Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/init/calibrate.c
26131 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* calibrate.c: default delay calibration
3
*
4
* Excised from init/main.c
5
* Copyright (C) 1991, 1992 Linus Torvalds
6
*/
7
8
#include <linux/jiffies.h>
9
#include <linux/delay.h>
10
#include <linux/init.h>
11
#include <linux/timex.h>
12
#include <linux/smp.h>
13
#include <linux/percpu.h>
14
15
unsigned long lpj_fine;
16
unsigned long preset_lpj;
17
static int __init lpj_setup(char *str)
18
{
19
preset_lpj = simple_strtoul(str,NULL,0);
20
return 1;
21
}
22
23
__setup("lpj=", lpj_setup);
24
25
#ifdef ARCH_HAS_READ_CURRENT_TIMER
26
27
/* This routine uses the read_current_timer() routine and gets the
28
* loops per jiffy directly, instead of guessing it using delay().
29
* Also, this code tries to handle non-maskable asynchronous events
30
* (like SMIs)
31
*/
32
#define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
33
#define MAX_DIRECT_CALIBRATION_RETRIES 5
34
35
static unsigned long calibrate_delay_direct(void)
36
{
37
unsigned long pre_start, start, post_start;
38
unsigned long pre_end, end, post_end;
39
unsigned long start_jiffies;
40
unsigned long timer_rate_min, timer_rate_max;
41
unsigned long good_timer_sum = 0;
42
unsigned long good_timer_count = 0;
43
unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
44
int max = -1; /* index of measured_times with max/min values or not set */
45
int min = -1;
46
int i;
47
48
if (read_current_timer(&pre_start) < 0 )
49
return 0;
50
51
/*
52
* A simple loop like
53
* while ( jiffies < start_jiffies+1)
54
* start = read_current_timer();
55
* will not do. As we don't really know whether jiffy switch
56
* happened first or timer_value was read first. And some asynchronous
57
* event can happen between these two events introducing errors in lpj.
58
*
59
* So, we do
60
* 1. pre_start <- When we are sure that jiffy switch hasn't happened
61
* 2. check jiffy switch
62
* 3. start <- timer value before or after jiffy switch
63
* 4. post_start <- When we are sure that jiffy switch has happened
64
*
65
* Note, we don't know anything about order of 2 and 3.
66
* Now, by looking at post_start and pre_start difference, we can
67
* check whether any asynchronous event happened or not
68
*/
69
70
for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
71
pre_start = 0;
72
read_current_timer(&start);
73
start_jiffies = jiffies;
74
while (time_before_eq(jiffies, start_jiffies + 1)) {
75
pre_start = start;
76
read_current_timer(&start);
77
}
78
read_current_timer(&post_start);
79
80
pre_end = 0;
81
end = post_start;
82
while (time_before_eq(jiffies, start_jiffies + 1 +
83
DELAY_CALIBRATION_TICKS)) {
84
pre_end = end;
85
read_current_timer(&end);
86
}
87
read_current_timer(&post_end);
88
89
timer_rate_max = (post_end - pre_start) /
90
DELAY_CALIBRATION_TICKS;
91
timer_rate_min = (pre_end - post_start) /
92
DELAY_CALIBRATION_TICKS;
93
94
/*
95
* If the upper limit and lower limit of the timer_rate is
96
* >= 12.5% apart, redo calibration.
97
*/
98
if (start >= post_end)
99
printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
100
"timer_rate as we had a TSC wrap around"
101
" start=%lu >=post_end=%lu\n",
102
start, post_end);
103
if (start < post_end && pre_start != 0 && pre_end != 0 &&
104
(timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
105
good_timer_count++;
106
good_timer_sum += timer_rate_max;
107
measured_times[i] = timer_rate_max;
108
if (max < 0 || timer_rate_max > measured_times[max])
109
max = i;
110
if (min < 0 || timer_rate_max < measured_times[min])
111
min = i;
112
} else
113
measured_times[i] = 0;
114
115
}
116
117
/*
118
* Find the maximum & minimum - if they differ too much throw out the
119
* one with the largest difference from the mean and try again...
120
*/
121
while (good_timer_count > 1) {
122
unsigned long estimate;
123
unsigned long maxdiff;
124
125
/* compute the estimate */
126
estimate = (good_timer_sum/good_timer_count);
127
maxdiff = estimate >> 3;
128
129
/* if range is within 12% let's take it */
130
if ((measured_times[max] - measured_times[min]) < maxdiff)
131
return estimate;
132
133
/* ok - drop the worse value and try again... */
134
good_timer_sum = 0;
135
good_timer_count = 0;
136
if ((measured_times[max] - estimate) <
137
(estimate - measured_times[min])) {
138
printk(KERN_NOTICE "calibrate_delay_direct() dropping "
139
"min bogoMips estimate %d = %lu\n",
140
min, measured_times[min]);
141
measured_times[min] = 0;
142
min = max;
143
} else {
144
printk(KERN_NOTICE "calibrate_delay_direct() dropping "
145
"max bogoMips estimate %d = %lu\n",
146
max, measured_times[max]);
147
measured_times[max] = 0;
148
max = min;
149
}
150
151
for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
152
if (measured_times[i] == 0)
153
continue;
154
good_timer_count++;
155
good_timer_sum += measured_times[i];
156
if (measured_times[i] < measured_times[min])
157
min = i;
158
if (measured_times[i] > measured_times[max])
159
max = i;
160
}
161
162
}
163
164
printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
165
"estimate for loops_per_jiffy.\nProbably due to long platform "
166
"interrupts. Consider using \"lpj=\" boot option.\n");
167
return 0;
168
}
169
#else
170
static unsigned long calibrate_delay_direct(void)
171
{
172
return 0;
173
}
174
#endif
175
176
/*
177
* This is the number of bits of precision for the loops_per_jiffy. Each
178
* time we refine our estimate after the first takes 1.5/HZ seconds, so try
179
* to start with a good estimate.
180
* For the boot cpu we can skip the delay calibration and assign it a value
181
* calculated based on the timer frequency.
182
* For the rest of the CPUs we cannot assume that the timer frequency is same as
183
* the cpu frequency, hence do the calibration for those.
184
*/
185
#define LPS_PREC 8
186
187
static unsigned long calibrate_delay_converge(void)
188
{
189
/* First stage - slowly accelerate to find initial bounds */
190
unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
191
int trials = 0, band = 0, trial_in_band = 0;
192
193
lpj = (1<<12);
194
195
/* wait for "start of" clock tick */
196
ticks = jiffies;
197
while (ticks == jiffies)
198
; /* nothing */
199
/* Go .. */
200
ticks = jiffies;
201
do {
202
if (++trial_in_band == (1<<band)) {
203
++band;
204
trial_in_band = 0;
205
}
206
__delay(lpj * band);
207
trials += band;
208
} while (ticks == jiffies);
209
/*
210
* We overshot, so retreat to a clear underestimate. Then estimate
211
* the largest likely undershoot. This defines our chop bounds.
212
*/
213
trials -= band;
214
loopadd_base = lpj * band;
215
lpj_base = lpj * trials;
216
217
recalibrate:
218
lpj = lpj_base;
219
loopadd = loopadd_base;
220
221
/*
222
* Do a binary approximation to get lpj set to
223
* equal one clock (up to LPS_PREC bits)
224
*/
225
chop_limit = lpj >> LPS_PREC;
226
while (loopadd > chop_limit) {
227
lpj += loopadd;
228
ticks = jiffies;
229
while (ticks == jiffies)
230
; /* nothing */
231
ticks = jiffies;
232
__delay(lpj);
233
if (jiffies != ticks) /* longer than 1 tick */
234
lpj -= loopadd;
235
loopadd >>= 1;
236
}
237
/*
238
* If we incremented every single time possible, presume we've
239
* massively underestimated initially, and retry with a higher
240
* start, and larger range. (Only seen on x86_64, due to SMIs)
241
*/
242
if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
243
lpj_base = lpj;
244
loopadd_base <<= 2;
245
goto recalibrate;
246
}
247
248
return lpj;
249
}
250
251
static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 };
252
253
/*
254
* Check if cpu calibration delay is already known. For example,
255
* some processors with multi-core sockets may have all cores
256
* with the same calibration delay.
257
*
258
* Architectures should override this function if a faster calibration
259
* method is available.
260
*/
261
unsigned long __attribute__((weak)) calibrate_delay_is_known(void)
262
{
263
return 0;
264
}
265
266
/*
267
* Indicate the cpu delay calibration is done. This can be used by
268
* architectures to stop accepting delay timer registrations after this point.
269
*/
270
271
void __attribute__((weak)) calibration_delay_done(void)
272
{
273
}
274
275
void calibrate_delay(void)
276
{
277
unsigned long lpj;
278
static bool printed;
279
int this_cpu = smp_processor_id();
280
281
if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
282
lpj = per_cpu(cpu_loops_per_jiffy, this_cpu);
283
if (!printed)
284
pr_info("Calibrating delay loop (skipped) "
285
"already calibrated this CPU");
286
} else if (preset_lpj) {
287
lpj = preset_lpj;
288
if (!printed)
289
pr_info("Calibrating delay loop (skipped) "
290
"preset value.. ");
291
} else if ((!printed) && lpj_fine) {
292
lpj = lpj_fine;
293
pr_info("Calibrating delay loop (skipped), "
294
"value calculated using timer frequency.. ");
295
} else if ((lpj = calibrate_delay_is_known())) {
296
;
297
} else if ((lpj = calibrate_delay_direct()) != 0) {
298
if (!printed)
299
pr_info("Calibrating delay using timer "
300
"specific routine.. ");
301
} else {
302
if (!printed)
303
pr_info("Calibrating delay loop... ");
304
lpj = calibrate_delay_converge();
305
}
306
per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj;
307
if (!printed)
308
pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
309
lpj/(500000/HZ),
310
(lpj/(5000/HZ)) % 100, lpj);
311
312
loops_per_jiffy = lpj;
313
printed = true;
314
315
calibration_delay_done();
316
}
317
318