Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/io_uring/io_uring.c
26131 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* Shared application/kernel submission and completion ring pairs, for
4
* supporting fast/efficient IO.
5
*
6
* A note on the read/write ordering memory barriers that are matched between
7
* the application and kernel side.
8
*
9
* After the application reads the CQ ring tail, it must use an
10
* appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11
* before writing the tail (using smp_load_acquire to read the tail will
12
* do). It also needs a smp_mb() before updating CQ head (ordering the
13
* entry load(s) with the head store), pairing with an implicit barrier
14
* through a control-dependency in io_get_cqe (smp_store_release to
15
* store head will do). Failure to do so could lead to reading invalid
16
* CQ entries.
17
*
18
* Likewise, the application must use an appropriate smp_wmb() before
19
* writing the SQ tail (ordering SQ entry stores with the tail store),
20
* which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21
* to store the tail will do). And it needs a barrier ordering the SQ
22
* head load before writing new SQ entries (smp_load_acquire to read
23
* head will do).
24
*
25
* When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26
* needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27
* updating the SQ tail; a full memory barrier smp_mb() is needed
28
* between.
29
*
30
* Also see the examples in the liburing library:
31
*
32
* git://git.kernel.dk/liburing
33
*
34
* io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35
* from data shared between the kernel and application. This is done both
36
* for ordering purposes, but also to ensure that once a value is loaded from
37
* data that the application could potentially modify, it remains stable.
38
*
39
* Copyright (C) 2018-2019 Jens Axboe
40
* Copyright (c) 2018-2019 Christoph Hellwig
41
*/
42
#include <linux/kernel.h>
43
#include <linux/init.h>
44
#include <linux/errno.h>
45
#include <linux/syscalls.h>
46
#include <net/compat.h>
47
#include <linux/refcount.h>
48
#include <linux/uio.h>
49
#include <linux/bits.h>
50
51
#include <linux/sched/signal.h>
52
#include <linux/fs.h>
53
#include <linux/file.h>
54
#include <linux/mm.h>
55
#include <linux/mman.h>
56
#include <linux/percpu.h>
57
#include <linux/slab.h>
58
#include <linux/bvec.h>
59
#include <linux/net.h>
60
#include <net/sock.h>
61
#include <linux/anon_inodes.h>
62
#include <linux/sched/mm.h>
63
#include <linux/uaccess.h>
64
#include <linux/nospec.h>
65
#include <linux/fsnotify.h>
66
#include <linux/fadvise.h>
67
#include <linux/task_work.h>
68
#include <linux/io_uring.h>
69
#include <linux/io_uring/cmd.h>
70
#include <linux/audit.h>
71
#include <linux/security.h>
72
#include <linux/jump_label.h>
73
#include <asm/shmparam.h>
74
75
#define CREATE_TRACE_POINTS
76
#include <trace/events/io_uring.h>
77
78
#include <uapi/linux/io_uring.h>
79
80
#include "io-wq.h"
81
82
#include "io_uring.h"
83
#include "opdef.h"
84
#include "refs.h"
85
#include "tctx.h"
86
#include "register.h"
87
#include "sqpoll.h"
88
#include "fdinfo.h"
89
#include "kbuf.h"
90
#include "rsrc.h"
91
#include "cancel.h"
92
#include "net.h"
93
#include "notif.h"
94
#include "waitid.h"
95
#include "futex.h"
96
#include "napi.h"
97
#include "uring_cmd.h"
98
#include "msg_ring.h"
99
#include "memmap.h"
100
#include "zcrx.h"
101
102
#include "timeout.h"
103
#include "poll.h"
104
#include "rw.h"
105
#include "alloc_cache.h"
106
#include "eventfd.h"
107
108
#define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
109
IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110
111
#define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
112
IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113
114
#define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
115
116
#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117
REQ_F_INFLIGHT | REQ_F_CREDS | REQ_F_ASYNC_DATA)
118
119
#define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
120
REQ_F_REISSUE | REQ_F_POLLED | \
121
IO_REQ_CLEAN_FLAGS)
122
123
#define IO_TCTX_REFS_CACHE_NR (1U << 10)
124
125
#define IO_COMPL_BATCH 32
126
#define IO_REQ_ALLOC_BATCH 8
127
#define IO_LOCAL_TW_DEFAULT_MAX 20
128
129
struct io_defer_entry {
130
struct list_head list;
131
struct io_kiocb *req;
132
};
133
134
/* requests with any of those set should undergo io_disarm_next() */
135
#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
136
137
/*
138
* No waiters. It's larger than any valid value of the tw counter
139
* so that tests against ->cq_wait_nr would fail and skip wake_up().
140
*/
141
#define IO_CQ_WAKE_INIT (-1U)
142
/* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
143
#define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
144
145
static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
146
struct io_uring_task *tctx,
147
bool cancel_all,
148
bool is_sqpoll_thread);
149
150
static void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags);
151
static void __io_req_caches_free(struct io_ring_ctx *ctx);
152
153
static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
154
155
struct kmem_cache *req_cachep;
156
static struct workqueue_struct *iou_wq __ro_after_init;
157
158
static int __read_mostly sysctl_io_uring_disabled;
159
static int __read_mostly sysctl_io_uring_group = -1;
160
161
#ifdef CONFIG_SYSCTL
162
static const struct ctl_table kernel_io_uring_disabled_table[] = {
163
{
164
.procname = "io_uring_disabled",
165
.data = &sysctl_io_uring_disabled,
166
.maxlen = sizeof(sysctl_io_uring_disabled),
167
.mode = 0644,
168
.proc_handler = proc_dointvec_minmax,
169
.extra1 = SYSCTL_ZERO,
170
.extra2 = SYSCTL_TWO,
171
},
172
{
173
.procname = "io_uring_group",
174
.data = &sysctl_io_uring_group,
175
.maxlen = sizeof(gid_t),
176
.mode = 0644,
177
.proc_handler = proc_dointvec,
178
},
179
};
180
#endif
181
182
static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
183
{
184
return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
185
}
186
187
static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
188
{
189
return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
190
}
191
192
static bool io_match_linked(struct io_kiocb *head)
193
{
194
struct io_kiocb *req;
195
196
io_for_each_link(req, head) {
197
if (req->flags & REQ_F_INFLIGHT)
198
return true;
199
}
200
return false;
201
}
202
203
/*
204
* As io_match_task() but protected against racing with linked timeouts.
205
* User must not hold timeout_lock.
206
*/
207
bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
208
bool cancel_all)
209
{
210
bool matched;
211
212
if (tctx && head->tctx != tctx)
213
return false;
214
if (cancel_all)
215
return true;
216
217
if (head->flags & REQ_F_LINK_TIMEOUT) {
218
struct io_ring_ctx *ctx = head->ctx;
219
220
/* protect against races with linked timeouts */
221
raw_spin_lock_irq(&ctx->timeout_lock);
222
matched = io_match_linked(head);
223
raw_spin_unlock_irq(&ctx->timeout_lock);
224
} else {
225
matched = io_match_linked(head);
226
}
227
return matched;
228
}
229
230
static inline void req_fail_link_node(struct io_kiocb *req, int res)
231
{
232
req_set_fail(req);
233
io_req_set_res(req, res, 0);
234
}
235
236
static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
237
{
238
wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
239
}
240
241
static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
242
{
243
struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
244
245
complete(&ctx->ref_comp);
246
}
247
248
static __cold void io_fallback_req_func(struct work_struct *work)
249
{
250
struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
251
fallback_work.work);
252
struct llist_node *node = llist_del_all(&ctx->fallback_llist);
253
struct io_kiocb *req, *tmp;
254
struct io_tw_state ts = {};
255
256
percpu_ref_get(&ctx->refs);
257
mutex_lock(&ctx->uring_lock);
258
llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
259
req->io_task_work.func(req, ts);
260
io_submit_flush_completions(ctx);
261
mutex_unlock(&ctx->uring_lock);
262
percpu_ref_put(&ctx->refs);
263
}
264
265
static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
266
{
267
unsigned int hash_buckets;
268
int i;
269
270
do {
271
hash_buckets = 1U << bits;
272
table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
273
GFP_KERNEL_ACCOUNT);
274
if (table->hbs)
275
break;
276
if (bits == 1)
277
return -ENOMEM;
278
bits--;
279
} while (1);
280
281
table->hash_bits = bits;
282
for (i = 0; i < hash_buckets; i++)
283
INIT_HLIST_HEAD(&table->hbs[i].list);
284
return 0;
285
}
286
287
static void io_free_alloc_caches(struct io_ring_ctx *ctx)
288
{
289
io_alloc_cache_free(&ctx->apoll_cache, kfree);
290
io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
291
io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
292
io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
293
io_alloc_cache_free(&ctx->msg_cache, kfree);
294
io_futex_cache_free(ctx);
295
io_rsrc_cache_free(ctx);
296
}
297
298
static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
299
{
300
struct io_ring_ctx *ctx;
301
int hash_bits;
302
bool ret;
303
304
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
305
if (!ctx)
306
return NULL;
307
308
xa_init(&ctx->io_bl_xa);
309
310
/*
311
* Use 5 bits less than the max cq entries, that should give us around
312
* 32 entries per hash list if totally full and uniformly spread, but
313
* don't keep too many buckets to not overconsume memory.
314
*/
315
hash_bits = ilog2(p->cq_entries) - 5;
316
hash_bits = clamp(hash_bits, 1, 8);
317
if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
318
goto err;
319
if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
320
0, GFP_KERNEL))
321
goto err;
322
323
ctx->flags = p->flags;
324
ctx->hybrid_poll_time = LLONG_MAX;
325
atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
326
init_waitqueue_head(&ctx->sqo_sq_wait);
327
INIT_LIST_HEAD(&ctx->sqd_list);
328
INIT_LIST_HEAD(&ctx->cq_overflow_list);
329
ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
330
sizeof(struct async_poll), 0);
331
ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
332
sizeof(struct io_async_msghdr),
333
offsetof(struct io_async_msghdr, clear));
334
ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
335
sizeof(struct io_async_rw),
336
offsetof(struct io_async_rw, clear));
337
ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
338
sizeof(struct io_async_cmd),
339
sizeof(struct io_async_cmd));
340
spin_lock_init(&ctx->msg_lock);
341
ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
342
sizeof(struct io_kiocb), 0);
343
ret |= io_futex_cache_init(ctx);
344
ret |= io_rsrc_cache_init(ctx);
345
if (ret)
346
goto free_ref;
347
init_completion(&ctx->ref_comp);
348
xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
349
mutex_init(&ctx->uring_lock);
350
init_waitqueue_head(&ctx->cq_wait);
351
init_waitqueue_head(&ctx->poll_wq);
352
spin_lock_init(&ctx->completion_lock);
353
raw_spin_lock_init(&ctx->timeout_lock);
354
INIT_WQ_LIST(&ctx->iopoll_list);
355
INIT_LIST_HEAD(&ctx->defer_list);
356
INIT_LIST_HEAD(&ctx->timeout_list);
357
INIT_LIST_HEAD(&ctx->ltimeout_list);
358
init_llist_head(&ctx->work_llist);
359
INIT_LIST_HEAD(&ctx->tctx_list);
360
ctx->submit_state.free_list.next = NULL;
361
INIT_HLIST_HEAD(&ctx->waitid_list);
362
xa_init_flags(&ctx->zcrx_ctxs, XA_FLAGS_ALLOC);
363
#ifdef CONFIG_FUTEX
364
INIT_HLIST_HEAD(&ctx->futex_list);
365
#endif
366
INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
367
INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
368
INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
369
io_napi_init(ctx);
370
mutex_init(&ctx->mmap_lock);
371
372
return ctx;
373
374
free_ref:
375
percpu_ref_exit(&ctx->refs);
376
err:
377
io_free_alloc_caches(ctx);
378
kvfree(ctx->cancel_table.hbs);
379
xa_destroy(&ctx->io_bl_xa);
380
kfree(ctx);
381
return NULL;
382
}
383
384
static void io_clean_op(struct io_kiocb *req)
385
{
386
if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
387
io_kbuf_drop_legacy(req);
388
389
if (req->flags & REQ_F_NEED_CLEANUP) {
390
const struct io_cold_def *def = &io_cold_defs[req->opcode];
391
392
if (def->cleanup)
393
def->cleanup(req);
394
}
395
if (req->flags & REQ_F_INFLIGHT)
396
atomic_dec(&req->tctx->inflight_tracked);
397
if (req->flags & REQ_F_CREDS)
398
put_cred(req->creds);
399
if (req->flags & REQ_F_ASYNC_DATA) {
400
kfree(req->async_data);
401
req->async_data = NULL;
402
}
403
req->flags &= ~IO_REQ_CLEAN_FLAGS;
404
}
405
406
/*
407
* Mark the request as inflight, so that file cancelation will find it.
408
* Can be used if the file is an io_uring instance, or if the request itself
409
* relies on ->mm being alive for the duration of the request.
410
*/
411
inline void io_req_track_inflight(struct io_kiocb *req)
412
{
413
if (!(req->flags & REQ_F_INFLIGHT)) {
414
req->flags |= REQ_F_INFLIGHT;
415
atomic_inc(&req->tctx->inflight_tracked);
416
}
417
}
418
419
static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
420
{
421
if (WARN_ON_ONCE(!req->link))
422
return NULL;
423
424
req->flags &= ~REQ_F_ARM_LTIMEOUT;
425
req->flags |= REQ_F_LINK_TIMEOUT;
426
427
/* linked timeouts should have two refs once prep'ed */
428
io_req_set_refcount(req);
429
__io_req_set_refcount(req->link, 2);
430
return req->link;
431
}
432
433
static void io_prep_async_work(struct io_kiocb *req)
434
{
435
const struct io_issue_def *def = &io_issue_defs[req->opcode];
436
struct io_ring_ctx *ctx = req->ctx;
437
438
if (!(req->flags & REQ_F_CREDS)) {
439
req->flags |= REQ_F_CREDS;
440
req->creds = get_current_cred();
441
}
442
443
req->work.list.next = NULL;
444
atomic_set(&req->work.flags, 0);
445
if (req->flags & REQ_F_FORCE_ASYNC)
446
atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
447
448
if (req->file && !(req->flags & REQ_F_FIXED_FILE))
449
req->flags |= io_file_get_flags(req->file);
450
451
if (req->file && (req->flags & REQ_F_ISREG)) {
452
bool should_hash = def->hash_reg_file;
453
454
/* don't serialize this request if the fs doesn't need it */
455
if (should_hash && (req->file->f_flags & O_DIRECT) &&
456
(req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
457
should_hash = false;
458
if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
459
io_wq_hash_work(&req->work, file_inode(req->file));
460
} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
461
if (def->unbound_nonreg_file)
462
atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
463
}
464
}
465
466
static void io_prep_async_link(struct io_kiocb *req)
467
{
468
struct io_kiocb *cur;
469
470
if (req->flags & REQ_F_LINK_TIMEOUT) {
471
struct io_ring_ctx *ctx = req->ctx;
472
473
raw_spin_lock_irq(&ctx->timeout_lock);
474
io_for_each_link(cur, req)
475
io_prep_async_work(cur);
476
raw_spin_unlock_irq(&ctx->timeout_lock);
477
} else {
478
io_for_each_link(cur, req)
479
io_prep_async_work(cur);
480
}
481
}
482
483
static void io_queue_iowq(struct io_kiocb *req)
484
{
485
struct io_uring_task *tctx = req->tctx;
486
487
BUG_ON(!tctx);
488
489
if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
490
io_req_task_queue_fail(req, -ECANCELED);
491
return;
492
}
493
494
/* init ->work of the whole link before punting */
495
io_prep_async_link(req);
496
497
/*
498
* Not expected to happen, but if we do have a bug where this _can_
499
* happen, catch it here and ensure the request is marked as
500
* canceled. That will make io-wq go through the usual work cancel
501
* procedure rather than attempt to run this request (or create a new
502
* worker for it).
503
*/
504
if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
505
atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
506
507
trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
508
io_wq_enqueue(tctx->io_wq, &req->work);
509
}
510
511
static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw)
512
{
513
io_queue_iowq(req);
514
}
515
516
void io_req_queue_iowq(struct io_kiocb *req)
517
{
518
req->io_task_work.func = io_req_queue_iowq_tw;
519
io_req_task_work_add(req);
520
}
521
522
static unsigned io_linked_nr(struct io_kiocb *req)
523
{
524
struct io_kiocb *tmp;
525
unsigned nr = 0;
526
527
io_for_each_link(tmp, req)
528
nr++;
529
return nr;
530
}
531
532
static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
533
{
534
bool drain_seen = false, first = true;
535
536
lockdep_assert_held(&ctx->uring_lock);
537
__io_req_caches_free(ctx);
538
539
while (!list_empty(&ctx->defer_list)) {
540
struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
541
struct io_defer_entry, list);
542
543
drain_seen |= de->req->flags & REQ_F_IO_DRAIN;
544
if ((drain_seen || first) && ctx->nr_req_allocated != ctx->nr_drained)
545
return;
546
547
list_del_init(&de->list);
548
ctx->nr_drained -= io_linked_nr(de->req);
549
io_req_task_queue(de->req);
550
kfree(de);
551
first = false;
552
}
553
}
554
555
void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
556
{
557
if (ctx->poll_activated)
558
io_poll_wq_wake(ctx);
559
if (ctx->off_timeout_used)
560
io_flush_timeouts(ctx);
561
if (ctx->has_evfd)
562
io_eventfd_signal(ctx, true);
563
}
564
565
static inline void __io_cq_lock(struct io_ring_ctx *ctx)
566
{
567
if (!ctx->lockless_cq)
568
spin_lock(&ctx->completion_lock);
569
}
570
571
static inline void io_cq_lock(struct io_ring_ctx *ctx)
572
__acquires(ctx->completion_lock)
573
{
574
spin_lock(&ctx->completion_lock);
575
}
576
577
static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
578
{
579
io_commit_cqring(ctx);
580
if (!ctx->task_complete) {
581
if (!ctx->lockless_cq)
582
spin_unlock(&ctx->completion_lock);
583
/* IOPOLL rings only need to wake up if it's also SQPOLL */
584
if (!ctx->syscall_iopoll)
585
io_cqring_wake(ctx);
586
}
587
io_commit_cqring_flush(ctx);
588
}
589
590
static void io_cq_unlock_post(struct io_ring_ctx *ctx)
591
__releases(ctx->completion_lock)
592
{
593
io_commit_cqring(ctx);
594
spin_unlock(&ctx->completion_lock);
595
io_cqring_wake(ctx);
596
io_commit_cqring_flush(ctx);
597
}
598
599
static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
600
{
601
size_t cqe_size = sizeof(struct io_uring_cqe);
602
603
lockdep_assert_held(&ctx->uring_lock);
604
605
/* don't abort if we're dying, entries must get freed */
606
if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
607
return;
608
609
if (ctx->flags & IORING_SETUP_CQE32)
610
cqe_size <<= 1;
611
612
io_cq_lock(ctx);
613
while (!list_empty(&ctx->cq_overflow_list)) {
614
struct io_uring_cqe *cqe;
615
struct io_overflow_cqe *ocqe;
616
617
ocqe = list_first_entry(&ctx->cq_overflow_list,
618
struct io_overflow_cqe, list);
619
620
if (!dying) {
621
if (!io_get_cqe_overflow(ctx, &cqe, true))
622
break;
623
memcpy(cqe, &ocqe->cqe, cqe_size);
624
}
625
list_del(&ocqe->list);
626
kfree(ocqe);
627
628
/*
629
* For silly syzbot cases that deliberately overflow by huge
630
* amounts, check if we need to resched and drop and
631
* reacquire the locks if so. Nothing real would ever hit this.
632
* Ideally we'd have a non-posting unlock for this, but hard
633
* to care for a non-real case.
634
*/
635
if (need_resched()) {
636
ctx->cqe_sentinel = ctx->cqe_cached;
637
io_cq_unlock_post(ctx);
638
mutex_unlock(&ctx->uring_lock);
639
cond_resched();
640
mutex_lock(&ctx->uring_lock);
641
io_cq_lock(ctx);
642
}
643
}
644
645
if (list_empty(&ctx->cq_overflow_list)) {
646
clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
647
atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
648
}
649
io_cq_unlock_post(ctx);
650
}
651
652
static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
653
{
654
if (ctx->rings)
655
__io_cqring_overflow_flush(ctx, true);
656
}
657
658
static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
659
{
660
mutex_lock(&ctx->uring_lock);
661
__io_cqring_overflow_flush(ctx, false);
662
mutex_unlock(&ctx->uring_lock);
663
}
664
665
/* must to be called somewhat shortly after putting a request */
666
static inline void io_put_task(struct io_kiocb *req)
667
{
668
struct io_uring_task *tctx = req->tctx;
669
670
if (likely(tctx->task == current)) {
671
tctx->cached_refs++;
672
} else {
673
percpu_counter_sub(&tctx->inflight, 1);
674
if (unlikely(atomic_read(&tctx->in_cancel)))
675
wake_up(&tctx->wait);
676
put_task_struct(tctx->task);
677
}
678
}
679
680
void io_task_refs_refill(struct io_uring_task *tctx)
681
{
682
unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
683
684
percpu_counter_add(&tctx->inflight, refill);
685
refcount_add(refill, &current->usage);
686
tctx->cached_refs += refill;
687
}
688
689
static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
690
{
691
struct io_uring_task *tctx = task->io_uring;
692
unsigned int refs = tctx->cached_refs;
693
694
if (refs) {
695
tctx->cached_refs = 0;
696
percpu_counter_sub(&tctx->inflight, refs);
697
put_task_struct_many(task, refs);
698
}
699
}
700
701
static __cold bool io_cqring_add_overflow(struct io_ring_ctx *ctx,
702
struct io_overflow_cqe *ocqe)
703
{
704
lockdep_assert_held(&ctx->completion_lock);
705
706
if (!ocqe) {
707
struct io_rings *r = ctx->rings;
708
709
/*
710
* If we're in ring overflow flush mode, or in task cancel mode,
711
* or cannot allocate an overflow entry, then we need to drop it
712
* on the floor.
713
*/
714
WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
715
set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
716
return false;
717
}
718
if (list_empty(&ctx->cq_overflow_list)) {
719
set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
720
atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
721
722
}
723
list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
724
return true;
725
}
726
727
static struct io_overflow_cqe *io_alloc_ocqe(struct io_ring_ctx *ctx,
728
struct io_cqe *cqe,
729
struct io_big_cqe *big_cqe, gfp_t gfp)
730
{
731
struct io_overflow_cqe *ocqe;
732
size_t ocq_size = sizeof(struct io_overflow_cqe);
733
bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
734
735
if (is_cqe32)
736
ocq_size += sizeof(struct io_uring_cqe);
737
738
ocqe = kzalloc(ocq_size, gfp | __GFP_ACCOUNT);
739
trace_io_uring_cqe_overflow(ctx, cqe->user_data, cqe->res, cqe->flags, ocqe);
740
if (ocqe) {
741
ocqe->cqe.user_data = cqe->user_data;
742
ocqe->cqe.res = cqe->res;
743
ocqe->cqe.flags = cqe->flags;
744
if (is_cqe32 && big_cqe) {
745
ocqe->cqe.big_cqe[0] = big_cqe->extra1;
746
ocqe->cqe.big_cqe[1] = big_cqe->extra2;
747
}
748
}
749
if (big_cqe)
750
big_cqe->extra1 = big_cqe->extra2 = 0;
751
return ocqe;
752
}
753
754
/*
755
* writes to the cq entry need to come after reading head; the
756
* control dependency is enough as we're using WRITE_ONCE to
757
* fill the cq entry
758
*/
759
bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
760
{
761
struct io_rings *rings = ctx->rings;
762
unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
763
unsigned int free, queued, len;
764
765
/*
766
* Posting into the CQ when there are pending overflowed CQEs may break
767
* ordering guarantees, which will affect links, F_MORE users and more.
768
* Force overflow the completion.
769
*/
770
if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
771
return false;
772
773
/* userspace may cheat modifying the tail, be safe and do min */
774
queued = min(__io_cqring_events(ctx), ctx->cq_entries);
775
free = ctx->cq_entries - queued;
776
/* we need a contiguous range, limit based on the current array offset */
777
len = min(free, ctx->cq_entries - off);
778
if (!len)
779
return false;
780
781
if (ctx->flags & IORING_SETUP_CQE32) {
782
off <<= 1;
783
len <<= 1;
784
}
785
786
ctx->cqe_cached = &rings->cqes[off];
787
ctx->cqe_sentinel = ctx->cqe_cached + len;
788
return true;
789
}
790
791
static bool io_fill_cqe_aux32(struct io_ring_ctx *ctx,
792
struct io_uring_cqe src_cqe[2])
793
{
794
struct io_uring_cqe *cqe;
795
796
if (WARN_ON_ONCE(!(ctx->flags & IORING_SETUP_CQE32)))
797
return false;
798
if (unlikely(!io_get_cqe(ctx, &cqe)))
799
return false;
800
801
memcpy(cqe, src_cqe, 2 * sizeof(*cqe));
802
trace_io_uring_complete(ctx, NULL, cqe);
803
return true;
804
}
805
806
static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
807
u32 cflags)
808
{
809
struct io_uring_cqe *cqe;
810
811
if (likely(io_get_cqe(ctx, &cqe))) {
812
WRITE_ONCE(cqe->user_data, user_data);
813
WRITE_ONCE(cqe->res, res);
814
WRITE_ONCE(cqe->flags, cflags);
815
816
if (ctx->flags & IORING_SETUP_CQE32) {
817
WRITE_ONCE(cqe->big_cqe[0], 0);
818
WRITE_ONCE(cqe->big_cqe[1], 0);
819
}
820
821
trace_io_uring_complete(ctx, NULL, cqe);
822
return true;
823
}
824
return false;
825
}
826
827
static inline struct io_cqe io_init_cqe(u64 user_data, s32 res, u32 cflags)
828
{
829
return (struct io_cqe) { .user_data = user_data, .res = res, .flags = cflags };
830
}
831
832
static __cold void io_cqe_overflow(struct io_ring_ctx *ctx, struct io_cqe *cqe,
833
struct io_big_cqe *big_cqe)
834
{
835
struct io_overflow_cqe *ocqe;
836
837
ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_KERNEL);
838
spin_lock(&ctx->completion_lock);
839
io_cqring_add_overflow(ctx, ocqe);
840
spin_unlock(&ctx->completion_lock);
841
}
842
843
static __cold bool io_cqe_overflow_locked(struct io_ring_ctx *ctx,
844
struct io_cqe *cqe,
845
struct io_big_cqe *big_cqe)
846
{
847
struct io_overflow_cqe *ocqe;
848
849
ocqe = io_alloc_ocqe(ctx, cqe, big_cqe, GFP_ATOMIC);
850
return io_cqring_add_overflow(ctx, ocqe);
851
}
852
853
bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
854
{
855
bool filled;
856
857
io_cq_lock(ctx);
858
filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
859
if (unlikely(!filled)) {
860
struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
861
862
filled = io_cqe_overflow_locked(ctx, &cqe, NULL);
863
}
864
io_cq_unlock_post(ctx);
865
return filled;
866
}
867
868
/*
869
* Must be called from inline task_work so we now a flush will happen later,
870
* and obviously with ctx->uring_lock held (tw always has that).
871
*/
872
void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
873
{
874
lockdep_assert_held(&ctx->uring_lock);
875
lockdep_assert(ctx->lockless_cq);
876
877
if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
878
struct io_cqe cqe = io_init_cqe(user_data, res, cflags);
879
880
io_cqe_overflow(ctx, &cqe, NULL);
881
}
882
ctx->submit_state.cq_flush = true;
883
}
884
885
/*
886
* A helper for multishot requests posting additional CQEs.
887
* Should only be used from a task_work including IO_URING_F_MULTISHOT.
888
*/
889
bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
890
{
891
struct io_ring_ctx *ctx = req->ctx;
892
bool posted;
893
894
/*
895
* If multishot has already posted deferred completions, ensure that
896
* those are flushed first before posting this one. If not, CQEs
897
* could get reordered.
898
*/
899
if (!wq_list_empty(&ctx->submit_state.compl_reqs))
900
__io_submit_flush_completions(ctx);
901
902
lockdep_assert(!io_wq_current_is_worker());
903
lockdep_assert_held(&ctx->uring_lock);
904
905
if (!ctx->lockless_cq) {
906
spin_lock(&ctx->completion_lock);
907
posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
908
spin_unlock(&ctx->completion_lock);
909
} else {
910
posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
911
}
912
913
ctx->submit_state.cq_flush = true;
914
return posted;
915
}
916
917
/*
918
* A helper for multishot requests posting additional CQEs.
919
* Should only be used from a task_work including IO_URING_F_MULTISHOT.
920
*/
921
bool io_req_post_cqe32(struct io_kiocb *req, struct io_uring_cqe cqe[2])
922
{
923
struct io_ring_ctx *ctx = req->ctx;
924
bool posted;
925
926
lockdep_assert(!io_wq_current_is_worker());
927
lockdep_assert_held(&ctx->uring_lock);
928
929
cqe[0].user_data = req->cqe.user_data;
930
if (!ctx->lockless_cq) {
931
spin_lock(&ctx->completion_lock);
932
posted = io_fill_cqe_aux32(ctx, cqe);
933
spin_unlock(&ctx->completion_lock);
934
} else {
935
posted = io_fill_cqe_aux32(ctx, cqe);
936
}
937
938
ctx->submit_state.cq_flush = true;
939
return posted;
940
}
941
942
static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
943
{
944
struct io_ring_ctx *ctx = req->ctx;
945
bool completed = true;
946
947
/*
948
* All execution paths but io-wq use the deferred completions by
949
* passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
950
*/
951
if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
952
return;
953
954
/*
955
* Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
956
* the submitter task context, IOPOLL protects with uring_lock.
957
*/
958
if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
959
defer_complete:
960
req->io_task_work.func = io_req_task_complete;
961
io_req_task_work_add(req);
962
return;
963
}
964
965
io_cq_lock(ctx);
966
if (!(req->flags & REQ_F_CQE_SKIP))
967
completed = io_fill_cqe_req(ctx, req);
968
io_cq_unlock_post(ctx);
969
970
if (!completed)
971
goto defer_complete;
972
973
/*
974
* We don't free the request here because we know it's called from
975
* io-wq only, which holds a reference, so it cannot be the last put.
976
*/
977
req_ref_put(req);
978
}
979
980
void io_req_defer_failed(struct io_kiocb *req, s32 res)
981
__must_hold(&ctx->uring_lock)
982
{
983
const struct io_cold_def *def = &io_cold_defs[req->opcode];
984
985
lockdep_assert_held(&req->ctx->uring_lock);
986
987
req_set_fail(req);
988
io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
989
if (def->fail)
990
def->fail(req);
991
io_req_complete_defer(req);
992
}
993
994
/*
995
* A request might get retired back into the request caches even before opcode
996
* handlers and io_issue_sqe() are done with it, e.g. inline completion path.
997
* Because of that, io_alloc_req() should be called only under ->uring_lock
998
* and with extra caution to not get a request that is still worked on.
999
*/
1000
__cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
1001
__must_hold(&ctx->uring_lock)
1002
{
1003
gfp_t gfp = GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO;
1004
void *reqs[IO_REQ_ALLOC_BATCH];
1005
int ret;
1006
1007
ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
1008
1009
/*
1010
* Bulk alloc is all-or-nothing. If we fail to get a batch,
1011
* retry single alloc to be on the safe side.
1012
*/
1013
if (unlikely(ret <= 0)) {
1014
reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1015
if (!reqs[0])
1016
return false;
1017
ret = 1;
1018
}
1019
1020
percpu_ref_get_many(&ctx->refs, ret);
1021
ctx->nr_req_allocated += ret;
1022
1023
while (ret--) {
1024
struct io_kiocb *req = reqs[ret];
1025
1026
io_req_add_to_cache(req, ctx);
1027
}
1028
return true;
1029
}
1030
1031
__cold void io_free_req(struct io_kiocb *req)
1032
{
1033
/* refs were already put, restore them for io_req_task_complete() */
1034
req->flags &= ~REQ_F_REFCOUNT;
1035
/* we only want to free it, don't post CQEs */
1036
req->flags |= REQ_F_CQE_SKIP;
1037
req->io_task_work.func = io_req_task_complete;
1038
io_req_task_work_add(req);
1039
}
1040
1041
static void __io_req_find_next_prep(struct io_kiocb *req)
1042
{
1043
struct io_ring_ctx *ctx = req->ctx;
1044
1045
spin_lock(&ctx->completion_lock);
1046
io_disarm_next(req);
1047
spin_unlock(&ctx->completion_lock);
1048
}
1049
1050
static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1051
{
1052
struct io_kiocb *nxt;
1053
1054
/*
1055
* If LINK is set, we have dependent requests in this chain. If we
1056
* didn't fail this request, queue the first one up, moving any other
1057
* dependencies to the next request. In case of failure, fail the rest
1058
* of the chain.
1059
*/
1060
if (unlikely(req->flags & IO_DISARM_MASK))
1061
__io_req_find_next_prep(req);
1062
nxt = req->link;
1063
req->link = NULL;
1064
return nxt;
1065
}
1066
1067
static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1068
{
1069
if (!ctx)
1070
return;
1071
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1072
atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1073
1074
io_submit_flush_completions(ctx);
1075
mutex_unlock(&ctx->uring_lock);
1076
percpu_ref_put(&ctx->refs);
1077
}
1078
1079
/*
1080
* Run queued task_work, returning the number of entries processed in *count.
1081
* If more entries than max_entries are available, stop processing once this
1082
* is reached and return the rest of the list.
1083
*/
1084
struct llist_node *io_handle_tw_list(struct llist_node *node,
1085
unsigned int *count,
1086
unsigned int max_entries)
1087
{
1088
struct io_ring_ctx *ctx = NULL;
1089
struct io_tw_state ts = { };
1090
1091
do {
1092
struct llist_node *next = node->next;
1093
struct io_kiocb *req = container_of(node, struct io_kiocb,
1094
io_task_work.node);
1095
1096
if (req->ctx != ctx) {
1097
ctx_flush_and_put(ctx, ts);
1098
ctx = req->ctx;
1099
mutex_lock(&ctx->uring_lock);
1100
percpu_ref_get(&ctx->refs);
1101
}
1102
INDIRECT_CALL_2(req->io_task_work.func,
1103
io_poll_task_func, io_req_rw_complete,
1104
req, ts);
1105
node = next;
1106
(*count)++;
1107
if (unlikely(need_resched())) {
1108
ctx_flush_and_put(ctx, ts);
1109
ctx = NULL;
1110
cond_resched();
1111
}
1112
} while (node && *count < max_entries);
1113
1114
ctx_flush_and_put(ctx, ts);
1115
return node;
1116
}
1117
1118
static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1119
{
1120
struct io_ring_ctx *last_ctx = NULL;
1121
struct io_kiocb *req;
1122
1123
while (node) {
1124
req = container_of(node, struct io_kiocb, io_task_work.node);
1125
node = node->next;
1126
if (last_ctx != req->ctx) {
1127
if (last_ctx) {
1128
if (sync)
1129
flush_delayed_work(&last_ctx->fallback_work);
1130
percpu_ref_put(&last_ctx->refs);
1131
}
1132
last_ctx = req->ctx;
1133
percpu_ref_get(&last_ctx->refs);
1134
}
1135
if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
1136
schedule_delayed_work(&last_ctx->fallback_work, 1);
1137
}
1138
1139
if (last_ctx) {
1140
if (sync)
1141
flush_delayed_work(&last_ctx->fallback_work);
1142
percpu_ref_put(&last_ctx->refs);
1143
}
1144
}
1145
1146
static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1147
{
1148
struct llist_node *node = llist_del_all(&tctx->task_list);
1149
1150
__io_fallback_tw(node, sync);
1151
}
1152
1153
struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1154
unsigned int max_entries,
1155
unsigned int *count)
1156
{
1157
struct llist_node *node;
1158
1159
if (unlikely(current->flags & PF_EXITING)) {
1160
io_fallback_tw(tctx, true);
1161
return NULL;
1162
}
1163
1164
node = llist_del_all(&tctx->task_list);
1165
if (node) {
1166
node = llist_reverse_order(node);
1167
node = io_handle_tw_list(node, count, max_entries);
1168
}
1169
1170
/* relaxed read is enough as only the task itself sets ->in_cancel */
1171
if (unlikely(atomic_read(&tctx->in_cancel)))
1172
io_uring_drop_tctx_refs(current);
1173
1174
trace_io_uring_task_work_run(tctx, *count);
1175
return node;
1176
}
1177
1178
void tctx_task_work(struct callback_head *cb)
1179
{
1180
struct io_uring_task *tctx;
1181
struct llist_node *ret;
1182
unsigned int count = 0;
1183
1184
tctx = container_of(cb, struct io_uring_task, task_work);
1185
ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1186
/* can't happen */
1187
WARN_ON_ONCE(ret);
1188
}
1189
1190
static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1191
{
1192
struct io_ring_ctx *ctx = req->ctx;
1193
unsigned nr_wait, nr_tw, nr_tw_prev;
1194
struct llist_node *head;
1195
1196
/* See comment above IO_CQ_WAKE_INIT */
1197
BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1198
1199
/*
1200
* We don't know how many reuqests is there in the link and whether
1201
* they can even be queued lazily, fall back to non-lazy.
1202
*/
1203
if (req->flags & IO_REQ_LINK_FLAGS)
1204
flags &= ~IOU_F_TWQ_LAZY_WAKE;
1205
1206
guard(rcu)();
1207
1208
head = READ_ONCE(ctx->work_llist.first);
1209
do {
1210
nr_tw_prev = 0;
1211
if (head) {
1212
struct io_kiocb *first_req = container_of(head,
1213
struct io_kiocb,
1214
io_task_work.node);
1215
/*
1216
* Might be executed at any moment, rely on
1217
* SLAB_TYPESAFE_BY_RCU to keep it alive.
1218
*/
1219
nr_tw_prev = READ_ONCE(first_req->nr_tw);
1220
}
1221
1222
/*
1223
* Theoretically, it can overflow, but that's fine as one of
1224
* previous adds should've tried to wake the task.
1225
*/
1226
nr_tw = nr_tw_prev + 1;
1227
if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1228
nr_tw = IO_CQ_WAKE_FORCE;
1229
1230
req->nr_tw = nr_tw;
1231
req->io_task_work.node.next = head;
1232
} while (!try_cmpxchg(&ctx->work_llist.first, &head,
1233
&req->io_task_work.node));
1234
1235
/*
1236
* cmpxchg implies a full barrier, which pairs with the barrier
1237
* in set_current_state() on the io_cqring_wait() side. It's used
1238
* to ensure that either we see updated ->cq_wait_nr, or waiters
1239
* going to sleep will observe the work added to the list, which
1240
* is similar to the wait/wawke task state sync.
1241
*/
1242
1243
if (!head) {
1244
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1245
atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1246
if (ctx->has_evfd)
1247
io_eventfd_signal(ctx, false);
1248
}
1249
1250
nr_wait = atomic_read(&ctx->cq_wait_nr);
1251
/* not enough or no one is waiting */
1252
if (nr_tw < nr_wait)
1253
return;
1254
/* the previous add has already woken it up */
1255
if (nr_tw_prev >= nr_wait)
1256
return;
1257
wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1258
}
1259
1260
static void io_req_normal_work_add(struct io_kiocb *req)
1261
{
1262
struct io_uring_task *tctx = req->tctx;
1263
struct io_ring_ctx *ctx = req->ctx;
1264
1265
/* task_work already pending, we're done */
1266
if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1267
return;
1268
1269
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1270
atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1271
1272
/* SQPOLL doesn't need the task_work added, it'll run it itself */
1273
if (ctx->flags & IORING_SETUP_SQPOLL) {
1274
__set_notify_signal(tctx->task);
1275
return;
1276
}
1277
1278
if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1279
return;
1280
1281
io_fallback_tw(tctx, false);
1282
}
1283
1284
void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1285
{
1286
if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1287
io_req_local_work_add(req, flags);
1288
else
1289
io_req_normal_work_add(req);
1290
}
1291
1292
void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags)
1293
{
1294
if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1295
return;
1296
__io_req_task_work_add(req, flags);
1297
}
1298
1299
static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1300
{
1301
struct llist_node *node = llist_del_all(&ctx->work_llist);
1302
1303
__io_fallback_tw(node, false);
1304
node = llist_del_all(&ctx->retry_llist);
1305
__io_fallback_tw(node, false);
1306
}
1307
1308
static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1309
int min_events)
1310
{
1311
if (!io_local_work_pending(ctx))
1312
return false;
1313
if (events < min_events)
1314
return true;
1315
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1316
atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1317
return false;
1318
}
1319
1320
static int __io_run_local_work_loop(struct llist_node **node,
1321
io_tw_token_t tw,
1322
int events)
1323
{
1324
int ret = 0;
1325
1326
while (*node) {
1327
struct llist_node *next = (*node)->next;
1328
struct io_kiocb *req = container_of(*node, struct io_kiocb,
1329
io_task_work.node);
1330
INDIRECT_CALL_2(req->io_task_work.func,
1331
io_poll_task_func, io_req_rw_complete,
1332
req, tw);
1333
*node = next;
1334
if (++ret >= events)
1335
break;
1336
}
1337
1338
return ret;
1339
}
1340
1341
static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1342
int min_events, int max_events)
1343
{
1344
struct llist_node *node;
1345
unsigned int loops = 0;
1346
int ret = 0;
1347
1348
if (WARN_ON_ONCE(ctx->submitter_task != current))
1349
return -EEXIST;
1350
if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1351
atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1352
again:
1353
min_events -= ret;
1354
ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1355
if (ctx->retry_llist.first)
1356
goto retry_done;
1357
1358
/*
1359
* llists are in reverse order, flip it back the right way before
1360
* running the pending items.
1361
*/
1362
node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1363
ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1364
ctx->retry_llist.first = node;
1365
loops++;
1366
1367
if (io_run_local_work_continue(ctx, ret, min_events))
1368
goto again;
1369
retry_done:
1370
io_submit_flush_completions(ctx);
1371
if (io_run_local_work_continue(ctx, ret, min_events))
1372
goto again;
1373
1374
trace_io_uring_local_work_run(ctx, ret, loops);
1375
return ret;
1376
}
1377
1378
static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1379
int min_events)
1380
{
1381
struct io_tw_state ts = {};
1382
1383
if (!io_local_work_pending(ctx))
1384
return 0;
1385
return __io_run_local_work(ctx, ts, min_events,
1386
max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1387
}
1388
1389
static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1390
int max_events)
1391
{
1392
struct io_tw_state ts = {};
1393
int ret;
1394
1395
mutex_lock(&ctx->uring_lock);
1396
ret = __io_run_local_work(ctx, ts, min_events, max_events);
1397
mutex_unlock(&ctx->uring_lock);
1398
return ret;
1399
}
1400
1401
static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw)
1402
{
1403
io_tw_lock(req->ctx, tw);
1404
io_req_defer_failed(req, req->cqe.res);
1405
}
1406
1407
void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw)
1408
{
1409
io_tw_lock(req->ctx, tw);
1410
if (unlikely(io_should_terminate_tw()))
1411
io_req_defer_failed(req, -EFAULT);
1412
else if (req->flags & REQ_F_FORCE_ASYNC)
1413
io_queue_iowq(req);
1414
else
1415
io_queue_sqe(req, 0);
1416
}
1417
1418
void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1419
{
1420
io_req_set_res(req, ret, 0);
1421
req->io_task_work.func = io_req_task_cancel;
1422
io_req_task_work_add(req);
1423
}
1424
1425
void io_req_task_queue(struct io_kiocb *req)
1426
{
1427
req->io_task_work.func = io_req_task_submit;
1428
io_req_task_work_add(req);
1429
}
1430
1431
void io_queue_next(struct io_kiocb *req)
1432
{
1433
struct io_kiocb *nxt = io_req_find_next(req);
1434
1435
if (nxt)
1436
io_req_task_queue(nxt);
1437
}
1438
1439
static inline void io_req_put_rsrc_nodes(struct io_kiocb *req)
1440
{
1441
if (req->file_node) {
1442
io_put_rsrc_node(req->ctx, req->file_node);
1443
req->file_node = NULL;
1444
}
1445
if (req->flags & REQ_F_BUF_NODE)
1446
io_put_rsrc_node(req->ctx, req->buf_node);
1447
}
1448
1449
static void io_free_batch_list(struct io_ring_ctx *ctx,
1450
struct io_wq_work_node *node)
1451
__must_hold(&ctx->uring_lock)
1452
{
1453
do {
1454
struct io_kiocb *req = container_of(node, struct io_kiocb,
1455
comp_list);
1456
1457
if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1458
if (req->flags & REQ_F_REISSUE) {
1459
node = req->comp_list.next;
1460
req->flags &= ~REQ_F_REISSUE;
1461
io_queue_iowq(req);
1462
continue;
1463
}
1464
if (req->flags & REQ_F_REFCOUNT) {
1465
node = req->comp_list.next;
1466
if (!req_ref_put_and_test(req))
1467
continue;
1468
}
1469
if ((req->flags & REQ_F_POLLED) && req->apoll) {
1470
struct async_poll *apoll = req->apoll;
1471
1472
if (apoll->double_poll)
1473
kfree(apoll->double_poll);
1474
io_cache_free(&ctx->apoll_cache, apoll);
1475
req->flags &= ~REQ_F_POLLED;
1476
}
1477
if (req->flags & IO_REQ_LINK_FLAGS)
1478
io_queue_next(req);
1479
if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1480
io_clean_op(req);
1481
}
1482
io_put_file(req);
1483
io_req_put_rsrc_nodes(req);
1484
io_put_task(req);
1485
1486
node = req->comp_list.next;
1487
io_req_add_to_cache(req, ctx);
1488
} while (node);
1489
}
1490
1491
void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1492
__must_hold(&ctx->uring_lock)
1493
{
1494
struct io_submit_state *state = &ctx->submit_state;
1495
struct io_wq_work_node *node;
1496
1497
__io_cq_lock(ctx);
1498
__wq_list_for_each(node, &state->compl_reqs) {
1499
struct io_kiocb *req = container_of(node, struct io_kiocb,
1500
comp_list);
1501
1502
/*
1503
* Requests marked with REQUEUE should not post a CQE, they
1504
* will go through the io-wq retry machinery and post one
1505
* later.
1506
*/
1507
if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1508
unlikely(!io_fill_cqe_req(ctx, req))) {
1509
if (ctx->lockless_cq)
1510
io_cqe_overflow(ctx, &req->cqe, &req->big_cqe);
1511
else
1512
io_cqe_overflow_locked(ctx, &req->cqe, &req->big_cqe);
1513
}
1514
}
1515
__io_cq_unlock_post(ctx);
1516
1517
if (!wq_list_empty(&state->compl_reqs)) {
1518
io_free_batch_list(ctx, state->compl_reqs.first);
1519
INIT_WQ_LIST(&state->compl_reqs);
1520
}
1521
1522
if (unlikely(ctx->drain_active))
1523
io_queue_deferred(ctx);
1524
1525
ctx->submit_state.cq_flush = false;
1526
}
1527
1528
static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1529
{
1530
/* See comment at the top of this file */
1531
smp_rmb();
1532
return __io_cqring_events(ctx);
1533
}
1534
1535
/*
1536
* We can't just wait for polled events to come to us, we have to actively
1537
* find and complete them.
1538
*/
1539
static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1540
{
1541
if (!(ctx->flags & IORING_SETUP_IOPOLL))
1542
return;
1543
1544
mutex_lock(&ctx->uring_lock);
1545
while (!wq_list_empty(&ctx->iopoll_list)) {
1546
/* let it sleep and repeat later if can't complete a request */
1547
if (io_do_iopoll(ctx, true) == 0)
1548
break;
1549
/*
1550
* Ensure we allow local-to-the-cpu processing to take place,
1551
* in this case we need to ensure that we reap all events.
1552
* Also let task_work, etc. to progress by releasing the mutex
1553
*/
1554
if (need_resched()) {
1555
mutex_unlock(&ctx->uring_lock);
1556
cond_resched();
1557
mutex_lock(&ctx->uring_lock);
1558
}
1559
}
1560
mutex_unlock(&ctx->uring_lock);
1561
1562
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1563
io_move_task_work_from_local(ctx);
1564
}
1565
1566
static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1567
{
1568
unsigned int nr_events = 0;
1569
unsigned long check_cq;
1570
1571
min_events = min(min_events, ctx->cq_entries);
1572
1573
lockdep_assert_held(&ctx->uring_lock);
1574
1575
if (!io_allowed_run_tw(ctx))
1576
return -EEXIST;
1577
1578
check_cq = READ_ONCE(ctx->check_cq);
1579
if (unlikely(check_cq)) {
1580
if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1581
__io_cqring_overflow_flush(ctx, false);
1582
/*
1583
* Similarly do not spin if we have not informed the user of any
1584
* dropped CQE.
1585
*/
1586
if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1587
return -EBADR;
1588
}
1589
/*
1590
* Don't enter poll loop if we already have events pending.
1591
* If we do, we can potentially be spinning for commands that
1592
* already triggered a CQE (eg in error).
1593
*/
1594
if (io_cqring_events(ctx))
1595
return 0;
1596
1597
do {
1598
int ret = 0;
1599
1600
/*
1601
* If a submit got punted to a workqueue, we can have the
1602
* application entering polling for a command before it gets
1603
* issued. That app will hold the uring_lock for the duration
1604
* of the poll right here, so we need to take a breather every
1605
* now and then to ensure that the issue has a chance to add
1606
* the poll to the issued list. Otherwise we can spin here
1607
* forever, while the workqueue is stuck trying to acquire the
1608
* very same mutex.
1609
*/
1610
if (wq_list_empty(&ctx->iopoll_list) ||
1611
io_task_work_pending(ctx)) {
1612
u32 tail = ctx->cached_cq_tail;
1613
1614
(void) io_run_local_work_locked(ctx, min_events);
1615
1616
if (task_work_pending(current) ||
1617
wq_list_empty(&ctx->iopoll_list)) {
1618
mutex_unlock(&ctx->uring_lock);
1619
io_run_task_work();
1620
mutex_lock(&ctx->uring_lock);
1621
}
1622
/* some requests don't go through iopoll_list */
1623
if (tail != ctx->cached_cq_tail ||
1624
wq_list_empty(&ctx->iopoll_list))
1625
break;
1626
}
1627
ret = io_do_iopoll(ctx, !min_events);
1628
if (unlikely(ret < 0))
1629
return ret;
1630
1631
if (task_sigpending(current))
1632
return -EINTR;
1633
if (need_resched())
1634
break;
1635
1636
nr_events += ret;
1637
} while (nr_events < min_events);
1638
1639
return 0;
1640
}
1641
1642
void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw)
1643
{
1644
io_req_complete_defer(req);
1645
}
1646
1647
/*
1648
* After the iocb has been issued, it's safe to be found on the poll list.
1649
* Adding the kiocb to the list AFTER submission ensures that we don't
1650
* find it from a io_do_iopoll() thread before the issuer is done
1651
* accessing the kiocb cookie.
1652
*/
1653
static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1654
{
1655
struct io_ring_ctx *ctx = req->ctx;
1656
const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1657
1658
/* workqueue context doesn't hold uring_lock, grab it now */
1659
if (unlikely(needs_lock))
1660
mutex_lock(&ctx->uring_lock);
1661
1662
/*
1663
* Track whether we have multiple files in our lists. This will impact
1664
* how we do polling eventually, not spinning if we're on potentially
1665
* different devices.
1666
*/
1667
if (wq_list_empty(&ctx->iopoll_list)) {
1668
ctx->poll_multi_queue = false;
1669
} else if (!ctx->poll_multi_queue) {
1670
struct io_kiocb *list_req;
1671
1672
list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1673
comp_list);
1674
if (list_req->file != req->file)
1675
ctx->poll_multi_queue = true;
1676
}
1677
1678
/*
1679
* For fast devices, IO may have already completed. If it has, add
1680
* it to the front so we find it first.
1681
*/
1682
if (READ_ONCE(req->iopoll_completed))
1683
wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1684
else
1685
wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1686
1687
if (unlikely(needs_lock)) {
1688
/*
1689
* If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1690
* in sq thread task context or in io worker task context. If
1691
* current task context is sq thread, we don't need to check
1692
* whether should wake up sq thread.
1693
*/
1694
if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1695
wq_has_sleeper(&ctx->sq_data->wait))
1696
wake_up(&ctx->sq_data->wait);
1697
1698
mutex_unlock(&ctx->uring_lock);
1699
}
1700
}
1701
1702
io_req_flags_t io_file_get_flags(struct file *file)
1703
{
1704
io_req_flags_t res = 0;
1705
1706
BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1707
1708
if (S_ISREG(file_inode(file)->i_mode))
1709
res |= REQ_F_ISREG;
1710
if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1711
res |= REQ_F_SUPPORT_NOWAIT;
1712
return res;
1713
}
1714
1715
static __cold void io_drain_req(struct io_kiocb *req)
1716
__must_hold(&ctx->uring_lock)
1717
{
1718
struct io_ring_ctx *ctx = req->ctx;
1719
bool drain = req->flags & IOSQE_IO_DRAIN;
1720
struct io_defer_entry *de;
1721
1722
de = kmalloc(sizeof(*de), GFP_KERNEL_ACCOUNT);
1723
if (!de) {
1724
io_req_defer_failed(req, -ENOMEM);
1725
return;
1726
}
1727
1728
io_prep_async_link(req);
1729
trace_io_uring_defer(req);
1730
de->req = req;
1731
1732
ctx->nr_drained += io_linked_nr(req);
1733
list_add_tail(&de->list, &ctx->defer_list);
1734
io_queue_deferred(ctx);
1735
if (!drain && list_empty(&ctx->defer_list))
1736
ctx->drain_active = false;
1737
}
1738
1739
static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1740
unsigned int issue_flags)
1741
{
1742
if (req->file || !def->needs_file)
1743
return true;
1744
1745
if (req->flags & REQ_F_FIXED_FILE)
1746
req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1747
else
1748
req->file = io_file_get_normal(req, req->cqe.fd);
1749
1750
return !!req->file;
1751
}
1752
1753
#define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1754
1755
static inline int __io_issue_sqe(struct io_kiocb *req,
1756
unsigned int issue_flags,
1757
const struct io_issue_def *def)
1758
{
1759
const struct cred *creds = NULL;
1760
struct io_kiocb *link = NULL;
1761
int ret;
1762
1763
if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1764
if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1765
creds = override_creds(req->creds);
1766
if (req->flags & REQ_F_ARM_LTIMEOUT)
1767
link = __io_prep_linked_timeout(req);
1768
}
1769
1770
if (!def->audit_skip)
1771
audit_uring_entry(req->opcode);
1772
1773
ret = def->issue(req, issue_flags);
1774
1775
if (!def->audit_skip)
1776
audit_uring_exit(!ret, ret);
1777
1778
if (unlikely(creds || link)) {
1779
if (creds)
1780
revert_creds(creds);
1781
if (link)
1782
io_queue_linked_timeout(link);
1783
}
1784
1785
return ret;
1786
}
1787
1788
static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1789
{
1790
const struct io_issue_def *def = &io_issue_defs[req->opcode];
1791
int ret;
1792
1793
if (unlikely(!io_assign_file(req, def, issue_flags)))
1794
return -EBADF;
1795
1796
ret = __io_issue_sqe(req, issue_flags, def);
1797
1798
if (ret == IOU_COMPLETE) {
1799
if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1800
io_req_complete_defer(req);
1801
else
1802
io_req_complete_post(req, issue_flags);
1803
1804
return 0;
1805
}
1806
1807
if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1808
ret = 0;
1809
1810
/* If the op doesn't have a file, we're not polling for it */
1811
if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1812
io_iopoll_req_issued(req, issue_flags);
1813
}
1814
return ret;
1815
}
1816
1817
int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1818
{
1819
const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1820
IO_URING_F_MULTISHOT |
1821
IO_URING_F_COMPLETE_DEFER;
1822
int ret;
1823
1824
io_tw_lock(req->ctx, tw);
1825
1826
WARN_ON_ONCE(!req->file);
1827
if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1828
return -EFAULT;
1829
1830
ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1831
1832
WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1833
return ret;
1834
}
1835
1836
struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1837
{
1838
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1839
struct io_kiocb *nxt = NULL;
1840
1841
if (req_ref_put_and_test_atomic(req)) {
1842
if (req->flags & IO_REQ_LINK_FLAGS)
1843
nxt = io_req_find_next(req);
1844
io_free_req(req);
1845
}
1846
return nxt ? &nxt->work : NULL;
1847
}
1848
1849
void io_wq_submit_work(struct io_wq_work *work)
1850
{
1851
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1852
const struct io_issue_def *def = &io_issue_defs[req->opcode];
1853
unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1854
bool needs_poll = false;
1855
int ret = 0, err = -ECANCELED;
1856
1857
/* one will be dropped by io_wq_free_work() after returning to io-wq */
1858
if (!(req->flags & REQ_F_REFCOUNT))
1859
__io_req_set_refcount(req, 2);
1860
else
1861
req_ref_get(req);
1862
1863
/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1864
if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1865
fail:
1866
io_req_task_queue_fail(req, err);
1867
return;
1868
}
1869
if (!io_assign_file(req, def, issue_flags)) {
1870
err = -EBADF;
1871
atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1872
goto fail;
1873
}
1874
1875
/*
1876
* If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1877
* submitter task context. Final request completions are handed to the
1878
* right context, however this is not the case of auxiliary CQEs,
1879
* which is the main mean of operation for multishot requests.
1880
* Don't allow any multishot execution from io-wq. It's more restrictive
1881
* than necessary and also cleaner.
1882
*/
1883
if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1884
err = -EBADFD;
1885
if (!io_file_can_poll(req))
1886
goto fail;
1887
if (req->file->f_flags & O_NONBLOCK ||
1888
req->file->f_mode & FMODE_NOWAIT) {
1889
err = -ECANCELED;
1890
if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1891
goto fail;
1892
return;
1893
} else {
1894
req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1895
}
1896
}
1897
1898
if (req->flags & REQ_F_FORCE_ASYNC) {
1899
bool opcode_poll = def->pollin || def->pollout;
1900
1901
if (opcode_poll && io_file_can_poll(req)) {
1902
needs_poll = true;
1903
issue_flags |= IO_URING_F_NONBLOCK;
1904
}
1905
}
1906
1907
do {
1908
ret = io_issue_sqe(req, issue_flags);
1909
if (ret != -EAGAIN)
1910
break;
1911
1912
/*
1913
* If REQ_F_NOWAIT is set, then don't wait or retry with
1914
* poll. -EAGAIN is final for that case.
1915
*/
1916
if (req->flags & REQ_F_NOWAIT)
1917
break;
1918
1919
/*
1920
* We can get EAGAIN for iopolled IO even though we're
1921
* forcing a sync submission from here, since we can't
1922
* wait for request slots on the block side.
1923
*/
1924
if (!needs_poll) {
1925
if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1926
break;
1927
if (io_wq_worker_stopped())
1928
break;
1929
cond_resched();
1930
continue;
1931
}
1932
1933
if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1934
return;
1935
/* aborted or ready, in either case retry blocking */
1936
needs_poll = false;
1937
issue_flags &= ~IO_URING_F_NONBLOCK;
1938
} while (1);
1939
1940
/* avoid locking problems by failing it from a clean context */
1941
if (ret)
1942
io_req_task_queue_fail(req, ret);
1943
}
1944
1945
inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1946
unsigned int issue_flags)
1947
{
1948
struct io_ring_ctx *ctx = req->ctx;
1949
struct io_rsrc_node *node;
1950
struct file *file = NULL;
1951
1952
io_ring_submit_lock(ctx, issue_flags);
1953
node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1954
if (node) {
1955
node->refs++;
1956
req->file_node = node;
1957
req->flags |= io_slot_flags(node);
1958
file = io_slot_file(node);
1959
}
1960
io_ring_submit_unlock(ctx, issue_flags);
1961
return file;
1962
}
1963
1964
struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1965
{
1966
struct file *file = fget(fd);
1967
1968
trace_io_uring_file_get(req, fd);
1969
1970
/* we don't allow fixed io_uring files */
1971
if (file && io_is_uring_fops(file))
1972
io_req_track_inflight(req);
1973
return file;
1974
}
1975
1976
static int io_req_sqe_copy(struct io_kiocb *req, unsigned int issue_flags)
1977
{
1978
const struct io_cold_def *def = &io_cold_defs[req->opcode];
1979
1980
if (req->flags & REQ_F_SQE_COPIED)
1981
return 0;
1982
req->flags |= REQ_F_SQE_COPIED;
1983
if (!def->sqe_copy)
1984
return 0;
1985
if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_INLINE)))
1986
return -EFAULT;
1987
def->sqe_copy(req);
1988
return 0;
1989
}
1990
1991
static void io_queue_async(struct io_kiocb *req, unsigned int issue_flags, int ret)
1992
__must_hold(&req->ctx->uring_lock)
1993
{
1994
if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1995
fail:
1996
io_req_defer_failed(req, ret);
1997
return;
1998
}
1999
2000
ret = io_req_sqe_copy(req, issue_flags);
2001
if (unlikely(ret))
2002
goto fail;
2003
2004
switch (io_arm_poll_handler(req, 0)) {
2005
case IO_APOLL_READY:
2006
io_kbuf_recycle(req, 0);
2007
io_req_task_queue(req);
2008
break;
2009
case IO_APOLL_ABORTED:
2010
io_kbuf_recycle(req, 0);
2011
io_queue_iowq(req);
2012
break;
2013
case IO_APOLL_OK:
2014
break;
2015
}
2016
}
2017
2018
static inline void io_queue_sqe(struct io_kiocb *req, unsigned int extra_flags)
2019
__must_hold(&req->ctx->uring_lock)
2020
{
2021
unsigned int issue_flags = IO_URING_F_NONBLOCK |
2022
IO_URING_F_COMPLETE_DEFER | extra_flags;
2023
int ret;
2024
2025
ret = io_issue_sqe(req, issue_flags);
2026
2027
/*
2028
* We async punt it if the file wasn't marked NOWAIT, or if the file
2029
* doesn't support non-blocking read/write attempts
2030
*/
2031
if (unlikely(ret))
2032
io_queue_async(req, issue_flags, ret);
2033
}
2034
2035
static void io_queue_sqe_fallback(struct io_kiocb *req)
2036
__must_hold(&req->ctx->uring_lock)
2037
{
2038
if (unlikely(req->flags & REQ_F_FAIL)) {
2039
/*
2040
* We don't submit, fail them all, for that replace hardlinks
2041
* with normal links. Extra REQ_F_LINK is tolerated.
2042
*/
2043
req->flags &= ~REQ_F_HARDLINK;
2044
req->flags |= REQ_F_LINK;
2045
io_req_defer_failed(req, req->cqe.res);
2046
} else {
2047
/* can't fail with IO_URING_F_INLINE */
2048
io_req_sqe_copy(req, IO_URING_F_INLINE);
2049
if (unlikely(req->ctx->drain_active))
2050
io_drain_req(req);
2051
else
2052
io_queue_iowq(req);
2053
}
2054
}
2055
2056
/*
2057
* Check SQE restrictions (opcode and flags).
2058
*
2059
* Returns 'true' if SQE is allowed, 'false' otherwise.
2060
*/
2061
static inline bool io_check_restriction(struct io_ring_ctx *ctx,
2062
struct io_kiocb *req,
2063
unsigned int sqe_flags)
2064
{
2065
if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2066
return false;
2067
2068
if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2069
ctx->restrictions.sqe_flags_required)
2070
return false;
2071
2072
if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2073
ctx->restrictions.sqe_flags_required))
2074
return false;
2075
2076
return true;
2077
}
2078
2079
static void io_init_drain(struct io_ring_ctx *ctx)
2080
{
2081
struct io_kiocb *head = ctx->submit_state.link.head;
2082
2083
ctx->drain_active = true;
2084
if (head) {
2085
/*
2086
* If we need to drain a request in the middle of a link, drain
2087
* the head request and the next request/link after the current
2088
* link. Considering sequential execution of links,
2089
* REQ_F_IO_DRAIN will be maintained for every request of our
2090
* link.
2091
*/
2092
head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2093
ctx->drain_next = true;
2094
}
2095
}
2096
2097
static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2098
{
2099
/* ensure per-opcode data is cleared if we fail before prep */
2100
memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2101
return err;
2102
}
2103
2104
static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2105
const struct io_uring_sqe *sqe)
2106
__must_hold(&ctx->uring_lock)
2107
{
2108
const struct io_issue_def *def;
2109
unsigned int sqe_flags;
2110
int personality;
2111
u8 opcode;
2112
2113
req->ctx = ctx;
2114
req->opcode = opcode = READ_ONCE(sqe->opcode);
2115
/* same numerical values with corresponding REQ_F_*, safe to copy */
2116
sqe_flags = READ_ONCE(sqe->flags);
2117
req->flags = (__force io_req_flags_t) sqe_flags;
2118
req->cqe.user_data = READ_ONCE(sqe->user_data);
2119
req->file = NULL;
2120
req->tctx = current->io_uring;
2121
req->cancel_seq_set = false;
2122
req->async_data = NULL;
2123
2124
if (unlikely(opcode >= IORING_OP_LAST)) {
2125
req->opcode = 0;
2126
return io_init_fail_req(req, -EINVAL);
2127
}
2128
opcode = array_index_nospec(opcode, IORING_OP_LAST);
2129
2130
def = &io_issue_defs[opcode];
2131
if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2132
/* enforce forwards compatibility on users */
2133
if (sqe_flags & ~SQE_VALID_FLAGS)
2134
return io_init_fail_req(req, -EINVAL);
2135
if (sqe_flags & IOSQE_BUFFER_SELECT) {
2136
if (!def->buffer_select)
2137
return io_init_fail_req(req, -EOPNOTSUPP);
2138
req->buf_index = READ_ONCE(sqe->buf_group);
2139
}
2140
if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2141
ctx->drain_disabled = true;
2142
if (sqe_flags & IOSQE_IO_DRAIN) {
2143
if (ctx->drain_disabled)
2144
return io_init_fail_req(req, -EOPNOTSUPP);
2145
io_init_drain(ctx);
2146
}
2147
}
2148
if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2149
if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2150
return io_init_fail_req(req, -EACCES);
2151
/* knock it to the slow queue path, will be drained there */
2152
if (ctx->drain_active)
2153
req->flags |= REQ_F_FORCE_ASYNC;
2154
/* if there is no link, we're at "next" request and need to drain */
2155
if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2156
ctx->drain_next = false;
2157
ctx->drain_active = true;
2158
req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2159
}
2160
}
2161
2162
if (!def->ioprio && sqe->ioprio)
2163
return io_init_fail_req(req, -EINVAL);
2164
if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2165
return io_init_fail_req(req, -EINVAL);
2166
2167
if (def->needs_file) {
2168
struct io_submit_state *state = &ctx->submit_state;
2169
2170
req->cqe.fd = READ_ONCE(sqe->fd);
2171
2172
/*
2173
* Plug now if we have more than 2 IO left after this, and the
2174
* target is potentially a read/write to block based storage.
2175
*/
2176
if (state->need_plug && def->plug) {
2177
state->plug_started = true;
2178
state->need_plug = false;
2179
blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2180
}
2181
}
2182
2183
personality = READ_ONCE(sqe->personality);
2184
if (personality) {
2185
int ret;
2186
2187
req->creds = xa_load(&ctx->personalities, personality);
2188
if (!req->creds)
2189
return io_init_fail_req(req, -EINVAL);
2190
get_cred(req->creds);
2191
ret = security_uring_override_creds(req->creds);
2192
if (ret) {
2193
put_cred(req->creds);
2194
return io_init_fail_req(req, ret);
2195
}
2196
req->flags |= REQ_F_CREDS;
2197
}
2198
2199
return def->prep(req, sqe);
2200
}
2201
2202
static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2203
struct io_kiocb *req, int ret)
2204
{
2205
struct io_ring_ctx *ctx = req->ctx;
2206
struct io_submit_link *link = &ctx->submit_state.link;
2207
struct io_kiocb *head = link->head;
2208
2209
trace_io_uring_req_failed(sqe, req, ret);
2210
2211
/*
2212
* Avoid breaking links in the middle as it renders links with SQPOLL
2213
* unusable. Instead of failing eagerly, continue assembling the link if
2214
* applicable and mark the head with REQ_F_FAIL. The link flushing code
2215
* should find the flag and handle the rest.
2216
*/
2217
req_fail_link_node(req, ret);
2218
if (head && !(head->flags & REQ_F_FAIL))
2219
req_fail_link_node(head, -ECANCELED);
2220
2221
if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2222
if (head) {
2223
link->last->link = req;
2224
link->head = NULL;
2225
req = head;
2226
}
2227
io_queue_sqe_fallback(req);
2228
return ret;
2229
}
2230
2231
if (head)
2232
link->last->link = req;
2233
else
2234
link->head = req;
2235
link->last = req;
2236
return 0;
2237
}
2238
2239
static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2240
const struct io_uring_sqe *sqe)
2241
__must_hold(&ctx->uring_lock)
2242
{
2243
struct io_submit_link *link = &ctx->submit_state.link;
2244
int ret;
2245
2246
ret = io_init_req(ctx, req, sqe);
2247
if (unlikely(ret))
2248
return io_submit_fail_init(sqe, req, ret);
2249
2250
trace_io_uring_submit_req(req);
2251
2252
/*
2253
* If we already have a head request, queue this one for async
2254
* submittal once the head completes. If we don't have a head but
2255
* IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2256
* submitted sync once the chain is complete. If none of those
2257
* conditions are true (normal request), then just queue it.
2258
*/
2259
if (unlikely(link->head)) {
2260
trace_io_uring_link(req, link->last);
2261
io_req_sqe_copy(req, IO_URING_F_INLINE);
2262
link->last->link = req;
2263
link->last = req;
2264
2265
if (req->flags & IO_REQ_LINK_FLAGS)
2266
return 0;
2267
/* last request of the link, flush it */
2268
req = link->head;
2269
link->head = NULL;
2270
if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2271
goto fallback;
2272
2273
} else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2274
REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2275
if (req->flags & IO_REQ_LINK_FLAGS) {
2276
link->head = req;
2277
link->last = req;
2278
} else {
2279
fallback:
2280
io_queue_sqe_fallback(req);
2281
}
2282
return 0;
2283
}
2284
2285
io_queue_sqe(req, IO_URING_F_INLINE);
2286
return 0;
2287
}
2288
2289
/*
2290
* Batched submission is done, ensure local IO is flushed out.
2291
*/
2292
static void io_submit_state_end(struct io_ring_ctx *ctx)
2293
{
2294
struct io_submit_state *state = &ctx->submit_state;
2295
2296
if (unlikely(state->link.head))
2297
io_queue_sqe_fallback(state->link.head);
2298
/* flush only after queuing links as they can generate completions */
2299
io_submit_flush_completions(ctx);
2300
if (state->plug_started)
2301
blk_finish_plug(&state->plug);
2302
}
2303
2304
/*
2305
* Start submission side cache.
2306
*/
2307
static void io_submit_state_start(struct io_submit_state *state,
2308
unsigned int max_ios)
2309
{
2310
state->plug_started = false;
2311
state->need_plug = max_ios > 2;
2312
state->submit_nr = max_ios;
2313
/* set only head, no need to init link_last in advance */
2314
state->link.head = NULL;
2315
}
2316
2317
static void io_commit_sqring(struct io_ring_ctx *ctx)
2318
{
2319
struct io_rings *rings = ctx->rings;
2320
2321
/*
2322
* Ensure any loads from the SQEs are done at this point,
2323
* since once we write the new head, the application could
2324
* write new data to them.
2325
*/
2326
smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2327
}
2328
2329
/*
2330
* Fetch an sqe, if one is available. Note this returns a pointer to memory
2331
* that is mapped by userspace. This means that care needs to be taken to
2332
* ensure that reads are stable, as we cannot rely on userspace always
2333
* being a good citizen. If members of the sqe are validated and then later
2334
* used, it's important that those reads are done through READ_ONCE() to
2335
* prevent a re-load down the line.
2336
*/
2337
static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2338
{
2339
unsigned mask = ctx->sq_entries - 1;
2340
unsigned head = ctx->cached_sq_head++ & mask;
2341
2342
if (static_branch_unlikely(&io_key_has_sqarray) &&
2343
(!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2344
head = READ_ONCE(ctx->sq_array[head]);
2345
if (unlikely(head >= ctx->sq_entries)) {
2346
WRITE_ONCE(ctx->rings->sq_dropped,
2347
READ_ONCE(ctx->rings->sq_dropped) + 1);
2348
return false;
2349
}
2350
head = array_index_nospec(head, ctx->sq_entries);
2351
}
2352
2353
/*
2354
* The cached sq head (or cq tail) serves two purposes:
2355
*
2356
* 1) allows us to batch the cost of updating the user visible
2357
* head updates.
2358
* 2) allows the kernel side to track the head on its own, even
2359
* though the application is the one updating it.
2360
*/
2361
2362
/* double index for 128-byte SQEs, twice as long */
2363
if (ctx->flags & IORING_SETUP_SQE128)
2364
head <<= 1;
2365
*sqe = &ctx->sq_sqes[head];
2366
return true;
2367
}
2368
2369
int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2370
__must_hold(&ctx->uring_lock)
2371
{
2372
unsigned int entries = io_sqring_entries(ctx);
2373
unsigned int left;
2374
int ret;
2375
2376
if (unlikely(!entries))
2377
return 0;
2378
/* make sure SQ entry isn't read before tail */
2379
ret = left = min(nr, entries);
2380
io_get_task_refs(left);
2381
io_submit_state_start(&ctx->submit_state, left);
2382
2383
do {
2384
const struct io_uring_sqe *sqe;
2385
struct io_kiocb *req;
2386
2387
if (unlikely(!io_alloc_req(ctx, &req)))
2388
break;
2389
if (unlikely(!io_get_sqe(ctx, &sqe))) {
2390
io_req_add_to_cache(req, ctx);
2391
break;
2392
}
2393
2394
/*
2395
* Continue submitting even for sqe failure if the
2396
* ring was setup with IORING_SETUP_SUBMIT_ALL
2397
*/
2398
if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2399
!(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2400
left--;
2401
break;
2402
}
2403
} while (--left);
2404
2405
if (unlikely(left)) {
2406
ret -= left;
2407
/* try again if it submitted nothing and can't allocate a req */
2408
if (!ret && io_req_cache_empty(ctx))
2409
ret = -EAGAIN;
2410
current->io_uring->cached_refs += left;
2411
}
2412
2413
io_submit_state_end(ctx);
2414
/* Commit SQ ring head once we've consumed and submitted all SQEs */
2415
io_commit_sqring(ctx);
2416
return ret;
2417
}
2418
2419
static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2420
int wake_flags, void *key)
2421
{
2422
struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2423
2424
/*
2425
* Cannot safely flush overflowed CQEs from here, ensure we wake up
2426
* the task, and the next invocation will do it.
2427
*/
2428
if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2429
return autoremove_wake_function(curr, mode, wake_flags, key);
2430
return -1;
2431
}
2432
2433
int io_run_task_work_sig(struct io_ring_ctx *ctx)
2434
{
2435
if (io_local_work_pending(ctx)) {
2436
__set_current_state(TASK_RUNNING);
2437
if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2438
return 0;
2439
}
2440
if (io_run_task_work() > 0)
2441
return 0;
2442
if (task_sigpending(current))
2443
return -EINTR;
2444
return 0;
2445
}
2446
2447
static bool current_pending_io(void)
2448
{
2449
struct io_uring_task *tctx = current->io_uring;
2450
2451
if (!tctx)
2452
return false;
2453
return percpu_counter_read_positive(&tctx->inflight);
2454
}
2455
2456
static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2457
{
2458
struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2459
2460
WRITE_ONCE(iowq->hit_timeout, 1);
2461
iowq->min_timeout = 0;
2462
wake_up_process(iowq->wq.private);
2463
return HRTIMER_NORESTART;
2464
}
2465
2466
/*
2467
* Doing min_timeout portion. If we saw any timeouts, events, or have work,
2468
* wake up. If not, and we have a normal timeout, switch to that and keep
2469
* sleeping.
2470
*/
2471
static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2472
{
2473
struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2474
struct io_ring_ctx *ctx = iowq->ctx;
2475
2476
/* no general timeout, or shorter (or equal), we are done */
2477
if (iowq->timeout == KTIME_MAX ||
2478
ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2479
goto out_wake;
2480
/* work we may need to run, wake function will see if we need to wake */
2481
if (io_has_work(ctx))
2482
goto out_wake;
2483
/* got events since we started waiting, min timeout is done */
2484
if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2485
goto out_wake;
2486
/* if we have any events and min timeout expired, we're done */
2487
if (io_cqring_events(ctx))
2488
goto out_wake;
2489
2490
/*
2491
* If using deferred task_work running and application is waiting on
2492
* more than one request, ensure we reset it now where we are switching
2493
* to normal sleeps. Any request completion post min_wait should wake
2494
* the task and return.
2495
*/
2496
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2497
atomic_set(&ctx->cq_wait_nr, 1);
2498
smp_mb();
2499
if (!llist_empty(&ctx->work_llist))
2500
goto out_wake;
2501
}
2502
2503
hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2504
hrtimer_set_expires(timer, iowq->timeout);
2505
return HRTIMER_RESTART;
2506
out_wake:
2507
return io_cqring_timer_wakeup(timer);
2508
}
2509
2510
static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2511
clockid_t clock_id, ktime_t start_time)
2512
{
2513
ktime_t timeout;
2514
2515
if (iowq->min_timeout) {
2516
timeout = ktime_add_ns(iowq->min_timeout, start_time);
2517
hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2518
HRTIMER_MODE_ABS);
2519
} else {
2520
timeout = iowq->timeout;
2521
hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2522
HRTIMER_MODE_ABS);
2523
}
2524
2525
hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2526
hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2527
2528
if (!READ_ONCE(iowq->hit_timeout))
2529
schedule();
2530
2531
hrtimer_cancel(&iowq->t);
2532
destroy_hrtimer_on_stack(&iowq->t);
2533
__set_current_state(TASK_RUNNING);
2534
2535
return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2536
}
2537
2538
struct ext_arg {
2539
size_t argsz;
2540
struct timespec64 ts;
2541
const sigset_t __user *sig;
2542
ktime_t min_time;
2543
bool ts_set;
2544
bool iowait;
2545
};
2546
2547
static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2548
struct io_wait_queue *iowq,
2549
struct ext_arg *ext_arg,
2550
ktime_t start_time)
2551
{
2552
int ret = 0;
2553
2554
/*
2555
* Mark us as being in io_wait if we have pending requests, so cpufreq
2556
* can take into account that the task is waiting for IO - turns out
2557
* to be important for low QD IO.
2558
*/
2559
if (ext_arg->iowait && current_pending_io())
2560
current->in_iowait = 1;
2561
if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2562
ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2563
else
2564
schedule();
2565
current->in_iowait = 0;
2566
return ret;
2567
}
2568
2569
/* If this returns > 0, the caller should retry */
2570
static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2571
struct io_wait_queue *iowq,
2572
struct ext_arg *ext_arg,
2573
ktime_t start_time)
2574
{
2575
if (unlikely(READ_ONCE(ctx->check_cq)))
2576
return 1;
2577
if (unlikely(io_local_work_pending(ctx)))
2578
return 1;
2579
if (unlikely(task_work_pending(current)))
2580
return 1;
2581
if (unlikely(task_sigpending(current)))
2582
return -EINTR;
2583
if (unlikely(io_should_wake(iowq)))
2584
return 0;
2585
2586
return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2587
}
2588
2589
/*
2590
* Wait until events become available, if we don't already have some. The
2591
* application must reap them itself, as they reside on the shared cq ring.
2592
*/
2593
static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2594
struct ext_arg *ext_arg)
2595
{
2596
struct io_wait_queue iowq;
2597
struct io_rings *rings = ctx->rings;
2598
ktime_t start_time;
2599
int ret;
2600
2601
min_events = min_t(int, min_events, ctx->cq_entries);
2602
2603
if (!io_allowed_run_tw(ctx))
2604
return -EEXIST;
2605
if (io_local_work_pending(ctx))
2606
io_run_local_work(ctx, min_events,
2607
max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2608
io_run_task_work();
2609
2610
if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2611
io_cqring_do_overflow_flush(ctx);
2612
if (__io_cqring_events_user(ctx) >= min_events)
2613
return 0;
2614
2615
init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2616
iowq.wq.private = current;
2617
INIT_LIST_HEAD(&iowq.wq.entry);
2618
iowq.ctx = ctx;
2619
iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2620
iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2621
iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2622
iowq.hit_timeout = 0;
2623
iowq.min_timeout = ext_arg->min_time;
2624
iowq.timeout = KTIME_MAX;
2625
start_time = io_get_time(ctx);
2626
2627
if (ext_arg->ts_set) {
2628
iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2629
if (!(flags & IORING_ENTER_ABS_TIMER))
2630
iowq.timeout = ktime_add(iowq.timeout, start_time);
2631
}
2632
2633
if (ext_arg->sig) {
2634
#ifdef CONFIG_COMPAT
2635
if (in_compat_syscall())
2636
ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2637
ext_arg->argsz);
2638
else
2639
#endif
2640
ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2641
2642
if (ret)
2643
return ret;
2644
}
2645
2646
io_napi_busy_loop(ctx, &iowq);
2647
2648
trace_io_uring_cqring_wait(ctx, min_events);
2649
do {
2650
unsigned long check_cq;
2651
int nr_wait;
2652
2653
/* if min timeout has been hit, don't reset wait count */
2654
if (!iowq.hit_timeout)
2655
nr_wait = (int) iowq.cq_tail -
2656
READ_ONCE(ctx->rings->cq.tail);
2657
else
2658
nr_wait = 1;
2659
2660
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2661
atomic_set(&ctx->cq_wait_nr, nr_wait);
2662
set_current_state(TASK_INTERRUPTIBLE);
2663
} else {
2664
prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2665
TASK_INTERRUPTIBLE);
2666
}
2667
2668
ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2669
__set_current_state(TASK_RUNNING);
2670
atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2671
2672
/*
2673
* Run task_work after scheduling and before io_should_wake().
2674
* If we got woken because of task_work being processed, run it
2675
* now rather than let the caller do another wait loop.
2676
*/
2677
if (io_local_work_pending(ctx))
2678
io_run_local_work(ctx, nr_wait, nr_wait);
2679
io_run_task_work();
2680
2681
/*
2682
* Non-local task_work will be run on exit to userspace, but
2683
* if we're using DEFER_TASKRUN, then we could have waited
2684
* with a timeout for a number of requests. If the timeout
2685
* hits, we could have some requests ready to process. Ensure
2686
* this break is _after_ we have run task_work, to avoid
2687
* deferring running potentially pending requests until the
2688
* next time we wait for events.
2689
*/
2690
if (ret < 0)
2691
break;
2692
2693
check_cq = READ_ONCE(ctx->check_cq);
2694
if (unlikely(check_cq)) {
2695
/* let the caller flush overflows, retry */
2696
if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2697
io_cqring_do_overflow_flush(ctx);
2698
if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2699
ret = -EBADR;
2700
break;
2701
}
2702
}
2703
2704
if (io_should_wake(&iowq)) {
2705
ret = 0;
2706
break;
2707
}
2708
cond_resched();
2709
} while (1);
2710
2711
if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2712
finish_wait(&ctx->cq_wait, &iowq.wq);
2713
restore_saved_sigmask_unless(ret == -EINTR);
2714
2715
return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2716
}
2717
2718
static void io_rings_free(struct io_ring_ctx *ctx)
2719
{
2720
io_free_region(ctx, &ctx->sq_region);
2721
io_free_region(ctx, &ctx->ring_region);
2722
ctx->rings = NULL;
2723
ctx->sq_sqes = NULL;
2724
}
2725
2726
unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2727
unsigned int cq_entries, size_t *sq_offset)
2728
{
2729
struct io_rings *rings;
2730
size_t off, sq_array_size;
2731
2732
off = struct_size(rings, cqes, cq_entries);
2733
if (off == SIZE_MAX)
2734
return SIZE_MAX;
2735
if (flags & IORING_SETUP_CQE32) {
2736
if (check_shl_overflow(off, 1, &off))
2737
return SIZE_MAX;
2738
}
2739
2740
#ifdef CONFIG_SMP
2741
off = ALIGN(off, SMP_CACHE_BYTES);
2742
if (off == 0)
2743
return SIZE_MAX;
2744
#endif
2745
2746
if (flags & IORING_SETUP_NO_SQARRAY) {
2747
*sq_offset = SIZE_MAX;
2748
return off;
2749
}
2750
2751
*sq_offset = off;
2752
2753
sq_array_size = array_size(sizeof(u32), sq_entries);
2754
if (sq_array_size == SIZE_MAX)
2755
return SIZE_MAX;
2756
2757
if (check_add_overflow(off, sq_array_size, &off))
2758
return SIZE_MAX;
2759
2760
return off;
2761
}
2762
2763
static __cold void __io_req_caches_free(struct io_ring_ctx *ctx)
2764
{
2765
struct io_kiocb *req;
2766
int nr = 0;
2767
2768
while (!io_req_cache_empty(ctx)) {
2769
req = io_extract_req(ctx);
2770
kmem_cache_free(req_cachep, req);
2771
nr++;
2772
}
2773
if (nr) {
2774
ctx->nr_req_allocated -= nr;
2775
percpu_ref_put_many(&ctx->refs, nr);
2776
}
2777
}
2778
2779
static __cold void io_req_caches_free(struct io_ring_ctx *ctx)
2780
{
2781
guard(mutex)(&ctx->uring_lock);
2782
__io_req_caches_free(ctx);
2783
}
2784
2785
static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2786
{
2787
io_sq_thread_finish(ctx);
2788
2789
mutex_lock(&ctx->uring_lock);
2790
io_sqe_buffers_unregister(ctx);
2791
io_sqe_files_unregister(ctx);
2792
io_unregister_zcrx_ifqs(ctx);
2793
io_cqring_overflow_kill(ctx);
2794
io_eventfd_unregister(ctx);
2795
io_free_alloc_caches(ctx);
2796
io_destroy_buffers(ctx);
2797
io_free_region(ctx, &ctx->param_region);
2798
mutex_unlock(&ctx->uring_lock);
2799
if (ctx->sq_creds)
2800
put_cred(ctx->sq_creds);
2801
if (ctx->submitter_task)
2802
put_task_struct(ctx->submitter_task);
2803
2804
WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2805
2806
if (ctx->mm_account) {
2807
mmdrop(ctx->mm_account);
2808
ctx->mm_account = NULL;
2809
}
2810
io_rings_free(ctx);
2811
2812
if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2813
static_branch_dec(&io_key_has_sqarray);
2814
2815
percpu_ref_exit(&ctx->refs);
2816
free_uid(ctx->user);
2817
io_req_caches_free(ctx);
2818
2819
WARN_ON_ONCE(ctx->nr_req_allocated);
2820
2821
if (ctx->hash_map)
2822
io_wq_put_hash(ctx->hash_map);
2823
io_napi_free(ctx);
2824
kvfree(ctx->cancel_table.hbs);
2825
xa_destroy(&ctx->io_bl_xa);
2826
kfree(ctx);
2827
}
2828
2829
static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2830
{
2831
struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2832
poll_wq_task_work);
2833
2834
mutex_lock(&ctx->uring_lock);
2835
ctx->poll_activated = true;
2836
mutex_unlock(&ctx->uring_lock);
2837
2838
/*
2839
* Wake ups for some events between start of polling and activation
2840
* might've been lost due to loose synchronisation.
2841
*/
2842
wake_up_all(&ctx->poll_wq);
2843
percpu_ref_put(&ctx->refs);
2844
}
2845
2846
__cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2847
{
2848
spin_lock(&ctx->completion_lock);
2849
/* already activated or in progress */
2850
if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2851
goto out;
2852
if (WARN_ON_ONCE(!ctx->task_complete))
2853
goto out;
2854
if (!ctx->submitter_task)
2855
goto out;
2856
/*
2857
* with ->submitter_task only the submitter task completes requests, we
2858
* only need to sync with it, which is done by injecting a tw
2859
*/
2860
init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2861
percpu_ref_get(&ctx->refs);
2862
if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2863
percpu_ref_put(&ctx->refs);
2864
out:
2865
spin_unlock(&ctx->completion_lock);
2866
}
2867
2868
static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2869
{
2870
struct io_ring_ctx *ctx = file->private_data;
2871
__poll_t mask = 0;
2872
2873
if (unlikely(!ctx->poll_activated))
2874
io_activate_pollwq(ctx);
2875
/*
2876
* provides mb() which pairs with barrier from wq_has_sleeper
2877
* call in io_commit_cqring
2878
*/
2879
poll_wait(file, &ctx->poll_wq, wait);
2880
2881
if (!io_sqring_full(ctx))
2882
mask |= EPOLLOUT | EPOLLWRNORM;
2883
2884
/*
2885
* Don't flush cqring overflow list here, just do a simple check.
2886
* Otherwise there could possible be ABBA deadlock:
2887
* CPU0 CPU1
2888
* ---- ----
2889
* lock(&ctx->uring_lock);
2890
* lock(&ep->mtx);
2891
* lock(&ctx->uring_lock);
2892
* lock(&ep->mtx);
2893
*
2894
* Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2895
* pushes them to do the flush.
2896
*/
2897
2898
if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2899
mask |= EPOLLIN | EPOLLRDNORM;
2900
2901
return mask;
2902
}
2903
2904
struct io_tctx_exit {
2905
struct callback_head task_work;
2906
struct completion completion;
2907
struct io_ring_ctx *ctx;
2908
};
2909
2910
static __cold void io_tctx_exit_cb(struct callback_head *cb)
2911
{
2912
struct io_uring_task *tctx = current->io_uring;
2913
struct io_tctx_exit *work;
2914
2915
work = container_of(cb, struct io_tctx_exit, task_work);
2916
/*
2917
* When @in_cancel, we're in cancellation and it's racy to remove the
2918
* node. It'll be removed by the end of cancellation, just ignore it.
2919
* tctx can be NULL if the queueing of this task_work raced with
2920
* work cancelation off the exec path.
2921
*/
2922
if (tctx && !atomic_read(&tctx->in_cancel))
2923
io_uring_del_tctx_node((unsigned long)work->ctx);
2924
complete(&work->completion);
2925
}
2926
2927
static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2928
{
2929
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2930
2931
return req->ctx == data;
2932
}
2933
2934
static __cold void io_ring_exit_work(struct work_struct *work)
2935
{
2936
struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2937
unsigned long timeout = jiffies + HZ * 60 * 5;
2938
unsigned long interval = HZ / 20;
2939
struct io_tctx_exit exit;
2940
struct io_tctx_node *node;
2941
int ret;
2942
2943
/*
2944
* If we're doing polled IO and end up having requests being
2945
* submitted async (out-of-line), then completions can come in while
2946
* we're waiting for refs to drop. We need to reap these manually,
2947
* as nobody else will be looking for them.
2948
*/
2949
do {
2950
if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2951
mutex_lock(&ctx->uring_lock);
2952
io_cqring_overflow_kill(ctx);
2953
mutex_unlock(&ctx->uring_lock);
2954
}
2955
if (!xa_empty(&ctx->zcrx_ctxs)) {
2956
mutex_lock(&ctx->uring_lock);
2957
io_shutdown_zcrx_ifqs(ctx);
2958
mutex_unlock(&ctx->uring_lock);
2959
}
2960
2961
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2962
io_move_task_work_from_local(ctx);
2963
2964
/* The SQPOLL thread never reaches this path */
2965
while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2966
cond_resched();
2967
2968
if (ctx->sq_data) {
2969
struct io_sq_data *sqd = ctx->sq_data;
2970
struct task_struct *tsk;
2971
2972
io_sq_thread_park(sqd);
2973
tsk = sqpoll_task_locked(sqd);
2974
if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2975
io_wq_cancel_cb(tsk->io_uring->io_wq,
2976
io_cancel_ctx_cb, ctx, true);
2977
io_sq_thread_unpark(sqd);
2978
}
2979
2980
io_req_caches_free(ctx);
2981
2982
if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2983
/* there is little hope left, don't run it too often */
2984
interval = HZ * 60;
2985
}
2986
/*
2987
* This is really an uninterruptible wait, as it has to be
2988
* complete. But it's also run from a kworker, which doesn't
2989
* take signals, so it's fine to make it interruptible. This
2990
* avoids scenarios where we knowingly can wait much longer
2991
* on completions, for example if someone does a SIGSTOP on
2992
* a task that needs to finish task_work to make this loop
2993
* complete. That's a synthetic situation that should not
2994
* cause a stuck task backtrace, and hence a potential panic
2995
* on stuck tasks if that is enabled.
2996
*/
2997
} while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2998
2999
init_completion(&exit.completion);
3000
init_task_work(&exit.task_work, io_tctx_exit_cb);
3001
exit.ctx = ctx;
3002
3003
mutex_lock(&ctx->uring_lock);
3004
while (!list_empty(&ctx->tctx_list)) {
3005
WARN_ON_ONCE(time_after(jiffies, timeout));
3006
3007
node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
3008
ctx_node);
3009
/* don't spin on a single task if cancellation failed */
3010
list_rotate_left(&ctx->tctx_list);
3011
ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
3012
if (WARN_ON_ONCE(ret))
3013
continue;
3014
3015
mutex_unlock(&ctx->uring_lock);
3016
/*
3017
* See comment above for
3018
* wait_for_completion_interruptible_timeout() on why this
3019
* wait is marked as interruptible.
3020
*/
3021
wait_for_completion_interruptible(&exit.completion);
3022
mutex_lock(&ctx->uring_lock);
3023
}
3024
mutex_unlock(&ctx->uring_lock);
3025
spin_lock(&ctx->completion_lock);
3026
spin_unlock(&ctx->completion_lock);
3027
3028
/* pairs with RCU read section in io_req_local_work_add() */
3029
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3030
synchronize_rcu();
3031
3032
io_ring_ctx_free(ctx);
3033
}
3034
3035
static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3036
{
3037
unsigned long index;
3038
struct creds *creds;
3039
3040
mutex_lock(&ctx->uring_lock);
3041
percpu_ref_kill(&ctx->refs);
3042
xa_for_each(&ctx->personalities, index, creds)
3043
io_unregister_personality(ctx, index);
3044
mutex_unlock(&ctx->uring_lock);
3045
3046
flush_delayed_work(&ctx->fallback_work);
3047
3048
INIT_WORK(&ctx->exit_work, io_ring_exit_work);
3049
/*
3050
* Use system_unbound_wq to avoid spawning tons of event kworkers
3051
* if we're exiting a ton of rings at the same time. It just adds
3052
* noise and overhead, there's no discernable change in runtime
3053
* over using system_wq.
3054
*/
3055
queue_work(iou_wq, &ctx->exit_work);
3056
}
3057
3058
static int io_uring_release(struct inode *inode, struct file *file)
3059
{
3060
struct io_ring_ctx *ctx = file->private_data;
3061
3062
file->private_data = NULL;
3063
io_ring_ctx_wait_and_kill(ctx);
3064
return 0;
3065
}
3066
3067
struct io_task_cancel {
3068
struct io_uring_task *tctx;
3069
bool all;
3070
};
3071
3072
static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3073
{
3074
struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3075
struct io_task_cancel *cancel = data;
3076
3077
return io_match_task_safe(req, cancel->tctx, cancel->all);
3078
}
3079
3080
static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3081
struct io_uring_task *tctx,
3082
bool cancel_all)
3083
{
3084
struct io_defer_entry *de;
3085
LIST_HEAD(list);
3086
3087
list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3088
if (io_match_task_safe(de->req, tctx, cancel_all)) {
3089
list_cut_position(&list, &ctx->defer_list, &de->list);
3090
break;
3091
}
3092
}
3093
if (list_empty(&list))
3094
return false;
3095
3096
while (!list_empty(&list)) {
3097
de = list_first_entry(&list, struct io_defer_entry, list);
3098
list_del_init(&de->list);
3099
ctx->nr_drained -= io_linked_nr(de->req);
3100
io_req_task_queue_fail(de->req, -ECANCELED);
3101
kfree(de);
3102
}
3103
return true;
3104
}
3105
3106
static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3107
{
3108
struct io_tctx_node *node;
3109
enum io_wq_cancel cret;
3110
bool ret = false;
3111
3112
mutex_lock(&ctx->uring_lock);
3113
list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3114
struct io_uring_task *tctx = node->task->io_uring;
3115
3116
/*
3117
* io_wq will stay alive while we hold uring_lock, because it's
3118
* killed after ctx nodes, which requires to take the lock.
3119
*/
3120
if (!tctx || !tctx->io_wq)
3121
continue;
3122
cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3123
ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3124
}
3125
mutex_unlock(&ctx->uring_lock);
3126
3127
return ret;
3128
}
3129
3130
static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3131
struct io_uring_task *tctx,
3132
bool cancel_all,
3133
bool is_sqpoll_thread)
3134
{
3135
struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3136
enum io_wq_cancel cret;
3137
bool ret = false;
3138
3139
/* set it so io_req_local_work_add() would wake us up */
3140
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3141
atomic_set(&ctx->cq_wait_nr, 1);
3142
smp_mb();
3143
}
3144
3145
/* failed during ring init, it couldn't have issued any requests */
3146
if (!ctx->rings)
3147
return false;
3148
3149
if (!tctx) {
3150
ret |= io_uring_try_cancel_iowq(ctx);
3151
} else if (tctx->io_wq) {
3152
/*
3153
* Cancels requests of all rings, not only @ctx, but
3154
* it's fine as the task is in exit/exec.
3155
*/
3156
cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3157
&cancel, true);
3158
ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3159
}
3160
3161
/* SQPOLL thread does its own polling */
3162
if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3163
is_sqpoll_thread) {
3164
while (!wq_list_empty(&ctx->iopoll_list)) {
3165
io_iopoll_try_reap_events(ctx);
3166
ret = true;
3167
cond_resched();
3168
}
3169
}
3170
3171
if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3172
io_allowed_defer_tw_run(ctx))
3173
ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3174
mutex_lock(&ctx->uring_lock);
3175
ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3176
ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3177
ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3178
ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3179
ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3180
mutex_unlock(&ctx->uring_lock);
3181
ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3182
if (tctx)
3183
ret |= io_run_task_work() > 0;
3184
else
3185
ret |= flush_delayed_work(&ctx->fallback_work);
3186
return ret;
3187
}
3188
3189
static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3190
{
3191
if (tracked)
3192
return atomic_read(&tctx->inflight_tracked);
3193
return percpu_counter_sum(&tctx->inflight);
3194
}
3195
3196
/*
3197
* Find any io_uring ctx that this task has registered or done IO on, and cancel
3198
* requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3199
*/
3200
__cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3201
{
3202
struct io_uring_task *tctx = current->io_uring;
3203
struct io_ring_ctx *ctx;
3204
struct io_tctx_node *node;
3205
unsigned long index;
3206
s64 inflight;
3207
DEFINE_WAIT(wait);
3208
3209
WARN_ON_ONCE(sqd && sqpoll_task_locked(sqd) != current);
3210
3211
if (!current->io_uring)
3212
return;
3213
if (tctx->io_wq)
3214
io_wq_exit_start(tctx->io_wq);
3215
3216
atomic_inc(&tctx->in_cancel);
3217
do {
3218
bool loop = false;
3219
3220
io_uring_drop_tctx_refs(current);
3221
if (!tctx_inflight(tctx, !cancel_all))
3222
break;
3223
3224
/* read completions before cancelations */
3225
inflight = tctx_inflight(tctx, false);
3226
if (!inflight)
3227
break;
3228
3229
if (!sqd) {
3230
xa_for_each(&tctx->xa, index, node) {
3231
/* sqpoll task will cancel all its requests */
3232
if (node->ctx->sq_data)
3233
continue;
3234
loop |= io_uring_try_cancel_requests(node->ctx,
3235
current->io_uring,
3236
cancel_all,
3237
false);
3238
}
3239
} else {
3240
list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3241
loop |= io_uring_try_cancel_requests(ctx,
3242
current->io_uring,
3243
cancel_all,
3244
true);
3245
}
3246
3247
if (loop) {
3248
cond_resched();
3249
continue;
3250
}
3251
3252
prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3253
io_run_task_work();
3254
io_uring_drop_tctx_refs(current);
3255
xa_for_each(&tctx->xa, index, node) {
3256
if (io_local_work_pending(node->ctx)) {
3257
WARN_ON_ONCE(node->ctx->submitter_task &&
3258
node->ctx->submitter_task != current);
3259
goto end_wait;
3260
}
3261
}
3262
/*
3263
* If we've seen completions, retry without waiting. This
3264
* avoids a race where a completion comes in before we did
3265
* prepare_to_wait().
3266
*/
3267
if (inflight == tctx_inflight(tctx, !cancel_all))
3268
schedule();
3269
end_wait:
3270
finish_wait(&tctx->wait, &wait);
3271
} while (1);
3272
3273
io_uring_clean_tctx(tctx);
3274
if (cancel_all) {
3275
/*
3276
* We shouldn't run task_works after cancel, so just leave
3277
* ->in_cancel set for normal exit.
3278
*/
3279
atomic_dec(&tctx->in_cancel);
3280
/* for exec all current's requests should be gone, kill tctx */
3281
__io_uring_free(current);
3282
}
3283
}
3284
3285
void __io_uring_cancel(bool cancel_all)
3286
{
3287
io_uring_unreg_ringfd();
3288
io_uring_cancel_generic(cancel_all, NULL);
3289
}
3290
3291
static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3292
const struct io_uring_getevents_arg __user *uarg)
3293
{
3294
unsigned long size = sizeof(struct io_uring_reg_wait);
3295
unsigned long offset = (uintptr_t)uarg;
3296
unsigned long end;
3297
3298
if (unlikely(offset % sizeof(long)))
3299
return ERR_PTR(-EFAULT);
3300
3301
/* also protects from NULL ->cq_wait_arg as the size would be 0 */
3302
if (unlikely(check_add_overflow(offset, size, &end) ||
3303
end > ctx->cq_wait_size))
3304
return ERR_PTR(-EFAULT);
3305
3306
offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3307
return ctx->cq_wait_arg + offset;
3308
}
3309
3310
static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3311
const void __user *argp, size_t argsz)
3312
{
3313
struct io_uring_getevents_arg arg;
3314
3315
if (!(flags & IORING_ENTER_EXT_ARG))
3316
return 0;
3317
if (flags & IORING_ENTER_EXT_ARG_REG)
3318
return -EINVAL;
3319
if (argsz != sizeof(arg))
3320
return -EINVAL;
3321
if (copy_from_user(&arg, argp, sizeof(arg)))
3322
return -EFAULT;
3323
return 0;
3324
}
3325
3326
static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3327
const void __user *argp, struct ext_arg *ext_arg)
3328
{
3329
const struct io_uring_getevents_arg __user *uarg = argp;
3330
struct io_uring_getevents_arg arg;
3331
3332
ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3333
3334
/*
3335
* If EXT_ARG isn't set, then we have no timespec and the argp pointer
3336
* is just a pointer to the sigset_t.
3337
*/
3338
if (!(flags & IORING_ENTER_EXT_ARG)) {
3339
ext_arg->sig = (const sigset_t __user *) argp;
3340
return 0;
3341
}
3342
3343
if (flags & IORING_ENTER_EXT_ARG_REG) {
3344
struct io_uring_reg_wait *w;
3345
3346
if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3347
return -EINVAL;
3348
w = io_get_ext_arg_reg(ctx, argp);
3349
if (IS_ERR(w))
3350
return PTR_ERR(w);
3351
3352
if (w->flags & ~IORING_REG_WAIT_TS)
3353
return -EINVAL;
3354
ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3355
ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3356
ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3357
if (w->flags & IORING_REG_WAIT_TS) {
3358
ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3359
ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3360
ext_arg->ts_set = true;
3361
}
3362
return 0;
3363
}
3364
3365
/*
3366
* EXT_ARG is set - ensure we agree on the size of it and copy in our
3367
* timespec and sigset_t pointers if good.
3368
*/
3369
if (ext_arg->argsz != sizeof(arg))
3370
return -EINVAL;
3371
#ifdef CONFIG_64BIT
3372
if (!user_access_begin(uarg, sizeof(*uarg)))
3373
return -EFAULT;
3374
unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3375
unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3376
unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3377
unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3378
user_access_end();
3379
#else
3380
if (copy_from_user(&arg, uarg, sizeof(arg)))
3381
return -EFAULT;
3382
#endif
3383
ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3384
ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3385
ext_arg->argsz = arg.sigmask_sz;
3386
if (arg.ts) {
3387
if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3388
return -EFAULT;
3389
ext_arg->ts_set = true;
3390
}
3391
return 0;
3392
#ifdef CONFIG_64BIT
3393
uaccess_end:
3394
user_access_end();
3395
return -EFAULT;
3396
#endif
3397
}
3398
3399
SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3400
u32, min_complete, u32, flags, const void __user *, argp,
3401
size_t, argsz)
3402
{
3403
struct io_ring_ctx *ctx;
3404
struct file *file;
3405
long ret;
3406
3407
if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3408
IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3409
IORING_ENTER_REGISTERED_RING |
3410
IORING_ENTER_ABS_TIMER |
3411
IORING_ENTER_EXT_ARG_REG |
3412
IORING_ENTER_NO_IOWAIT)))
3413
return -EINVAL;
3414
3415
/*
3416
* Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3417
* need only dereference our task private array to find it.
3418
*/
3419
if (flags & IORING_ENTER_REGISTERED_RING) {
3420
struct io_uring_task *tctx = current->io_uring;
3421
3422
if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3423
return -EINVAL;
3424
fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3425
file = tctx->registered_rings[fd];
3426
if (unlikely(!file))
3427
return -EBADF;
3428
} else {
3429
file = fget(fd);
3430
if (unlikely(!file))
3431
return -EBADF;
3432
ret = -EOPNOTSUPP;
3433
if (unlikely(!io_is_uring_fops(file)))
3434
goto out;
3435
}
3436
3437
ctx = file->private_data;
3438
ret = -EBADFD;
3439
if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3440
goto out;
3441
3442
/*
3443
* For SQ polling, the thread will do all submissions and completions.
3444
* Just return the requested submit count, and wake the thread if
3445
* we were asked to.
3446
*/
3447
ret = 0;
3448
if (ctx->flags & IORING_SETUP_SQPOLL) {
3449
if (unlikely(ctx->sq_data->thread == NULL)) {
3450
ret = -EOWNERDEAD;
3451
goto out;
3452
}
3453
if (flags & IORING_ENTER_SQ_WAKEUP)
3454
wake_up(&ctx->sq_data->wait);
3455
if (flags & IORING_ENTER_SQ_WAIT)
3456
io_sqpoll_wait_sq(ctx);
3457
3458
ret = to_submit;
3459
} else if (to_submit) {
3460
ret = io_uring_add_tctx_node(ctx);
3461
if (unlikely(ret))
3462
goto out;
3463
3464
mutex_lock(&ctx->uring_lock);
3465
ret = io_submit_sqes(ctx, to_submit);
3466
if (ret != to_submit) {
3467
mutex_unlock(&ctx->uring_lock);
3468
goto out;
3469
}
3470
if (flags & IORING_ENTER_GETEVENTS) {
3471
if (ctx->syscall_iopoll)
3472
goto iopoll_locked;
3473
/*
3474
* Ignore errors, we'll soon call io_cqring_wait() and
3475
* it should handle ownership problems if any.
3476
*/
3477
if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3478
(void)io_run_local_work_locked(ctx, min_complete);
3479
}
3480
mutex_unlock(&ctx->uring_lock);
3481
}
3482
3483
if (flags & IORING_ENTER_GETEVENTS) {
3484
int ret2;
3485
3486
if (ctx->syscall_iopoll) {
3487
/*
3488
* We disallow the app entering submit/complete with
3489
* polling, but we still need to lock the ring to
3490
* prevent racing with polled issue that got punted to
3491
* a workqueue.
3492
*/
3493
mutex_lock(&ctx->uring_lock);
3494
iopoll_locked:
3495
ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3496
if (likely(!ret2))
3497
ret2 = io_iopoll_check(ctx, min_complete);
3498
mutex_unlock(&ctx->uring_lock);
3499
} else {
3500
struct ext_arg ext_arg = { .argsz = argsz };
3501
3502
ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3503
if (likely(!ret2))
3504
ret2 = io_cqring_wait(ctx, min_complete, flags,
3505
&ext_arg);
3506
}
3507
3508
if (!ret) {
3509
ret = ret2;
3510
3511
/*
3512
* EBADR indicates that one or more CQE were dropped.
3513
* Once the user has been informed we can clear the bit
3514
* as they are obviously ok with those drops.
3515
*/
3516
if (unlikely(ret2 == -EBADR))
3517
clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3518
&ctx->check_cq);
3519
}
3520
}
3521
out:
3522
if (!(flags & IORING_ENTER_REGISTERED_RING))
3523
fput(file);
3524
return ret;
3525
}
3526
3527
static const struct file_operations io_uring_fops = {
3528
.release = io_uring_release,
3529
.mmap = io_uring_mmap,
3530
.get_unmapped_area = io_uring_get_unmapped_area,
3531
#ifndef CONFIG_MMU
3532
.mmap_capabilities = io_uring_nommu_mmap_capabilities,
3533
#endif
3534
.poll = io_uring_poll,
3535
#ifdef CONFIG_PROC_FS
3536
.show_fdinfo = io_uring_show_fdinfo,
3537
#endif
3538
};
3539
3540
bool io_is_uring_fops(struct file *file)
3541
{
3542
return file->f_op == &io_uring_fops;
3543
}
3544
3545
static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3546
struct io_uring_params *p)
3547
{
3548
struct io_uring_region_desc rd;
3549
struct io_rings *rings;
3550
size_t size, sq_array_offset;
3551
int ret;
3552
3553
/* make sure these are sane, as we already accounted them */
3554
ctx->sq_entries = p->sq_entries;
3555
ctx->cq_entries = p->cq_entries;
3556
3557
size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3558
&sq_array_offset);
3559
if (size == SIZE_MAX)
3560
return -EOVERFLOW;
3561
3562
memset(&rd, 0, sizeof(rd));
3563
rd.size = PAGE_ALIGN(size);
3564
if (ctx->flags & IORING_SETUP_NO_MMAP) {
3565
rd.user_addr = p->cq_off.user_addr;
3566
rd.flags |= IORING_MEM_REGION_TYPE_USER;
3567
}
3568
ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3569
if (ret)
3570
return ret;
3571
ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3572
3573
if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3574
ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3575
rings->sq_ring_mask = p->sq_entries - 1;
3576
rings->cq_ring_mask = p->cq_entries - 1;
3577
rings->sq_ring_entries = p->sq_entries;
3578
rings->cq_ring_entries = p->cq_entries;
3579
3580
if (p->flags & IORING_SETUP_SQE128)
3581
size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3582
else
3583
size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3584
if (size == SIZE_MAX) {
3585
io_rings_free(ctx);
3586
return -EOVERFLOW;
3587
}
3588
3589
memset(&rd, 0, sizeof(rd));
3590
rd.size = PAGE_ALIGN(size);
3591
if (ctx->flags & IORING_SETUP_NO_MMAP) {
3592
rd.user_addr = p->sq_off.user_addr;
3593
rd.flags |= IORING_MEM_REGION_TYPE_USER;
3594
}
3595
ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3596
if (ret) {
3597
io_rings_free(ctx);
3598
return ret;
3599
}
3600
ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3601
return 0;
3602
}
3603
3604
static int io_uring_install_fd(struct file *file)
3605
{
3606
int fd;
3607
3608
fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3609
if (fd < 0)
3610
return fd;
3611
fd_install(fd, file);
3612
return fd;
3613
}
3614
3615
/*
3616
* Allocate an anonymous fd, this is what constitutes the application
3617
* visible backing of an io_uring instance. The application mmaps this
3618
* fd to gain access to the SQ/CQ ring details.
3619
*/
3620
static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3621
{
3622
/* Create a new inode so that the LSM can block the creation. */
3623
return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3624
O_RDWR | O_CLOEXEC, NULL);
3625
}
3626
3627
static int io_uring_sanitise_params(struct io_uring_params *p)
3628
{
3629
unsigned flags = p->flags;
3630
3631
/* There is no way to mmap rings without a real fd */
3632
if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3633
!(flags & IORING_SETUP_NO_MMAP))
3634
return -EINVAL;
3635
3636
if (flags & IORING_SETUP_SQPOLL) {
3637
/* IPI related flags don't make sense with SQPOLL */
3638
if (flags & (IORING_SETUP_COOP_TASKRUN |
3639
IORING_SETUP_TASKRUN_FLAG |
3640
IORING_SETUP_DEFER_TASKRUN))
3641
return -EINVAL;
3642
}
3643
3644
if (flags & IORING_SETUP_TASKRUN_FLAG) {
3645
if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3646
IORING_SETUP_DEFER_TASKRUN)))
3647
return -EINVAL;
3648
}
3649
3650
/* HYBRID_IOPOLL only valid with IOPOLL */
3651
if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3652
return -EINVAL;
3653
3654
/*
3655
* For DEFER_TASKRUN we require the completion task to be the same as
3656
* the submission task. This implies that there is only one submitter.
3657
*/
3658
if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3659
!(flags & IORING_SETUP_SINGLE_ISSUER))
3660
return -EINVAL;
3661
3662
return 0;
3663
}
3664
3665
int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3666
{
3667
if (!entries)
3668
return -EINVAL;
3669
if (entries > IORING_MAX_ENTRIES) {
3670
if (!(p->flags & IORING_SETUP_CLAMP))
3671
return -EINVAL;
3672
entries = IORING_MAX_ENTRIES;
3673
}
3674
3675
/*
3676
* Use twice as many entries for the CQ ring. It's possible for the
3677
* application to drive a higher depth than the size of the SQ ring,
3678
* since the sqes are only used at submission time. This allows for
3679
* some flexibility in overcommitting a bit. If the application has
3680
* set IORING_SETUP_CQSIZE, it will have passed in the desired number
3681
* of CQ ring entries manually.
3682
*/
3683
p->sq_entries = roundup_pow_of_two(entries);
3684
if (p->flags & IORING_SETUP_CQSIZE) {
3685
/*
3686
* If IORING_SETUP_CQSIZE is set, we do the same roundup
3687
* to a power-of-two, if it isn't already. We do NOT impose
3688
* any cq vs sq ring sizing.
3689
*/
3690
if (!p->cq_entries)
3691
return -EINVAL;
3692
if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3693
if (!(p->flags & IORING_SETUP_CLAMP))
3694
return -EINVAL;
3695
p->cq_entries = IORING_MAX_CQ_ENTRIES;
3696
}
3697
p->cq_entries = roundup_pow_of_two(p->cq_entries);
3698
if (p->cq_entries < p->sq_entries)
3699
return -EINVAL;
3700
} else {
3701
p->cq_entries = 2 * p->sq_entries;
3702
}
3703
3704
p->sq_off.head = offsetof(struct io_rings, sq.head);
3705
p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3706
p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3707
p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3708
p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3709
p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3710
p->sq_off.resv1 = 0;
3711
if (!(p->flags & IORING_SETUP_NO_MMAP))
3712
p->sq_off.user_addr = 0;
3713
3714
p->cq_off.head = offsetof(struct io_rings, cq.head);
3715
p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3716
p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3717
p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3718
p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3719
p->cq_off.cqes = offsetof(struct io_rings, cqes);
3720
p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3721
p->cq_off.resv1 = 0;
3722
if (!(p->flags & IORING_SETUP_NO_MMAP))
3723
p->cq_off.user_addr = 0;
3724
3725
return 0;
3726
}
3727
3728
static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3729
struct io_uring_params __user *params)
3730
{
3731
struct io_ring_ctx *ctx;
3732
struct io_uring_task *tctx;
3733
struct file *file;
3734
int ret;
3735
3736
ret = io_uring_sanitise_params(p);
3737
if (ret)
3738
return ret;
3739
3740
ret = io_uring_fill_params(entries, p);
3741
if (unlikely(ret))
3742
return ret;
3743
3744
ctx = io_ring_ctx_alloc(p);
3745
if (!ctx)
3746
return -ENOMEM;
3747
3748
ctx->clockid = CLOCK_MONOTONIC;
3749
ctx->clock_offset = 0;
3750
3751
if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3752
static_branch_inc(&io_key_has_sqarray);
3753
3754
if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3755
!(ctx->flags & IORING_SETUP_IOPOLL) &&
3756
!(ctx->flags & IORING_SETUP_SQPOLL))
3757
ctx->task_complete = true;
3758
3759
if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3760
ctx->lockless_cq = true;
3761
3762
/*
3763
* lazy poll_wq activation relies on ->task_complete for synchronisation
3764
* purposes, see io_activate_pollwq()
3765
*/
3766
if (!ctx->task_complete)
3767
ctx->poll_activated = true;
3768
3769
/*
3770
* When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3771
* space applications don't need to do io completion events
3772
* polling again, they can rely on io_sq_thread to do polling
3773
* work, which can reduce cpu usage and uring_lock contention.
3774
*/
3775
if (ctx->flags & IORING_SETUP_IOPOLL &&
3776
!(ctx->flags & IORING_SETUP_SQPOLL))
3777
ctx->syscall_iopoll = 1;
3778
3779
ctx->compat = in_compat_syscall();
3780
if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3781
ctx->user = get_uid(current_user());
3782
3783
/*
3784
* For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3785
* COOP_TASKRUN is set, then IPIs are never needed by the app.
3786
*/
3787
if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3788
ctx->notify_method = TWA_SIGNAL_NO_IPI;
3789
else
3790
ctx->notify_method = TWA_SIGNAL;
3791
3792
/*
3793
* This is just grabbed for accounting purposes. When a process exits,
3794
* the mm is exited and dropped before the files, hence we need to hang
3795
* on to this mm purely for the purposes of being able to unaccount
3796
* memory (locked/pinned vm). It's not used for anything else.
3797
*/
3798
mmgrab(current->mm);
3799
ctx->mm_account = current->mm;
3800
3801
ret = io_allocate_scq_urings(ctx, p);
3802
if (ret)
3803
goto err;
3804
3805
if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3806
p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3807
3808
ret = io_sq_offload_create(ctx, p);
3809
if (ret)
3810
goto err;
3811
3812
p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3813
IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3814
IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3815
IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3816
IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3817
IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3818
IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3819
IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3820
IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT;
3821
3822
if (copy_to_user(params, p, sizeof(*p))) {
3823
ret = -EFAULT;
3824
goto err;
3825
}
3826
3827
if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3828
&& !(ctx->flags & IORING_SETUP_R_DISABLED))
3829
WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3830
3831
file = io_uring_get_file(ctx);
3832
if (IS_ERR(file)) {
3833
ret = PTR_ERR(file);
3834
goto err;
3835
}
3836
3837
ret = __io_uring_add_tctx_node(ctx);
3838
if (ret)
3839
goto err_fput;
3840
tctx = current->io_uring;
3841
3842
/*
3843
* Install ring fd as the very last thing, so we don't risk someone
3844
* having closed it before we finish setup
3845
*/
3846
if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3847
ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3848
else
3849
ret = io_uring_install_fd(file);
3850
if (ret < 0)
3851
goto err_fput;
3852
3853
trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3854
return ret;
3855
err:
3856
io_ring_ctx_wait_and_kill(ctx);
3857
return ret;
3858
err_fput:
3859
fput(file);
3860
return ret;
3861
}
3862
3863
/*
3864
* Sets up an aio uring context, and returns the fd. Applications asks for a
3865
* ring size, we return the actual sq/cq ring sizes (among other things) in the
3866
* params structure passed in.
3867
*/
3868
static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3869
{
3870
struct io_uring_params p;
3871
int i;
3872
3873
if (copy_from_user(&p, params, sizeof(p)))
3874
return -EFAULT;
3875
for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3876
if (p.resv[i])
3877
return -EINVAL;
3878
}
3879
3880
if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3881
IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3882
IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3883
IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3884
IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3885
IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3886
IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3887
IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3888
IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3889
return -EINVAL;
3890
3891
return io_uring_create(entries, &p, params);
3892
}
3893
3894
static inline int io_uring_allowed(void)
3895
{
3896
int disabled = READ_ONCE(sysctl_io_uring_disabled);
3897
kgid_t io_uring_group;
3898
3899
if (disabled == 2)
3900
return -EPERM;
3901
3902
if (disabled == 0 || capable(CAP_SYS_ADMIN))
3903
goto allowed_lsm;
3904
3905
io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3906
if (!gid_valid(io_uring_group))
3907
return -EPERM;
3908
3909
if (!in_group_p(io_uring_group))
3910
return -EPERM;
3911
3912
allowed_lsm:
3913
return security_uring_allowed();
3914
}
3915
3916
SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3917
struct io_uring_params __user *, params)
3918
{
3919
int ret;
3920
3921
ret = io_uring_allowed();
3922
if (ret)
3923
return ret;
3924
3925
return io_uring_setup(entries, params);
3926
}
3927
3928
static int __init io_uring_init(void)
3929
{
3930
struct kmem_cache_args kmem_args = {
3931
.useroffset = offsetof(struct io_kiocb, cmd.data),
3932
.usersize = sizeof_field(struct io_kiocb, cmd.data),
3933
.freeptr_offset = offsetof(struct io_kiocb, work),
3934
.use_freeptr_offset = true,
3935
};
3936
3937
#define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3938
BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3939
BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3940
} while (0)
3941
3942
#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3943
__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3944
#define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3945
__BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3946
BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3947
BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3948
BUILD_BUG_SQE_ELEM(1, __u8, flags);
3949
BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3950
BUILD_BUG_SQE_ELEM(4, __s32, fd);
3951
BUILD_BUG_SQE_ELEM(8, __u64, off);
3952
BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3953
BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3954
BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3955
BUILD_BUG_SQE_ELEM(16, __u64, addr);
3956
BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3957
BUILD_BUG_SQE_ELEM(24, __u32, len);
3958
BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3959
BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3960
BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3961
BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3962
BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3963
BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3964
BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3965
BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3966
BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3967
BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3968
BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3969
BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3970
BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3971
BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3972
BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3973
BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3974
BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3975
BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3976
BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3977
BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3978
BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3979
BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3980
BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3981
BUILD_BUG_SQE_ELEM(42, __u16, personality);
3982
BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3983
BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3984
BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3985
BUILD_BUG_SQE_ELEM(44, __u8, write_stream);
3986
BUILD_BUG_SQE_ELEM(45, __u8, __pad4[0]);
3987
BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3988
BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3989
BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3990
BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3991
BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3992
BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3993
3994
BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3995
sizeof(struct io_uring_rsrc_update));
3996
BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3997
sizeof(struct io_uring_rsrc_update2));
3998
3999
/* ->buf_index is u16 */
4000
BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
4001
BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
4002
offsetof(struct io_uring_buf_ring, tail));
4003
4004
/* should fit into one byte */
4005
BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
4006
BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
4007
BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
4008
4009
BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
4010
4011
BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
4012
4013
/* top 8bits are for internal use */
4014
BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
4015
4016
io_uring_optable_init();
4017
4018
/* imu->dir is u8 */
4019
BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
4020
4021
/*
4022
* Allow user copy in the per-command field, which starts after the
4023
* file in io_kiocb and until the opcode field. The openat2 handling
4024
* requires copying in user memory into the io_kiocb object in that
4025
* range, and HARDENED_USERCOPY will complain if we haven't
4026
* correctly annotated this range.
4027
*/
4028
req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
4029
SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
4030
SLAB_TYPESAFE_BY_RCU);
4031
4032
iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
4033
BUG_ON(!iou_wq);
4034
4035
#ifdef CONFIG_SYSCTL
4036
register_sysctl_init("kernel", kernel_io_uring_disabled_table);
4037
#endif
4038
4039
return 0;
4040
};
4041
__initcall(io_uring_init);
4042
4043