Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/xen/interface/io/blkif.h
26286 views
1
/* SPDX-License-Identifier: MIT */
2
/******************************************************************************
3
* blkif.h
4
*
5
* Unified block-device I/O interface for Xen guest OSes.
6
*
7
* Copyright (c) 2003-2004, Keir Fraser
8
*/
9
10
#ifndef __XEN_PUBLIC_IO_BLKIF_H__
11
#define __XEN_PUBLIC_IO_BLKIF_H__
12
13
#include <xen/interface/io/ring.h>
14
#include <xen/interface/grant_table.h>
15
16
/*
17
* Front->back notifications: When enqueuing a new request, sending a
18
* notification can be made conditional on req_event (i.e., the generic
19
* hold-off mechanism provided by the ring macros). Backends must set
20
* req_event appropriately (e.g., using RING_FINAL_CHECK_FOR_REQUESTS()).
21
*
22
* Back->front notifications: When enqueuing a new response, sending a
23
* notification can be made conditional on rsp_event (i.e., the generic
24
* hold-off mechanism provided by the ring macros). Frontends must set
25
* rsp_event appropriately (e.g., using RING_FINAL_CHECK_FOR_RESPONSES()).
26
*/
27
28
typedef uint16_t blkif_vdev_t;
29
typedef uint64_t blkif_sector_t;
30
31
/*
32
* Multiple hardware queues/rings:
33
* If supported, the backend will write the key "multi-queue-max-queues" to
34
* the directory for that vbd, and set its value to the maximum supported
35
* number of queues.
36
* Frontends that are aware of this feature and wish to use it can write the
37
* key "multi-queue-num-queues" with the number they wish to use, which must be
38
* greater than zero, and no more than the value reported by the backend in
39
* "multi-queue-max-queues".
40
*
41
* For frontends requesting just one queue, the usual event-channel and
42
* ring-ref keys are written as before, simplifying the backend processing
43
* to avoid distinguishing between a frontend that doesn't understand the
44
* multi-queue feature, and one that does, but requested only one queue.
45
*
46
* Frontends requesting two or more queues must not write the toplevel
47
* event-channel and ring-ref keys, instead writing those keys under sub-keys
48
* having the name "queue-N" where N is the integer ID of the queue/ring for
49
* which those keys belong. Queues are indexed from zero.
50
* For example, a frontend with two queues must write the following set of
51
* queue-related keys:
52
*
53
* /local/domain/1/device/vbd/0/multi-queue-num-queues = "2"
54
* /local/domain/1/device/vbd/0/queue-0 = ""
55
* /local/domain/1/device/vbd/0/queue-0/ring-ref = "<ring-ref#0>"
56
* /local/domain/1/device/vbd/0/queue-0/event-channel = "<evtchn#0>"
57
* /local/domain/1/device/vbd/0/queue-1 = ""
58
* /local/domain/1/device/vbd/0/queue-1/ring-ref = "<ring-ref#1>"
59
* /local/domain/1/device/vbd/0/queue-1/event-channel = "<evtchn#1>"
60
*
61
* It is also possible to use multiple queues/rings together with
62
* feature multi-page ring buffer.
63
* For example, a frontend requests two queues/rings and the size of each ring
64
* buffer is two pages must write the following set of related keys:
65
*
66
* /local/domain/1/device/vbd/0/multi-queue-num-queues = "2"
67
* /local/domain/1/device/vbd/0/ring-page-order = "1"
68
* /local/domain/1/device/vbd/0/queue-0 = ""
69
* /local/domain/1/device/vbd/0/queue-0/ring-ref0 = "<ring-ref#0>"
70
* /local/domain/1/device/vbd/0/queue-0/ring-ref1 = "<ring-ref#1>"
71
* /local/domain/1/device/vbd/0/queue-0/event-channel = "<evtchn#0>"
72
* /local/domain/1/device/vbd/0/queue-1 = ""
73
* /local/domain/1/device/vbd/0/queue-1/ring-ref0 = "<ring-ref#2>"
74
* /local/domain/1/device/vbd/0/queue-1/ring-ref1 = "<ring-ref#3>"
75
* /local/domain/1/device/vbd/0/queue-1/event-channel = "<evtchn#1>"
76
*
77
*/
78
79
/*
80
* REQUEST CODES.
81
*/
82
#define BLKIF_OP_READ 0
83
#define BLKIF_OP_WRITE 1
84
/*
85
* Recognised only if "feature-barrier" is present in backend xenbus info.
86
* The "feature_barrier" node contains a boolean indicating whether barrier
87
* requests are likely to succeed or fail. Either way, a barrier request
88
* may fail at any time with BLKIF_RSP_EOPNOTSUPP if it is unsupported by
89
* the underlying block-device hardware. The boolean simply indicates whether
90
* or not it is worthwhile for the frontend to attempt barrier requests.
91
* If a backend does not recognise BLKIF_OP_WRITE_BARRIER, it should *not*
92
* create the "feature-barrier" node!
93
*/
94
#define BLKIF_OP_WRITE_BARRIER 2
95
96
/*
97
* Recognised if "feature-flush-cache" is present in backend xenbus
98
* info. A flush will ask the underlying storage hardware to flush its
99
* non-volatile caches as appropriate. The "feature-flush-cache" node
100
* contains a boolean indicating whether flush requests are likely to
101
* succeed or fail. Either way, a flush request may fail at any time
102
* with BLKIF_RSP_EOPNOTSUPP if it is unsupported by the underlying
103
* block-device hardware. The boolean simply indicates whether or not it
104
* is worthwhile for the frontend to attempt flushes. If a backend does
105
* not recognise BLKIF_OP_WRITE_FLUSH_CACHE, it should *not* create the
106
* "feature-flush-cache" node!
107
*/
108
#define BLKIF_OP_FLUSH_DISKCACHE 3
109
110
/*
111
* Recognised only if "feature-discard" is present in backend xenbus info.
112
* The "feature-discard" node contains a boolean indicating whether trim
113
* (ATA) or unmap (SCSI) - conviently called discard requests are likely
114
* to succeed or fail. Either way, a discard request
115
* may fail at any time with BLKIF_RSP_EOPNOTSUPP if it is unsupported by
116
* the underlying block-device hardware. The boolean simply indicates whether
117
* or not it is worthwhile for the frontend to attempt discard requests.
118
* If a backend does not recognise BLKIF_OP_DISCARD, it should *not*
119
* create the "feature-discard" node!
120
*
121
* Discard operation is a request for the underlying block device to mark
122
* extents to be erased. However, discard does not guarantee that the blocks
123
* will be erased from the device - it is just a hint to the device
124
* controller that these blocks are no longer in use. What the device
125
* controller does with that information is left to the controller.
126
* Discard operations are passed with sector_number as the
127
* sector index to begin discard operations at and nr_sectors as the number of
128
* sectors to be discarded. The specified sectors should be discarded if the
129
* underlying block device supports trim (ATA) or unmap (SCSI) operations,
130
* or a BLKIF_RSP_EOPNOTSUPP should be returned.
131
* More information about trim/unmap operations at:
132
* http://t13.org/Documents/UploadedDocuments/docs2008/
133
* e07154r6-Data_Set_Management_Proposal_for_ATA-ACS2.doc
134
* http://www.seagate.com/staticfiles/support/disc/manuals/
135
* Interface%20manuals/100293068c.pdf
136
* The backend can optionally provide three extra XenBus attributes to
137
* further optimize the discard functionality:
138
* 'discard-alignment' - Devices that support discard functionality may
139
* internally allocate space in units that are bigger than the exported
140
* logical block size. The discard-alignment parameter indicates how many bytes
141
* the beginning of the partition is offset from the internal allocation unit's
142
* natural alignment.
143
* 'discard-granularity' - Devices that support discard functionality may
144
* internally allocate space using units that are bigger than the logical block
145
* size. The discard-granularity parameter indicates the size of the internal
146
* allocation unit in bytes if reported by the device. Otherwise the
147
* discard-granularity will be set to match the device's physical block size.
148
* 'discard-secure' - All copies of the discarded sectors (potentially created
149
* by garbage collection) must also be erased. To use this feature, the flag
150
* BLKIF_DISCARD_SECURE must be set in the blkif_request_trim.
151
*/
152
#define BLKIF_OP_DISCARD 5
153
154
/*
155
* Recognized if "feature-max-indirect-segments" in present in the backend
156
* xenbus info. The "feature-max-indirect-segments" node contains the maximum
157
* number of segments allowed by the backend per request. If the node is
158
* present, the frontend might use blkif_request_indirect structs in order to
159
* issue requests with more than BLKIF_MAX_SEGMENTS_PER_REQUEST (11). The
160
* maximum number of indirect segments is fixed by the backend, but the
161
* frontend can issue requests with any number of indirect segments as long as
162
* it's less than the number provided by the backend. The indirect_grefs field
163
* in blkif_request_indirect should be filled by the frontend with the
164
* grant references of the pages that are holding the indirect segments.
165
* These pages are filled with an array of blkif_request_segment that hold the
166
* information about the segments. The number of indirect pages to use is
167
* determined by the number of segments an indirect request contains. Every
168
* indirect page can contain a maximum of
169
* (PAGE_SIZE / sizeof(struct blkif_request_segment)) segments, so to
170
* calculate the number of indirect pages to use we have to do
171
* ceil(indirect_segments / (PAGE_SIZE / sizeof(struct blkif_request_segment))).
172
*
173
* If a backend does not recognize BLKIF_OP_INDIRECT, it should *not*
174
* create the "feature-max-indirect-segments" node!
175
*/
176
#define BLKIF_OP_INDIRECT 6
177
178
/*
179
* Maximum scatter/gather segments per request.
180
* This is carefully chosen so that sizeof(struct blkif_ring) <= PAGE_SIZE.
181
* NB. This could be 12 if the ring indexes weren't stored in the same page.
182
*/
183
#define BLKIF_MAX_SEGMENTS_PER_REQUEST 11
184
185
#define BLKIF_MAX_INDIRECT_PAGES_PER_REQUEST 8
186
187
struct blkif_request_segment {
188
grant_ref_t gref; /* reference to I/O buffer frame */
189
/* @first_sect: first sector in frame to transfer (inclusive). */
190
/* @last_sect: last sector in frame to transfer (inclusive). */
191
uint8_t first_sect, last_sect;
192
};
193
194
struct blkif_request_rw {
195
uint8_t nr_segments; /* number of segments */
196
blkif_vdev_t handle; /* only for read/write requests */
197
#ifndef CONFIG_X86_32
198
uint32_t _pad1; /* offsetof(blkif_request,u.rw.id) == 8 */
199
#endif
200
uint64_t id; /* private guest value, echoed in resp */
201
blkif_sector_t sector_number;/* start sector idx on disk (r/w only) */
202
struct blkif_request_segment seg[BLKIF_MAX_SEGMENTS_PER_REQUEST];
203
} __attribute__((__packed__));
204
205
struct blkif_request_discard {
206
uint8_t flag; /* BLKIF_DISCARD_SECURE or zero. */
207
#define BLKIF_DISCARD_SECURE (1<<0) /* ignored if discard-secure=0 */
208
blkif_vdev_t _pad1; /* only for read/write requests */
209
#ifndef CONFIG_X86_32
210
uint32_t _pad2; /* offsetof(blkif_req..,u.discard.id)==8*/
211
#endif
212
uint64_t id; /* private guest value, echoed in resp */
213
blkif_sector_t sector_number;
214
uint64_t nr_sectors;
215
uint8_t _pad3;
216
} __attribute__((__packed__));
217
218
struct blkif_request_other {
219
uint8_t _pad1;
220
blkif_vdev_t _pad2; /* only for read/write requests */
221
#ifndef CONFIG_X86_32
222
uint32_t _pad3; /* offsetof(blkif_req..,u.other.id)==8*/
223
#endif
224
uint64_t id; /* private guest value, echoed in resp */
225
} __attribute__((__packed__));
226
227
struct blkif_request_indirect {
228
uint8_t indirect_op;
229
uint16_t nr_segments;
230
#ifndef CONFIG_X86_32
231
uint32_t _pad1; /* offsetof(blkif_...,u.indirect.id) == 8 */
232
#endif
233
uint64_t id;
234
blkif_sector_t sector_number;
235
blkif_vdev_t handle;
236
uint16_t _pad2;
237
grant_ref_t indirect_grefs[BLKIF_MAX_INDIRECT_PAGES_PER_REQUEST];
238
#ifndef CONFIG_X86_32
239
uint32_t _pad3; /* make it 64 byte aligned */
240
#else
241
uint64_t _pad3; /* make it 64 byte aligned */
242
#endif
243
} __attribute__((__packed__));
244
245
struct blkif_request {
246
uint8_t operation; /* BLKIF_OP_??? */
247
union {
248
struct blkif_request_rw rw;
249
struct blkif_request_discard discard;
250
struct blkif_request_other other;
251
struct blkif_request_indirect indirect;
252
} u;
253
} __attribute__((__packed__));
254
255
struct blkif_response {
256
uint64_t id; /* copied from request */
257
uint8_t operation; /* copied from request */
258
int16_t status; /* BLKIF_RSP_??? */
259
};
260
261
/*
262
* STATUS RETURN CODES.
263
*/
264
/* Operation not supported (only happens on barrier writes). */
265
#define BLKIF_RSP_EOPNOTSUPP -2
266
/* Operation failed for some unspecified reason (-EIO). */
267
#define BLKIF_RSP_ERROR -1
268
/* Operation completed successfully. */
269
#define BLKIF_RSP_OKAY 0
270
271
/*
272
* Generate blkif ring structures and types.
273
*/
274
275
DEFINE_RING_TYPES(blkif, struct blkif_request, struct blkif_response);
276
277
#define VDISK_CDROM 0x1
278
#define VDISK_REMOVABLE 0x2
279
#define VDISK_READONLY 0x4
280
281
/* Xen-defined major numbers for virtual disks, they look strangely
282
* familiar */
283
#define XEN_IDE0_MAJOR 3
284
#define XEN_IDE1_MAJOR 22
285
#define XEN_SCSI_DISK0_MAJOR 8
286
#define XEN_SCSI_DISK1_MAJOR 65
287
#define XEN_SCSI_DISK2_MAJOR 66
288
#define XEN_SCSI_DISK3_MAJOR 67
289
#define XEN_SCSI_DISK4_MAJOR 68
290
#define XEN_SCSI_DISK5_MAJOR 69
291
#define XEN_SCSI_DISK6_MAJOR 70
292
#define XEN_SCSI_DISK7_MAJOR 71
293
#define XEN_SCSI_DISK8_MAJOR 128
294
#define XEN_SCSI_DISK9_MAJOR 129
295
#define XEN_SCSI_DISK10_MAJOR 130
296
#define XEN_SCSI_DISK11_MAJOR 131
297
#define XEN_SCSI_DISK12_MAJOR 132
298
#define XEN_SCSI_DISK13_MAJOR 133
299
#define XEN_SCSI_DISK14_MAJOR 134
300
#define XEN_SCSI_DISK15_MAJOR 135
301
302
#endif /* __XEN_PUBLIC_IO_BLKIF_H__ */
303
304