Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/include/xen/interface/xen.h
26285 views
1
/* SPDX-License-Identifier: MIT */
2
/******************************************************************************
3
* xen.h
4
*
5
* Guest OS interface to Xen.
6
*
7
* Copyright (c) 2004, K A Fraser
8
*/
9
10
#ifndef __XEN_PUBLIC_XEN_H__
11
#define __XEN_PUBLIC_XEN_H__
12
13
#include <asm/xen/interface.h>
14
15
/*
16
* XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
17
*/
18
19
/*
20
* x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
21
* EAX = return value
22
* (argument registers may be clobbered on return)
23
* x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
24
* RAX = return value
25
* (argument registers not clobbered on return; RCX, R11 are)
26
*/
27
#define __HYPERVISOR_set_trap_table 0
28
#define __HYPERVISOR_mmu_update 1
29
#define __HYPERVISOR_set_gdt 2
30
#define __HYPERVISOR_stack_switch 3
31
#define __HYPERVISOR_set_callbacks 4
32
#define __HYPERVISOR_fpu_taskswitch 5
33
#define __HYPERVISOR_sched_op_compat 6
34
#define __HYPERVISOR_platform_op 7
35
#define __HYPERVISOR_set_debugreg 8
36
#define __HYPERVISOR_get_debugreg 9
37
#define __HYPERVISOR_update_descriptor 10
38
#define __HYPERVISOR_memory_op 12
39
#define __HYPERVISOR_multicall 13
40
#define __HYPERVISOR_update_va_mapping 14
41
#define __HYPERVISOR_set_timer_op 15
42
#define __HYPERVISOR_event_channel_op_compat 16
43
#define __HYPERVISOR_xen_version 17
44
#define __HYPERVISOR_console_io 18
45
#define __HYPERVISOR_physdev_op_compat 19
46
#define __HYPERVISOR_grant_table_op 20
47
#define __HYPERVISOR_vm_assist 21
48
#define __HYPERVISOR_update_va_mapping_otherdomain 22
49
#define __HYPERVISOR_iret 23 /* x86 only */
50
#define __HYPERVISOR_vcpu_op 24
51
#define __HYPERVISOR_set_segment_base 25 /* x86/64 only */
52
#define __HYPERVISOR_mmuext_op 26
53
#define __HYPERVISOR_xsm_op 27
54
#define __HYPERVISOR_nmi_op 28
55
#define __HYPERVISOR_sched_op 29
56
#define __HYPERVISOR_callback_op 30
57
#define __HYPERVISOR_xenoprof_op 31
58
#define __HYPERVISOR_event_channel_op 32
59
#define __HYPERVISOR_physdev_op 33
60
#define __HYPERVISOR_hvm_op 34
61
#define __HYPERVISOR_sysctl 35
62
#define __HYPERVISOR_domctl 36
63
#define __HYPERVISOR_kexec_op 37
64
#define __HYPERVISOR_tmem_op 38
65
#define __HYPERVISOR_xc_reserved_op 39 /* reserved for XenClient */
66
#define __HYPERVISOR_xenpmu_op 40
67
#define __HYPERVISOR_dm_op 41
68
69
/* Architecture-specific hypercall definitions. */
70
#define __HYPERVISOR_arch_0 48
71
#define __HYPERVISOR_arch_1 49
72
#define __HYPERVISOR_arch_2 50
73
#define __HYPERVISOR_arch_3 51
74
#define __HYPERVISOR_arch_4 52
75
#define __HYPERVISOR_arch_5 53
76
#define __HYPERVISOR_arch_6 54
77
#define __HYPERVISOR_arch_7 55
78
79
/*
80
* VIRTUAL INTERRUPTS
81
*
82
* Virtual interrupts that a guest OS may receive from Xen.
83
* In the side comments, 'V.' denotes a per-VCPU VIRQ while 'G.' denotes a
84
* global VIRQ. The former can be bound once per VCPU and cannot be re-bound.
85
* The latter can be allocated only once per guest: they must initially be
86
* allocated to VCPU0 but can subsequently be re-bound.
87
*/
88
#define VIRQ_TIMER 0 /* V. Timebase update, and/or requested timeout. */
89
#define VIRQ_DEBUG 1 /* V. Request guest to dump debug info. */
90
#define VIRQ_CONSOLE 2 /* G. (DOM0) Bytes received on emergency console. */
91
#define VIRQ_DOM_EXC 3 /* G. (DOM0) Exceptional event for some domain. */
92
#define VIRQ_TBUF 4 /* G. (DOM0) Trace buffer has records available. */
93
#define VIRQ_DEBUGGER 6 /* G. (DOM0) A domain has paused for debugging. */
94
#define VIRQ_XENOPROF 7 /* V. XenOprofile interrupt: new sample available */
95
#define VIRQ_CON_RING 8 /* G. (DOM0) Bytes received on console */
96
#define VIRQ_PCPU_STATE 9 /* G. (DOM0) PCPU state changed */
97
#define VIRQ_MEM_EVENT 10 /* G. (DOM0) A memory event has occured */
98
#define VIRQ_XC_RESERVED 11 /* G. Reserved for XenClient */
99
#define VIRQ_ENOMEM 12 /* G. (DOM0) Low on heap memory */
100
#define VIRQ_XENPMU 13 /* PMC interrupt */
101
102
/* Architecture-specific VIRQ definitions. */
103
#define VIRQ_ARCH_0 16
104
#define VIRQ_ARCH_1 17
105
#define VIRQ_ARCH_2 18
106
#define VIRQ_ARCH_3 19
107
#define VIRQ_ARCH_4 20
108
#define VIRQ_ARCH_5 21
109
#define VIRQ_ARCH_6 22
110
#define VIRQ_ARCH_7 23
111
112
#define NR_VIRQS 24
113
114
/*
115
* enum neg_errnoval HYPERVISOR_mmu_update(const struct mmu_update reqs[],
116
* unsigned count, unsigned *done_out,
117
* unsigned foreigndom)
118
* @reqs is an array of mmu_update_t structures ((ptr, val) pairs).
119
* @count is the length of the above array.
120
* @pdone is an output parameter indicating number of completed operations
121
* @foreigndom[15:0]: FD, the expected owner of data pages referenced in this
122
* hypercall invocation. Can be DOMID_SELF.
123
* @foreigndom[31:16]: PFD, the expected owner of pagetable pages referenced
124
* in this hypercall invocation. The value of this field
125
* (x) encodes the PFD as follows:
126
* x == 0 => PFD == DOMID_SELF
127
* x != 0 => PFD == x - 1
128
*
129
* Sub-commands: ptr[1:0] specifies the appropriate MMU_* command.
130
* -------------
131
* ptr[1:0] == MMU_NORMAL_PT_UPDATE:
132
* Updates an entry in a page table belonging to PFD. If updating an L1 table,
133
* and the new table entry is valid/present, the mapped frame must belong to
134
* FD. If attempting to map an I/O page then the caller assumes the privilege
135
* of the FD.
136
* FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
137
* FD == DOMID_XEN: Map restricted areas of Xen's heap space.
138
* ptr[:2] -- Machine address of the page-table entry to modify.
139
* val -- Value to write.
140
*
141
* There also certain implicit requirements when using this hypercall. The
142
* pages that make up a pagetable must be mapped read-only in the guest.
143
* This prevents uncontrolled guest updates to the pagetable. Xen strictly
144
* enforces this, and will disallow any pagetable update which will end up
145
* mapping pagetable page RW, and will disallow using any writable page as a
146
* pagetable. In practice it means that when constructing a page table for a
147
* process, thread, etc, we MUST be very dilligient in following these rules:
148
* 1). Start with top-level page (PGD or in Xen language: L4). Fill out
149
* the entries.
150
* 2). Keep on going, filling out the upper (PUD or L3), and middle (PMD
151
* or L2).
152
* 3). Start filling out the PTE table (L1) with the PTE entries. Once
153
* done, make sure to set each of those entries to RO (so writeable bit
154
* is unset). Once that has been completed, set the PMD (L2) for this
155
* PTE table as RO.
156
* 4). When completed with all of the PMD (L2) entries, and all of them have
157
* been set to RO, make sure to set RO the PUD (L3). Do the same
158
* operation on PGD (L4) pagetable entries that have a PUD (L3) entry.
159
* 5). Now before you can use those pages (so setting the cr3), you MUST also
160
* pin them so that the hypervisor can verify the entries. This is done
161
* via the HYPERVISOR_mmuext_op(MMUEXT_PIN_L4_TABLE, guest physical frame
162
* number of the PGD (L4)). And this point the HYPERVISOR_mmuext_op(
163
* MMUEXT_NEW_BASEPTR, guest physical frame number of the PGD (L4)) can be
164
* issued.
165
* For 32-bit guests, the L4 is not used (as there is less pagetables), so
166
* instead use L3.
167
* At this point the pagetables can be modified using the MMU_NORMAL_PT_UPDATE
168
* hypercall. Also if so desired the OS can also try to write to the PTE
169
* and be trapped by the hypervisor (as the PTE entry is RO).
170
*
171
* To deallocate the pages, the operations are the reverse of the steps
172
* mentioned above. The argument is MMUEXT_UNPIN_TABLE for all levels and the
173
* pagetable MUST not be in use (meaning that the cr3 is not set to it).
174
*
175
* ptr[1:0] == MMU_MACHPHYS_UPDATE:
176
* Updates an entry in the machine->pseudo-physical mapping table.
177
* ptr[:2] -- Machine address within the frame whose mapping to modify.
178
* The frame must belong to the FD, if one is specified.
179
* val -- Value to write into the mapping entry.
180
*
181
* ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
182
* As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
183
* with those in @val.
184
*
185
* @val is usually the machine frame number along with some attributes.
186
* The attributes by default follow the architecture defined bits. Meaning that
187
* if this is a X86_64 machine and four page table layout is used, the layout
188
* of val is:
189
* - 63 if set means No execute (NX)
190
* - 46-13 the machine frame number
191
* - 12 available for guest
192
* - 11 available for guest
193
* - 10 available for guest
194
* - 9 available for guest
195
* - 8 global
196
* - 7 PAT (PSE is disabled, must use hypercall to make 4MB or 2MB pages)
197
* - 6 dirty
198
* - 5 accessed
199
* - 4 page cached disabled
200
* - 3 page write through
201
* - 2 userspace accessible
202
* - 1 writeable
203
* - 0 present
204
*
205
* The one bits that does not fit with the default layout is the PAGE_PSE
206
* also called PAGE_PAT). The MMUEXT_[UN]MARK_SUPER arguments to the
207
* HYPERVISOR_mmuext_op serve as mechanism to set a pagetable to be 4MB
208
* (or 2MB) instead of using the PAGE_PSE bit.
209
*
210
* The reason that the PAGE_PSE (bit 7) is not being utilized is due to Xen
211
* using it as the Page Attribute Table (PAT) bit - for details on it please
212
* refer to Intel SDM 10.12. The PAT allows to set the caching attributes of
213
* pages instead of using MTRRs.
214
*
215
* The PAT MSR is as follows (it is a 64-bit value, each entry is 8 bits):
216
* PAT4 PAT0
217
* +-----+-----+----+----+----+-----+----+----+
218
* | UC | UC- | WC | WB | UC | UC- | WC | WB | <= Linux
219
* +-----+-----+----+----+----+-----+----+----+
220
* | UC | UC- | WT | WB | UC | UC- | WT | WB | <= BIOS (default when machine boots)
221
* +-----+-----+----+----+----+-----+----+----+
222
* | rsv | rsv | WP | WC | UC | UC- | WT | WB | <= Xen
223
* +-----+-----+----+----+----+-----+----+----+
224
*
225
* The lookup of this index table translates to looking up
226
* Bit 7, Bit 4, and Bit 3 of val entry:
227
*
228
* PAT/PSE (bit 7) ... PCD (bit 4) .. PWT (bit 3).
229
*
230
* If all bits are off, then we are using PAT0. If bit 3 turned on,
231
* then we are using PAT1, if bit 3 and bit 4, then PAT2..
232
*
233
* As you can see, the Linux PAT1 translates to PAT4 under Xen. Which means
234
* that if a guest that follows Linux's PAT setup and would like to set Write
235
* Combined on pages it MUST use PAT4 entry. Meaning that Bit 7 (PAGE_PAT) is
236
* set. For example, under Linux it only uses PAT0, PAT1, and PAT2 for the
237
* caching as:
238
*
239
* WB = none (so PAT0)
240
* WC = PWT (bit 3 on)
241
* UC = PWT | PCD (bit 3 and 4 are on).
242
*
243
* To make it work with Xen, it needs to translate the WC bit as so:
244
*
245
* PWT (so bit 3 on) --> PAT (so bit 7 is on) and clear bit 3
246
*
247
* And to translate back it would:
248
*
249
* PAT (bit 7 on) --> PWT (bit 3 on) and clear bit 7.
250
*/
251
#define MMU_NORMAL_PT_UPDATE 0 /* checked '*ptr = val'. ptr is MA. */
252
#define MMU_MACHPHYS_UPDATE 1 /* ptr = MA of frame to modify entry for */
253
#define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
254
#define MMU_PT_UPDATE_NO_TRANSLATE 3 /* checked '*ptr = val'. ptr is MA. */
255
256
/*
257
* MMU EXTENDED OPERATIONS
258
*
259
* enum neg_errnoval HYPERVISOR_mmuext_op(mmuext_op_t uops[],
260
* unsigned int count,
261
* unsigned int *pdone,
262
* unsigned int foreigndom)
263
*/
264
/* HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
265
* A foreigndom (FD) can be specified (or DOMID_SELF for none).
266
* Where the FD has some effect, it is described below.
267
*
268
* cmd: MMUEXT_(UN)PIN_*_TABLE
269
* mfn: Machine frame number to be (un)pinned as a p.t. page.
270
* The frame must belong to the FD, if one is specified.
271
*
272
* cmd: MMUEXT_NEW_BASEPTR
273
* mfn: Machine frame number of new page-table base to install in MMU.
274
*
275
* cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
276
* mfn: Machine frame number of new page-table base to install in MMU
277
* when in user space.
278
*
279
* cmd: MMUEXT_TLB_FLUSH_LOCAL
280
* No additional arguments. Flushes local TLB.
281
*
282
* cmd: MMUEXT_INVLPG_LOCAL
283
* linear_addr: Linear address to be flushed from the local TLB.
284
*
285
* cmd: MMUEXT_TLB_FLUSH_MULTI
286
* vcpumask: Pointer to bitmap of VCPUs to be flushed.
287
*
288
* cmd: MMUEXT_INVLPG_MULTI
289
* linear_addr: Linear address to be flushed.
290
* vcpumask: Pointer to bitmap of VCPUs to be flushed.
291
*
292
* cmd: MMUEXT_TLB_FLUSH_ALL
293
* No additional arguments. Flushes all VCPUs' TLBs.
294
*
295
* cmd: MMUEXT_INVLPG_ALL
296
* linear_addr: Linear address to be flushed from all VCPUs' TLBs.
297
*
298
* cmd: MMUEXT_FLUSH_CACHE
299
* No additional arguments. Writes back and flushes cache contents.
300
*
301
* cmd: MMUEXT_FLUSH_CACHE_GLOBAL
302
* No additional arguments. Writes back and flushes cache contents
303
* on all CPUs in the system.
304
*
305
* cmd: MMUEXT_SET_LDT
306
* linear_addr: Linear address of LDT base (NB. must be page-aligned).
307
* nr_ents: Number of entries in LDT.
308
*
309
* cmd: MMUEXT_CLEAR_PAGE
310
* mfn: Machine frame number to be cleared.
311
*
312
* cmd: MMUEXT_COPY_PAGE
313
* mfn: Machine frame number of the destination page.
314
* src_mfn: Machine frame number of the source page.
315
*
316
* cmd: MMUEXT_[UN]MARK_SUPER
317
* mfn: Machine frame number of head of superpage to be [un]marked.
318
*/
319
#define MMUEXT_PIN_L1_TABLE 0
320
#define MMUEXT_PIN_L2_TABLE 1
321
#define MMUEXT_PIN_L3_TABLE 2
322
#define MMUEXT_PIN_L4_TABLE 3
323
#define MMUEXT_UNPIN_TABLE 4
324
#define MMUEXT_NEW_BASEPTR 5
325
#define MMUEXT_TLB_FLUSH_LOCAL 6
326
#define MMUEXT_INVLPG_LOCAL 7
327
#define MMUEXT_TLB_FLUSH_MULTI 8
328
#define MMUEXT_INVLPG_MULTI 9
329
#define MMUEXT_TLB_FLUSH_ALL 10
330
#define MMUEXT_INVLPG_ALL 11
331
#define MMUEXT_FLUSH_CACHE 12
332
#define MMUEXT_SET_LDT 13
333
#define MMUEXT_NEW_USER_BASEPTR 15
334
#define MMUEXT_CLEAR_PAGE 16
335
#define MMUEXT_COPY_PAGE 17
336
#define MMUEXT_FLUSH_CACHE_GLOBAL 18
337
#define MMUEXT_MARK_SUPER 19
338
#define MMUEXT_UNMARK_SUPER 20
339
340
#ifndef __ASSEMBLY__
341
struct mmuext_op {
342
unsigned int cmd;
343
union {
344
/* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR
345
* CLEAR_PAGE, COPY_PAGE, [UN]MARK_SUPER */
346
xen_pfn_t mfn;
347
/* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
348
unsigned long linear_addr;
349
} arg1;
350
union {
351
/* SET_LDT */
352
unsigned int nr_ents;
353
/* TLB_FLUSH_MULTI, INVLPG_MULTI */
354
void *vcpumask;
355
/* COPY_PAGE */
356
xen_pfn_t src_mfn;
357
} arg2;
358
};
359
DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
360
#endif
361
362
/* These are passed as 'flags' to update_va_mapping. They can be ORed. */
363
/* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap. */
364
/* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer. */
365
#define UVMF_NONE (0UL<<0) /* No flushing at all. */
366
#define UVMF_TLB_FLUSH (1UL<<0) /* Flush entire TLB(s). */
367
#define UVMF_INVLPG (2UL<<0) /* Flush only one entry. */
368
#define UVMF_FLUSHTYPE_MASK (3UL<<0)
369
#define UVMF_MULTI (0UL<<2) /* Flush subset of TLBs. */
370
#define UVMF_LOCAL (0UL<<2) /* Flush local TLB. */
371
#define UVMF_ALL (1UL<<2) /* Flush all TLBs. */
372
373
/*
374
* Commands to HYPERVISOR_console_io().
375
*/
376
#define CONSOLEIO_write 0
377
#define CONSOLEIO_read 1
378
379
/*
380
* Commands to HYPERVISOR_vm_assist().
381
*/
382
#define VMASST_CMD_enable 0
383
#define VMASST_CMD_disable 1
384
385
/* x86/32 guests: simulate full 4GB segment limits. */
386
#define VMASST_TYPE_4gb_segments 0
387
388
/* x86/32 guests: trap (vector 15) whenever above vmassist is used. */
389
#define VMASST_TYPE_4gb_segments_notify 1
390
391
/*
392
* x86 guests: support writes to bottom-level PTEs.
393
* NB1. Page-directory entries cannot be written.
394
* NB2. Guest must continue to remove all writable mappings of PTEs.
395
*/
396
#define VMASST_TYPE_writable_pagetables 2
397
398
/* x86/PAE guests: support PDPTs above 4GB. */
399
#define VMASST_TYPE_pae_extended_cr3 3
400
401
/*
402
* x86 guests: Sane behaviour for virtual iopl
403
* - virtual iopl updated from do_iret() hypercalls.
404
* - virtual iopl reported in bounce frames.
405
* - guest kernels assumed to be level 0 for the purpose of iopl checks.
406
*/
407
#define VMASST_TYPE_architectural_iopl 4
408
409
/*
410
* All guests: activate update indicator in vcpu_runstate_info
411
* Enable setting the XEN_RUNSTATE_UPDATE flag in guest memory mapped
412
* vcpu_runstate_info during updates of the runstate information.
413
*/
414
#define VMASST_TYPE_runstate_update_flag 5
415
416
#define MAX_VMASST_TYPE 5
417
418
#ifndef __ASSEMBLY__
419
420
typedef uint16_t domid_t;
421
422
/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
423
#define DOMID_FIRST_RESERVED (0x7FF0U)
424
425
/* DOMID_SELF is used in certain contexts to refer to oneself. */
426
#define DOMID_SELF (0x7FF0U)
427
428
/*
429
* DOMID_IO is used to restrict page-table updates to mapping I/O memory.
430
* Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
431
* is useful to ensure that no mappings to the OS's own heap are accidentally
432
* installed. (e.g., in Linux this could cause havoc as reference counts
433
* aren't adjusted on the I/O-mapping code path).
434
* This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
435
* be specified by any calling domain.
436
*/
437
#define DOMID_IO (0x7FF1U)
438
439
/*
440
* DOMID_XEN is used to allow privileged domains to map restricted parts of
441
* Xen's heap space (e.g., the machine_to_phys table).
442
* This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
443
* the caller is privileged.
444
*/
445
#define DOMID_XEN (0x7FF2U)
446
447
/* DOMID_COW is used as the owner of sharable pages */
448
#define DOMID_COW (0x7FF3U)
449
450
/* DOMID_INVALID is used to identify pages with unknown owner. */
451
#define DOMID_INVALID (0x7FF4U)
452
453
/* Idle domain. */
454
#define DOMID_IDLE (0x7FFFU)
455
456
/*
457
* Send an array of these to HYPERVISOR_mmu_update().
458
* NB. The fields are natural pointer/address size for this architecture.
459
*/
460
struct mmu_update {
461
uint64_t ptr; /* Machine address of PTE. */
462
uint64_t val; /* New contents of PTE. */
463
};
464
DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
465
466
/*
467
* Send an array of these to HYPERVISOR_multicall().
468
* NB. The fields are logically the natural register size for this
469
* architecture. In cases where xen_ulong_t is larger than this then
470
* any unused bits in the upper portion must be zero.
471
*/
472
struct multicall_entry {
473
xen_ulong_t op;
474
xen_long_t result;
475
xen_ulong_t args[6];
476
};
477
DEFINE_GUEST_HANDLE_STRUCT(multicall_entry);
478
479
struct vcpu_time_info {
480
/*
481
* Updates to the following values are preceded and followed
482
* by an increment of 'version'. The guest can therefore
483
* detect updates by looking for changes to 'version'. If the
484
* least-significant bit of the version number is set then an
485
* update is in progress and the guest must wait to read a
486
* consistent set of values. The correct way to interact with
487
* the version number is similar to Linux's seqlock: see the
488
* implementations of read_seqbegin/read_seqretry.
489
*/
490
uint32_t version;
491
uint32_t pad0;
492
uint64_t tsc_timestamp; /* TSC at last update of time vals. */
493
uint64_t system_time; /* Time, in nanosecs, since boot. */
494
/*
495
* Current system time:
496
* system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
497
* CPU frequency (Hz):
498
* ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
499
*/
500
uint32_t tsc_to_system_mul;
501
int8_t tsc_shift;
502
int8_t pad1[3];
503
}; /* 32 bytes */
504
505
struct vcpu_info {
506
/*
507
* 'evtchn_upcall_pending' is written non-zero by Xen to indicate
508
* a pending notification for a particular VCPU. It is then cleared
509
* by the guest OS /before/ checking for pending work, thus avoiding
510
* a set-and-check race. Note that the mask is only accessed by Xen
511
* on the CPU that is currently hosting the VCPU. This means that the
512
* pending and mask flags can be updated by the guest without special
513
* synchronisation (i.e., no need for the x86 LOCK prefix).
514
* This may seem suboptimal because if the pending flag is set by
515
* a different CPU then an IPI may be scheduled even when the mask
516
* is set. However, note:
517
* 1. The task of 'interrupt holdoff' is covered by the per-event-
518
* channel mask bits. A 'noisy' event that is continually being
519
* triggered can be masked at source at this very precise
520
* granularity.
521
* 2. The main purpose of the per-VCPU mask is therefore to restrict
522
* reentrant execution: whether for concurrency control, or to
523
* prevent unbounded stack usage. Whatever the purpose, we expect
524
* that the mask will be asserted only for short periods at a time,
525
* and so the likelihood of a 'spurious' IPI is suitably small.
526
* The mask is read before making an event upcall to the guest: a
527
* non-zero mask therefore guarantees that the VCPU will not receive
528
* an upcall activation. The mask is cleared when the VCPU requests
529
* to block: this avoids wakeup-waiting races.
530
*/
531
uint8_t evtchn_upcall_pending;
532
uint8_t evtchn_upcall_mask;
533
xen_ulong_t evtchn_pending_sel;
534
struct arch_vcpu_info arch;
535
struct pvclock_vcpu_time_info time;
536
}; /* 64 bytes (x86) */
537
538
/*
539
* Xen/kernel shared data -- pointer provided in start_info.
540
* NB. We expect that this struct is smaller than a page.
541
*/
542
struct shared_info {
543
struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
544
545
/*
546
* A domain can create "event channels" on which it can send and receive
547
* asynchronous event notifications. There are three classes of event that
548
* are delivered by this mechanism:
549
* 1. Bi-directional inter- and intra-domain connections. Domains must
550
* arrange out-of-band to set up a connection (usually by allocating
551
* an unbound 'listener' port and avertising that via a storage service
552
* such as xenstore).
553
* 2. Physical interrupts. A domain with suitable hardware-access
554
* privileges can bind an event-channel port to a physical interrupt
555
* source.
556
* 3. Virtual interrupts ('events'). A domain can bind an event-channel
557
* port to a virtual interrupt source, such as the virtual-timer
558
* device or the emergency console.
559
*
560
* Event channels are addressed by a "port index". Each channel is
561
* associated with two bits of information:
562
* 1. PENDING -- notifies the domain that there is a pending notification
563
* to be processed. This bit is cleared by the guest.
564
* 2. MASK -- if this bit is clear then a 0->1 transition of PENDING
565
* will cause an asynchronous upcall to be scheduled. This bit is only
566
* updated by the guest. It is read-only within Xen. If a channel
567
* becomes pending while the channel is masked then the 'edge' is lost
568
* (i.e., when the channel is unmasked, the guest must manually handle
569
* pending notifications as no upcall will be scheduled by Xen).
570
*
571
* To expedite scanning of pending notifications, any 0->1 pending
572
* transition on an unmasked channel causes a corresponding bit in a
573
* per-vcpu selector word to be set. Each bit in the selector covers a
574
* 'C long' in the PENDING bitfield array.
575
*/
576
xen_ulong_t evtchn_pending[sizeof(xen_ulong_t) * 8];
577
xen_ulong_t evtchn_mask[sizeof(xen_ulong_t) * 8];
578
579
/*
580
* Wallclock time: updated only by control software. Guests should base
581
* their gettimeofday() syscall on this wallclock-base value.
582
*/
583
struct pvclock_wall_clock wc;
584
#ifndef CONFIG_X86_32
585
uint32_t wc_sec_hi;
586
#endif
587
struct arch_shared_info arch;
588
589
};
590
591
/*
592
* Start-of-day memory layout
593
*
594
* 1. The domain is started within contiguous virtual-memory region.
595
* 2. The contiguous region begins and ends on an aligned 4MB boundary.
596
* 3. This the order of bootstrap elements in the initial virtual region:
597
* a. relocated kernel image
598
* b. initial ram disk [mod_start, mod_len]
599
* (may be omitted)
600
* c. list of allocated page frames [mfn_list, nr_pages]
601
* (unless relocated due to XEN_ELFNOTE_INIT_P2M)
602
* d. start_info_t structure [register ESI (x86)]
603
* in case of dom0 this page contains the console info, too
604
* e. unless dom0: xenstore ring page
605
* f. unless dom0: console ring page
606
* g. bootstrap page tables [pt_base, CR3 (x86)]
607
* h. bootstrap stack [register ESP (x86)]
608
* 4. Bootstrap elements are packed together, but each is 4kB-aligned.
609
* 5. The list of page frames forms a contiguous 'pseudo-physical' memory
610
* layout for the domain. In particular, the bootstrap virtual-memory
611
* region is a 1:1 mapping to the first section of the pseudo-physical map.
612
* 6. All bootstrap elements are mapped read-writable for the guest OS. The
613
* only exception is the bootstrap page table, which is mapped read-only.
614
* 7. There is guaranteed to be at least 512kB padding after the final
615
* bootstrap element. If necessary, the bootstrap virtual region is
616
* extended by an extra 4MB to ensure this.
617
*/
618
619
#define MAX_GUEST_CMDLINE 1024
620
struct start_info {
621
/* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME. */
622
char magic[32]; /* "xen-<version>-<platform>". */
623
unsigned long nr_pages; /* Total pages allocated to this domain. */
624
unsigned long shared_info; /* MACHINE address of shared info struct. */
625
uint32_t flags; /* SIF_xxx flags. */
626
xen_pfn_t store_mfn; /* MACHINE page number of shared page. */
627
uint32_t store_evtchn; /* Event channel for store communication. */
628
union {
629
struct {
630
xen_pfn_t mfn; /* MACHINE page number of console page. */
631
uint32_t evtchn; /* Event channel for console page. */
632
} domU;
633
struct {
634
uint32_t info_off; /* Offset of console_info struct. */
635
uint32_t info_size; /* Size of console_info struct from start.*/
636
} dom0;
637
} console;
638
/* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME). */
639
unsigned long pt_base; /* VIRTUAL address of page directory. */
640
unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames. */
641
unsigned long mfn_list; /* VIRTUAL address of page-frame list. */
642
unsigned long mod_start; /* VIRTUAL address of pre-loaded module. */
643
unsigned long mod_len; /* Size (bytes) of pre-loaded module. */
644
int8_t cmd_line[MAX_GUEST_CMDLINE];
645
/* The pfn range here covers both page table and p->m table frames. */
646
unsigned long first_p2m_pfn;/* 1st pfn forming initial P->M table. */
647
unsigned long nr_p2m_frames;/* # of pfns forming initial P->M table. */
648
};
649
650
/* These flags are passed in the 'flags' field of start_info_t. */
651
#define SIF_PRIVILEGED (1<<0) /* Is the domain privileged? */
652
#define SIF_INITDOMAIN (1<<1) /* Is this the initial control domain? */
653
#define SIF_MULTIBOOT_MOD (1<<2) /* Is mod_start a multiboot module? */
654
#define SIF_MOD_START_PFN (1<<3) /* Is mod_start a PFN? */
655
#define SIF_VIRT_P2M_4TOOLS (1<<4) /* Do Xen tools understand a virt. mapped */
656
/* P->M making the 3 level tree obsolete? */
657
#define SIF_PM_MASK (0xFF<<8) /* reserve 1 byte for xen-pm options */
658
659
/*
660
* A multiboot module is a package containing modules very similar to a
661
* multiboot module array. The only differences are:
662
* - the array of module descriptors is by convention simply at the beginning
663
* of the multiboot module,
664
* - addresses in the module descriptors are based on the beginning of the
665
* multiboot module,
666
* - the number of modules is determined by a termination descriptor that has
667
* mod_start == 0.
668
*
669
* This permits to both build it statically and reference it in a configuration
670
* file, and let the PV guest easily rebase the addresses to virtual addresses
671
* and at the same time count the number of modules.
672
*/
673
struct xen_multiboot_mod_list {
674
/* Address of first byte of the module */
675
uint32_t mod_start;
676
/* Address of last byte of the module (inclusive) */
677
uint32_t mod_end;
678
/* Address of zero-terminated command line */
679
uint32_t cmdline;
680
/* Unused, must be zero */
681
uint32_t pad;
682
};
683
/*
684
* The console structure in start_info.console.dom0
685
*
686
* This structure includes a variety of information required to
687
* have a working VGA/VESA console.
688
*/
689
struct dom0_vga_console_info {
690
uint8_t video_type;
691
#define XEN_VGATYPE_TEXT_MODE_3 0x03
692
#define XEN_VGATYPE_VESA_LFB 0x23
693
#define XEN_VGATYPE_EFI_LFB 0x70
694
695
union {
696
struct {
697
/* Font height, in pixels. */
698
uint16_t font_height;
699
/* Cursor location (column, row). */
700
uint16_t cursor_x, cursor_y;
701
/* Number of rows and columns (dimensions in characters). */
702
uint16_t rows, columns;
703
} text_mode_3;
704
705
struct {
706
/* Width and height, in pixels. */
707
uint16_t width, height;
708
/* Bytes per scan line. */
709
uint16_t bytes_per_line;
710
/* Bits per pixel. */
711
uint16_t bits_per_pixel;
712
/* LFB physical address, and size (in units of 64kB). */
713
uint32_t lfb_base;
714
uint32_t lfb_size;
715
/* RGB mask offsets and sizes, as defined by VBE 1.2+ */
716
uint8_t red_pos, red_size;
717
uint8_t green_pos, green_size;
718
uint8_t blue_pos, blue_size;
719
uint8_t rsvd_pos, rsvd_size;
720
721
/* VESA capabilities (offset 0xa, VESA command 0x4f00). */
722
uint32_t gbl_caps;
723
/* Mode attributes (offset 0x0, VESA command 0x4f01). */
724
uint16_t mode_attrs;
725
uint16_t pad;
726
/* high 32 bits of lfb_base */
727
uint32_t ext_lfb_base;
728
} vesa_lfb;
729
} u;
730
};
731
732
typedef uint64_t cpumap_t;
733
734
typedef uint8_t xen_domain_handle_t[16];
735
736
/* Turn a plain number into a C unsigned long constant. */
737
#define __mk_unsigned_long(x) x ## UL
738
#define mk_unsigned_long(x) __mk_unsigned_long(x)
739
740
#define TMEM_SPEC_VERSION 1
741
742
struct tmem_op {
743
uint32_t cmd;
744
int32_t pool_id;
745
union {
746
struct { /* for cmd == TMEM_NEW_POOL */
747
uint64_t uuid[2];
748
uint32_t flags;
749
} new;
750
struct {
751
uint64_t oid[3];
752
uint32_t index;
753
uint32_t tmem_offset;
754
uint32_t pfn_offset;
755
uint32_t len;
756
GUEST_HANDLE(void) gmfn; /* guest machine page frame */
757
} gen;
758
} u;
759
};
760
761
DEFINE_GUEST_HANDLE(u64);
762
763
#else /* __ASSEMBLY__ */
764
765
/* In assembly code we cannot use C numeric constant suffixes. */
766
#define mk_unsigned_long(x) x
767
768
#endif /* !__ASSEMBLY__ */
769
770
#endif /* __XEN_PUBLIC_XEN_H__ */
771
772