struct drm_xe_sync in array. */
1468
__u32 num_syncs;
1469
1470
/** @syncs: Pointer to struct drm_xe_sync array. */
1471
__u64 syncs;
1472
1473
/**
1474
* @address: address of batch buffer if num_batch_buffer == 1 or an
1475
* array of batch buffer addresses
1476
*/
1477
__u64 address;
1478
1479
/**
1480
* @num_batch_buffer: number of batch buffer in this exec, must match
1481
* the width of the engine
1482
*/
1483
__u16 num_batch_buffer;
1484
1485
/** @pad: MBZ */
1486
__u16 pad[3];
1487
1488
/** @reserved: Reserved */
1489
__u64 reserved[2];
1490
};
1491
1492
/**
1493
* struct drm_xe_wait_user_fence - Input of &DRM_IOCTL_XE_WAIT_USER_FENCE
1494
*
1495
* Wait on user fence, XE will wake-up on every HW engine interrupt in the
1496
* instances list and check if user fence is complete::
1497
*
1498
* (*addr & MASK) OP (VALUE & MASK)
1499
*
1500
* Returns to user on user fence completion or timeout.
1501
*
1502
* The @op can be:
1503
* - %DRM_XE_UFENCE_WAIT_OP_EQ
1504
* - %DRM_XE_UFENCE_WAIT_OP_NEQ
1505
* - %DRM_XE_UFENCE_WAIT_OP_GT
1506
* - %DRM_XE_UFENCE_WAIT_OP_GTE
1507
* - %DRM_XE_UFENCE_WAIT_OP_LT
1508
* - %DRM_XE_UFENCE_WAIT_OP_LTE
1509
*
1510
* and the @flags can be:
1511
* - %DRM_XE_UFENCE_WAIT_FLAG_ABSTIME
1512
* - %DRM_XE_UFENCE_WAIT_FLAG_SOFT_OP
1513
*
1514
* The @mask values can be for example:
1515
* - 0xffu for u8
1516
* - 0xffffu for u16
1517
* - 0xffffffffu for u32
1518
* - 0xffffffffffffffffu for u64
1519
*/
1520
struct drm_xe_wait_user_fence {
1521
/** @extensions: Pointer to the first extension struct, if any */
1522
__u64 extensions;
1523
1524
/**
1525
* @addr: user pointer address to wait on, must qword aligned
1526
*/
1527
__u64 addr;
1528
1529
#define DRM_XE_UFENCE_WAIT_OP_EQ 0x0
1530
#define DRM_XE_UFENCE_WAIT_OP_NEQ 0x1
1531
#define DRM_XE_UFENCE_WAIT_OP_GT 0x2
1532
#define DRM_XE_UFENCE_WAIT_OP_GTE 0x3
1533
#define DRM_XE_UFENCE_WAIT_OP_LT 0x4
1534
#define DRM_XE_UFENCE_WAIT_OP_LTE 0x5
1535
/** @op: wait operation (type of comparison) */
1536
__u16 op;
1537
1538
#define DRM_XE_UFENCE_WAIT_FLAG_ABSTIME (1 << 0)
1539
/** @flags: wait flags */
1540
__u16 flags;
1541
1542
/** @pad: MBZ */
1543
__u32 pad;
1544
1545
/** @value: compare value */
1546
__u64 value;
1547
1548
/** @mask: comparison mask */
1549
__u64 mask;
1550
1551
/**
1552
* @timeout: how long to wait before bailing, value in nanoseconds.
1553
* Without DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flag set (relative timeout)
1554
* it contains timeout expressed in nanoseconds to wait (fence will
1555
* expire at now() + timeout).
1556
* When DRM_XE_UFENCE_WAIT_FLAG_ABSTIME flat is set (absolute timeout) wait
1557
* will end at timeout (uses system MONOTONIC_CLOCK).
1558
* Passing negative timeout leads to neverending wait.
1559
*
1560
* On relative timeout this value is updated with timeout left
1561
* (for restarting the call in case of signal delivery).
1562
* On absolute timeout this value stays intact (restarted call still
1563
* expire at the same point of time).
1564
*/
1565
__s64 timeout;
1566
1567
/** @exec_queue_id: exec_queue_id returned from xe_exec_queue_create_ioctl */
1568
__u32 exec_queue_id;
1569
1570
/** @pad2: MBZ */
1571
__u32 pad2;
1572
1573
/** @reserved: Reserved */
1574
__u64 reserved[2];
1575
};
1576
1577
/**
1578
* enum drm_xe_observation_type - Observation stream types
1579
*/
1580
enum drm_xe_observation_type {
1581
/** @DRM_XE_OBSERVATION_TYPE_OA: OA observation stream type */
1582
DRM_XE_OBSERVATION_TYPE_OA,
1583
/** @DRM_XE_OBSERVATION_TYPE_EU_STALL: EU stall sampling observation stream type */
1584
DRM_XE_OBSERVATION_TYPE_EU_STALL,
1585
};
1586
1587
/**
1588
* enum drm_xe_observation_op - Observation stream ops
1589
*/
1590
enum drm_xe_observation_op {
1591
/** @DRM_XE_OBSERVATION_OP_STREAM_OPEN: Open an observation stream */
1592
DRM_XE_OBSERVATION_OP_STREAM_OPEN,
1593
1594
/** @DRM_XE_OBSERVATION_OP_ADD_CONFIG: Add observation stream config */
1595
DRM_XE_OBSERVATION_OP_ADD_CONFIG,
1596
1597
/** @DRM_XE_OBSERVATION_OP_REMOVE_CONFIG: Remove observation stream config */
1598
DRM_XE_OBSERVATION_OP_REMOVE_CONFIG,
1599
};
1600
1601
/**
1602
* struct drm_xe_observation_param - Input of &DRM_XE_OBSERVATION
1603
*
1604
* The observation layer enables multiplexing observation streams of
1605
* multiple types. The actual params for a particular stream operation are
1606
* supplied via the @param pointer (use __copy_from_user to get these
1607
* params).
1608
*/
1609
struct drm_xe_observation_param {
1610
/** @extensions: Pointer to the first extension struct, if any */
1611
__u64 extensions;
1612
/** @observation_type: observation stream type, of enum @drm_xe_observation_type */
1613
__u64 observation_type;
1614
/** @observation_op: observation stream op, of enum @drm_xe_observation_op */
1615
__u64 observation_op;
1616
/** @param: Pointer to actual stream params */
1617
__u64 param;
1618
};
1619
1620
/**
1621
* enum drm_xe_observation_ioctls - Observation stream fd ioctl's
1622
*
1623
* Information exchanged between userspace and kernel for observation fd
1624
* ioctl's is stream type specific
1625
*/
1626
enum drm_xe_observation_ioctls {
1627
/** @DRM_XE_OBSERVATION_IOCTL_ENABLE: Enable data capture for an observation stream */
1628
DRM_XE_OBSERVATION_IOCTL_ENABLE = _IO('i', 0x0),
1629
1630
/** @DRM_XE_OBSERVATION_IOCTL_DISABLE: Disable data capture for a observation stream */
1631
DRM_XE_OBSERVATION_IOCTL_DISABLE = _IO('i', 0x1),
1632
1633
/** @DRM_XE_OBSERVATION_IOCTL_CONFIG: Change observation stream configuration */
1634
DRM_XE_OBSERVATION_IOCTL_CONFIG = _IO('i', 0x2),
1635
1636
/** @DRM_XE_OBSERVATION_IOCTL_STATUS: Return observation stream status */
1637
DRM_XE_OBSERVATION_IOCTL_STATUS = _IO('i', 0x3),
1638
1639
/** @DRM_XE_OBSERVATION_IOCTL_INFO: Return observation stream info */
1640
DRM_XE_OBSERVATION_IOCTL_INFO = _IO('i', 0x4),
1641
};
1642
1643
/**
1644
* enum drm_xe_oa_unit_type - OA unit types
1645
*/
1646
enum drm_xe_oa_unit_type {
1647
/**
1648
* @DRM_XE_OA_UNIT_TYPE_OAG: OAG OA unit. OAR/OAC are considered
1649
* sub-types of OAG. For OAR/OAC, use OAG.
1650
*/
1651
DRM_XE_OA_UNIT_TYPE_OAG,
1652
1653
/** @DRM_XE_OA_UNIT_TYPE_OAM: OAM OA unit */
1654
DRM_XE_OA_UNIT_TYPE_OAM,
1655
1656
/** @DRM_XE_OA_UNIT_TYPE_OAM_SAG: OAM_SAG OA unit */
1657
DRM_XE_OA_UNIT_TYPE_OAM_SAG,
1658
};
1659
1660
/**
1661
* struct drm_xe_oa_unit - describe OA unit
1662
*/
1663
struct drm_xe_oa_unit {
1664
/** @extensions: Pointer to the first extension struct, if any */
1665
__u64 extensions;
1666
1667
/** @oa_unit_id: OA unit ID */
1668
__u32 oa_unit_id;
1669
1670
/** @oa_unit_type: OA unit type of @drm_xe_oa_unit_type */
1671
__u32 oa_unit_type;
1672
1673
/** @capabilities: OA capabilities bit-mask */
1674
__u64 capabilities;
1675
#define DRM_XE_OA_CAPS_BASE (1 << 0)
1676
#define DRM_XE_OA_CAPS_SYNCS (1 << 1)
1677
#define DRM_XE_OA_CAPS_OA_BUFFER_SIZE (1 << 2)
1678
#define DRM_XE_OA_CAPS_WAIT_NUM_REPORTS (1 << 3)
1679
#define DRM_XE_OA_CAPS_OAM (1 << 4)
1680
1681
/** @oa_timestamp_freq: OA timestamp freq */
1682
__u64 oa_timestamp_freq;
1683
1684
/** @reserved: MBZ */
1685
__u64 reserved[4];
1686
1687
/** @num_engines: number of engines in @eci array */
1688
__u64 num_engines;
1689
1690
/** @eci: engines attached to this OA unit */
1691
struct drm_xe_engine_class_instance eci[];
1692
};
1693
1694
/**
1695
* struct drm_xe_query_oa_units - describe OA units
1696
*
1697
* If a query is made with a struct drm_xe_device_query where .query
1698
* is equal to DRM_XE_DEVICE_QUERY_OA_UNITS, then the reply uses struct
1699
* drm_xe_query_oa_units in .data.
1700
*
1701
* OA unit properties for all OA units can be accessed using a code block
1702
* such as the one below:
1703
*
1704
* .. code-block:: C
1705
*
1706
* struct drm_xe_query_oa_units *qoa;
1707
* struct drm_xe_oa_unit *oau;
1708
* u8 *poau;
1709
*
1710
* // malloc qoa and issue DRM_XE_DEVICE_QUERY_OA_UNITS. Then:
1711
* poau = (u8 *)&qoa->oa_units[0];
1712
* for (int i = 0; i < qoa->num_oa_units; i++) {
1713
* oau = (struct drm_xe_oa_unit *)poau;
1714
* // Access 'struct drm_xe_oa_unit' fields here
1715
* poau += sizeof(*oau) + oau->num_engines * sizeof(oau->eci[0]);
1716
* }
1717
*/
1718
struct drm_xe_query_oa_units {
1719
/** @extensions: Pointer to the first extension struct, if any */
1720
__u64 extensions;
1721
/** @num_oa_units: number of OA units returned in oau[] */
1722
__u32 num_oa_units;
1723
/** @pad: MBZ */
1724
__u32 pad;
1725
/**
1726
* @oa_units: struct @drm_xe_oa_unit array returned for this device.
1727
* Written below as a u64 array to avoid problems with nested flexible
1728
* arrays with some compilers
1729
*/
1730
__u64 oa_units[];
1731
};
1732
1733
/**
1734
* enum drm_xe_oa_format_type - OA format types as specified in PRM/Bspec
1735
* 52198/60942
1736
*/
1737
enum drm_xe_oa_format_type {
1738
/** @DRM_XE_OA_FMT_TYPE_OAG: OAG report format */
1739
DRM_XE_OA_FMT_TYPE_OAG,
1740
/** @DRM_XE_OA_FMT_TYPE_OAR: OAR report format */
1741
DRM_XE_OA_FMT_TYPE_OAR,
1742
/** @DRM_XE_OA_FMT_TYPE_OAM: OAM report format */
1743
DRM_XE_OA_FMT_TYPE_OAM,
1744
/** @DRM_XE_OA_FMT_TYPE_OAC: OAC report format */
1745
DRM_XE_OA_FMT_TYPE_OAC,
1746
/** @DRM_XE_OA_FMT_TYPE_OAM_MPEC: OAM SAMEDIA or OAM MPEC report format */
1747
DRM_XE_OA_FMT_TYPE_OAM_MPEC,
1748
/** @DRM_XE_OA_FMT_TYPE_PEC: PEC report format */
1749
DRM_XE_OA_FMT_TYPE_PEC,
1750
};
1751
1752
/**
1753
* enum drm_xe_oa_property_id - OA stream property id's
1754
*
1755
* Stream params are specified as a chain of @drm_xe_ext_set_property
1756
* struct's, with @property values from enum @drm_xe_oa_property_id and
1757
* @drm_xe_user_extension base.name set to @DRM_XE_OA_EXTENSION_SET_PROPERTY.
1758
* @param field in struct @drm_xe_observation_param points to the first
1759
* @drm_xe_ext_set_property struct.
1760
*
1761
* Exactly the same mechanism is also used for stream reconfiguration using the
1762
* @DRM_XE_OBSERVATION_IOCTL_CONFIG observation stream fd ioctl, though only a
1763
* subset of properties below can be specified for stream reconfiguration.
1764
*/
1765
enum drm_xe_oa_property_id {
1766
#define DRM_XE_OA_EXTENSION_SET_PROPERTY 0
1767
/**
1768
* @DRM_XE_OA_PROPERTY_OA_UNIT_ID: ID of the OA unit on which to open
1769
* the OA stream, see @oa_unit_id in 'struct
1770
* drm_xe_query_oa_units'. Defaults to 0 if not provided.
1771
*/
1772
DRM_XE_OA_PROPERTY_OA_UNIT_ID = 1,
1773
1774
/**
1775
* @DRM_XE_OA_PROPERTY_SAMPLE_OA: A value of 1 requests inclusion of raw
1776
* OA unit reports or stream samples in a global buffer attached to an
1777
* OA unit.
1778
*/
1779
DRM_XE_OA_PROPERTY_SAMPLE_OA,
1780
1781
/**
1782
* @DRM_XE_OA_PROPERTY_OA_METRIC_SET: OA metrics defining contents of OA
1783
* reports, previously added via @DRM_XE_OBSERVATION_OP_ADD_CONFIG.
1784
*/
1785
DRM_XE_OA_PROPERTY_OA_METRIC_SET,
1786
1787
/** @DRM_XE_OA_PROPERTY_OA_FORMAT: OA counter report format */
1788
DRM_XE_OA_PROPERTY_OA_FORMAT,
1789
/*
1790
* OA_FORMAT's are specified the same way as in PRM/Bspec 52198/60942,
1791
* in terms of the following quantities: a. enum @drm_xe_oa_format_type
1792
* b. Counter select c. Counter size and d. BC report. Also refer to the
1793
* oa_formats array in drivers/gpu/drm/xe/xe_oa.c.
1794
*/
1795
#define DRM_XE_OA_FORMAT_MASK_FMT_TYPE (0xffu << 0)
1796
#define DRM_XE_OA_FORMAT_MASK_COUNTER_SEL (0xffu << 8)
1797
#define DRM_XE_OA_FORMAT_MASK_COUNTER_SIZE (0xffu << 16)
1798
#define DRM_XE_OA_FORMAT_MASK_BC_REPORT (0xffu << 24)
1799
1800
/**
1801
* @DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT: Requests periodic OA unit
1802
* sampling with sampling frequency proportional to 2^(period_exponent + 1)
1803
*/
1804
DRM_XE_OA_PROPERTY_OA_PERIOD_EXPONENT,
1805
1806
/**
1807
* @DRM_XE_OA_PROPERTY_OA_DISABLED: A value of 1 will open the OA
1808
* stream in a DISABLED state (see @DRM_XE_OBSERVATION_IOCTL_ENABLE).
1809
*/
1810
DRM_XE_OA_PROPERTY_OA_DISABLED,
1811
1812
/**
1813
* @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID: Open the stream for a specific
1814
* @exec_queue_id. OA queries can be executed on this exec queue.
1815
*/
1816
DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID,
1817
1818
/**
1819
* @DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE: Optional engine instance to
1820
* pass along with @DRM_XE_OA_PROPERTY_EXEC_QUEUE_ID or will default to 0.
1821
*/
1822
DRM_XE_OA_PROPERTY_OA_ENGINE_INSTANCE,
1823
1824
/**
1825
* @DRM_XE_OA_PROPERTY_NO_PREEMPT: Allow preemption and timeslicing
1826
* to be disabled for the stream exec queue.
1827
*/
1828
DRM_XE_OA_PROPERTY_NO_PREEMPT,
1829
1830
/**
1831
* @DRM_XE_OA_PROPERTY_NUM_SYNCS: Number of syncs in the sync array
1832
* specified in @DRM_XE_OA_PROPERTY_SYNCS
1833
*/
1834
DRM_XE_OA_PROPERTY_NUM_SYNCS,
1835
1836
/**
1837
* @DRM_XE_OA_PROPERTY_SYNCS: Pointer to struct @drm_xe_sync array
1838
* with array size specified via @DRM_XE_OA_PROPERTY_NUM_SYNCS. OA
1839
* configuration will wait till input fences signal. Output fences
1840
* will signal after the new OA configuration takes effect. For
1841
* @DRM_XE_SYNC_TYPE_USER_FENCE, @addr is a user pointer, similar
1842
* to the VM bind case.
1843
*/
1844
DRM_XE_OA_PROPERTY_SYNCS,
1845
1846
/**
1847
* @DRM_XE_OA_PROPERTY_OA_BUFFER_SIZE: Size of OA buffer to be
1848
* allocated by the driver in bytes. Supported sizes are powers of
1849
* 2 from 128 KiB to 128 MiB. When not specified, a 16 MiB OA
1850
* buffer is allocated by default.
1851
*/
1852
DRM_XE_OA_PROPERTY_OA_BUFFER_SIZE,
1853
1854
/**
1855
* @DRM_XE_OA_PROPERTY_WAIT_NUM_REPORTS: Number of reports to wait
1856
* for before unblocking poll or read
1857
*/
1858
DRM_XE_OA_PROPERTY_WAIT_NUM_REPORTS,
1859
};
1860
1861
/**
1862
* struct drm_xe_oa_config - OA metric configuration
1863
*
1864
* Multiple OA configs can be added using @DRM_XE_OBSERVATION_OP_ADD_CONFIG. A
1865
* particular config can be specified when opening an OA stream using
1866
* @DRM_XE_OA_PROPERTY_OA_METRIC_SET property.
1867
*/
1868
struct drm_xe_oa_config {
1869
/** @extensions: Pointer to the first extension struct, if any */
1870
__u64 extensions;
1871
1872
/** @uuid: String formatted like "%\08x-%\04x-%\04x-%\04x-%\012x" */
1873
char uuid[36];
1874
1875
/** @n_regs: Number of regs in @regs_ptr */
1876
__u32 n_regs;
1877
1878
/**
1879
* @regs_ptr: Pointer to (register address, value) pairs for OA config
1880
* registers. Expected length of buffer is: (2 * sizeof(u32) * @n_regs).
1881
*/
1882
__u64 regs_ptr;
1883
};
1884
1885
/**
1886
* struct drm_xe_oa_stream_status - OA stream status returned from
1887
* @DRM_XE_OBSERVATION_IOCTL_STATUS observation stream fd ioctl. Userspace can
1888
* call the ioctl to query stream status in response to EIO errno from
1889
* observation fd read().
1890
*/
1891
struct drm_xe_oa_stream_status {
1892
/** @extensions: Pointer to the first extension struct, if any */
1893
__u64 extensions;
1894
1895
/** @oa_status: OA stream status (see Bspec 46717/61226) */
1896
__u64 oa_status;
1897
#define DRM_XE_OASTATUS_MMIO_TRG_Q_FULL (1 << 3)
1898
#define DRM_XE_OASTATUS_COUNTER_OVERFLOW (1 << 2)
1899
#define DRM_XE_OASTATUS_BUFFER_OVERFLOW (1 << 1)
1900
#define DRM_XE_OASTATUS_REPORT_LOST (1 << 0)
1901
1902
/** @reserved: reserved for future use */
1903
__u64 reserved[3];
1904
};
1905
1906
/**
1907
* struct drm_xe_oa_stream_info - OA stream info returned from
1908
* @DRM_XE_OBSERVATION_IOCTL_INFO observation stream fd ioctl
1909
*/
1910
struct drm_xe_oa_stream_info {
1911
/** @extensions: Pointer to the first extension struct, if any */
1912
__u64 extensions;
1913
1914
/** @oa_buf_size: OA buffer size */
1915
__u64 oa_buf_size;
1916
1917
/** @reserved: reserved for future use */
1918
__u64 reserved[3];
1919
};
1920
1921
/**
1922
* enum drm_xe_pxp_session_type - Supported PXP session types.
1923
*
1924
* We currently only support HWDRM sessions, which are used for protected
1925
* content that ends up being displayed, but the HW supports multiple types, so
1926
* we might extend support in the future.
1927
*/
1928
enum drm_xe_pxp_session_type {
1929
/** @DRM_XE_PXP_TYPE_NONE: PXP not used */
1930
DRM_XE_PXP_TYPE_NONE = 0,
1931
/**
1932
* @DRM_XE_PXP_TYPE_HWDRM: HWDRM sessions are used for content that ends
1933
* up on the display.
1934
*/
1935
DRM_XE_PXP_TYPE_HWDRM = 1,
1936
};
1937
1938
/* ID of the protected content session managed by Xe when PXP is active */
1939
#define DRM_XE_PXP_HWDRM_DEFAULT_SESSION 0xf
1940
1941
/**
1942
* enum drm_xe_eu_stall_property_id - EU stall sampling input property ids.
1943
*
1944
* These properties are passed to the driver at open as a chain of
1945
* @drm_xe_ext_set_property structures with @property set to these
1946
* properties' enums and @value set to the corresponding values of these
1947
* properties. @drm_xe_user_extension base.name should be set to
1948
* @DRM_XE_EU_STALL_EXTENSION_SET_PROPERTY.
1949
*
1950
* With the file descriptor obtained from open, user space must enable
1951
* the EU stall stream fd with @DRM_XE_OBSERVATION_IOCTL_ENABLE before
1952
* calling read(). EIO errno from read() indicates HW dropped data
1953
* due to full buffer.
1954
*/
1955
enum drm_xe_eu_stall_property_id {
1956
#define DRM_XE_EU_STALL_EXTENSION_SET_PROPERTY 0
1957
/**
1958
* @DRM_XE_EU_STALL_PROP_GT_ID: @gt_id of the GT on which
1959
* EU stall data will be captured.
1960
*/
1961
DRM_XE_EU_STALL_PROP_GT_ID = 1,
1962
1963
/**
1964
* @DRM_XE_EU_STALL_PROP_SAMPLE_RATE: Sampling rate in
1965
* GPU cycles from @sampling_rates in struct @drm_xe_query_eu_stall
1966
*/
1967
DRM_XE_EU_STALL_PROP_SAMPLE_RATE,
1968
1969
/**
1970
* @DRM_XE_EU_STALL_PROP_WAIT_NUM_REPORTS: Minimum number of
1971
* EU stall data reports to be present in the kernel buffer
1972
* before unblocking a blocked poll or read.
1973
*/
1974
DRM_XE_EU_STALL_PROP_WAIT_NUM_REPORTS,
1975
};
1976
1977
/**
1978
* struct drm_xe_query_eu_stall - Information about EU stall sampling.
1979
*
1980
* If a query is made with a struct @drm_xe_device_query where .query
1981
* is equal to @DRM_XE_DEVICE_QUERY_EU_STALL, then the reply uses
1982
* struct @drm_xe_query_eu_stall in .data.
1983
*/
1984
struct drm_xe_query_eu_stall {
1985
/** @extensions: Pointer to the first extension struct, if any */
1986
__u64 extensions;
1987
1988
/** @capabilities: EU stall capabilities bit-mask */
1989
__u64 capabilities;
1990
#define DRM_XE_EU_STALL_CAPS_BASE (1 << 0)
1991
1992
/** @record_size: size of each EU stall data record */
1993
__u64 record_size;
1994
1995
/** @per_xecore_buf_size: internal per XeCore buffer size */
1996
__u64 per_xecore_buf_size;
1997
1998
/** @reserved: Reserved */
1999
__u64 reserved[5];
2000
2001
/** @num_sampling_rates: Number of sampling rates in @sampling_rates array */
2002
__u64 num_sampling_rates;
2003
2004
/**
2005
* @sampling_rates: Flexible array of sampling rates
2006
* sorted in the fastest to slowest order.
2007
* Sampling rates are specified in GPU clock cycles.
2008
*/
2009
__u64 sampling_rates[];
2010
};
2011
2012
/**
2013
* struct drm_xe_madvise - Input of &DRM_IOCTL_XE_MADVISE
2014
*
2015
* This structure is used to set memory attributes for a virtual address range
2016
* in a VM. The type of attribute is specified by @type, and the corresponding
2017
* union member is used to provide additional parameters for @type.
2018
*
2019
* Supported attribute types:
2020
* - DRM_XE_MEM_RANGE_ATTR_PREFERRED_LOC: Set preferred memory location.
2021
* - DRM_XE_MEM_RANGE_ATTR_ATOMIC: Set atomic access policy.
2022
* - DRM_XE_MEM_RANGE_ATTR_PAT: Set page attribute table index.
2023
*
2024
* Example:
2025
*
2026
* .. code-block:: C
2027
*
2028
* struct drm_xe_madvise madvise = {
2029
* .vm_id = vm_id,
2030
* .start = 0x100000,
2031
* .range = 0x2000,
2032
* .type = DRM_XE_MEM_RANGE_ATTR_ATOMIC,
2033
* .atomic_val = DRM_XE_ATOMIC_DEVICE,
2034
* };
2035
*
2036
* ioctl(fd, DRM_IOCTL_XE_MADVISE, &madvise);
2037
*
2038
*/
2039
struct drm_xe_madvise {
2040
/** @extensions: Pointer to the first extension struct, if any */
2041
__u64 extensions;
2042
2043
/** @start: start of the virtual address range */
2044
__u64 start;
2045
2046
/** @range: size of the virtual address range */
2047
__u64 range;
2048
2049
/** @vm_id: vm_id of the virtual range */
2050
__u32 vm_id;
2051
2052
#define DRM_XE_MEM_RANGE_ATTR_PREFERRED_LOC 0
2053
#define DRM_XE_MEM_RANGE_ATTR_ATOMIC 1
2054
#define DRM_XE_MEM_RANGE_ATTR_PAT 2
2055
/** @type: type of attribute */
2056
__u32 type;
2057
2058
union {
2059
/**
2060
* @preferred_mem_loc: preferred memory location
2061
*
2062
* Used when @type == DRM_XE_MEM_RANGE_ATTR_PREFERRED_LOC
2063
*
2064
* Supported values for @preferred_mem_loc.devmem_fd:
2065
* - DRM_XE_PREFERRED_LOC_DEFAULT_DEVICE: set vram of fault tile as preferred loc
2066
* - DRM_XE_PREFERRED_LOC_DEFAULT_SYSTEM: set smem as preferred loc
2067
*
2068
* Supported values for @preferred_mem_loc.migration_policy:
2069
* - DRM_XE_MIGRATE_ALL_PAGES
2070
* - DRM_XE_MIGRATE_ONLY_SYSTEM_PAGES
2071
*/
2072
struct {
2073
#define DRM_XE_PREFERRED_LOC_DEFAULT_DEVICE 0
2074
#define DRM_XE_PREFERRED_LOC_DEFAULT_SYSTEM -1
2075
/** @preferred_mem_loc.devmem_fd: fd for preferred loc */
2076
__u32 devmem_fd;
2077
2078
#define DRM_XE_MIGRATE_ALL_PAGES 0
2079
#define DRM_XE_MIGRATE_ONLY_SYSTEM_PAGES 1
2080
/** @preferred_mem_loc.migration_policy: Page migration policy */
2081
__u16 migration_policy;
2082
2083
/** @preferred_mem_loc.pad : MBZ */
2084
__u16 pad;
2085
2086
/** @preferred_mem_loc.reserved : Reserved */
2087
__u64 reserved;
2088
} preferred_mem_loc;
2089
2090
/**
2091
* @atomic: Atomic access policy
2092
*
2093
* Used when @type == DRM_XE_MEM_RANGE_ATTR_ATOMIC.
2094
*
2095
* Supported values for @atomic.val:
2096
* - DRM_XE_ATOMIC_UNDEFINED: Undefined or default behaviour.
2097
* Support both GPU and CPU atomic operations for system allocator.
2098
* Support GPU atomic operations for normal(bo) allocator.
2099
* - DRM_XE_ATOMIC_DEVICE: Support GPU atomic operations.
2100
* - DRM_XE_ATOMIC_GLOBAL: Support both GPU and CPU atomic operations.
2101
* - DRM_XE_ATOMIC_CPU: Support CPU atomic only, no GPU atomics supported.
2102
*/
2103
struct {
2104
#define DRM_XE_ATOMIC_UNDEFINED 0
2105
#define DRM_XE_ATOMIC_DEVICE 1
2106
#define DRM_XE_ATOMIC_GLOBAL 2
2107
#define DRM_XE_ATOMIC_CPU 3
2108
/** @atomic.val: value of atomic operation */
2109
__u32 val;
2110
2111
/** @atomic.pad: MBZ */
2112
__u32 pad;
2113
2114
/** @atomic.reserved: Reserved */
2115
__u64 reserved;
2116
} atomic;
2117
2118
/**
2119
* @pat_index: Page attribute table index
2120
*
2121
* Used when @type == DRM_XE_MEM_RANGE_ATTR_PAT.
2122
*/
2123
struct {
2124
/** @pat_index.val: PAT index value */
2125
__u32 val;
2126
2127
/** @pat_index.pad: MBZ */
2128
__u32 pad;
2129
2130
/** @pat_index.reserved: Reserved */
2131
__u64 reserved;
2132
} pat_index;
2133
};
2134
2135
/** @reserved: Reserved */
2136
__u64 reserved[2];
2137
};
2138
2139
/**
2140
* struct drm_xe_mem_range_attr - Output of &DRM_IOCTL_XE_VM_QUERY_MEM_RANGES_ATTRS
2141
*
2142
* This structure is provided by userspace and filled by KMD in response to the
2143
* DRM_IOCTL_XE_VM_QUERY_MEM_RANGES_ATTRS ioctl. It describes memory attributes of
2144
* a memory ranges within a user specified address range in a VM.
2145
*
2146
* The structure includes information such as atomic access policy,
2147
* page attribute table (PAT) index, and preferred memory location.
2148
* Userspace allocates an array of these structures and passes a pointer to the
2149
* ioctl to retrieve attributes for each memory ranges
2150
*
2151
* @extensions: Pointer to the first extension struct, if any
2152
* @start: Start address of the memory range
2153
* @end: End address of the virtual memory range
2154
*
2155
*/
2156
struct drm_xe_mem_range_attr {
2157
/** @extensions: Pointer to the first extension struct, if any */
2158
__u64 extensions;
2159
2160
/** @start: start of the memory range */
2161
__u64 start;
2162
2163
/** @end: end of the memory range */
2164
__u64 end;
2165
2166
/** @preferred_mem_loc: preferred memory location */
2167
struct {
2168
/** @preferred_mem_loc.devmem_fd: fd for preferred loc */
2169
__u32 devmem_fd;
2170
2171
/** @preferred_mem_loc.migration_policy: Page migration policy */
2172
__u32 migration_policy;
2173
} preferred_mem_loc;
2174
2175
/** @atomic: Atomic access policy */
2176
struct {
2177
/** @atomic.val: atomic attribute */
2178
__u32 val;
2179
2180
/** @atomic.reserved: Reserved */
2181
__u32 reserved;
2182
} atomic;
2183
2184
/** @pat_index: Page attribute table index */
2185
struct {
2186
/** @pat_index.val: PAT index */
2187
__u32 val;
2188
2189
/** @pat_index.reserved: Reserved */
2190
__u32 reserved;
2191
} pat_index;
2192
2193
/** @reserved: Reserved */
2194
__u64 reserved[2];
2195
};
2196
2197
/**
2198
* struct drm_xe_vm_query_mem_range_attr - Input of &DRM_IOCTL_XE_VM_QUERY_MEM_ATTRIBUTES
2199
*
2200
* This structure is used to query memory attributes of memory regions
2201
* within a user specified address range in a VM. It provides detailed
2202
* information about each memory range, including atomic access policy,
2203
* page attribute table (PAT) index, and preferred memory location.
2204
*
2205
* Userspace first calls the ioctl with @num_mem_ranges = 0,
2206
* @sizeof_mem_ranges_attr = 0 and @vector_of_vma_mem_attr = NULL to retrieve
2207
* the number of memory regions and size of each memory range attribute.
2208
* Then, it allocates a buffer of that size and calls the ioctl again to fill
2209
* the buffer with memory range attributes.
2210
*
2211
* If second call fails with -ENOSPC, it means memory ranges changed between
2212
* first call and now, retry IOCTL again with @num_mem_ranges = 0,
2213
* @sizeof_mem_ranges_attr = 0 and @vector_of_vma_mem_attr = NULL followed by
2214
* Second ioctl call.
2215
*
2216
* Example:
2217
*
2218
* .. code-block:: C
2219
*
2220
* struct drm_xe_vm_query_mem_range_attr query = {
2221
* .vm_id = vm_id,
2222
* .start = 0x100000,
2223
* .range = 0x2000,
2224
* };
2225
*
2226
* // First ioctl call to get num of mem regions and sizeof each attribute
2227
* ioctl(fd, DRM_IOCTL_XE_VM_QUERY_MEM_RANGE_ATTRS, &query);
2228
*
2229
* // Allocate buffer for the memory region attributes
2230
* void *ptr = malloc(query.num_mem_ranges * query.sizeof_mem_range_attr);
2231
* void *ptr_start = ptr;
2232
*
2233
* query.vector_of_mem_attr = (uintptr_t)ptr;
2234
*
2235
* // Second ioctl call to actually fill the memory attributes
2236
* ioctl(fd, DRM_IOCTL_XE_VM_QUERY_MEM_RANGE_ATTRS, &query);
2237
*
2238
* // Iterate over the returned memory region attributes
2239
* for (unsigned int i = 0; i < query.num_mem_ranges; ++i) {
2240
* struct drm_xe_mem_range_attr *attr = (struct drm_xe_mem_range_attr *)ptr;
2241
*
2242
* // Do something with attr
2243
*
2244
* // Move pointer by one entry
2245
* ptr += query.sizeof_mem_range_attr;
2246
* }
2247
*
2248
* free(ptr_start);
2249
*/
2250
struct drm_xe_vm_query_mem_range_attr {
2251
/** @extensions: Pointer to the first extension struct, if any */
2252
__u64 extensions;
2253
2254
/** @vm_id: vm_id of the virtual range */
2255
__u32 vm_id;
2256
2257
/** @num_mem_ranges: number of mem_ranges in range */
2258
__u32 num_mem_ranges;
2259
2260
/** @start: start of the virtual address range */
2261
__u64 start;
2262
2263
/** @range: size of the virtual address range */
2264
__u64 range;
2265
2266
/** @sizeof_mem_range_attr: size of struct drm_xe_mem_range_attr */
2267
__u64 sizeof_mem_range_attr;
2268
2269
/** @vector_of_mem_attr: userptr to array of struct drm_xe_mem_range_attr */
2270
__u64 vector_of_mem_attr;
2271
2272
/** @reserved: Reserved */
2273
__u64 reserved[2];
2274
2275
};
2276
2277
#if defined(__cplusplus)
2278
}
2279
#endif
2280
2281
#endif /* _UAPI_XE_DRM_H_ */
2282
2283