Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/ipc/sem.c
26131 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* linux/ipc/sem.c
4
* Copyright (C) 1992 Krishna Balasubramanian
5
* Copyright (C) 1995 Eric Schenk, Bruno Haible
6
*
7
* /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <[email protected]>
8
*
9
* SMP-threaded, sysctl's added
10
* (c) 1999 Manfred Spraul <[email protected]>
11
* Enforced range limit on SEM_UNDO
12
* (c) 2001 Red Hat Inc
13
* Lockless wakeup
14
* (c) 2003 Manfred Spraul <[email protected]>
15
* (c) 2016 Davidlohr Bueso <[email protected]>
16
* Further wakeup optimizations, documentation
17
* (c) 2010 Manfred Spraul <[email protected]>
18
*
19
* support for audit of ipc object properties and permission changes
20
* Dustin Kirkland <[email protected]>
21
*
22
* namespaces support
23
* OpenVZ, SWsoft Inc.
24
* Pavel Emelianov <[email protected]>
25
*
26
* Implementation notes: (May 2010)
27
* This file implements System V semaphores.
28
*
29
* User space visible behavior:
30
* - FIFO ordering for semop() operations (just FIFO, not starvation
31
* protection)
32
* - multiple semaphore operations that alter the same semaphore in
33
* one semop() are handled.
34
* - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35
* SETALL calls.
36
* - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37
* - undo adjustments at process exit are limited to 0..SEMVMX.
38
* - namespace are supported.
39
* - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtime by writing
40
* to /proc/sys/kernel/sem.
41
* - statistics about the usage are reported in /proc/sysvipc/sem.
42
*
43
* Internals:
44
* - scalability:
45
* - all global variables are read-mostly.
46
* - semop() calls and semctl(RMID) are synchronized by RCU.
47
* - most operations do write operations (actually: spin_lock calls) to
48
* the per-semaphore array structure.
49
* Thus: Perfect SMP scaling between independent semaphore arrays.
50
* If multiple semaphores in one array are used, then cache line
51
* trashing on the semaphore array spinlock will limit the scaling.
52
* - semncnt and semzcnt are calculated on demand in count_semcnt()
53
* - the task that performs a successful semop() scans the list of all
54
* sleeping tasks and completes any pending operations that can be fulfilled.
55
* Semaphores are actively given to waiting tasks (necessary for FIFO).
56
* (see update_queue())
57
* - To improve the scalability, the actual wake-up calls are performed after
58
* dropping all locks. (see wake_up_sem_queue_prepare())
59
* - All work is done by the waker, the woken up task does not have to do
60
* anything - not even acquiring a lock or dropping a refcount.
61
* - A woken up task may not even touch the semaphore array anymore, it may
62
* have been destroyed already by a semctl(RMID).
63
* - UNDO values are stored in an array (one per process and per
64
* semaphore array, lazily allocated). For backwards compatibility, multiple
65
* modes for the UNDO variables are supported (per process, per thread)
66
* (see copy_semundo, CLONE_SYSVSEM)
67
* - There are two lists of the pending operations: a per-array list
68
* and per-semaphore list (stored in the array). This allows to achieve FIFO
69
* ordering without always scanning all pending operations.
70
* The worst-case behavior is nevertheless O(N^2) for N wakeups.
71
*/
72
73
#include <linux/compat.h>
74
#include <linux/slab.h>
75
#include <linux/spinlock.h>
76
#include <linux/init.h>
77
#include <linux/proc_fs.h>
78
#include <linux/time.h>
79
#include <linux/security.h>
80
#include <linux/syscalls.h>
81
#include <linux/audit.h>
82
#include <linux/capability.h>
83
#include <linux/seq_file.h>
84
#include <linux/rwsem.h>
85
#include <linux/nsproxy.h>
86
#include <linux/ipc_namespace.h>
87
#include <linux/sched/wake_q.h>
88
#include <linux/nospec.h>
89
#include <linux/rhashtable.h>
90
91
#include <linux/uaccess.h>
92
#include "util.h"
93
94
/* One semaphore structure for each semaphore in the system. */
95
struct sem {
96
int semval; /* current value */
97
/*
98
* PID of the process that last modified the semaphore. For
99
* Linux, specifically these are:
100
* - semop
101
* - semctl, via SETVAL and SETALL.
102
* - at task exit when performing undo adjustments (see exit_sem).
103
*/
104
struct pid *sempid;
105
spinlock_t lock; /* spinlock for fine-grained semtimedop */
106
struct list_head pending_alter; /* pending single-sop operations */
107
/* that alter the semaphore */
108
struct list_head pending_const; /* pending single-sop operations */
109
/* that do not alter the semaphore*/
110
time64_t sem_otime; /* candidate for sem_otime */
111
} ____cacheline_aligned_in_smp;
112
113
/* One sem_array data structure for each set of semaphores in the system. */
114
struct sem_array {
115
struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116
time64_t sem_ctime; /* create/last semctl() time */
117
struct list_head pending_alter; /* pending operations */
118
/* that alter the array */
119
struct list_head pending_const; /* pending complex operations */
120
/* that do not alter semvals */
121
struct list_head list_id; /* undo requests on this array */
122
int sem_nsems; /* no. of semaphores in array */
123
int complex_count; /* pending complex operations */
124
unsigned int use_global_lock;/* >0: global lock required */
125
126
struct sem sems[];
127
} __randomize_layout;
128
129
/* One queue for each sleeping process in the system. */
130
struct sem_queue {
131
struct list_head list; /* queue of pending operations */
132
struct task_struct *sleeper; /* this process */
133
struct sem_undo *undo; /* undo structure */
134
struct pid *pid; /* process id of requesting process */
135
int status; /* completion status of operation */
136
struct sembuf *sops; /* array of pending operations */
137
struct sembuf *blocking; /* the operation that blocked */
138
int nsops; /* number of operations */
139
bool alter; /* does *sops alter the array? */
140
bool dupsop; /* sops on more than one sem_num */
141
};
142
143
/* Each task has a list of undo requests. They are executed automatically
144
* when the process exits.
145
*/
146
struct sem_undo {
147
struct list_head list_proc; /* per-process list: *
148
* all undos from one process
149
* rcu protected */
150
struct rcu_head rcu; /* rcu struct for sem_undo */
151
struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152
struct list_head list_id; /* per semaphore array list:
153
* all undos for one array */
154
int semid; /* semaphore set identifier */
155
short semadj[]; /* array of adjustments */
156
/* one per semaphore */
157
};
158
159
/* sem_undo_list controls shared access to the list of sem_undo structures
160
* that may be shared among all a CLONE_SYSVSEM task group.
161
*/
162
struct sem_undo_list {
163
refcount_t refcnt;
164
spinlock_t lock;
165
struct list_head list_proc;
166
};
167
168
169
#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
170
171
static int newary(struct ipc_namespace *, struct ipc_params *);
172
static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
173
#ifdef CONFIG_PROC_FS
174
static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
175
#endif
176
177
#define SEMMSL_FAST 256 /* 512 bytes on stack */
178
#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
180
/*
181
* Switching from the mode suitable for simple ops
182
* to the mode for complex ops is costly. Therefore:
183
* use some hysteresis
184
*/
185
#define USE_GLOBAL_LOCK_HYSTERESIS 10
186
187
/*
188
* Locking:
189
* a) global sem_lock() for read/write
190
* sem_undo.id_next,
191
* sem_array.complex_count,
192
* sem_array.pending{_alter,_const},
193
* sem_array.sem_undo
194
*
195
* b) global or semaphore sem_lock() for read/write:
196
* sem_array.sems[i].pending_{const,alter}:
197
*
198
* c) special:
199
* sem_undo_list.list_proc:
200
* * undo_list->lock for write
201
* * rcu for read
202
* use_global_lock:
203
* * global sem_lock() for write
204
* * either local or global sem_lock() for read.
205
*
206
* Memory ordering:
207
* Most ordering is enforced by using spin_lock() and spin_unlock().
208
*
209
* Exceptions:
210
* 1) use_global_lock: (SEM_BARRIER_1)
211
* Setting it from non-zero to 0 is a RELEASE, this is ensured by
212
* using smp_store_release(): Immediately after setting it to 0,
213
* a simple op can start.
214
* Testing if it is non-zero is an ACQUIRE, this is ensured by using
215
* smp_load_acquire().
216
* Setting it from 0 to non-zero must be ordered with regards to
217
* this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218
* is inside a spin_lock() and after a write from 0 to non-zero a
219
* spin_lock()+spin_unlock() is done.
220
* To prevent the compiler/cpu temporarily writing 0 to use_global_lock,
221
* READ_ONCE()/WRITE_ONCE() is used.
222
*
223
* 2) queue.status: (SEM_BARRIER_2)
224
* Initialization is done while holding sem_lock(), so no further barrier is
225
* required.
226
* Setting it to a result code is a RELEASE, this is ensured by both a
227
* smp_store_release() (for case a) and while holding sem_lock()
228
* (for case b).
229
* The ACQUIRE when reading the result code without holding sem_lock() is
230
* achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
231
* (case a above).
232
* Reading the result code while holding sem_lock() needs no further barriers,
233
* the locks inside sem_lock() enforce ordering (case b above)
234
*
235
* 3) current->state:
236
* current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
237
* The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
238
* happen immediately after calling wake_q_add. As wake_q_add_safe() is called
239
* when holding sem_lock(), no further barriers are required.
240
*
241
* See also ipc/mqueue.c for more details on the covered races.
242
*/
243
244
#define sc_semmsl sem_ctls[0]
245
#define sc_semmns sem_ctls[1]
246
#define sc_semopm sem_ctls[2]
247
#define sc_semmni sem_ctls[3]
248
249
void sem_init_ns(struct ipc_namespace *ns)
250
{
251
ns->sc_semmsl = SEMMSL;
252
ns->sc_semmns = SEMMNS;
253
ns->sc_semopm = SEMOPM;
254
ns->sc_semmni = SEMMNI;
255
ns->used_sems = 0;
256
ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
257
}
258
259
#ifdef CONFIG_IPC_NS
260
void sem_exit_ns(struct ipc_namespace *ns)
261
{
262
free_ipcs(ns, &sem_ids(ns), freeary);
263
idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
264
rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
265
}
266
#endif
267
268
void __init sem_init(void)
269
{
270
sem_init_ns(&init_ipc_ns);
271
ipc_init_proc_interface("sysvipc/sem",
272
" key semid perms nsems uid gid cuid cgid otime ctime\n",
273
IPC_SEM_IDS, sysvipc_sem_proc_show);
274
}
275
276
/**
277
* unmerge_queues - unmerge queues, if possible.
278
* @sma: semaphore array
279
*
280
* The function unmerges the wait queues if complex_count is 0.
281
* It must be called prior to dropping the global semaphore array lock.
282
*/
283
static void unmerge_queues(struct sem_array *sma)
284
{
285
struct sem_queue *q, *tq;
286
287
/* complex operations still around? */
288
if (sma->complex_count)
289
return;
290
/*
291
* We will switch back to simple mode.
292
* Move all pending operation back into the per-semaphore
293
* queues.
294
*/
295
list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
296
struct sem *curr;
297
curr = &sma->sems[q->sops[0].sem_num];
298
299
list_add_tail(&q->list, &curr->pending_alter);
300
}
301
INIT_LIST_HEAD(&sma->pending_alter);
302
}
303
304
/**
305
* merge_queues - merge single semop queues into global queue
306
* @sma: semaphore array
307
*
308
* This function merges all per-semaphore queues into the global queue.
309
* It is necessary to achieve FIFO ordering for the pending single-sop
310
* operations when a multi-semop operation must sleep.
311
* Only the alter operations must be moved, the const operations can stay.
312
*/
313
static void merge_queues(struct sem_array *sma)
314
{
315
int i;
316
for (i = 0; i < sma->sem_nsems; i++) {
317
struct sem *sem = &sma->sems[i];
318
319
list_splice_init(&sem->pending_alter, &sma->pending_alter);
320
}
321
}
322
323
static void sem_rcu_free(struct rcu_head *head)
324
{
325
struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
326
struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
327
328
security_sem_free(&sma->sem_perm);
329
kvfree(sma);
330
}
331
332
/*
333
* Enter the mode suitable for non-simple operations:
334
* Caller must own sem_perm.lock.
335
*/
336
static void complexmode_enter(struct sem_array *sma)
337
{
338
int i;
339
struct sem *sem;
340
341
if (sma->use_global_lock > 0) {
342
/*
343
* We are already in global lock mode.
344
* Nothing to do, just reset the
345
* counter until we return to simple mode.
346
*/
347
WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
348
return;
349
}
350
WRITE_ONCE(sma->use_global_lock, USE_GLOBAL_LOCK_HYSTERESIS);
351
352
for (i = 0; i < sma->sem_nsems; i++) {
353
sem = &sma->sems[i];
354
spin_lock(&sem->lock);
355
spin_unlock(&sem->lock);
356
}
357
}
358
359
/*
360
* Try to leave the mode that disallows simple operations:
361
* Caller must own sem_perm.lock.
362
*/
363
static void complexmode_tryleave(struct sem_array *sma)
364
{
365
if (sma->complex_count) {
366
/* Complex ops are sleeping.
367
* We must stay in complex mode
368
*/
369
return;
370
}
371
if (sma->use_global_lock == 1) {
372
373
/* See SEM_BARRIER_1 for purpose/pairing */
374
smp_store_release(&sma->use_global_lock, 0);
375
} else {
376
WRITE_ONCE(sma->use_global_lock,
377
sma->use_global_lock-1);
378
}
379
}
380
381
#define SEM_GLOBAL_LOCK (-1)
382
/*
383
* If the request contains only one semaphore operation, and there are
384
* no complex transactions pending, lock only the semaphore involved.
385
* Otherwise, lock the entire semaphore array, since we either have
386
* multiple semaphores in our own semops, or we need to look at
387
* semaphores from other pending complex operations.
388
*/
389
static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
390
int nsops)
391
{
392
struct sem *sem;
393
int idx;
394
395
if (nsops != 1) {
396
/* Complex operation - acquire a full lock */
397
ipc_lock_object(&sma->sem_perm);
398
399
/* Prevent parallel simple ops */
400
complexmode_enter(sma);
401
return SEM_GLOBAL_LOCK;
402
}
403
404
/*
405
* Only one semaphore affected - try to optimize locking.
406
* Optimized locking is possible if no complex operation
407
* is either enqueued or processed right now.
408
*
409
* Both facts are tracked by use_global_mode.
410
*/
411
idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
412
sem = &sma->sems[idx];
413
414
/*
415
* Initial check for use_global_lock. Just an optimization,
416
* no locking, no memory barrier.
417
*/
418
if (!READ_ONCE(sma->use_global_lock)) {
419
/*
420
* It appears that no complex operation is around.
421
* Acquire the per-semaphore lock.
422
*/
423
spin_lock(&sem->lock);
424
425
/* see SEM_BARRIER_1 for purpose/pairing */
426
if (!smp_load_acquire(&sma->use_global_lock)) {
427
/* fast path successful! */
428
return sops->sem_num;
429
}
430
spin_unlock(&sem->lock);
431
}
432
433
/* slow path: acquire the full lock */
434
ipc_lock_object(&sma->sem_perm);
435
436
if (sma->use_global_lock == 0) {
437
/*
438
* The use_global_lock mode ended while we waited for
439
* sma->sem_perm.lock. Thus we must switch to locking
440
* with sem->lock.
441
* Unlike in the fast path, there is no need to recheck
442
* sma->use_global_lock after we have acquired sem->lock:
443
* We own sma->sem_perm.lock, thus use_global_lock cannot
444
* change.
445
*/
446
spin_lock(&sem->lock);
447
448
ipc_unlock_object(&sma->sem_perm);
449
return sops->sem_num;
450
} else {
451
/*
452
* Not a false alarm, thus continue to use the global lock
453
* mode. No need for complexmode_enter(), this was done by
454
* the caller that has set use_global_mode to non-zero.
455
*/
456
return SEM_GLOBAL_LOCK;
457
}
458
}
459
460
static inline void sem_unlock(struct sem_array *sma, int locknum)
461
{
462
if (locknum == SEM_GLOBAL_LOCK) {
463
unmerge_queues(sma);
464
complexmode_tryleave(sma);
465
ipc_unlock_object(&sma->sem_perm);
466
} else {
467
struct sem *sem = &sma->sems[locknum];
468
spin_unlock(&sem->lock);
469
}
470
}
471
472
/*
473
* sem_lock_(check_) routines are called in the paths where the rwsem
474
* is not held.
475
*
476
* The caller holds the RCU read lock.
477
*/
478
static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
479
{
480
struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
481
482
if (IS_ERR(ipcp))
483
return ERR_CAST(ipcp);
484
485
return container_of(ipcp, struct sem_array, sem_perm);
486
}
487
488
static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
489
int id)
490
{
491
struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
492
493
if (IS_ERR(ipcp))
494
return ERR_CAST(ipcp);
495
496
return container_of(ipcp, struct sem_array, sem_perm);
497
}
498
499
static inline void sem_lock_and_putref(struct sem_array *sma)
500
{
501
sem_lock(sma, NULL, -1);
502
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
503
}
504
505
static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
506
{
507
ipc_rmid(&sem_ids(ns), &s->sem_perm);
508
}
509
510
static struct sem_array *sem_alloc(size_t nsems)
511
{
512
struct sem_array *sma;
513
514
if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
515
return NULL;
516
517
sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL_ACCOUNT);
518
if (unlikely(!sma))
519
return NULL;
520
521
return sma;
522
}
523
524
/**
525
* newary - Create a new semaphore set
526
* @ns: namespace
527
* @params: ptr to the structure that contains key, semflg and nsems
528
*
529
* Called with sem_ids.rwsem held (as a writer)
530
*/
531
static int newary(struct ipc_namespace *ns, struct ipc_params *params)
532
{
533
int retval;
534
struct sem_array *sma;
535
key_t key = params->key;
536
int nsems = params->u.nsems;
537
int semflg = params->flg;
538
int i;
539
540
if (!nsems)
541
return -EINVAL;
542
if (ns->used_sems + nsems > ns->sc_semmns)
543
return -ENOSPC;
544
545
sma = sem_alloc(nsems);
546
if (!sma)
547
return -ENOMEM;
548
549
sma->sem_perm.mode = (semflg & S_IRWXUGO);
550
sma->sem_perm.key = key;
551
552
sma->sem_perm.security = NULL;
553
retval = security_sem_alloc(&sma->sem_perm);
554
if (retval) {
555
kvfree(sma);
556
return retval;
557
}
558
559
for (i = 0; i < nsems; i++) {
560
INIT_LIST_HEAD(&sma->sems[i].pending_alter);
561
INIT_LIST_HEAD(&sma->sems[i].pending_const);
562
spin_lock_init(&sma->sems[i].lock);
563
}
564
565
sma->complex_count = 0;
566
sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
567
INIT_LIST_HEAD(&sma->pending_alter);
568
INIT_LIST_HEAD(&sma->pending_const);
569
INIT_LIST_HEAD(&sma->list_id);
570
sma->sem_nsems = nsems;
571
sma->sem_ctime = ktime_get_real_seconds();
572
573
/* ipc_addid() locks sma upon success. */
574
retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
575
if (retval < 0) {
576
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
577
return retval;
578
}
579
ns->used_sems += nsems;
580
581
sem_unlock(sma, -1);
582
rcu_read_unlock();
583
584
return sma->sem_perm.id;
585
}
586
587
588
/*
589
* Called with sem_ids.rwsem and ipcp locked.
590
*/
591
static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
592
{
593
struct sem_array *sma;
594
595
sma = container_of(ipcp, struct sem_array, sem_perm);
596
if (params->u.nsems > sma->sem_nsems)
597
return -EINVAL;
598
599
return 0;
600
}
601
602
long ksys_semget(key_t key, int nsems, int semflg)
603
{
604
struct ipc_namespace *ns;
605
static const struct ipc_ops sem_ops = {
606
.getnew = newary,
607
.associate = security_sem_associate,
608
.more_checks = sem_more_checks,
609
};
610
struct ipc_params sem_params;
611
612
ns = current->nsproxy->ipc_ns;
613
614
if (nsems < 0 || nsems > ns->sc_semmsl)
615
return -EINVAL;
616
617
sem_params.key = key;
618
sem_params.flg = semflg;
619
sem_params.u.nsems = nsems;
620
621
return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
622
}
623
624
SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
625
{
626
return ksys_semget(key, nsems, semflg);
627
}
628
629
/**
630
* perform_atomic_semop[_slow] - Attempt to perform semaphore
631
* operations on a given array.
632
* @sma: semaphore array
633
* @q: struct sem_queue that describes the operation
634
*
635
* Caller blocking are as follows, based the value
636
* indicated by the semaphore operation (sem_op):
637
*
638
* (1) >0 never blocks.
639
* (2) 0 (wait-for-zero operation): semval is non-zero.
640
* (3) <0 attempting to decrement semval to a value smaller than zero.
641
*
642
* Returns 0 if the operation was possible.
643
* Returns 1 if the operation is impossible, the caller must sleep.
644
* Returns <0 for error codes.
645
*/
646
static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
647
{
648
int result, sem_op, nsops;
649
struct pid *pid;
650
struct sembuf *sop;
651
struct sem *curr;
652
struct sembuf *sops;
653
struct sem_undo *un;
654
655
sops = q->sops;
656
nsops = q->nsops;
657
un = q->undo;
658
659
for (sop = sops; sop < sops + nsops; sop++) {
660
int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
661
curr = &sma->sems[idx];
662
sem_op = sop->sem_op;
663
result = curr->semval;
664
665
if (!sem_op && result)
666
goto would_block;
667
668
result += sem_op;
669
if (result < 0)
670
goto would_block;
671
if (result > SEMVMX)
672
goto out_of_range;
673
674
if (sop->sem_flg & SEM_UNDO) {
675
int undo = un->semadj[sop->sem_num] - sem_op;
676
/* Exceeding the undo range is an error. */
677
if (undo < (-SEMAEM - 1) || undo > SEMAEM)
678
goto out_of_range;
679
un->semadj[sop->sem_num] = undo;
680
}
681
682
curr->semval = result;
683
}
684
685
sop--;
686
pid = q->pid;
687
while (sop >= sops) {
688
ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
689
sop--;
690
}
691
692
return 0;
693
694
out_of_range:
695
result = -ERANGE;
696
goto undo;
697
698
would_block:
699
q->blocking = sop;
700
701
if (sop->sem_flg & IPC_NOWAIT)
702
result = -EAGAIN;
703
else
704
result = 1;
705
706
undo:
707
sop--;
708
while (sop >= sops) {
709
sem_op = sop->sem_op;
710
sma->sems[sop->sem_num].semval -= sem_op;
711
if (sop->sem_flg & SEM_UNDO)
712
un->semadj[sop->sem_num] += sem_op;
713
sop--;
714
}
715
716
return result;
717
}
718
719
static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
720
{
721
int result, sem_op, nsops;
722
struct sembuf *sop;
723
struct sem *curr;
724
struct sembuf *sops;
725
struct sem_undo *un;
726
727
sops = q->sops;
728
nsops = q->nsops;
729
un = q->undo;
730
731
if (unlikely(q->dupsop))
732
return perform_atomic_semop_slow(sma, q);
733
734
/*
735
* We scan the semaphore set twice, first to ensure that the entire
736
* operation can succeed, therefore avoiding any pointless writes
737
* to shared memory and having to undo such changes in order to block
738
* until the operations can go through.
739
*/
740
for (sop = sops; sop < sops + nsops; sop++) {
741
int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
742
743
curr = &sma->sems[idx];
744
sem_op = sop->sem_op;
745
result = curr->semval;
746
747
if (!sem_op && result)
748
goto would_block; /* wait-for-zero */
749
750
result += sem_op;
751
if (result < 0)
752
goto would_block;
753
754
if (result > SEMVMX)
755
return -ERANGE;
756
757
if (sop->sem_flg & SEM_UNDO) {
758
int undo = un->semadj[sop->sem_num] - sem_op;
759
760
/* Exceeding the undo range is an error. */
761
if (undo < (-SEMAEM - 1) || undo > SEMAEM)
762
return -ERANGE;
763
}
764
}
765
766
for (sop = sops; sop < sops + nsops; sop++) {
767
curr = &sma->sems[sop->sem_num];
768
sem_op = sop->sem_op;
769
770
if (sop->sem_flg & SEM_UNDO) {
771
int undo = un->semadj[sop->sem_num] - sem_op;
772
773
un->semadj[sop->sem_num] = undo;
774
}
775
curr->semval += sem_op;
776
ipc_update_pid(&curr->sempid, q->pid);
777
}
778
779
return 0;
780
781
would_block:
782
q->blocking = sop;
783
return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
784
}
785
786
static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
787
struct wake_q_head *wake_q)
788
{
789
struct task_struct *sleeper;
790
791
sleeper = get_task_struct(q->sleeper);
792
793
/* see SEM_BARRIER_2 for purpose/pairing */
794
smp_store_release(&q->status, error);
795
796
wake_q_add_safe(wake_q, sleeper);
797
}
798
799
static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
800
{
801
list_del(&q->list);
802
if (q->nsops > 1)
803
sma->complex_count--;
804
}
805
806
/** check_restart(sma, q)
807
* @sma: semaphore array
808
* @q: the operation that just completed
809
*
810
* update_queue is O(N^2) when it restarts scanning the whole queue of
811
* waiting operations. Therefore this function checks if the restart is
812
* really necessary. It is called after a previously waiting operation
813
* modified the array.
814
* Note that wait-for-zero operations are handled without restart.
815
*/
816
static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
817
{
818
/* pending complex alter operations are too difficult to analyse */
819
if (!list_empty(&sma->pending_alter))
820
return 1;
821
822
/* we were a sleeping complex operation. Too difficult */
823
if (q->nsops > 1)
824
return 1;
825
826
/* It is impossible that someone waits for the new value:
827
* - complex operations always restart.
828
* - wait-for-zero are handled separately.
829
* - q is a previously sleeping simple operation that
830
* altered the array. It must be a decrement, because
831
* simple increments never sleep.
832
* - If there are older (higher priority) decrements
833
* in the queue, then they have observed the original
834
* semval value and couldn't proceed. The operation
835
* decremented to value - thus they won't proceed either.
836
*/
837
return 0;
838
}
839
840
/**
841
* wake_const_ops - wake up non-alter tasks
842
* @sma: semaphore array.
843
* @semnum: semaphore that was modified.
844
* @wake_q: lockless wake-queue head.
845
*
846
* wake_const_ops must be called after a semaphore in a semaphore array
847
* was set to 0. If complex const operations are pending, wake_const_ops must
848
* be called with semnum = -1, as well as with the number of each modified
849
* semaphore.
850
* The tasks that must be woken up are added to @wake_q. The return code
851
* is stored in q->pid.
852
* The function returns 1 if at least one operation was completed successfully.
853
*/
854
static int wake_const_ops(struct sem_array *sma, int semnum,
855
struct wake_q_head *wake_q)
856
{
857
struct sem_queue *q, *tmp;
858
struct list_head *pending_list;
859
int semop_completed = 0;
860
861
if (semnum == -1)
862
pending_list = &sma->pending_const;
863
else
864
pending_list = &sma->sems[semnum].pending_const;
865
866
list_for_each_entry_safe(q, tmp, pending_list, list) {
867
int error = perform_atomic_semop(sma, q);
868
869
if (error > 0)
870
continue;
871
/* operation completed, remove from queue & wakeup */
872
unlink_queue(sma, q);
873
874
wake_up_sem_queue_prepare(q, error, wake_q);
875
if (error == 0)
876
semop_completed = 1;
877
}
878
879
return semop_completed;
880
}
881
882
/**
883
* do_smart_wakeup_zero - wakeup all wait for zero tasks
884
* @sma: semaphore array
885
* @sops: operations that were performed
886
* @nsops: number of operations
887
* @wake_q: lockless wake-queue head
888
*
889
* Checks all required queue for wait-for-zero operations, based
890
* on the actual changes that were performed on the semaphore array.
891
* The function returns 1 if at least one operation was completed successfully.
892
*/
893
static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
894
int nsops, struct wake_q_head *wake_q)
895
{
896
int i;
897
int semop_completed = 0;
898
int got_zero = 0;
899
900
/* first: the per-semaphore queues, if known */
901
if (sops) {
902
for (i = 0; i < nsops; i++) {
903
int num = sops[i].sem_num;
904
905
if (sma->sems[num].semval == 0) {
906
got_zero = 1;
907
semop_completed |= wake_const_ops(sma, num, wake_q);
908
}
909
}
910
} else {
911
/*
912
* No sops means modified semaphores not known.
913
* Assume all were changed.
914
*/
915
for (i = 0; i < sma->sem_nsems; i++) {
916
if (sma->sems[i].semval == 0) {
917
got_zero = 1;
918
semop_completed |= wake_const_ops(sma, i, wake_q);
919
}
920
}
921
}
922
/*
923
* If one of the modified semaphores got 0,
924
* then check the global queue, too.
925
*/
926
if (got_zero)
927
semop_completed |= wake_const_ops(sma, -1, wake_q);
928
929
return semop_completed;
930
}
931
932
933
/**
934
* update_queue - look for tasks that can be completed.
935
* @sma: semaphore array.
936
* @semnum: semaphore that was modified.
937
* @wake_q: lockless wake-queue head.
938
*
939
* update_queue must be called after a semaphore in a semaphore array
940
* was modified. If multiple semaphores were modified, update_queue must
941
* be called with semnum = -1, as well as with the number of each modified
942
* semaphore.
943
* The tasks that must be woken up are added to @wake_q. The return code
944
* is stored in q->pid.
945
* The function internally checks if const operations can now succeed.
946
*
947
* The function return 1 if at least one semop was completed successfully.
948
*/
949
static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
950
{
951
struct sem_queue *q, *tmp;
952
struct list_head *pending_list;
953
int semop_completed = 0;
954
955
if (semnum == -1)
956
pending_list = &sma->pending_alter;
957
else
958
pending_list = &sma->sems[semnum].pending_alter;
959
960
again:
961
list_for_each_entry_safe(q, tmp, pending_list, list) {
962
int error, restart;
963
964
/* If we are scanning the single sop, per-semaphore list of
965
* one semaphore and that semaphore is 0, then it is not
966
* necessary to scan further: simple increments
967
* that affect only one entry succeed immediately and cannot
968
* be in the per semaphore pending queue, and decrements
969
* cannot be successful if the value is already 0.
970
*/
971
if (semnum != -1 && sma->sems[semnum].semval == 0)
972
break;
973
974
error = perform_atomic_semop(sma, q);
975
976
/* Does q->sleeper still need to sleep? */
977
if (error > 0)
978
continue;
979
980
unlink_queue(sma, q);
981
982
if (error) {
983
restart = 0;
984
} else {
985
semop_completed = 1;
986
do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
987
restart = check_restart(sma, q);
988
}
989
990
wake_up_sem_queue_prepare(q, error, wake_q);
991
if (restart)
992
goto again;
993
}
994
return semop_completed;
995
}
996
997
/**
998
* set_semotime - set sem_otime
999
* @sma: semaphore array
1000
* @sops: operations that modified the array, may be NULL
1001
*
1002
* sem_otime is replicated to avoid cache line trashing.
1003
* This function sets one instance to the current time.
1004
*/
1005
static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1006
{
1007
if (sops == NULL) {
1008
sma->sems[0].sem_otime = ktime_get_real_seconds();
1009
} else {
1010
sma->sems[sops[0].sem_num].sem_otime =
1011
ktime_get_real_seconds();
1012
}
1013
}
1014
1015
/**
1016
* do_smart_update - optimized update_queue
1017
* @sma: semaphore array
1018
* @sops: operations that were performed
1019
* @nsops: number of operations
1020
* @otime: force setting otime
1021
* @wake_q: lockless wake-queue head
1022
*
1023
* do_smart_update() does the required calls to update_queue and wakeup_zero,
1024
* based on the actual changes that were performed on the semaphore array.
1025
* Note that the function does not do the actual wake-up: the caller is
1026
* responsible for calling wake_up_q().
1027
* It is safe to perform this call after dropping all locks.
1028
*/
1029
static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1030
int otime, struct wake_q_head *wake_q)
1031
{
1032
int i;
1033
1034
otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1035
1036
if (!list_empty(&sma->pending_alter)) {
1037
/* semaphore array uses the global queue - just process it. */
1038
otime |= update_queue(sma, -1, wake_q);
1039
} else {
1040
if (!sops) {
1041
/*
1042
* No sops, thus the modified semaphores are not
1043
* known. Check all.
1044
*/
1045
for (i = 0; i < sma->sem_nsems; i++)
1046
otime |= update_queue(sma, i, wake_q);
1047
} else {
1048
/*
1049
* Check the semaphores that were increased:
1050
* - No complex ops, thus all sleeping ops are
1051
* decrease.
1052
* - if we decreased the value, then any sleeping
1053
* semaphore ops won't be able to run: If the
1054
* previous value was too small, then the new
1055
* value will be too small, too.
1056
*/
1057
for (i = 0; i < nsops; i++) {
1058
if (sops[i].sem_op > 0) {
1059
otime |= update_queue(sma,
1060
sops[i].sem_num, wake_q);
1061
}
1062
}
1063
}
1064
}
1065
if (otime)
1066
set_semotime(sma, sops);
1067
}
1068
1069
/*
1070
* check_qop: Test if a queued operation sleeps on the semaphore semnum
1071
*/
1072
static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1073
bool count_zero)
1074
{
1075
struct sembuf *sop = q->blocking;
1076
1077
/*
1078
* Linux always (since 0.99.10) reported a task as sleeping on all
1079
* semaphores. This violates SUS, therefore it was changed to the
1080
* standard compliant behavior.
1081
* Give the administrators a chance to notice that an application
1082
* might misbehave because it relies on the Linux behavior.
1083
*/
1084
pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1085
"The task %s (%d) triggered the difference, watch for misbehavior.\n",
1086
current->comm, task_pid_nr(current));
1087
1088
if (sop->sem_num != semnum)
1089
return 0;
1090
1091
if (count_zero && sop->sem_op == 0)
1092
return 1;
1093
if (!count_zero && sop->sem_op < 0)
1094
return 1;
1095
1096
return 0;
1097
}
1098
1099
/* The following counts are associated to each semaphore:
1100
* semncnt number of tasks waiting on semval being nonzero
1101
* semzcnt number of tasks waiting on semval being zero
1102
*
1103
* Per definition, a task waits only on the semaphore of the first semop
1104
* that cannot proceed, even if additional operation would block, too.
1105
*/
1106
static int count_semcnt(struct sem_array *sma, ushort semnum,
1107
bool count_zero)
1108
{
1109
struct list_head *l;
1110
struct sem_queue *q;
1111
int semcnt;
1112
1113
semcnt = 0;
1114
/* First: check the simple operations. They are easy to evaluate */
1115
if (count_zero)
1116
l = &sma->sems[semnum].pending_const;
1117
else
1118
l = &sma->sems[semnum].pending_alter;
1119
1120
list_for_each_entry(q, l, list) {
1121
/* all task on a per-semaphore list sleep on exactly
1122
* that semaphore
1123
*/
1124
semcnt++;
1125
}
1126
1127
/* Then: check the complex operations. */
1128
list_for_each_entry(q, &sma->pending_alter, list) {
1129
semcnt += check_qop(sma, semnum, q, count_zero);
1130
}
1131
if (count_zero) {
1132
list_for_each_entry(q, &sma->pending_const, list) {
1133
semcnt += check_qop(sma, semnum, q, count_zero);
1134
}
1135
}
1136
return semcnt;
1137
}
1138
1139
/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1140
* as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1141
* remains locked on exit.
1142
*/
1143
static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1144
{
1145
struct sem_undo *un, *tu;
1146
struct sem_queue *q, *tq;
1147
struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1148
int i;
1149
DEFINE_WAKE_Q(wake_q);
1150
1151
/* Free the existing undo structures for this semaphore set. */
1152
ipc_assert_locked_object(&sma->sem_perm);
1153
list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1154
list_del(&un->list_id);
1155
spin_lock(&un->ulp->lock);
1156
un->semid = -1;
1157
list_del_rcu(&un->list_proc);
1158
spin_unlock(&un->ulp->lock);
1159
kvfree_rcu(un, rcu);
1160
}
1161
1162
/* Wake up all pending processes and let them fail with EIDRM. */
1163
list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1164
unlink_queue(sma, q);
1165
wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1166
}
1167
1168
list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1169
unlink_queue(sma, q);
1170
wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1171
}
1172
for (i = 0; i < sma->sem_nsems; i++) {
1173
struct sem *sem = &sma->sems[i];
1174
list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1175
unlink_queue(sma, q);
1176
wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1177
}
1178
list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1179
unlink_queue(sma, q);
1180
wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1181
}
1182
ipc_update_pid(&sem->sempid, NULL);
1183
}
1184
1185
/* Remove the semaphore set from the IDR */
1186
sem_rmid(ns, sma);
1187
sem_unlock(sma, -1);
1188
rcu_read_unlock();
1189
1190
wake_up_q(&wake_q);
1191
ns->used_sems -= sma->sem_nsems;
1192
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1193
}
1194
1195
static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1196
{
1197
switch (version) {
1198
case IPC_64:
1199
return copy_to_user(buf, in, sizeof(*in));
1200
case IPC_OLD:
1201
{
1202
struct semid_ds out;
1203
1204
memset(&out, 0, sizeof(out));
1205
1206
ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1207
1208
out.sem_otime = in->sem_otime;
1209
out.sem_ctime = in->sem_ctime;
1210
out.sem_nsems = in->sem_nsems;
1211
1212
return copy_to_user(buf, &out, sizeof(out));
1213
}
1214
default:
1215
return -EINVAL;
1216
}
1217
}
1218
1219
static time64_t get_semotime(struct sem_array *sma)
1220
{
1221
int i;
1222
time64_t res;
1223
1224
res = sma->sems[0].sem_otime;
1225
for (i = 1; i < sma->sem_nsems; i++) {
1226
time64_t to = sma->sems[i].sem_otime;
1227
1228
if (to > res)
1229
res = to;
1230
}
1231
return res;
1232
}
1233
1234
static int semctl_stat(struct ipc_namespace *ns, int semid,
1235
int cmd, struct semid64_ds *semid64)
1236
{
1237
struct sem_array *sma;
1238
time64_t semotime;
1239
int err;
1240
1241
memset(semid64, 0, sizeof(*semid64));
1242
1243
rcu_read_lock();
1244
if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1245
sma = sem_obtain_object(ns, semid);
1246
if (IS_ERR(sma)) {
1247
err = PTR_ERR(sma);
1248
goto out_unlock;
1249
}
1250
} else { /* IPC_STAT */
1251
sma = sem_obtain_object_check(ns, semid);
1252
if (IS_ERR(sma)) {
1253
err = PTR_ERR(sma);
1254
goto out_unlock;
1255
}
1256
}
1257
1258
/* see comment for SHM_STAT_ANY */
1259
if (cmd == SEM_STAT_ANY)
1260
audit_ipc_obj(&sma->sem_perm);
1261
else {
1262
err = -EACCES;
1263
if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1264
goto out_unlock;
1265
}
1266
1267
err = security_sem_semctl(&sma->sem_perm, cmd);
1268
if (err)
1269
goto out_unlock;
1270
1271
ipc_lock_object(&sma->sem_perm);
1272
1273
if (!ipc_valid_object(&sma->sem_perm)) {
1274
ipc_unlock_object(&sma->sem_perm);
1275
err = -EIDRM;
1276
goto out_unlock;
1277
}
1278
1279
kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1280
semotime = get_semotime(sma);
1281
semid64->sem_otime = semotime;
1282
semid64->sem_ctime = sma->sem_ctime;
1283
#ifndef CONFIG_64BIT
1284
semid64->sem_otime_high = semotime >> 32;
1285
semid64->sem_ctime_high = sma->sem_ctime >> 32;
1286
#endif
1287
semid64->sem_nsems = sma->sem_nsems;
1288
1289
if (cmd == IPC_STAT) {
1290
/*
1291
* As defined in SUS:
1292
* Return 0 on success
1293
*/
1294
err = 0;
1295
} else {
1296
/*
1297
* SEM_STAT and SEM_STAT_ANY (both Linux specific)
1298
* Return the full id, including the sequence number
1299
*/
1300
err = sma->sem_perm.id;
1301
}
1302
ipc_unlock_object(&sma->sem_perm);
1303
out_unlock:
1304
rcu_read_unlock();
1305
return err;
1306
}
1307
1308
static int semctl_info(struct ipc_namespace *ns, int semid,
1309
int cmd, void __user *p)
1310
{
1311
struct seminfo seminfo;
1312
int max_idx;
1313
int err;
1314
1315
err = security_sem_semctl(NULL, cmd);
1316
if (err)
1317
return err;
1318
1319
memset(&seminfo, 0, sizeof(seminfo));
1320
seminfo.semmni = ns->sc_semmni;
1321
seminfo.semmns = ns->sc_semmns;
1322
seminfo.semmsl = ns->sc_semmsl;
1323
seminfo.semopm = ns->sc_semopm;
1324
seminfo.semvmx = SEMVMX;
1325
seminfo.semmnu = SEMMNU;
1326
seminfo.semmap = SEMMAP;
1327
seminfo.semume = SEMUME;
1328
down_read(&sem_ids(ns).rwsem);
1329
if (cmd == SEM_INFO) {
1330
seminfo.semusz = sem_ids(ns).in_use;
1331
seminfo.semaem = ns->used_sems;
1332
} else {
1333
seminfo.semusz = SEMUSZ;
1334
seminfo.semaem = SEMAEM;
1335
}
1336
max_idx = ipc_get_maxidx(&sem_ids(ns));
1337
up_read(&sem_ids(ns).rwsem);
1338
if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1339
return -EFAULT;
1340
return (max_idx < 0) ? 0 : max_idx;
1341
}
1342
1343
static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1344
int val)
1345
{
1346
struct sem_undo *un;
1347
struct sem_array *sma;
1348
struct sem *curr;
1349
int err;
1350
DEFINE_WAKE_Q(wake_q);
1351
1352
if (val > SEMVMX || val < 0)
1353
return -ERANGE;
1354
1355
rcu_read_lock();
1356
sma = sem_obtain_object_check(ns, semid);
1357
if (IS_ERR(sma)) {
1358
rcu_read_unlock();
1359
return PTR_ERR(sma);
1360
}
1361
1362
if (semnum < 0 || semnum >= sma->sem_nsems) {
1363
rcu_read_unlock();
1364
return -EINVAL;
1365
}
1366
1367
1368
if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1369
rcu_read_unlock();
1370
return -EACCES;
1371
}
1372
1373
err = security_sem_semctl(&sma->sem_perm, SETVAL);
1374
if (err) {
1375
rcu_read_unlock();
1376
return -EACCES;
1377
}
1378
1379
sem_lock(sma, NULL, -1);
1380
1381
if (!ipc_valid_object(&sma->sem_perm)) {
1382
sem_unlock(sma, -1);
1383
rcu_read_unlock();
1384
return -EIDRM;
1385
}
1386
1387
semnum = array_index_nospec(semnum, sma->sem_nsems);
1388
curr = &sma->sems[semnum];
1389
1390
ipc_assert_locked_object(&sma->sem_perm);
1391
list_for_each_entry(un, &sma->list_id, list_id)
1392
un->semadj[semnum] = 0;
1393
1394
curr->semval = val;
1395
ipc_update_pid(&curr->sempid, task_tgid(current));
1396
sma->sem_ctime = ktime_get_real_seconds();
1397
/* maybe some queued-up processes were waiting for this */
1398
do_smart_update(sma, NULL, 0, 0, &wake_q);
1399
sem_unlock(sma, -1);
1400
rcu_read_unlock();
1401
wake_up_q(&wake_q);
1402
return 0;
1403
}
1404
1405
static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1406
int cmd, void __user *p)
1407
{
1408
struct sem_array *sma;
1409
struct sem *curr;
1410
int err, nsems;
1411
ushort fast_sem_io[SEMMSL_FAST];
1412
ushort *sem_io = fast_sem_io;
1413
DEFINE_WAKE_Q(wake_q);
1414
1415
rcu_read_lock();
1416
sma = sem_obtain_object_check(ns, semid);
1417
if (IS_ERR(sma)) {
1418
rcu_read_unlock();
1419
return PTR_ERR(sma);
1420
}
1421
1422
nsems = sma->sem_nsems;
1423
1424
err = -EACCES;
1425
if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1426
goto out_rcu_wakeup;
1427
1428
err = security_sem_semctl(&sma->sem_perm, cmd);
1429
if (err)
1430
goto out_rcu_wakeup;
1431
1432
switch (cmd) {
1433
case GETALL:
1434
{
1435
ushort __user *array = p;
1436
int i;
1437
1438
sem_lock(sma, NULL, -1);
1439
if (!ipc_valid_object(&sma->sem_perm)) {
1440
err = -EIDRM;
1441
goto out_unlock;
1442
}
1443
if (nsems > SEMMSL_FAST) {
1444
if (!ipc_rcu_getref(&sma->sem_perm)) {
1445
err = -EIDRM;
1446
goto out_unlock;
1447
}
1448
sem_unlock(sma, -1);
1449
rcu_read_unlock();
1450
sem_io = kvmalloc_array(nsems, sizeof(ushort),
1451
GFP_KERNEL);
1452
if (sem_io == NULL) {
1453
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1454
return -ENOMEM;
1455
}
1456
1457
rcu_read_lock();
1458
sem_lock_and_putref(sma);
1459
if (!ipc_valid_object(&sma->sem_perm)) {
1460
err = -EIDRM;
1461
goto out_unlock;
1462
}
1463
}
1464
for (i = 0; i < sma->sem_nsems; i++)
1465
sem_io[i] = sma->sems[i].semval;
1466
sem_unlock(sma, -1);
1467
rcu_read_unlock();
1468
err = 0;
1469
if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1470
err = -EFAULT;
1471
goto out_free;
1472
}
1473
case SETALL:
1474
{
1475
int i;
1476
struct sem_undo *un;
1477
1478
if (!ipc_rcu_getref(&sma->sem_perm)) {
1479
err = -EIDRM;
1480
goto out_rcu_wakeup;
1481
}
1482
rcu_read_unlock();
1483
1484
if (nsems > SEMMSL_FAST) {
1485
sem_io = kvmalloc_array(nsems, sizeof(ushort),
1486
GFP_KERNEL);
1487
if (sem_io == NULL) {
1488
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1489
return -ENOMEM;
1490
}
1491
}
1492
1493
if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1494
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1495
err = -EFAULT;
1496
goto out_free;
1497
}
1498
1499
for (i = 0; i < nsems; i++) {
1500
if (sem_io[i] > SEMVMX) {
1501
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1502
err = -ERANGE;
1503
goto out_free;
1504
}
1505
}
1506
rcu_read_lock();
1507
sem_lock_and_putref(sma);
1508
if (!ipc_valid_object(&sma->sem_perm)) {
1509
err = -EIDRM;
1510
goto out_unlock;
1511
}
1512
1513
for (i = 0; i < nsems; i++) {
1514
sma->sems[i].semval = sem_io[i];
1515
ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1516
}
1517
1518
ipc_assert_locked_object(&sma->sem_perm);
1519
list_for_each_entry(un, &sma->list_id, list_id) {
1520
for (i = 0; i < nsems; i++)
1521
un->semadj[i] = 0;
1522
}
1523
sma->sem_ctime = ktime_get_real_seconds();
1524
/* maybe some queued-up processes were waiting for this */
1525
do_smart_update(sma, NULL, 0, 0, &wake_q);
1526
err = 0;
1527
goto out_unlock;
1528
}
1529
/* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1530
}
1531
err = -EINVAL;
1532
if (semnum < 0 || semnum >= nsems)
1533
goto out_rcu_wakeup;
1534
1535
sem_lock(sma, NULL, -1);
1536
if (!ipc_valid_object(&sma->sem_perm)) {
1537
err = -EIDRM;
1538
goto out_unlock;
1539
}
1540
1541
semnum = array_index_nospec(semnum, nsems);
1542
curr = &sma->sems[semnum];
1543
1544
switch (cmd) {
1545
case GETVAL:
1546
err = curr->semval;
1547
goto out_unlock;
1548
case GETPID:
1549
err = pid_vnr(curr->sempid);
1550
goto out_unlock;
1551
case GETNCNT:
1552
err = count_semcnt(sma, semnum, 0);
1553
goto out_unlock;
1554
case GETZCNT:
1555
err = count_semcnt(sma, semnum, 1);
1556
goto out_unlock;
1557
}
1558
1559
out_unlock:
1560
sem_unlock(sma, -1);
1561
out_rcu_wakeup:
1562
rcu_read_unlock();
1563
wake_up_q(&wake_q);
1564
out_free:
1565
if (sem_io != fast_sem_io)
1566
kvfree(sem_io);
1567
return err;
1568
}
1569
1570
static inline unsigned long
1571
copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1572
{
1573
switch (version) {
1574
case IPC_64:
1575
if (copy_from_user(out, buf, sizeof(*out)))
1576
return -EFAULT;
1577
return 0;
1578
case IPC_OLD:
1579
{
1580
struct semid_ds tbuf_old;
1581
1582
if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1583
return -EFAULT;
1584
1585
out->sem_perm.uid = tbuf_old.sem_perm.uid;
1586
out->sem_perm.gid = tbuf_old.sem_perm.gid;
1587
out->sem_perm.mode = tbuf_old.sem_perm.mode;
1588
1589
return 0;
1590
}
1591
default:
1592
return -EINVAL;
1593
}
1594
}
1595
1596
/*
1597
* This function handles some semctl commands which require the rwsem
1598
* to be held in write mode.
1599
* NOTE: no locks must be held, the rwsem is taken inside this function.
1600
*/
1601
static int semctl_down(struct ipc_namespace *ns, int semid,
1602
int cmd, struct semid64_ds *semid64)
1603
{
1604
struct sem_array *sma;
1605
int err;
1606
struct kern_ipc_perm *ipcp;
1607
1608
down_write(&sem_ids(ns).rwsem);
1609
rcu_read_lock();
1610
1611
ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
1612
&semid64->sem_perm, 0);
1613
if (IS_ERR(ipcp)) {
1614
err = PTR_ERR(ipcp);
1615
goto out_unlock1;
1616
}
1617
1618
sma = container_of(ipcp, struct sem_array, sem_perm);
1619
1620
err = security_sem_semctl(&sma->sem_perm, cmd);
1621
if (err)
1622
goto out_unlock1;
1623
1624
switch (cmd) {
1625
case IPC_RMID:
1626
sem_lock(sma, NULL, -1);
1627
/* freeary unlocks the ipc object and rcu */
1628
freeary(ns, ipcp);
1629
goto out_up;
1630
case IPC_SET:
1631
sem_lock(sma, NULL, -1);
1632
err = ipc_update_perm(&semid64->sem_perm, ipcp);
1633
if (err)
1634
goto out_unlock0;
1635
sma->sem_ctime = ktime_get_real_seconds();
1636
break;
1637
default:
1638
err = -EINVAL;
1639
goto out_unlock1;
1640
}
1641
1642
out_unlock0:
1643
sem_unlock(sma, -1);
1644
out_unlock1:
1645
rcu_read_unlock();
1646
out_up:
1647
up_write(&sem_ids(ns).rwsem);
1648
return err;
1649
}
1650
1651
static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1652
{
1653
struct ipc_namespace *ns;
1654
void __user *p = (void __user *)arg;
1655
struct semid64_ds semid64;
1656
int err;
1657
1658
if (semid < 0)
1659
return -EINVAL;
1660
1661
ns = current->nsproxy->ipc_ns;
1662
1663
switch (cmd) {
1664
case IPC_INFO:
1665
case SEM_INFO:
1666
return semctl_info(ns, semid, cmd, p);
1667
case IPC_STAT:
1668
case SEM_STAT:
1669
case SEM_STAT_ANY:
1670
err = semctl_stat(ns, semid, cmd, &semid64);
1671
if (err < 0)
1672
return err;
1673
if (copy_semid_to_user(p, &semid64, version))
1674
err = -EFAULT;
1675
return err;
1676
case GETALL:
1677
case GETVAL:
1678
case GETPID:
1679
case GETNCNT:
1680
case GETZCNT:
1681
case SETALL:
1682
return semctl_main(ns, semid, semnum, cmd, p);
1683
case SETVAL: {
1684
int val;
1685
#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1686
/* big-endian 64bit */
1687
val = arg >> 32;
1688
#else
1689
/* 32bit or little-endian 64bit */
1690
val = arg;
1691
#endif
1692
return semctl_setval(ns, semid, semnum, val);
1693
}
1694
case IPC_SET:
1695
if (copy_semid_from_user(&semid64, p, version))
1696
return -EFAULT;
1697
fallthrough;
1698
case IPC_RMID:
1699
return semctl_down(ns, semid, cmd, &semid64);
1700
default:
1701
return -EINVAL;
1702
}
1703
}
1704
1705
SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1706
{
1707
return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1708
}
1709
1710
#ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1711
long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1712
{
1713
int version = ipc_parse_version(&cmd);
1714
1715
return ksys_semctl(semid, semnum, cmd, arg, version);
1716
}
1717
1718
SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1719
{
1720
return ksys_old_semctl(semid, semnum, cmd, arg);
1721
}
1722
#endif
1723
1724
#ifdef CONFIG_COMPAT
1725
1726
struct compat_semid_ds {
1727
struct compat_ipc_perm sem_perm;
1728
old_time32_t sem_otime;
1729
old_time32_t sem_ctime;
1730
compat_uptr_t sem_base;
1731
compat_uptr_t sem_pending;
1732
compat_uptr_t sem_pending_last;
1733
compat_uptr_t undo;
1734
unsigned short sem_nsems;
1735
};
1736
1737
static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1738
int version)
1739
{
1740
memset(out, 0, sizeof(*out));
1741
if (version == IPC_64) {
1742
struct compat_semid64_ds __user *p = buf;
1743
return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1744
} else {
1745
struct compat_semid_ds __user *p = buf;
1746
return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1747
}
1748
}
1749
1750
static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1751
int version)
1752
{
1753
if (version == IPC_64) {
1754
struct compat_semid64_ds v;
1755
memset(&v, 0, sizeof(v));
1756
to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1757
v.sem_otime = lower_32_bits(in->sem_otime);
1758
v.sem_otime_high = upper_32_bits(in->sem_otime);
1759
v.sem_ctime = lower_32_bits(in->sem_ctime);
1760
v.sem_ctime_high = upper_32_bits(in->sem_ctime);
1761
v.sem_nsems = in->sem_nsems;
1762
return copy_to_user(buf, &v, sizeof(v));
1763
} else {
1764
struct compat_semid_ds v;
1765
memset(&v, 0, sizeof(v));
1766
to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1767
v.sem_otime = in->sem_otime;
1768
v.sem_ctime = in->sem_ctime;
1769
v.sem_nsems = in->sem_nsems;
1770
return copy_to_user(buf, &v, sizeof(v));
1771
}
1772
}
1773
1774
static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
1775
{
1776
void __user *p = compat_ptr(arg);
1777
struct ipc_namespace *ns;
1778
struct semid64_ds semid64;
1779
int err;
1780
1781
ns = current->nsproxy->ipc_ns;
1782
1783
if (semid < 0)
1784
return -EINVAL;
1785
1786
switch (cmd & (~IPC_64)) {
1787
case IPC_INFO:
1788
case SEM_INFO:
1789
return semctl_info(ns, semid, cmd, p);
1790
case IPC_STAT:
1791
case SEM_STAT:
1792
case SEM_STAT_ANY:
1793
err = semctl_stat(ns, semid, cmd, &semid64);
1794
if (err < 0)
1795
return err;
1796
if (copy_compat_semid_to_user(p, &semid64, version))
1797
err = -EFAULT;
1798
return err;
1799
case GETVAL:
1800
case GETPID:
1801
case GETNCNT:
1802
case GETZCNT:
1803
case GETALL:
1804
case SETALL:
1805
return semctl_main(ns, semid, semnum, cmd, p);
1806
case SETVAL:
1807
return semctl_setval(ns, semid, semnum, arg);
1808
case IPC_SET:
1809
if (copy_compat_semid_from_user(&semid64, p, version))
1810
return -EFAULT;
1811
fallthrough;
1812
case IPC_RMID:
1813
return semctl_down(ns, semid, cmd, &semid64);
1814
default:
1815
return -EINVAL;
1816
}
1817
}
1818
1819
COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1820
{
1821
return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
1822
}
1823
1824
#ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1825
long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1826
{
1827
int version = compat_ipc_parse_version(&cmd);
1828
1829
return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1830
}
1831
1832
COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1833
{
1834
return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1835
}
1836
#endif
1837
#endif
1838
1839
/* If the task doesn't already have a undo_list, then allocate one
1840
* here. We guarantee there is only one thread using this undo list,
1841
* and current is THE ONE
1842
*
1843
* If this allocation and assignment succeeds, but later
1844
* portions of this code fail, there is no need to free the sem_undo_list.
1845
* Just let it stay associated with the task, and it'll be freed later
1846
* at exit time.
1847
*
1848
* This can block, so callers must hold no locks.
1849
*/
1850
static inline int get_undo_list(struct sem_undo_list **undo_listp)
1851
{
1852
struct sem_undo_list *undo_list;
1853
1854
undo_list = current->sysvsem.undo_list;
1855
if (!undo_list) {
1856
undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL_ACCOUNT);
1857
if (undo_list == NULL)
1858
return -ENOMEM;
1859
spin_lock_init(&undo_list->lock);
1860
refcount_set(&undo_list->refcnt, 1);
1861
INIT_LIST_HEAD(&undo_list->list_proc);
1862
1863
current->sysvsem.undo_list = undo_list;
1864
}
1865
*undo_listp = undo_list;
1866
return 0;
1867
}
1868
1869
static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1870
{
1871
struct sem_undo *un;
1872
1873
list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1874
spin_is_locked(&ulp->lock)) {
1875
if (un->semid == semid)
1876
return un;
1877
}
1878
return NULL;
1879
}
1880
1881
static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1882
{
1883
struct sem_undo *un;
1884
1885
assert_spin_locked(&ulp->lock);
1886
1887
un = __lookup_undo(ulp, semid);
1888
if (un) {
1889
list_del_rcu(&un->list_proc);
1890
list_add_rcu(&un->list_proc, &ulp->list_proc);
1891
}
1892
return un;
1893
}
1894
1895
/**
1896
* find_alloc_undo - lookup (and if not present create) undo array
1897
* @ns: namespace
1898
* @semid: semaphore array id
1899
*
1900
* The function looks up (and if not present creates) the undo structure.
1901
* The size of the undo structure depends on the size of the semaphore
1902
* array, thus the alloc path is not that straightforward.
1903
* Lifetime-rules: sem_undo is rcu-protected, on success, the function
1904
* performs a rcu_read_lock().
1905
*/
1906
static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1907
{
1908
struct sem_array *sma;
1909
struct sem_undo_list *ulp;
1910
struct sem_undo *un, *new;
1911
int nsems, error;
1912
1913
error = get_undo_list(&ulp);
1914
if (error)
1915
return ERR_PTR(error);
1916
1917
rcu_read_lock();
1918
spin_lock(&ulp->lock);
1919
un = lookup_undo(ulp, semid);
1920
spin_unlock(&ulp->lock);
1921
if (likely(un != NULL))
1922
goto out;
1923
1924
/* no undo structure around - allocate one. */
1925
/* step 1: figure out the size of the semaphore array */
1926
sma = sem_obtain_object_check(ns, semid);
1927
if (IS_ERR(sma)) {
1928
rcu_read_unlock();
1929
return ERR_CAST(sma);
1930
}
1931
1932
nsems = sma->sem_nsems;
1933
if (!ipc_rcu_getref(&sma->sem_perm)) {
1934
rcu_read_unlock();
1935
un = ERR_PTR(-EIDRM);
1936
goto out;
1937
}
1938
rcu_read_unlock();
1939
1940
/* step 2: allocate new undo structure */
1941
new = kvzalloc(struct_size(new, semadj, nsems), GFP_KERNEL_ACCOUNT);
1942
if (!new) {
1943
ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1944
return ERR_PTR(-ENOMEM);
1945
}
1946
1947
/* step 3: Acquire the lock on semaphore array */
1948
rcu_read_lock();
1949
sem_lock_and_putref(sma);
1950
if (!ipc_valid_object(&sma->sem_perm)) {
1951
sem_unlock(sma, -1);
1952
rcu_read_unlock();
1953
kvfree(new);
1954
un = ERR_PTR(-EIDRM);
1955
goto out;
1956
}
1957
spin_lock(&ulp->lock);
1958
1959
/*
1960
* step 4: check for races: did someone else allocate the undo struct?
1961
*/
1962
un = lookup_undo(ulp, semid);
1963
if (un) {
1964
spin_unlock(&ulp->lock);
1965
kvfree(new);
1966
goto success;
1967
}
1968
/* step 5: initialize & link new undo structure */
1969
new->ulp = ulp;
1970
new->semid = semid;
1971
assert_spin_locked(&ulp->lock);
1972
list_add_rcu(&new->list_proc, &ulp->list_proc);
1973
ipc_assert_locked_object(&sma->sem_perm);
1974
list_add(&new->list_id, &sma->list_id);
1975
un = new;
1976
spin_unlock(&ulp->lock);
1977
success:
1978
sem_unlock(sma, -1);
1979
out:
1980
return un;
1981
}
1982
1983
long __do_semtimedop(int semid, struct sembuf *sops,
1984
unsigned nsops, const struct timespec64 *timeout,
1985
struct ipc_namespace *ns)
1986
{
1987
int error = -EINVAL;
1988
struct sem_array *sma;
1989
struct sembuf *sop;
1990
struct sem_undo *un;
1991
int max, locknum;
1992
bool undos = false, alter = false, dupsop = false;
1993
struct sem_queue queue;
1994
unsigned long dup = 0;
1995
ktime_t expires, *exp = NULL;
1996
bool timed_out = false;
1997
1998
if (nsops < 1 || semid < 0)
1999
return -EINVAL;
2000
if (nsops > ns->sc_semopm)
2001
return -E2BIG;
2002
2003
if (timeout) {
2004
if (!timespec64_valid(timeout))
2005
return -EINVAL;
2006
expires = ktime_add_safe(ktime_get(),
2007
timespec64_to_ktime(*timeout));
2008
exp = &expires;
2009
}
2010
2011
2012
max = 0;
2013
for (sop = sops; sop < sops + nsops; sop++) {
2014
unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2015
2016
if (sop->sem_num >= max)
2017
max = sop->sem_num;
2018
if (sop->sem_flg & SEM_UNDO)
2019
undos = true;
2020
if (dup & mask) {
2021
/*
2022
* There was a previous alter access that appears
2023
* to have accessed the same semaphore, thus use
2024
* the dupsop logic. "appears", because the detection
2025
* can only check % BITS_PER_LONG.
2026
*/
2027
dupsop = true;
2028
}
2029
if (sop->sem_op != 0) {
2030
alter = true;
2031
dup |= mask;
2032
}
2033
}
2034
2035
if (undos) {
2036
/* On success, find_alloc_undo takes the rcu_read_lock */
2037
un = find_alloc_undo(ns, semid);
2038
if (IS_ERR(un)) {
2039
error = PTR_ERR(un);
2040
goto out;
2041
}
2042
} else {
2043
un = NULL;
2044
rcu_read_lock();
2045
}
2046
2047
sma = sem_obtain_object_check(ns, semid);
2048
if (IS_ERR(sma)) {
2049
rcu_read_unlock();
2050
error = PTR_ERR(sma);
2051
goto out;
2052
}
2053
2054
error = -EFBIG;
2055
if (max >= sma->sem_nsems) {
2056
rcu_read_unlock();
2057
goto out;
2058
}
2059
2060
error = -EACCES;
2061
if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2062
rcu_read_unlock();
2063
goto out;
2064
}
2065
2066
error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2067
if (error) {
2068
rcu_read_unlock();
2069
goto out;
2070
}
2071
2072
error = -EIDRM;
2073
locknum = sem_lock(sma, sops, nsops);
2074
/*
2075
* We eventually might perform the following check in a lockless
2076
* fashion, considering ipc_valid_object() locking constraints.
2077
* If nsops == 1 and there is no contention for sem_perm.lock, then
2078
* only a per-semaphore lock is held and it's OK to proceed with the
2079
* check below. More details on the fine grained locking scheme
2080
* entangled here and why it's RMID race safe on comments at sem_lock()
2081
*/
2082
if (!ipc_valid_object(&sma->sem_perm))
2083
goto out_unlock;
2084
/*
2085
* semid identifiers are not unique - find_alloc_undo may have
2086
* allocated an undo structure, it was invalidated by an RMID
2087
* and now a new array with received the same id. Check and fail.
2088
* This case can be detected checking un->semid. The existence of
2089
* "un" itself is guaranteed by rcu.
2090
*/
2091
if (un && un->semid == -1)
2092
goto out_unlock;
2093
2094
queue.sops = sops;
2095
queue.nsops = nsops;
2096
queue.undo = un;
2097
queue.pid = task_tgid(current);
2098
queue.alter = alter;
2099
queue.dupsop = dupsop;
2100
2101
error = perform_atomic_semop(sma, &queue);
2102
if (error == 0) { /* non-blocking successful path */
2103
DEFINE_WAKE_Q(wake_q);
2104
2105
/*
2106
* If the operation was successful, then do
2107
* the required updates.
2108
*/
2109
if (alter)
2110
do_smart_update(sma, sops, nsops, 1, &wake_q);
2111
else
2112
set_semotime(sma, sops);
2113
2114
sem_unlock(sma, locknum);
2115
rcu_read_unlock();
2116
wake_up_q(&wake_q);
2117
2118
goto out;
2119
}
2120
if (error < 0) /* non-blocking error path */
2121
goto out_unlock;
2122
2123
/*
2124
* We need to sleep on this operation, so we put the current
2125
* task into the pending queue and go to sleep.
2126
*/
2127
if (nsops == 1) {
2128
struct sem *curr;
2129
int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2130
curr = &sma->sems[idx];
2131
2132
if (alter) {
2133
if (sma->complex_count) {
2134
list_add_tail(&queue.list,
2135
&sma->pending_alter);
2136
} else {
2137
2138
list_add_tail(&queue.list,
2139
&curr->pending_alter);
2140
}
2141
} else {
2142
list_add_tail(&queue.list, &curr->pending_const);
2143
}
2144
} else {
2145
if (!sma->complex_count)
2146
merge_queues(sma);
2147
2148
if (alter)
2149
list_add_tail(&queue.list, &sma->pending_alter);
2150
else
2151
list_add_tail(&queue.list, &sma->pending_const);
2152
2153
sma->complex_count++;
2154
}
2155
2156
do {
2157
/* memory ordering ensured by the lock in sem_lock() */
2158
WRITE_ONCE(queue.status, -EINTR);
2159
queue.sleeper = current;
2160
2161
/* memory ordering is ensured by the lock in sem_lock() */
2162
__set_current_state(TASK_INTERRUPTIBLE);
2163
sem_unlock(sma, locknum);
2164
rcu_read_unlock();
2165
2166
timed_out = !schedule_hrtimeout_range(exp,
2167
current->timer_slack_ns, HRTIMER_MODE_ABS);
2168
2169
/*
2170
* fastpath: the semop has completed, either successfully or
2171
* not, from the syscall pov, is quite irrelevant to us at this
2172
* point; we're done.
2173
*
2174
* We _do_ care, nonetheless, about being awoken by a signal or
2175
* spuriously. The queue.status is checked again in the
2176
* slowpath (aka after taking sem_lock), such that we can detect
2177
* scenarios where we were awakened externally, during the
2178
* window between wake_q_add() and wake_up_q().
2179
*/
2180
rcu_read_lock();
2181
error = READ_ONCE(queue.status);
2182
if (error != -EINTR) {
2183
/* see SEM_BARRIER_2 for purpose/pairing */
2184
smp_acquire__after_ctrl_dep();
2185
rcu_read_unlock();
2186
goto out;
2187
}
2188
2189
locknum = sem_lock(sma, sops, nsops);
2190
2191
if (!ipc_valid_object(&sma->sem_perm))
2192
goto out_unlock;
2193
2194
/*
2195
* No necessity for any barrier: We are protect by sem_lock()
2196
*/
2197
error = READ_ONCE(queue.status);
2198
2199
/*
2200
* If queue.status != -EINTR we are woken up by another process.
2201
* Leave without unlink_queue(), but with sem_unlock().
2202
*/
2203
if (error != -EINTR)
2204
goto out_unlock;
2205
2206
/*
2207
* If an interrupt occurred we have to clean up the queue.
2208
*/
2209
if (timed_out)
2210
error = -EAGAIN;
2211
} while (error == -EINTR && !signal_pending(current)); /* spurious */
2212
2213
unlink_queue(sma, &queue);
2214
2215
out_unlock:
2216
sem_unlock(sma, locknum);
2217
rcu_read_unlock();
2218
out:
2219
return error;
2220
}
2221
2222
static long do_semtimedop(int semid, struct sembuf __user *tsops,
2223
unsigned nsops, const struct timespec64 *timeout)
2224
{
2225
struct sembuf fast_sops[SEMOPM_FAST];
2226
struct sembuf *sops = fast_sops;
2227
struct ipc_namespace *ns;
2228
int ret;
2229
2230
ns = current->nsproxy->ipc_ns;
2231
if (nsops > ns->sc_semopm)
2232
return -E2BIG;
2233
if (nsops < 1)
2234
return -EINVAL;
2235
2236
if (nsops > SEMOPM_FAST) {
2237
sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
2238
if (sops == NULL)
2239
return -ENOMEM;
2240
}
2241
2242
if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2243
ret = -EFAULT;
2244
goto out_free;
2245
}
2246
2247
ret = __do_semtimedop(semid, sops, nsops, timeout, ns);
2248
2249
out_free:
2250
if (sops != fast_sops)
2251
kvfree(sops);
2252
2253
return ret;
2254
}
2255
2256
long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2257
unsigned int nsops, const struct __kernel_timespec __user *timeout)
2258
{
2259
if (timeout) {
2260
struct timespec64 ts;
2261
if (get_timespec64(&ts, timeout))
2262
return -EFAULT;
2263
return do_semtimedop(semid, tsops, nsops, &ts);
2264
}
2265
return do_semtimedop(semid, tsops, nsops, NULL);
2266
}
2267
2268
SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2269
unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
2270
{
2271
return ksys_semtimedop(semid, tsops, nsops, timeout);
2272
}
2273
2274
#ifdef CONFIG_COMPAT_32BIT_TIME
2275
long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2276
unsigned int nsops,
2277
const struct old_timespec32 __user *timeout)
2278
{
2279
if (timeout) {
2280
struct timespec64 ts;
2281
if (get_old_timespec32(&ts, timeout))
2282
return -EFAULT;
2283
return do_semtimedop(semid, tsems, nsops, &ts);
2284
}
2285
return do_semtimedop(semid, tsems, nsops, NULL);
2286
}
2287
2288
SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
2289
unsigned int, nsops,
2290
const struct old_timespec32 __user *, timeout)
2291
{
2292
return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2293
}
2294
#endif
2295
2296
SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2297
unsigned, nsops)
2298
{
2299
return do_semtimedop(semid, tsops, nsops, NULL);
2300
}
2301
2302
/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2303
* parent and child tasks.
2304
*/
2305
2306
int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2307
{
2308
struct sem_undo_list *undo_list;
2309
int error;
2310
2311
if (clone_flags & CLONE_SYSVSEM) {
2312
error = get_undo_list(&undo_list);
2313
if (error)
2314
return error;
2315
refcount_inc(&undo_list->refcnt);
2316
tsk->sysvsem.undo_list = undo_list;
2317
} else
2318
tsk->sysvsem.undo_list = NULL;
2319
2320
return 0;
2321
}
2322
2323
/*
2324
* add semadj values to semaphores, free undo structures.
2325
* undo structures are not freed when semaphore arrays are destroyed
2326
* so some of them may be out of date.
2327
* IMPLEMENTATION NOTE: There is some confusion over whether the
2328
* set of adjustments that needs to be done should be done in an atomic
2329
* manner or not. That is, if we are attempting to decrement the semval
2330
* should we queue up and wait until we can do so legally?
2331
* The original implementation attempted to do this (queue and wait).
2332
* The current implementation does not do so. The POSIX standard
2333
* and SVID should be consulted to determine what behavior is mandated.
2334
*/
2335
void exit_sem(struct task_struct *tsk)
2336
{
2337
struct sem_undo_list *ulp;
2338
2339
ulp = tsk->sysvsem.undo_list;
2340
if (!ulp)
2341
return;
2342
tsk->sysvsem.undo_list = NULL;
2343
2344
if (!refcount_dec_and_test(&ulp->refcnt))
2345
return;
2346
2347
for (;;) {
2348
struct sem_array *sma;
2349
struct sem_undo *un;
2350
int semid, i;
2351
DEFINE_WAKE_Q(wake_q);
2352
2353
cond_resched();
2354
2355
rcu_read_lock();
2356
un = list_entry_rcu(ulp->list_proc.next,
2357
struct sem_undo, list_proc);
2358
if (&un->list_proc == &ulp->list_proc) {
2359
/*
2360
* We must wait for freeary() before freeing this ulp,
2361
* in case we raced with last sem_undo. There is a small
2362
* possibility where we exit while freeary() didn't
2363
* finish unlocking sem_undo_list.
2364
*/
2365
spin_lock(&ulp->lock);
2366
spin_unlock(&ulp->lock);
2367
rcu_read_unlock();
2368
break;
2369
}
2370
spin_lock(&ulp->lock);
2371
semid = un->semid;
2372
spin_unlock(&ulp->lock);
2373
2374
/* exit_sem raced with IPC_RMID, nothing to do */
2375
if (semid == -1) {
2376
rcu_read_unlock();
2377
continue;
2378
}
2379
2380
sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2381
/* exit_sem raced with IPC_RMID, nothing to do */
2382
if (IS_ERR(sma)) {
2383
rcu_read_unlock();
2384
continue;
2385
}
2386
2387
sem_lock(sma, NULL, -1);
2388
/* exit_sem raced with IPC_RMID, nothing to do */
2389
if (!ipc_valid_object(&sma->sem_perm)) {
2390
sem_unlock(sma, -1);
2391
rcu_read_unlock();
2392
continue;
2393
}
2394
un = __lookup_undo(ulp, semid);
2395
if (un == NULL) {
2396
/* exit_sem raced with IPC_RMID+semget() that created
2397
* exactly the same semid. Nothing to do.
2398
*/
2399
sem_unlock(sma, -1);
2400
rcu_read_unlock();
2401
continue;
2402
}
2403
2404
/* remove un from the linked lists */
2405
ipc_assert_locked_object(&sma->sem_perm);
2406
list_del(&un->list_id);
2407
2408
spin_lock(&ulp->lock);
2409
list_del_rcu(&un->list_proc);
2410
spin_unlock(&ulp->lock);
2411
2412
/* perform adjustments registered in un */
2413
for (i = 0; i < sma->sem_nsems; i++) {
2414
struct sem *semaphore = &sma->sems[i];
2415
if (un->semadj[i]) {
2416
semaphore->semval += un->semadj[i];
2417
/*
2418
* Range checks of the new semaphore value,
2419
* not defined by sus:
2420
* - Some unices ignore the undo entirely
2421
* (e.g. HP UX 11i 11.22, Tru64 V5.1)
2422
* - some cap the value (e.g. FreeBSD caps
2423
* at 0, but doesn't enforce SEMVMX)
2424
*
2425
* Linux caps the semaphore value, both at 0
2426
* and at SEMVMX.
2427
*
2428
* Manfred <[email protected]>
2429
*/
2430
if (semaphore->semval < 0)
2431
semaphore->semval = 0;
2432
if (semaphore->semval > SEMVMX)
2433
semaphore->semval = SEMVMX;
2434
ipc_update_pid(&semaphore->sempid, task_tgid(current));
2435
}
2436
}
2437
/* maybe some queued-up processes were waiting for this */
2438
do_smart_update(sma, NULL, 0, 1, &wake_q);
2439
sem_unlock(sma, -1);
2440
rcu_read_unlock();
2441
wake_up_q(&wake_q);
2442
2443
kvfree_rcu(un, rcu);
2444
}
2445
kfree(ulp);
2446
}
2447
2448
#ifdef CONFIG_PROC_FS
2449
static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2450
{
2451
struct user_namespace *user_ns = seq_user_ns(s);
2452
struct kern_ipc_perm *ipcp = it;
2453
struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2454
time64_t sem_otime;
2455
2456
/*
2457
* The proc interface isn't aware of sem_lock(), it calls
2458
* ipc_lock_object(), i.e. spin_lock(&sma->sem_perm.lock).
2459
* (in sysvipc_find_ipc)
2460
* In order to stay compatible with sem_lock(), we must
2461
* enter / leave complex_mode.
2462
*/
2463
complexmode_enter(sma);
2464
2465
sem_otime = get_semotime(sma);
2466
2467
seq_printf(s,
2468
"%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2469
sma->sem_perm.key,
2470
sma->sem_perm.id,
2471
sma->sem_perm.mode,
2472
sma->sem_nsems,
2473
from_kuid_munged(user_ns, sma->sem_perm.uid),
2474
from_kgid_munged(user_ns, sma->sem_perm.gid),
2475
from_kuid_munged(user_ns, sma->sem_perm.cuid),
2476
from_kgid_munged(user_ns, sma->sem_perm.cgid),
2477
sem_otime,
2478
sma->sem_ctime);
2479
2480
complexmode_tryleave(sma);
2481
2482
return 0;
2483
}
2484
#endif
2485
2486