Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/xen/interface/io/netif.h
26286 views
1
/* SPDX-License-Identifier: MIT */
2
/******************************************************************************
3
* xen_netif.h
4
*
5
* Unified network-device I/O interface for Xen guest OSes.
6
*
7
* Copyright (c) 2003-2004, Keir Fraser
8
*/
9
10
#ifndef __XEN_PUBLIC_IO_XEN_NETIF_H__
11
#define __XEN_PUBLIC_IO_XEN_NETIF_H__
12
13
#include "ring.h"
14
#include "../grant_table.h"
15
16
/*
17
* Older implementation of Xen network frontend / backend has an
18
* implicit dependency on the MAX_SKB_FRAGS as the maximum number of
19
* ring slots a skb can use. Netfront / netback may not work as
20
* expected when frontend and backend have different MAX_SKB_FRAGS.
21
*
22
* A better approach is to add mechanism for netfront / netback to
23
* negotiate this value. However we cannot fix all possible
24
* frontends, so we need to define a value which states the minimum
25
* slots backend must support.
26
*
27
* The minimum value derives from older Linux kernel's MAX_SKB_FRAGS
28
* (18), which is proved to work with most frontends. Any new backend
29
* which doesn't negotiate with frontend should expect frontend to
30
* send a valid packet using slots up to this value.
31
*/
32
#define XEN_NETIF_NR_SLOTS_MIN 18
33
34
/*
35
* Notifications after enqueuing any type of message should be conditional on
36
* the appropriate req_event or rsp_event field in the shared ring.
37
* If the client sends notification for rx requests then it should specify
38
* feature 'feature-rx-notify' via xenbus. Otherwise the backend will assume
39
* that it cannot safely queue packets (as it may not be kicked to send them).
40
*/
41
42
/*
43
* "feature-split-event-channels" is introduced to separate guest TX
44
* and RX notification. Backend either doesn't support this feature or
45
* advertises it via xenstore as 0 (disabled) or 1 (enabled).
46
*
47
* To make use of this feature, frontend should allocate two event
48
* channels for TX and RX, advertise them to backend as
49
* "event-channel-tx" and "event-channel-rx" respectively. If frontend
50
* doesn't want to use this feature, it just writes "event-channel"
51
* node as before.
52
*/
53
54
/*
55
* Multiple transmit and receive queues:
56
* If supported, the backend will write the key "multi-queue-max-queues" to
57
* the directory for that vif, and set its value to the maximum supported
58
* number of queues.
59
* Frontends that are aware of this feature and wish to use it can write the
60
* key "multi-queue-num-queues", set to the number they wish to use, which
61
* must be greater than zero, and no more than the value reported by the backend
62
* in "multi-queue-max-queues".
63
*
64
* Queues replicate the shared rings and event channels.
65
* "feature-split-event-channels" may optionally be used when using
66
* multiple queues, but is not mandatory.
67
*
68
* Each queue consists of one shared ring pair, i.e. there must be the same
69
* number of tx and rx rings.
70
*
71
* For frontends requesting just one queue, the usual event-channel and
72
* ring-ref keys are written as before, simplifying the backend processing
73
* to avoid distinguishing between a frontend that doesn't understand the
74
* multi-queue feature, and one that does, but requested only one queue.
75
*
76
* Frontends requesting two or more queues must not write the toplevel
77
* event-channel (or event-channel-{tx,rx}) and {tx,rx}-ring-ref keys,
78
* instead writing those keys under sub-keys having the name "queue-N" where
79
* N is the integer ID of the queue for which those keys belong. Queues
80
* are indexed from zero. For example, a frontend with two queues and split
81
* event channels must write the following set of queue-related keys:
82
*
83
* /local/domain/1/device/vif/0/multi-queue-num-queues = "2"
84
* /local/domain/1/device/vif/0/queue-0 = ""
85
* /local/domain/1/device/vif/0/queue-0/tx-ring-ref = "<ring-ref-tx0>"
86
* /local/domain/1/device/vif/0/queue-0/rx-ring-ref = "<ring-ref-rx0>"
87
* /local/domain/1/device/vif/0/queue-0/event-channel-tx = "<evtchn-tx0>"
88
* /local/domain/1/device/vif/0/queue-0/event-channel-rx = "<evtchn-rx0>"
89
* /local/domain/1/device/vif/0/queue-1 = ""
90
* /local/domain/1/device/vif/0/queue-1/tx-ring-ref = "<ring-ref-tx1>"
91
* /local/domain/1/device/vif/0/queue-1/rx-ring-ref = "<ring-ref-rx1"
92
* /local/domain/1/device/vif/0/queue-1/event-channel-tx = "<evtchn-tx1>"
93
* /local/domain/1/device/vif/0/queue-1/event-channel-rx = "<evtchn-rx1>"
94
*
95
* If there is any inconsistency in the XenStore data, the backend may
96
* choose not to connect any queues, instead treating the request as an
97
* error. This includes scenarios where more (or fewer) queues were
98
* requested than the frontend provided details for.
99
*
100
* Mapping of packets to queues is considered to be a function of the
101
* transmitting system (backend or frontend) and is not negotiated
102
* between the two. Guests are free to transmit packets on any queue
103
* they choose, provided it has been set up correctly. Guests must be
104
* prepared to receive packets on any queue they have requested be set up.
105
*/
106
107
/*
108
* "feature-no-csum-offload" should be used to turn IPv4 TCP/UDP checksum
109
* offload off or on. If it is missing then the feature is assumed to be on.
110
* "feature-ipv6-csum-offload" should be used to turn IPv6 TCP/UDP checksum
111
* offload on or off. If it is missing then the feature is assumed to be off.
112
*/
113
114
/*
115
* "feature-gso-tcpv4" and "feature-gso-tcpv6" advertise the capability to
116
* handle large TCP packets (in IPv4 or IPv6 form respectively). Neither
117
* frontends nor backends are assumed to be capable unless the flags are
118
* present.
119
*/
120
121
/*
122
* "feature-multicast-control" and "feature-dynamic-multicast-control"
123
* advertise the capability to filter ethernet multicast packets in the
124
* backend. If the frontend wishes to take advantage of this feature then
125
* it may set "request-multicast-control". If the backend only advertises
126
* "feature-multicast-control" then "request-multicast-control" must be set
127
* before the frontend moves into the connected state. The backend will
128
* sample the value on this state transition and any subsequent change in
129
* value will have no effect. However, if the backend also advertises
130
* "feature-dynamic-multicast-control" then "request-multicast-control"
131
* may be set by the frontend at any time. In this case, the backend will
132
* watch the value and re-sample on watch events.
133
*
134
* If the sampled value of "request-multicast-control" is set then the
135
* backend transmit side should no longer flood multicast packets to the
136
* frontend, it should instead drop any multicast packet that does not
137
* match in a filter list.
138
* The list is amended by the frontend by sending dummy transmit requests
139
* containing XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL} extra-info fragments as
140
* specified below.
141
* Note that the filter list may be amended even if the sampled value of
142
* "request-multicast-control" is not set, however the filter should only
143
* be applied if it is set.
144
*/
145
146
/*
147
* "xdp-headroom" is used to request that extra space is added
148
* for XDP processing. The value is measured in bytes and passed by
149
* the frontend to be consistent between both ends.
150
* If the value is greater than zero that means that
151
* an RX response is going to be passed to an XDP program for processing.
152
* XEN_NETIF_MAX_XDP_HEADROOM defines the maximum headroom offset in bytes
153
*
154
* "feature-xdp-headroom" is set to "1" by the netback side like other features
155
* so a guest can check if an XDP program can be processed.
156
*/
157
#define XEN_NETIF_MAX_XDP_HEADROOM 0x7FFF
158
159
/*
160
* Control ring
161
* ============
162
*
163
* Some features, such as hashing (detailed below), require a
164
* significant amount of out-of-band data to be passed from frontend to
165
* backend. Use of xenstore is not suitable for large quantities of data
166
* because of quota limitations and so a dedicated 'control ring' is used.
167
* The ability of the backend to use a control ring is advertised by
168
* setting:
169
*
170
* /local/domain/X/backend/<domid>/<vif>/feature-ctrl-ring = "1"
171
*
172
* The frontend provides a control ring to the backend by setting:
173
*
174
* /local/domain/<domid>/device/vif/<vif>/ctrl-ring-ref = <gref>
175
* /local/domain/<domid>/device/vif/<vif>/event-channel-ctrl = <port>
176
*
177
* where <gref> is the grant reference of the shared page used to
178
* implement the control ring and <port> is an event channel to be used
179
* as a mailbox interrupt. These keys must be set before the frontend
180
* moves into the connected state.
181
*
182
* The control ring uses a fixed request/response message size and is
183
* balanced (i.e. one request to one response), so operationally it is much
184
* the same as a transmit or receive ring.
185
* Note that there is no requirement that responses are issued in the same
186
* order as requests.
187
*/
188
189
/*
190
* Hash types
191
* ==========
192
*
193
* For the purposes of the definitions below, 'Packet[]' is an array of
194
* octets containing an IP packet without options, 'Array[X..Y]' means a
195
* sub-array of 'Array' containing bytes X thru Y inclusive, and '+' is
196
* used to indicate concatenation of arrays.
197
*/
198
199
/*
200
* A hash calculated over an IP version 4 header as follows:
201
*
202
* Buffer[0..8] = Packet[12..15] (source address) +
203
* Packet[16..19] (destination address)
204
*
205
* Result = Hash(Buffer, 8)
206
*/
207
#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4 0
208
#define XEN_NETIF_CTRL_HASH_TYPE_IPV4 \
209
(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4)
210
211
/*
212
* A hash calculated over an IP version 4 header and TCP header as
213
* follows:
214
*
215
* Buffer[0..12] = Packet[12..15] (source address) +
216
* Packet[16..19] (destination address) +
217
* Packet[20..21] (source port) +
218
* Packet[22..23] (destination port)
219
*
220
* Result = Hash(Buffer, 12)
221
*/
222
#define _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP 1
223
#define XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP \
224
(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV4_TCP)
225
226
/*
227
* A hash calculated over an IP version 6 header as follows:
228
*
229
* Buffer[0..32] = Packet[8..23] (source address ) +
230
* Packet[24..39] (destination address)
231
*
232
* Result = Hash(Buffer, 32)
233
*/
234
#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6 2
235
#define XEN_NETIF_CTRL_HASH_TYPE_IPV6 \
236
(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6)
237
238
/*
239
* A hash calculated over an IP version 6 header and TCP header as
240
* follows:
241
*
242
* Buffer[0..36] = Packet[8..23] (source address) +
243
* Packet[24..39] (destination address) +
244
* Packet[40..41] (source port) +
245
* Packet[42..43] (destination port)
246
*
247
* Result = Hash(Buffer, 36)
248
*/
249
#define _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP 3
250
#define XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP \
251
(1 << _XEN_NETIF_CTRL_HASH_TYPE_IPV6_TCP)
252
253
/*
254
* Hash algorithms
255
* ===============
256
*/
257
258
#define XEN_NETIF_CTRL_HASH_ALGORITHM_NONE 0
259
260
/*
261
* Toeplitz hash:
262
*/
263
264
#define XEN_NETIF_CTRL_HASH_ALGORITHM_TOEPLITZ 1
265
266
/*
267
* This algorithm uses a 'key' as well as the data buffer itself.
268
* (Buffer[] and Key[] are treated as shift-registers where the MSB of
269
* Buffer/Key[0] is considered 'left-most' and the LSB of Buffer/Key[N-1]
270
* is the 'right-most').
271
*
272
* Value = 0
273
* For number of bits in Buffer[]
274
* If (left-most bit of Buffer[] is 1)
275
* Value ^= left-most 32 bits of Key[]
276
* Key[] << 1
277
* Buffer[] << 1
278
*
279
* The code below is provided for convenience where an operating system
280
* does not already provide an implementation.
281
*/
282
#ifdef XEN_NETIF_DEFINE_TOEPLITZ
283
static uint32_t xen_netif_toeplitz_hash(const uint8_t *key,
284
unsigned int keylen,
285
const uint8_t *buf, unsigned int buflen)
286
{
287
unsigned int keyi, bufi;
288
uint64_t prefix = 0;
289
uint64_t hash = 0;
290
291
/* Pre-load prefix with the first 8 bytes of the key */
292
for (keyi = 0; keyi < 8; keyi++) {
293
prefix <<= 8;
294
prefix |= (keyi < keylen) ? key[keyi] : 0;
295
}
296
297
for (bufi = 0; bufi < buflen; bufi++) {
298
uint8_t byte = buf[bufi];
299
unsigned int bit;
300
301
for (bit = 0; bit < 8; bit++) {
302
if (byte & 0x80)
303
hash ^= prefix;
304
prefix <<= 1;
305
byte <<= 1;
306
}
307
308
/*
309
* 'prefix' has now been left-shifted by 8, so
310
* OR in the next byte.
311
*/
312
prefix |= (keyi < keylen) ? key[keyi] : 0;
313
keyi++;
314
}
315
316
/* The valid part of the hash is in the upper 32 bits. */
317
return hash >> 32;
318
}
319
#endif /* XEN_NETIF_DEFINE_TOEPLITZ */
320
321
/*
322
* Control requests (struct xen_netif_ctrl_request)
323
* ================================================
324
*
325
* All requests have the following format:
326
*
327
* 0 1 2 3 4 5 6 7 octet
328
* +-----+-----+-----+-----+-----+-----+-----+-----+
329
* | id | type | data[0] |
330
* +-----+-----+-----+-----+-----+-----+-----+-----+
331
* | data[1] | data[2] |
332
* +-----+-----+-----+-----+-----------------------+
333
*
334
* id: the request identifier, echoed in response.
335
* type: the type of request (see below)
336
* data[]: any data associated with the request (determined by type)
337
*/
338
339
struct xen_netif_ctrl_request {
340
uint16_t id;
341
uint16_t type;
342
343
#define XEN_NETIF_CTRL_TYPE_INVALID 0
344
#define XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS 1
345
#define XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS 2
346
#define XEN_NETIF_CTRL_TYPE_SET_HASH_KEY 3
347
#define XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE 4
348
#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE 5
349
#define XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING 6
350
#define XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM 7
351
352
uint32_t data[3];
353
};
354
355
/*
356
* Control responses (struct xen_netif_ctrl_response)
357
* ==================================================
358
*
359
* All responses have the following format:
360
*
361
* 0 1 2 3 4 5 6 7 octet
362
* +-----+-----+-----+-----+-----+-----+-----+-----+
363
* | id | type | status |
364
* +-----+-----+-----+-----+-----+-----+-----+-----+
365
* | data |
366
* +-----+-----+-----+-----+
367
*
368
* id: the corresponding request identifier
369
* type: the type of the corresponding request
370
* status: the status of request processing
371
* data: any data associated with the response (determined by type and
372
* status)
373
*/
374
375
struct xen_netif_ctrl_response {
376
uint16_t id;
377
uint16_t type;
378
uint32_t status;
379
380
#define XEN_NETIF_CTRL_STATUS_SUCCESS 0
381
#define XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED 1
382
#define XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER 2
383
#define XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW 3
384
385
uint32_t data;
386
};
387
388
/*
389
* Control messages
390
* ================
391
*
392
* XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
393
* --------------------------------------
394
*
395
* This is sent by the frontend to set the desired hash algorithm.
396
*
397
* Request:
398
*
399
* type = XEN_NETIF_CTRL_TYPE_SET_HASH_ALGORITHM
400
* data[0] = a XEN_NETIF_CTRL_HASH_ALGORITHM_* value
401
* data[1] = 0
402
* data[2] = 0
403
*
404
* Response:
405
*
406
* status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not
407
* supported
408
* XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - The algorithm is not
409
* supported
410
* XEN_NETIF_CTRL_STATUS_SUCCESS - Operation successful
411
*
412
* NOTE: Setting data[0] to XEN_NETIF_CTRL_HASH_ALGORITHM_NONE disables
413
* hashing and the backend is free to choose how it steers packets
414
* to queues (which is the default behaviour).
415
*
416
* XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
417
* ----------------------------------
418
*
419
* This is sent by the frontend to query the types of hash supported by
420
* the backend.
421
*
422
* Request:
423
*
424
* type = XEN_NETIF_CTRL_TYPE_GET_HASH_FLAGS
425
* data[0] = 0
426
* data[1] = 0
427
* data[2] = 0
428
*
429
* Response:
430
*
431
* status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
432
* XEN_NETIF_CTRL_STATUS_SUCCESS - Operation successful
433
* data = supported hash types (if operation was successful)
434
*
435
* NOTE: A valid hash algorithm must be selected before this operation can
436
* succeed.
437
*
438
* XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
439
* ----------------------------------
440
*
441
* This is sent by the frontend to set the types of hash that the backend
442
* should calculate. (See above for hash type definitions).
443
* Note that the 'maximal' type of hash should always be chosen. For
444
* example, if the frontend sets both IPV4 and IPV4_TCP hash types then
445
* the latter hash type should be calculated for any TCP packet and the
446
* former only calculated for non-TCP packets.
447
*
448
* Request:
449
*
450
* type = XEN_NETIF_CTRL_TYPE_SET_HASH_FLAGS
451
* data[0] = bitwise OR of XEN_NETIF_CTRL_HASH_TYPE_* values
452
* data[1] = 0
453
* data[2] = 0
454
*
455
* Response:
456
*
457
* status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not
458
* supported
459
* XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - One or more flag
460
* value is invalid or
461
* unsupported
462
* XEN_NETIF_CTRL_STATUS_SUCCESS - Operation successful
463
* data = 0
464
*
465
* NOTE: A valid hash algorithm must be selected before this operation can
466
* succeed.
467
* Also, setting data[0] to zero disables hashing and the backend
468
* is free to choose how it steers packets to queues.
469
*
470
* XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
471
* --------------------------------
472
*
473
* This is sent by the frontend to set the key of the hash if the algorithm
474
* requires it. (See hash algorithms above).
475
*
476
* Request:
477
*
478
* type = XEN_NETIF_CTRL_TYPE_SET_HASH_KEY
479
* data[0] = grant reference of page containing the key (assumed to
480
* start at beginning of grant)
481
* data[1] = size of key in octets
482
* data[2] = 0
483
*
484
* Response:
485
*
486
* status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not
487
* supported
488
* XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Key size is invalid
489
* XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW - Key size is larger
490
* than the backend
491
* supports
492
* XEN_NETIF_CTRL_STATUS_SUCCESS - Operation successful
493
* data = 0
494
*
495
* NOTE: Any key octets not specified are assumed to be zero (the key
496
* is assumed to be empty by default) and specifying a new key
497
* invalidates any previous key, hence specifying a key size of
498
* zero will clear the key (which ensures that the calculated hash
499
* will always be zero).
500
* The maximum size of key is algorithm and backend specific, but
501
* is also limited by the single grant reference.
502
* The grant reference may be read-only and must remain valid until
503
* the response has been processed.
504
*
505
* XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
506
* -----------------------------------------
507
*
508
* This is sent by the frontend to query the maximum size of mapping
509
* table supported by the backend. The size is specified in terms of
510
* table entries.
511
*
512
* Request:
513
*
514
* type = XEN_NETIF_CTRL_TYPE_GET_HASH_MAPPING_SIZE
515
* data[0] = 0
516
* data[1] = 0
517
* data[2] = 0
518
*
519
* Response:
520
*
521
* status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not supported
522
* XEN_NETIF_CTRL_STATUS_SUCCESS - Operation successful
523
* data = maximum number of entries allowed in the mapping table
524
* (if operation was successful) or zero if a mapping table is
525
* not supported (i.e. hash mapping is done only by modular
526
* arithmetic).
527
*
528
* XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
529
* -------------------------------------
530
*
531
* This is sent by the frontend to set the actual size of the mapping
532
* table to be used by the backend. The size is specified in terms of
533
* table entries.
534
* Any previous table is invalidated by this message and any new table
535
* is assumed to be zero filled.
536
*
537
* Request:
538
*
539
* type = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
540
* data[0] = number of entries in mapping table
541
* data[1] = 0
542
* data[2] = 0
543
*
544
* Response:
545
*
546
* status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not
547
* supported
548
* XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size is invalid
549
* XEN_NETIF_CTRL_STATUS_SUCCESS - Operation successful
550
* data = 0
551
*
552
* NOTE: Setting data[0] to 0 means that hash mapping should be done
553
* using modular arithmetic.
554
*
555
* XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
556
* ------------------------------------
557
*
558
* This is sent by the frontend to set the content of the table mapping
559
* hash value to queue number. The backend should calculate the hash from
560
* the packet header, use it as an index into the table (modulo the size
561
* of the table) and then steer the packet to the queue number found at
562
* that index.
563
*
564
* Request:
565
*
566
* type = XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING
567
* data[0] = grant reference of page containing the mapping (sub-)table
568
* (assumed to start at beginning of grant)
569
* data[1] = size of (sub-)table in entries
570
* data[2] = offset, in entries, of sub-table within overall table
571
*
572
* Response:
573
*
574
* status = XEN_NETIF_CTRL_STATUS_NOT_SUPPORTED - Operation not
575
* supported
576
* XEN_NETIF_CTRL_STATUS_INVALID_PARAMETER - Table size or content
577
* is invalid
578
* XEN_NETIF_CTRL_STATUS_BUFFER_OVERFLOW - Table size is larger
579
* than the backend
580
* supports
581
* XEN_NETIF_CTRL_STATUS_SUCCESS - Operation successful
582
* data = 0
583
*
584
* NOTE: The overall table has the following format:
585
*
586
* 0 1 2 3 4 5 6 7 octet
587
* +-----+-----+-----+-----+-----+-----+-----+-----+
588
* | mapping[0] | mapping[1] |
589
* +-----+-----+-----+-----+-----+-----+-----+-----+
590
* | . |
591
* | . |
592
* | . |
593
* +-----+-----+-----+-----+-----+-----+-----+-----+
594
* | mapping[N-2] | mapping[N-1] |
595
* +-----+-----+-----+-----+-----+-----+-----+-----+
596
*
597
* where N is specified by a XEN_NETIF_CTRL_TYPE_SET_HASH_MAPPING_SIZE
598
* message and each mapping must specifies a queue between 0 and
599
* "multi-queue-num-queues" (see above).
600
* The backend may support a mapping table larger than can be
601
* mapped by a single grant reference. Thus sub-tables within a
602
* larger table can be individually set by sending multiple messages
603
* with differing offset values. Specifying a new sub-table does not
604
* invalidate any table data outside that range.
605
* The grant reference may be read-only and must remain valid until
606
* the response has been processed.
607
*/
608
609
DEFINE_RING_TYPES(xen_netif_ctrl,
610
struct xen_netif_ctrl_request,
611
struct xen_netif_ctrl_response);
612
613
/*
614
* Guest transmit
615
* ==============
616
*
617
* This is the 'wire' format for transmit (frontend -> backend) packets:
618
*
619
* Fragment 1: xen_netif_tx_request_t - flags = XEN_NETTXF_*
620
* size = total packet size
621
* [Extra 1: xen_netif_extra_info_t] - (only if fragment 1 flags include
622
* XEN_NETTXF_extra_info)
623
* ...
624
* [Extra N: xen_netif_extra_info_t] - (only if extra N-1 flags include
625
* XEN_NETIF_EXTRA_MORE)
626
* ...
627
* Fragment N: xen_netif_tx_request_t - (only if fragment N-1 flags include
628
* XEN_NETTXF_more_data - flags on preceding
629
* extras are not relevant here)
630
* flags = 0
631
* size = fragment size
632
*
633
* NOTE:
634
*
635
* This format slightly is different from that used for receive
636
* (backend -> frontend) packets. Specifically, in a multi-fragment
637
* packet the actual size of fragment 1 can only be determined by
638
* subtracting the sizes of fragments 2..N from the total packet size.
639
*
640
* Ring slot size is 12 octets, however not all request/response
641
* structs use the full size.
642
*
643
* tx request data (xen_netif_tx_request_t)
644
* ------------------------------------
645
*
646
* 0 1 2 3 4 5 6 7 octet
647
* +-----+-----+-----+-----+-----+-----+-----+-----+
648
* | grant ref | offset | flags |
649
* +-----+-----+-----+-----+-----+-----+-----+-----+
650
* | id | size |
651
* +-----+-----+-----+-----+
652
*
653
* grant ref: Reference to buffer page.
654
* offset: Offset within buffer page.
655
* flags: XEN_NETTXF_*.
656
* id: request identifier, echoed in response.
657
* size: packet size in bytes.
658
*
659
* tx response (xen_netif_tx_response_t)
660
* ---------------------------------
661
*
662
* 0 1 2 3 4 5 6 7 octet
663
* +-----+-----+-----+-----+-----+-----+-----+-----+
664
* | id | status | unused |
665
* +-----+-----+-----+-----+-----+-----+-----+-----+
666
* | unused |
667
* +-----+-----+-----+-----+
668
*
669
* id: reflects id in transmit request
670
* status: XEN_NETIF_RSP_*
671
*
672
* Guest receive
673
* =============
674
*
675
* This is the 'wire' format for receive (backend -> frontend) packets:
676
*
677
* Fragment 1: xen_netif_rx_request_t - flags = XEN_NETRXF_*
678
* size = fragment size
679
* [Extra 1: xen_netif_extra_info_t] - (only if fragment 1 flags include
680
* XEN_NETRXF_extra_info)
681
* ...
682
* [Extra N: xen_netif_extra_info_t] - (only if extra N-1 flags include
683
* XEN_NETIF_EXTRA_MORE)
684
* ...
685
* Fragment N: xen_netif_rx_request_t - (only if fragment N-1 flags include
686
* XEN_NETRXF_more_data - flags on preceding
687
* extras are not relevant here)
688
* flags = 0
689
* size = fragment size
690
*
691
* NOTE:
692
*
693
* This format slightly is different from that used for transmit
694
* (frontend -> backend) packets. Specifically, in a multi-fragment
695
* packet the size of the packet can only be determined by summing the
696
* sizes of fragments 1..N.
697
*
698
* Ring slot size is 8 octets.
699
*
700
* rx request (xen_netif_rx_request_t)
701
* -------------------------------
702
*
703
* 0 1 2 3 4 5 6 7 octet
704
* +-----+-----+-----+-----+-----+-----+-----+-----+
705
* | id | pad | gref |
706
* +-----+-----+-----+-----+-----+-----+-----+-----+
707
*
708
* id: request identifier, echoed in response.
709
* gref: reference to incoming granted frame.
710
*
711
* rx response (xen_netif_rx_response_t)
712
* ---------------------------------
713
*
714
* 0 1 2 3 4 5 6 7 octet
715
* +-----+-----+-----+-----+-----+-----+-----+-----+
716
* | id | offset | flags | status |
717
* +-----+-----+-----+-----+-----+-----+-----+-----+
718
*
719
* id: reflects id in receive request
720
* offset: offset in page of start of received packet
721
* flags: XEN_NETRXF_*
722
* status: -ve: XEN_NETIF_RSP_*; +ve: Rx'ed pkt size.
723
*
724
* NOTE: Historically, to support GSO on the frontend receive side, Linux
725
* netfront does not make use of the rx response id (because, as
726
* described below, extra info structures overlay the id field).
727
* Instead it assumes that responses always appear in the same ring
728
* slot as their corresponding request. Thus, to maintain
729
* compatibility, backends must make sure this is the case.
730
*
731
* Extra Info
732
* ==========
733
*
734
* Can be present if initial request or response has NET{T,R}XF_extra_info,
735
* or previous extra request has XEN_NETIF_EXTRA_MORE.
736
*
737
* The struct therefore needs to fit into either a tx or rx slot and
738
* is therefore limited to 8 octets.
739
*
740
* NOTE: Because extra info data overlays the usual request/response
741
* structures, there is no id information in the opposite direction.
742
* So, if an extra info overlays an rx response the frontend can
743
* assume that it is in the same ring slot as the request that was
744
* consumed to make the slot available, and the backend must ensure
745
* this assumption is true.
746
*
747
* extra info (xen_netif_extra_info_t)
748
* -------------------------------
749
*
750
* General format:
751
*
752
* 0 1 2 3 4 5 6 7 octet
753
* +-----+-----+-----+-----+-----+-----+-----+-----+
754
* |type |flags| type specific data |
755
* +-----+-----+-----+-----+-----+-----+-----+-----+
756
* | padding for tx |
757
* +-----+-----+-----+-----+
758
*
759
* type: XEN_NETIF_EXTRA_TYPE_*
760
* flags: XEN_NETIF_EXTRA_FLAG_*
761
* padding for tx: present only in the tx case due to 8 octet limit
762
* from rx case. Not shown in type specific entries
763
* below.
764
*
765
* XEN_NETIF_EXTRA_TYPE_GSO:
766
*
767
* 0 1 2 3 4 5 6 7 octet
768
* +-----+-----+-----+-----+-----+-----+-----+-----+
769
* |type |flags| size |type | pad | features |
770
* +-----+-----+-----+-----+-----+-----+-----+-----+
771
*
772
* type: Must be XEN_NETIF_EXTRA_TYPE_GSO
773
* flags: XEN_NETIF_EXTRA_FLAG_*
774
* size: Maximum payload size of each segment. For example,
775
* for TCP this is just the path MSS.
776
* type: XEN_NETIF_GSO_TYPE_*: This determines the protocol of
777
* the packet and any extra features required to segment the
778
* packet properly.
779
* features: EN_XEN_NETIF_GSO_FEAT_*: This specifies any extra GSO
780
* features required to process this packet, such as ECN
781
* support for TCPv4.
782
*
783
* XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}:
784
*
785
* 0 1 2 3 4 5 6 7 octet
786
* +-----+-----+-----+-----+-----+-----+-----+-----+
787
* |type |flags| addr |
788
* +-----+-----+-----+-----+-----+-----+-----+-----+
789
*
790
* type: Must be XEN_NETIF_EXTRA_TYPE_MCAST_{ADD,DEL}
791
* flags: XEN_NETIF_EXTRA_FLAG_*
792
* addr: address to add/remove
793
*
794
* XEN_NETIF_EXTRA_TYPE_HASH:
795
*
796
* A backend that supports teoplitz hashing is assumed to accept
797
* this type of extra info in transmit packets.
798
* A frontend that enables hashing is assumed to accept
799
* this type of extra info in receive packets.
800
*
801
* 0 1 2 3 4 5 6 7 octet
802
* +-----+-----+-----+-----+-----+-----+-----+-----+
803
* |type |flags|htype| alg |LSB ---- value ---- MSB|
804
* +-----+-----+-----+-----+-----+-----+-----+-----+
805
*
806
* type: Must be XEN_NETIF_EXTRA_TYPE_HASH
807
* flags: XEN_NETIF_EXTRA_FLAG_*
808
* htype: Hash type (one of _XEN_NETIF_CTRL_HASH_TYPE_* - see above)
809
* alg: The algorithm used to calculate the hash (one of
810
* XEN_NETIF_CTRL_HASH_TYPE_ALGORITHM_* - see above)
811
* value: Hash value
812
*/
813
814
/* Protocol checksum field is blank in the packet (hardware offload)? */
815
#define _XEN_NETTXF_csum_blank (0)
816
#define XEN_NETTXF_csum_blank (1U<<_XEN_NETTXF_csum_blank)
817
818
/* Packet data has been validated against protocol checksum. */
819
#define _XEN_NETTXF_data_validated (1)
820
#define XEN_NETTXF_data_validated (1U<<_XEN_NETTXF_data_validated)
821
822
/* Packet continues in the next request descriptor. */
823
#define _XEN_NETTXF_more_data (2)
824
#define XEN_NETTXF_more_data (1U<<_XEN_NETTXF_more_data)
825
826
/* Packet to be followed by extra descriptor(s). */
827
#define _XEN_NETTXF_extra_info (3)
828
#define XEN_NETTXF_extra_info (1U<<_XEN_NETTXF_extra_info)
829
830
#define XEN_NETIF_MAX_TX_SIZE 0xFFFF
831
struct xen_netif_tx_request {
832
grant_ref_t gref;
833
uint16_t offset;
834
uint16_t flags;
835
uint16_t id;
836
uint16_t size;
837
};
838
839
/* Types of xen_netif_extra_info descriptors. */
840
#define XEN_NETIF_EXTRA_TYPE_NONE (0) /* Never used - invalid */
841
#define XEN_NETIF_EXTRA_TYPE_GSO (1) /* u.gso */
842
#define XEN_NETIF_EXTRA_TYPE_MCAST_ADD (2) /* u.mcast */
843
#define XEN_NETIF_EXTRA_TYPE_MCAST_DEL (3) /* u.mcast */
844
#define XEN_NETIF_EXTRA_TYPE_HASH (4) /* u.hash */
845
#define XEN_NETIF_EXTRA_TYPE_XDP (5) /* u.xdp */
846
#define XEN_NETIF_EXTRA_TYPE_MAX (6)
847
848
/* xen_netif_extra_info_t flags. */
849
#define _XEN_NETIF_EXTRA_FLAG_MORE (0)
850
#define XEN_NETIF_EXTRA_FLAG_MORE (1U<<_XEN_NETIF_EXTRA_FLAG_MORE)
851
852
/* GSO types */
853
#define XEN_NETIF_GSO_TYPE_NONE (0)
854
#define XEN_NETIF_GSO_TYPE_TCPV4 (1)
855
#define XEN_NETIF_GSO_TYPE_TCPV6 (2)
856
857
/*
858
* This structure needs to fit within both xen_netif_tx_request_t and
859
* xen_netif_rx_response_t for compatibility.
860
*/
861
struct xen_netif_extra_info {
862
uint8_t type;
863
uint8_t flags;
864
union {
865
struct {
866
uint16_t size;
867
uint8_t type;
868
uint8_t pad;
869
uint16_t features;
870
} gso;
871
struct {
872
uint8_t addr[6];
873
} mcast;
874
struct {
875
uint8_t type;
876
uint8_t algorithm;
877
uint8_t value[4];
878
} hash;
879
struct {
880
uint16_t headroom;
881
uint16_t pad[2];
882
} xdp;
883
uint16_t pad[3];
884
} u;
885
};
886
887
struct xen_netif_tx_response {
888
uint16_t id;
889
int16_t status;
890
};
891
892
struct xen_netif_rx_request {
893
uint16_t id; /* Echoed in response message. */
894
uint16_t pad;
895
grant_ref_t gref;
896
};
897
898
/* Packet data has been validated against protocol checksum. */
899
#define _XEN_NETRXF_data_validated (0)
900
#define XEN_NETRXF_data_validated (1U<<_XEN_NETRXF_data_validated)
901
902
/* Protocol checksum field is blank in the packet (hardware offload)? */
903
#define _XEN_NETRXF_csum_blank (1)
904
#define XEN_NETRXF_csum_blank (1U<<_XEN_NETRXF_csum_blank)
905
906
/* Packet continues in the next request descriptor. */
907
#define _XEN_NETRXF_more_data (2)
908
#define XEN_NETRXF_more_data (1U<<_XEN_NETRXF_more_data)
909
910
/* Packet to be followed by extra descriptor(s). */
911
#define _XEN_NETRXF_extra_info (3)
912
#define XEN_NETRXF_extra_info (1U<<_XEN_NETRXF_extra_info)
913
914
/* Packet has GSO prefix. Deprecated but included for compatibility */
915
#define _XEN_NETRXF_gso_prefix (4)
916
#define XEN_NETRXF_gso_prefix (1U<<_XEN_NETRXF_gso_prefix)
917
918
struct xen_netif_rx_response {
919
uint16_t id;
920
uint16_t offset;
921
uint16_t flags;
922
int16_t status;
923
};
924
925
/*
926
* Generate xen_netif ring structures and types.
927
*/
928
929
DEFINE_RING_TYPES(xen_netif_tx, struct xen_netif_tx_request,
930
struct xen_netif_tx_response);
931
DEFINE_RING_TYPES(xen_netif_rx, struct xen_netif_rx_request,
932
struct xen_netif_rx_response);
933
934
#define XEN_NETIF_RSP_DROPPED -2
935
#define XEN_NETIF_RSP_ERROR -1
936
#define XEN_NETIF_RSP_OKAY 0
937
/* No response: used for auxiliary requests (e.g., xen_netif_extra_info_t). */
938
#define XEN_NETIF_RSP_NULL 1
939
940
#endif
941
942