Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/init/calibrate.c
49611 views
1
// SPDX-License-Identifier: GPL-2.0
2
/* calibrate.c: default delay calibration
3
*
4
* Excised from init/main.c
5
* Copyright (C) 1991, 1992 Linus Torvalds
6
*/
7
8
#include <linux/delay.h>
9
#include <linux/init.h>
10
#include <linux/jiffies.h>
11
#include <linux/kstrtox.h>
12
#include <linux/percpu.h>
13
#include <linux/printk.h>
14
#include <linux/smp.h>
15
#include <linux/stddef.h>
16
#include <linux/timex.h>
17
18
unsigned long lpj_fine;
19
unsigned long preset_lpj;
20
21
static int __init lpj_setup(char *str)
22
{
23
return kstrtoul(str, 0, &preset_lpj) == 0;
24
}
25
26
__setup("lpj=", lpj_setup);
27
28
#ifdef ARCH_HAS_READ_CURRENT_TIMER
29
30
/* This routine uses the read_current_timer() routine and gets the
31
* loops per jiffy directly, instead of guessing it using delay().
32
* Also, this code tries to handle non-maskable asynchronous events
33
* (like SMIs)
34
*/
35
#define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
36
#define MAX_DIRECT_CALIBRATION_RETRIES 5
37
38
static unsigned long calibrate_delay_direct(void)
39
{
40
unsigned long pre_start, start, post_start;
41
unsigned long pre_end, end, post_end;
42
unsigned long start_jiffies;
43
unsigned long timer_rate_min, timer_rate_max;
44
unsigned long good_timer_sum = 0;
45
unsigned long good_timer_count = 0;
46
unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
47
int max = -1; /* index of measured_times with max/min values or not set */
48
int min = -1;
49
int i;
50
51
if (read_current_timer(&pre_start) < 0 )
52
return 0;
53
54
/*
55
* A simple loop like
56
* while ( jiffies < start_jiffies+1)
57
* start = read_current_timer();
58
* will not do. As we don't really know whether jiffy switch
59
* happened first or timer_value was read first. And some asynchronous
60
* event can happen between these two events introducing errors in lpj.
61
*
62
* So, we do
63
* 1. pre_start <- When we are sure that jiffy switch hasn't happened
64
* 2. check jiffy switch
65
* 3. start <- timer value before or after jiffy switch
66
* 4. post_start <- When we are sure that jiffy switch has happened
67
*
68
* Note, we don't know anything about order of 2 and 3.
69
* Now, by looking at post_start and pre_start difference, we can
70
* check whether any asynchronous event happened or not
71
*/
72
73
for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
74
pre_start = 0;
75
read_current_timer(&start);
76
start_jiffies = jiffies;
77
while (time_before_eq(jiffies, start_jiffies + 1)) {
78
pre_start = start;
79
read_current_timer(&start);
80
}
81
read_current_timer(&post_start);
82
83
pre_end = 0;
84
end = post_start;
85
while (time_before_eq(jiffies, start_jiffies + 1 +
86
DELAY_CALIBRATION_TICKS)) {
87
pre_end = end;
88
read_current_timer(&end);
89
}
90
read_current_timer(&post_end);
91
92
timer_rate_max = (post_end - pre_start) /
93
DELAY_CALIBRATION_TICKS;
94
timer_rate_min = (pre_end - post_start) /
95
DELAY_CALIBRATION_TICKS;
96
97
/*
98
* If the upper limit and lower limit of the timer_rate is
99
* >= 12.5% apart, redo calibration.
100
*/
101
if (start >= post_end)
102
printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
103
"timer_rate as we had a TSC wrap around"
104
" start=%lu >=post_end=%lu\n",
105
start, post_end);
106
if (start < post_end && pre_start != 0 && pre_end != 0 &&
107
(timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
108
good_timer_count++;
109
good_timer_sum += timer_rate_max;
110
measured_times[i] = timer_rate_max;
111
if (max < 0 || timer_rate_max > measured_times[max])
112
max = i;
113
if (min < 0 || timer_rate_max < measured_times[min])
114
min = i;
115
} else
116
measured_times[i] = 0;
117
118
}
119
120
/*
121
* Find the maximum & minimum - if they differ too much throw out the
122
* one with the largest difference from the mean and try again...
123
*/
124
while (good_timer_count > 1) {
125
unsigned long estimate;
126
unsigned long maxdiff;
127
128
/* compute the estimate */
129
estimate = (good_timer_sum/good_timer_count);
130
maxdiff = estimate >> 3;
131
132
/* if range is within 12% let's take it */
133
if ((measured_times[max] - measured_times[min]) < maxdiff)
134
return estimate;
135
136
/* ok - drop the worse value and try again... */
137
good_timer_sum = 0;
138
good_timer_count = 0;
139
if ((measured_times[max] - estimate) <
140
(estimate - measured_times[min])) {
141
printk(KERN_NOTICE "calibrate_delay_direct() dropping "
142
"min bogoMips estimate %d = %lu\n",
143
min, measured_times[min]);
144
measured_times[min] = 0;
145
min = max;
146
} else {
147
printk(KERN_NOTICE "calibrate_delay_direct() dropping "
148
"max bogoMips estimate %d = %lu\n",
149
max, measured_times[max]);
150
measured_times[max] = 0;
151
max = min;
152
}
153
154
for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
155
if (measured_times[i] == 0)
156
continue;
157
good_timer_count++;
158
good_timer_sum += measured_times[i];
159
if (measured_times[i] < measured_times[min])
160
min = i;
161
if (measured_times[i] > measured_times[max])
162
max = i;
163
}
164
165
}
166
167
printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
168
"estimate for loops_per_jiffy.\nProbably due to long platform "
169
"interrupts. Consider using \"lpj=\" boot option.\n");
170
return 0;
171
}
172
#else
173
static unsigned long calibrate_delay_direct(void)
174
{
175
return 0;
176
}
177
#endif
178
179
/*
180
* This is the number of bits of precision for the loops_per_jiffy. Each
181
* time we refine our estimate after the first takes 1.5/HZ seconds, so try
182
* to start with a good estimate.
183
* For the boot cpu we can skip the delay calibration and assign it a value
184
* calculated based on the timer frequency.
185
* For the rest of the CPUs we cannot assume that the timer frequency is same as
186
* the cpu frequency, hence do the calibration for those.
187
*/
188
#define LPS_PREC 8
189
190
static unsigned long calibrate_delay_converge(void)
191
{
192
/* First stage - slowly accelerate to find initial bounds */
193
unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
194
int trials = 0, band = 0, trial_in_band = 0;
195
196
lpj = (1<<12);
197
198
/* wait for "start of" clock tick */
199
ticks = jiffies;
200
while (ticks == jiffies)
201
; /* nothing */
202
/* Go .. */
203
ticks = jiffies;
204
do {
205
if (++trial_in_band == (1<<band)) {
206
++band;
207
trial_in_band = 0;
208
}
209
__delay(lpj * band);
210
trials += band;
211
} while (ticks == jiffies);
212
/*
213
* We overshot, so retreat to a clear underestimate. Then estimate
214
* the largest likely undershoot. This defines our chop bounds.
215
*/
216
trials -= band;
217
loopadd_base = lpj * band;
218
lpj_base = lpj * trials;
219
220
recalibrate:
221
lpj = lpj_base;
222
loopadd = loopadd_base;
223
224
/*
225
* Do a binary approximation to get lpj set to
226
* equal one clock (up to LPS_PREC bits)
227
*/
228
chop_limit = lpj >> LPS_PREC;
229
while (loopadd > chop_limit) {
230
lpj += loopadd;
231
ticks = jiffies;
232
while (ticks == jiffies)
233
; /* nothing */
234
ticks = jiffies;
235
__delay(lpj);
236
if (jiffies != ticks) /* longer than 1 tick */
237
lpj -= loopadd;
238
loopadd >>= 1;
239
}
240
/*
241
* If we incremented every single time possible, presume we've
242
* massively underestimated initially, and retry with a higher
243
* start, and larger range. (Only seen on x86_64, due to SMIs)
244
*/
245
if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
246
lpj_base = lpj;
247
loopadd_base <<= 2;
248
goto recalibrate;
249
}
250
251
return lpj;
252
}
253
254
static DEFINE_PER_CPU(unsigned long, cpu_loops_per_jiffy) = { 0 };
255
256
/*
257
* Check if cpu calibration delay is already known. For example,
258
* some processors with multi-core sockets may have all cores
259
* with the same calibration delay.
260
*
261
* Architectures should override this function if a faster calibration
262
* method is available.
263
*/
264
unsigned long __attribute__((weak)) calibrate_delay_is_known(void)
265
{
266
return 0;
267
}
268
269
/*
270
* Indicate the cpu delay calibration is done. This can be used by
271
* architectures to stop accepting delay timer registrations after this point.
272
*/
273
274
void __attribute__((weak)) calibration_delay_done(void)
275
{
276
}
277
278
void calibrate_delay(void)
279
{
280
unsigned long lpj;
281
static bool printed;
282
int this_cpu = smp_processor_id();
283
284
if (per_cpu(cpu_loops_per_jiffy, this_cpu)) {
285
lpj = per_cpu(cpu_loops_per_jiffy, this_cpu);
286
if (!printed)
287
pr_info("Calibrating delay loop (skipped) "
288
"already calibrated this CPU");
289
} else if (preset_lpj) {
290
lpj = preset_lpj;
291
if (!printed)
292
pr_info("Calibrating delay loop (skipped) "
293
"preset value.. ");
294
} else if ((!printed) && lpj_fine) {
295
lpj = lpj_fine;
296
pr_info("Calibrating delay loop (skipped), "
297
"value calculated using timer frequency.. ");
298
} else if ((lpj = calibrate_delay_is_known())) {
299
;
300
} else if ((lpj = calibrate_delay_direct()) != 0) {
301
if (!printed)
302
pr_info("Calibrating delay using timer "
303
"specific routine.. ");
304
} else {
305
if (!printed)
306
pr_info("Calibrating delay loop... ");
307
lpj = calibrate_delay_converge();
308
}
309
per_cpu(cpu_loops_per_jiffy, this_cpu) = lpj;
310
if (!printed)
311
pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
312
lpj/(500000/HZ),
313
(lpj/(5000/HZ)) % 100, lpj);
314
315
loops_per_jiffy = lpj;
316
printed = true;
317
318
calibration_delay_done();
319
}
320
321