Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/audit.c
26245 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* audit.c -- Auditing support
3
* Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4
* System-call specific features have moved to auditsc.c
5
*
6
* Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7
* All Rights Reserved.
8
*
9
* Written by Rickard E. (Rik) Faith <[email protected]>
10
*
11
* Goals: 1) Integrate fully with Security Modules.
12
* 2) Minimal run-time overhead:
13
* a) Minimal when syscall auditing is disabled (audit_enable=0).
14
* b) Small when syscall auditing is enabled and no audit record
15
* is generated (defer as much work as possible to record
16
* generation time):
17
* i) context is allocated,
18
* ii) names from getname are stored without a copy, and
19
* iii) inode information stored from path_lookup.
20
* 3) Ability to disable syscall auditing at boot time (audit=0).
21
* 4) Usable by other parts of the kernel (if audit_log* is called,
22
* then a syscall record will be generated automatically for the
23
* current syscall).
24
* 5) Netlink interface to user-space.
25
* 6) Support low-overhead kernel-based filtering to minimize the
26
* information that must be passed to user-space.
27
*
28
* Audit userspace, documentation, tests, and bug/issue trackers:
29
* https://github.com/linux-audit
30
*/
31
32
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34
#include <linux/file.h>
35
#include <linux/init.h>
36
#include <linux/types.h>
37
#include <linux/atomic.h>
38
#include <linux/mm.h>
39
#include <linux/export.h>
40
#include <linux/slab.h>
41
#include <linux/err.h>
42
#include <linux/kthread.h>
43
#include <linux/kernel.h>
44
#include <linux/syscalls.h>
45
#include <linux/spinlock.h>
46
#include <linux/rcupdate.h>
47
#include <linux/mutex.h>
48
#include <linux/gfp.h>
49
#include <linux/pid.h>
50
51
#include <linux/audit.h>
52
53
#include <net/sock.h>
54
#include <net/netlink.h>
55
#include <linux/skbuff.h>
56
#include <linux/security.h>
57
#include <linux/freezer.h>
58
#include <linux/pid_namespace.h>
59
#include <net/netns/generic.h>
60
61
#include "audit.h"
62
63
/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
64
* (Initialization happens after skb_init is called.) */
65
#define AUDIT_DISABLED -1
66
#define AUDIT_UNINITIALIZED 0
67
#define AUDIT_INITIALIZED 1
68
static int audit_initialized = AUDIT_UNINITIALIZED;
69
70
u32 audit_enabled = AUDIT_OFF;
71
bool audit_ever_enabled = !!AUDIT_OFF;
72
73
EXPORT_SYMBOL_GPL(audit_enabled);
74
75
/* Default state when kernel boots without any parameters. */
76
static u32 audit_default = AUDIT_OFF;
77
78
/* If auditing cannot proceed, audit_failure selects what happens. */
79
static u32 audit_failure = AUDIT_FAIL_PRINTK;
80
81
/* private audit network namespace index */
82
static unsigned int audit_net_id;
83
84
/**
85
* struct audit_net - audit private network namespace data
86
* @sk: communication socket
87
*/
88
struct audit_net {
89
struct sock *sk;
90
};
91
92
/**
93
* struct auditd_connection - kernel/auditd connection state
94
* @pid: auditd PID
95
* @portid: netlink portid
96
* @net: the associated network namespace
97
* @rcu: RCU head
98
*
99
* Description:
100
* This struct is RCU protected; you must either hold the RCU lock for reading
101
* or the associated spinlock for writing.
102
*/
103
struct auditd_connection {
104
struct pid *pid;
105
u32 portid;
106
struct net *net;
107
struct rcu_head rcu;
108
};
109
static struct auditd_connection __rcu *auditd_conn;
110
static DEFINE_SPINLOCK(auditd_conn_lock);
111
112
/* If audit_rate_limit is non-zero, limit the rate of sending audit records
113
* to that number per second. This prevents DoS attacks, but results in
114
* audit records being dropped. */
115
static u32 audit_rate_limit;
116
117
/* Number of outstanding audit_buffers allowed.
118
* When set to zero, this means unlimited. */
119
static u32 audit_backlog_limit = 64;
120
#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
121
static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
122
123
/* The identity of the user shutting down the audit system. */
124
static kuid_t audit_sig_uid = INVALID_UID;
125
static pid_t audit_sig_pid = -1;
126
static struct lsm_prop audit_sig_lsm;
127
128
/* Records can be lost in several ways:
129
0) [suppressed in audit_alloc]
130
1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
131
2) out of memory in audit_log_move [alloc_skb]
132
3) suppressed due to audit_rate_limit
133
4) suppressed due to audit_backlog_limit
134
*/
135
static atomic_t audit_lost = ATOMIC_INIT(0);
136
137
/* Monotonically increasing sum of time the kernel has spent
138
* waiting while the backlog limit is exceeded.
139
*/
140
static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
141
142
/* Hash for inode-based rules */
143
struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
144
145
static struct kmem_cache *audit_buffer_cache;
146
147
/* queue msgs to send via kauditd_task */
148
static struct sk_buff_head audit_queue;
149
/* queue msgs due to temporary unicast send problems */
150
static struct sk_buff_head audit_retry_queue;
151
/* queue msgs waiting for new auditd connection */
152
static struct sk_buff_head audit_hold_queue;
153
154
/* queue servicing thread */
155
static struct task_struct *kauditd_task;
156
static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
157
158
/* waitqueue for callers who are blocked on the audit backlog */
159
static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
160
161
static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
162
.mask = -1,
163
.features = 0,
164
.lock = 0,};
165
166
static char *audit_feature_names[2] = {
167
"only_unset_loginuid",
168
"loginuid_immutable",
169
};
170
171
/**
172
* struct audit_ctl_mutex - serialize requests from userspace
173
* @lock: the mutex used for locking
174
* @owner: the task which owns the lock
175
*
176
* Description:
177
* This is the lock struct used to ensure we only process userspace requests
178
* in an orderly fashion. We can't simply use a mutex/lock here because we
179
* need to track lock ownership so we don't end up blocking the lock owner in
180
* audit_log_start() or similar.
181
*/
182
static struct audit_ctl_mutex {
183
struct mutex lock;
184
void *owner;
185
} audit_cmd_mutex;
186
187
/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188
* audit records. Since printk uses a 1024 byte buffer, this buffer
189
* should be at least that large. */
190
#define AUDIT_BUFSIZ 1024
191
192
/* The audit_buffer is used when formatting an audit record. The caller
193
* locks briefly to get the record off the freelist or to allocate the
194
* buffer, and locks briefly to send the buffer to the netlink layer or
195
* to place it on a transmit queue. Multiple audit_buffers can be in
196
* use simultaneously. */
197
struct audit_buffer {
198
struct sk_buff *skb; /* formatted skb ready to send */
199
struct audit_context *ctx; /* NULL or associated context */
200
gfp_t gfp_mask;
201
};
202
203
struct audit_reply {
204
__u32 portid;
205
struct net *net;
206
struct sk_buff *skb;
207
};
208
209
/**
210
* auditd_test_task - Check to see if a given task is an audit daemon
211
* @task: the task to check
212
*
213
* Description:
214
* Return 1 if the task is a registered audit daemon, 0 otherwise.
215
*/
216
int auditd_test_task(struct task_struct *task)
217
{
218
int rc;
219
struct auditd_connection *ac;
220
221
rcu_read_lock();
222
ac = rcu_dereference(auditd_conn);
223
rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224
rcu_read_unlock();
225
226
return rc;
227
}
228
229
/**
230
* audit_ctl_lock - Take the audit control lock
231
*/
232
void audit_ctl_lock(void)
233
{
234
mutex_lock(&audit_cmd_mutex.lock);
235
audit_cmd_mutex.owner = current;
236
}
237
238
/**
239
* audit_ctl_unlock - Drop the audit control lock
240
*/
241
void audit_ctl_unlock(void)
242
{
243
audit_cmd_mutex.owner = NULL;
244
mutex_unlock(&audit_cmd_mutex.lock);
245
}
246
247
/**
248
* audit_ctl_owner_current - Test to see if the current task owns the lock
249
*
250
* Description:
251
* Return true if the current task owns the audit control lock, false if it
252
* doesn't own the lock.
253
*/
254
static bool audit_ctl_owner_current(void)
255
{
256
return (current == audit_cmd_mutex.owner);
257
}
258
259
/**
260
* auditd_pid_vnr - Return the auditd PID relative to the namespace
261
*
262
* Description:
263
* Returns the PID in relation to the namespace, 0 on failure.
264
*/
265
static pid_t auditd_pid_vnr(void)
266
{
267
pid_t pid;
268
const struct auditd_connection *ac;
269
270
rcu_read_lock();
271
ac = rcu_dereference(auditd_conn);
272
if (!ac || !ac->pid)
273
pid = 0;
274
else
275
pid = pid_vnr(ac->pid);
276
rcu_read_unlock();
277
278
return pid;
279
}
280
281
/**
282
* audit_get_sk - Return the audit socket for the given network namespace
283
* @net: the destination network namespace
284
*
285
* Description:
286
* Returns the sock pointer if valid, NULL otherwise. The caller must ensure
287
* that a reference is held for the network namespace while the sock is in use.
288
*/
289
static struct sock *audit_get_sk(const struct net *net)
290
{
291
struct audit_net *aunet;
292
293
if (!net)
294
return NULL;
295
296
aunet = net_generic(net, audit_net_id);
297
return aunet->sk;
298
}
299
300
void audit_panic(const char *message)
301
{
302
switch (audit_failure) {
303
case AUDIT_FAIL_SILENT:
304
break;
305
case AUDIT_FAIL_PRINTK:
306
if (printk_ratelimit())
307
pr_err("%s\n", message);
308
break;
309
case AUDIT_FAIL_PANIC:
310
panic("audit: %s\n", message);
311
break;
312
}
313
}
314
315
static inline int audit_rate_check(void)
316
{
317
static unsigned long last_check = 0;
318
static int messages = 0;
319
static DEFINE_SPINLOCK(lock);
320
unsigned long flags;
321
unsigned long now;
322
int retval = 0;
323
324
if (!audit_rate_limit)
325
return 1;
326
327
spin_lock_irqsave(&lock, flags);
328
if (++messages < audit_rate_limit) {
329
retval = 1;
330
} else {
331
now = jiffies;
332
if (time_after(now, last_check + HZ)) {
333
last_check = now;
334
messages = 0;
335
retval = 1;
336
}
337
}
338
spin_unlock_irqrestore(&lock, flags);
339
340
return retval;
341
}
342
343
/**
344
* audit_log_lost - conditionally log lost audit message event
345
* @message: the message stating reason for lost audit message
346
*
347
* Emit at least 1 message per second, even if audit_rate_check is
348
* throttling.
349
* Always increment the lost messages counter.
350
*/
351
void audit_log_lost(const char *message)
352
{
353
static unsigned long last_msg = 0;
354
static DEFINE_SPINLOCK(lock);
355
unsigned long flags;
356
unsigned long now;
357
int print;
358
359
atomic_inc(&audit_lost);
360
361
print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
362
363
if (!print) {
364
spin_lock_irqsave(&lock, flags);
365
now = jiffies;
366
if (time_after(now, last_msg + HZ)) {
367
print = 1;
368
last_msg = now;
369
}
370
spin_unlock_irqrestore(&lock, flags);
371
}
372
373
if (print) {
374
if (printk_ratelimit())
375
pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
376
atomic_read(&audit_lost),
377
audit_rate_limit,
378
audit_backlog_limit);
379
audit_panic(message);
380
}
381
}
382
383
static int audit_log_config_change(char *function_name, u32 new, u32 old,
384
int allow_changes)
385
{
386
struct audit_buffer *ab;
387
int rc = 0;
388
389
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
390
if (unlikely(!ab))
391
return rc;
392
audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
393
audit_log_session_info(ab);
394
rc = audit_log_task_context(ab);
395
if (rc)
396
allow_changes = 0; /* Something weird, deny request */
397
audit_log_format(ab, " res=%d", allow_changes);
398
audit_log_end(ab);
399
return rc;
400
}
401
402
static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
403
{
404
int allow_changes, rc = 0;
405
u32 old = *to_change;
406
407
/* check if we are locked */
408
if (audit_enabled == AUDIT_LOCKED)
409
allow_changes = 0;
410
else
411
allow_changes = 1;
412
413
if (audit_enabled != AUDIT_OFF) {
414
rc = audit_log_config_change(function_name, new, old, allow_changes);
415
if (rc)
416
allow_changes = 0;
417
}
418
419
/* If we are allowed, make the change */
420
if (allow_changes == 1)
421
*to_change = new;
422
/* Not allowed, update reason */
423
else if (rc == 0)
424
rc = -EPERM;
425
return rc;
426
}
427
428
static int audit_set_rate_limit(u32 limit)
429
{
430
return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
431
}
432
433
static int audit_set_backlog_limit(u32 limit)
434
{
435
return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
436
}
437
438
static int audit_set_backlog_wait_time(u32 timeout)
439
{
440
return audit_do_config_change("audit_backlog_wait_time",
441
&audit_backlog_wait_time, timeout);
442
}
443
444
static int audit_set_enabled(u32 state)
445
{
446
int rc;
447
if (state > AUDIT_LOCKED)
448
return -EINVAL;
449
450
rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
451
if (!rc)
452
audit_ever_enabled |= !!state;
453
454
return rc;
455
}
456
457
static int audit_set_failure(u32 state)
458
{
459
if (state != AUDIT_FAIL_SILENT
460
&& state != AUDIT_FAIL_PRINTK
461
&& state != AUDIT_FAIL_PANIC)
462
return -EINVAL;
463
464
return audit_do_config_change("audit_failure", &audit_failure, state);
465
}
466
467
/**
468
* auditd_conn_free - RCU helper to release an auditd connection struct
469
* @rcu: RCU head
470
*
471
* Description:
472
* Drop any references inside the auditd connection tracking struct and free
473
* the memory.
474
*/
475
static void auditd_conn_free(struct rcu_head *rcu)
476
{
477
struct auditd_connection *ac;
478
479
ac = container_of(rcu, struct auditd_connection, rcu);
480
put_pid(ac->pid);
481
put_net(ac->net);
482
kfree(ac);
483
}
484
485
/**
486
* auditd_set - Set/Reset the auditd connection state
487
* @pid: auditd PID
488
* @portid: auditd netlink portid
489
* @net: auditd network namespace pointer
490
* @skb: the netlink command from the audit daemon
491
* @ack: netlink ack flag, cleared if ack'd here
492
*
493
* Description:
494
* This function will obtain and drop network namespace references as
495
* necessary. Returns zero on success, negative values on failure.
496
*/
497
static int auditd_set(struct pid *pid, u32 portid, struct net *net,
498
struct sk_buff *skb, bool *ack)
499
{
500
unsigned long flags;
501
struct auditd_connection *ac_old, *ac_new;
502
struct nlmsghdr *nlh;
503
504
if (!pid || !net)
505
return -EINVAL;
506
507
ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
508
if (!ac_new)
509
return -ENOMEM;
510
ac_new->pid = get_pid(pid);
511
ac_new->portid = portid;
512
ac_new->net = get_net(net);
513
514
/* send the ack now to avoid a race with the queue backlog */
515
if (*ack) {
516
nlh = nlmsg_hdr(skb);
517
netlink_ack(skb, nlh, 0, NULL);
518
*ack = false;
519
}
520
521
spin_lock_irqsave(&auditd_conn_lock, flags);
522
ac_old = rcu_dereference_protected(auditd_conn,
523
lockdep_is_held(&auditd_conn_lock));
524
rcu_assign_pointer(auditd_conn, ac_new);
525
spin_unlock_irqrestore(&auditd_conn_lock, flags);
526
527
if (ac_old)
528
call_rcu(&ac_old->rcu, auditd_conn_free);
529
530
return 0;
531
}
532
533
/**
534
* kauditd_printk_skb - Print the audit record to the ring buffer
535
* @skb: audit record
536
*
537
* Whatever the reason, this packet may not make it to the auditd connection
538
* so write it via printk so the information isn't completely lost.
539
*/
540
static void kauditd_printk_skb(struct sk_buff *skb)
541
{
542
struct nlmsghdr *nlh = nlmsg_hdr(skb);
543
char *data = nlmsg_data(nlh);
544
545
if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
546
pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
547
}
548
549
/**
550
* kauditd_rehold_skb - Handle a audit record send failure in the hold queue
551
* @skb: audit record
552
* @error: error code (unused)
553
*
554
* Description:
555
* This should only be used by the kauditd_thread when it fails to flush the
556
* hold queue.
557
*/
558
static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
559
{
560
/* put the record back in the queue */
561
skb_queue_tail(&audit_hold_queue, skb);
562
}
563
564
/**
565
* kauditd_hold_skb - Queue an audit record, waiting for auditd
566
* @skb: audit record
567
* @error: error code
568
*
569
* Description:
570
* Queue the audit record, waiting for an instance of auditd. When this
571
* function is called we haven't given up yet on sending the record, but things
572
* are not looking good. The first thing we want to do is try to write the
573
* record via printk and then see if we want to try and hold on to the record
574
* and queue it, if we have room. If we want to hold on to the record, but we
575
* don't have room, record a record lost message.
576
*/
577
static void kauditd_hold_skb(struct sk_buff *skb, int error)
578
{
579
/* at this point it is uncertain if we will ever send this to auditd so
580
* try to send the message via printk before we go any further */
581
kauditd_printk_skb(skb);
582
583
/* can we just silently drop the message? */
584
if (!audit_default)
585
goto drop;
586
587
/* the hold queue is only for when the daemon goes away completely,
588
* not -EAGAIN failures; if we are in a -EAGAIN state requeue the
589
* record on the retry queue unless it's full, in which case drop it
590
*/
591
if (error == -EAGAIN) {
592
if (!audit_backlog_limit ||
593
skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
594
skb_queue_tail(&audit_retry_queue, skb);
595
return;
596
}
597
audit_log_lost("kauditd retry queue overflow");
598
goto drop;
599
}
600
601
/* if we have room in the hold queue, queue the message */
602
if (!audit_backlog_limit ||
603
skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
604
skb_queue_tail(&audit_hold_queue, skb);
605
return;
606
}
607
608
/* we have no other options - drop the message */
609
audit_log_lost("kauditd hold queue overflow");
610
drop:
611
kfree_skb(skb);
612
}
613
614
/**
615
* kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
616
* @skb: audit record
617
* @error: error code (unused)
618
*
619
* Description:
620
* Not as serious as kauditd_hold_skb() as we still have a connected auditd,
621
* but for some reason we are having problems sending it audit records so
622
* queue the given record and attempt to resend.
623
*/
624
static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
625
{
626
if (!audit_backlog_limit ||
627
skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
628
skb_queue_tail(&audit_retry_queue, skb);
629
return;
630
}
631
632
/* we have to drop the record, send it via printk as a last effort */
633
kauditd_printk_skb(skb);
634
audit_log_lost("kauditd retry queue overflow");
635
kfree_skb(skb);
636
}
637
638
/**
639
* auditd_reset - Disconnect the auditd connection
640
* @ac: auditd connection state
641
*
642
* Description:
643
* Break the auditd/kauditd connection and move all the queued records into the
644
* hold queue in case auditd reconnects. It is important to note that the @ac
645
* pointer should never be dereferenced inside this function as it may be NULL
646
* or invalid, you can only compare the memory address! If @ac is NULL then
647
* the connection will always be reset.
648
*/
649
static void auditd_reset(const struct auditd_connection *ac)
650
{
651
unsigned long flags;
652
struct sk_buff *skb;
653
struct auditd_connection *ac_old;
654
655
/* if it isn't already broken, break the connection */
656
spin_lock_irqsave(&auditd_conn_lock, flags);
657
ac_old = rcu_dereference_protected(auditd_conn,
658
lockdep_is_held(&auditd_conn_lock));
659
if (ac && ac != ac_old) {
660
/* someone already registered a new auditd connection */
661
spin_unlock_irqrestore(&auditd_conn_lock, flags);
662
return;
663
}
664
rcu_assign_pointer(auditd_conn, NULL);
665
spin_unlock_irqrestore(&auditd_conn_lock, flags);
666
667
if (ac_old)
668
call_rcu(&ac_old->rcu, auditd_conn_free);
669
670
/* flush the retry queue to the hold queue, but don't touch the main
671
* queue since we need to process that normally for multicast */
672
while ((skb = skb_dequeue(&audit_retry_queue)))
673
kauditd_hold_skb(skb, -ECONNREFUSED);
674
}
675
676
/**
677
* auditd_send_unicast_skb - Send a record via unicast to auditd
678
* @skb: audit record
679
*
680
* Description:
681
* Send a skb to the audit daemon, returns positive/zero values on success and
682
* negative values on failure; in all cases the skb will be consumed by this
683
* function. If the send results in -ECONNREFUSED the connection with auditd
684
* will be reset. This function may sleep so callers should not hold any locks
685
* where this would cause a problem.
686
*/
687
static int auditd_send_unicast_skb(struct sk_buff *skb)
688
{
689
int rc;
690
u32 portid;
691
struct net *net;
692
struct sock *sk;
693
struct auditd_connection *ac;
694
695
/* NOTE: we can't call netlink_unicast while in the RCU section so
696
* take a reference to the network namespace and grab local
697
* copies of the namespace, the sock, and the portid; the
698
* namespace and sock aren't going to go away while we hold a
699
* reference and if the portid does become invalid after the RCU
700
* section netlink_unicast() should safely return an error */
701
702
rcu_read_lock();
703
ac = rcu_dereference(auditd_conn);
704
if (!ac) {
705
rcu_read_unlock();
706
kfree_skb(skb);
707
rc = -ECONNREFUSED;
708
goto err;
709
}
710
net = get_net(ac->net);
711
sk = audit_get_sk(net);
712
portid = ac->portid;
713
rcu_read_unlock();
714
715
rc = netlink_unicast(sk, skb, portid, 0);
716
put_net(net);
717
if (rc < 0)
718
goto err;
719
720
return rc;
721
722
err:
723
if (ac && rc == -ECONNREFUSED)
724
auditd_reset(ac);
725
return rc;
726
}
727
728
/**
729
* kauditd_send_queue - Helper for kauditd_thread to flush skb queues
730
* @sk: the sending sock
731
* @portid: the netlink destination
732
* @queue: the skb queue to process
733
* @retry_limit: limit on number of netlink unicast failures
734
* @skb_hook: per-skb hook for additional processing
735
* @err_hook: hook called if the skb fails the netlink unicast send
736
*
737
* Description:
738
* Run through the given queue and attempt to send the audit records to auditd,
739
* returns zero on success, negative values on failure. It is up to the caller
740
* to ensure that the @sk is valid for the duration of this function.
741
*
742
*/
743
static int kauditd_send_queue(struct sock *sk, u32 portid,
744
struct sk_buff_head *queue,
745
unsigned int retry_limit,
746
void (*skb_hook)(struct sk_buff *skb),
747
void (*err_hook)(struct sk_buff *skb, int error))
748
{
749
int rc = 0;
750
struct sk_buff *skb = NULL;
751
struct sk_buff *skb_tail;
752
unsigned int failed = 0;
753
754
/* NOTE: kauditd_thread takes care of all our locking, we just use
755
* the netlink info passed to us (e.g. sk and portid) */
756
757
skb_tail = skb_peek_tail(queue);
758
while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
759
/* call the skb_hook for each skb we touch */
760
if (skb_hook)
761
(*skb_hook)(skb);
762
763
/* can we send to anyone via unicast? */
764
if (!sk) {
765
if (err_hook)
766
(*err_hook)(skb, -ECONNREFUSED);
767
continue;
768
}
769
770
retry:
771
/* grab an extra skb reference in case of error */
772
skb_get(skb);
773
rc = netlink_unicast(sk, skb, portid, 0);
774
if (rc < 0) {
775
/* send failed - try a few times unless fatal error */
776
if (++failed >= retry_limit ||
777
rc == -ECONNREFUSED || rc == -EPERM) {
778
sk = NULL;
779
if (err_hook)
780
(*err_hook)(skb, rc);
781
if (rc == -EAGAIN)
782
rc = 0;
783
/* continue to drain the queue */
784
continue;
785
} else
786
goto retry;
787
} else {
788
/* skb sent - drop the extra reference and continue */
789
consume_skb(skb);
790
failed = 0;
791
}
792
}
793
794
return (rc >= 0 ? 0 : rc);
795
}
796
797
/*
798
* kauditd_send_multicast_skb - Send a record to any multicast listeners
799
* @skb: audit record
800
*
801
* Description:
802
* Write a multicast message to anyone listening in the initial network
803
* namespace. This function doesn't consume an skb as might be expected since
804
* it has to copy it anyways.
805
*/
806
static void kauditd_send_multicast_skb(struct sk_buff *skb)
807
{
808
struct sk_buff *copy;
809
struct sock *sock = audit_get_sk(&init_net);
810
struct nlmsghdr *nlh;
811
812
/* NOTE: we are not taking an additional reference for init_net since
813
* we don't have to worry about it going away */
814
815
if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
816
return;
817
818
/*
819
* The seemingly wasteful skb_copy() rather than bumping the refcount
820
* using skb_get() is necessary because non-standard mods are made to
821
* the skb by the original kaudit unicast socket send routine. The
822
* existing auditd daemon assumes this breakage. Fixing this would
823
* require co-ordinating a change in the established protocol between
824
* the kaudit kernel subsystem and the auditd userspace code. There is
825
* no reason for new multicast clients to continue with this
826
* non-compliance.
827
*/
828
copy = skb_copy(skb, GFP_KERNEL);
829
if (!copy)
830
return;
831
nlh = nlmsg_hdr(copy);
832
nlh->nlmsg_len = skb->len;
833
834
nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
835
}
836
837
/**
838
* kauditd_thread - Worker thread to send audit records to userspace
839
* @dummy: unused
840
*/
841
static int kauditd_thread(void *dummy)
842
{
843
int rc;
844
u32 portid = 0;
845
struct net *net = NULL;
846
struct sock *sk = NULL;
847
struct auditd_connection *ac;
848
849
#define UNICAST_RETRIES 5
850
851
set_freezable();
852
while (!kthread_should_stop()) {
853
/* NOTE: see the lock comments in auditd_send_unicast_skb() */
854
rcu_read_lock();
855
ac = rcu_dereference(auditd_conn);
856
if (!ac) {
857
rcu_read_unlock();
858
goto main_queue;
859
}
860
net = get_net(ac->net);
861
sk = audit_get_sk(net);
862
portid = ac->portid;
863
rcu_read_unlock();
864
865
/* attempt to flush the hold queue */
866
rc = kauditd_send_queue(sk, portid,
867
&audit_hold_queue, UNICAST_RETRIES,
868
NULL, kauditd_rehold_skb);
869
if (rc < 0) {
870
sk = NULL;
871
auditd_reset(ac);
872
goto main_queue;
873
}
874
875
/* attempt to flush the retry queue */
876
rc = kauditd_send_queue(sk, portid,
877
&audit_retry_queue, UNICAST_RETRIES,
878
NULL, kauditd_hold_skb);
879
if (rc < 0) {
880
sk = NULL;
881
auditd_reset(ac);
882
goto main_queue;
883
}
884
885
main_queue:
886
/* process the main queue - do the multicast send and attempt
887
* unicast, dump failed record sends to the retry queue; if
888
* sk == NULL due to previous failures we will just do the
889
* multicast send and move the record to the hold queue */
890
rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
891
kauditd_send_multicast_skb,
892
(sk ?
893
kauditd_retry_skb : kauditd_hold_skb));
894
if (ac && rc < 0)
895
auditd_reset(ac);
896
sk = NULL;
897
898
/* drop our netns reference, no auditd sends past this line */
899
if (net) {
900
put_net(net);
901
net = NULL;
902
}
903
904
/* we have processed all the queues so wake everyone */
905
wake_up(&audit_backlog_wait);
906
907
/* NOTE: we want to wake up if there is anything on the queue,
908
* regardless of if an auditd is connected, as we need to
909
* do the multicast send and rotate records from the
910
* main queue to the retry/hold queues */
911
wait_event_freezable(kauditd_wait,
912
(skb_queue_len(&audit_queue) ? 1 : 0));
913
}
914
915
return 0;
916
}
917
918
int audit_send_list_thread(void *_dest)
919
{
920
struct audit_netlink_list *dest = _dest;
921
struct sk_buff *skb;
922
struct sock *sk = audit_get_sk(dest->net);
923
924
/* wait for parent to finish and send an ACK */
925
audit_ctl_lock();
926
audit_ctl_unlock();
927
928
while ((skb = __skb_dequeue(&dest->q)) != NULL)
929
netlink_unicast(sk, skb, dest->portid, 0);
930
931
put_net(dest->net);
932
kfree(dest);
933
934
return 0;
935
}
936
937
struct sk_buff *audit_make_reply(int seq, int type, int done,
938
int multi, const void *payload, int size)
939
{
940
struct sk_buff *skb;
941
struct nlmsghdr *nlh;
942
void *data;
943
int flags = multi ? NLM_F_MULTI : 0;
944
int t = done ? NLMSG_DONE : type;
945
946
skb = nlmsg_new(size, GFP_KERNEL);
947
if (!skb)
948
return NULL;
949
950
nlh = nlmsg_put(skb, 0, seq, t, size, flags);
951
if (!nlh)
952
goto out_kfree_skb;
953
data = nlmsg_data(nlh);
954
memcpy(data, payload, size);
955
return skb;
956
957
out_kfree_skb:
958
kfree_skb(skb);
959
return NULL;
960
}
961
962
static void audit_free_reply(struct audit_reply *reply)
963
{
964
if (!reply)
965
return;
966
967
kfree_skb(reply->skb);
968
if (reply->net)
969
put_net(reply->net);
970
kfree(reply);
971
}
972
973
static int audit_send_reply_thread(void *arg)
974
{
975
struct audit_reply *reply = (struct audit_reply *)arg;
976
977
audit_ctl_lock();
978
audit_ctl_unlock();
979
980
/* Ignore failure. It'll only happen if the sender goes away,
981
because our timeout is set to infinite. */
982
netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
983
reply->skb = NULL;
984
audit_free_reply(reply);
985
return 0;
986
}
987
988
/**
989
* audit_send_reply - send an audit reply message via netlink
990
* @request_skb: skb of request we are replying to (used to target the reply)
991
* @seq: sequence number
992
* @type: audit message type
993
* @done: done (last) flag
994
* @multi: multi-part message flag
995
* @payload: payload data
996
* @size: payload size
997
*
998
* Allocates a skb, builds the netlink message, and sends it to the port id.
999
*/
1000
static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1001
int multi, const void *payload, int size)
1002
{
1003
struct task_struct *tsk;
1004
struct audit_reply *reply;
1005
1006
reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1007
if (!reply)
1008
return;
1009
1010
reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1011
if (!reply->skb)
1012
goto err;
1013
reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1014
reply->portid = NETLINK_CB(request_skb).portid;
1015
1016
tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1017
if (IS_ERR(tsk))
1018
goto err;
1019
1020
return;
1021
1022
err:
1023
audit_free_reply(reply);
1024
}
1025
1026
/*
1027
* Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1028
* control messages.
1029
*/
1030
static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1031
{
1032
int err = 0;
1033
1034
/* Only support initial user namespace for now. */
1035
/*
1036
* We return ECONNREFUSED because it tricks userspace into thinking
1037
* that audit was not configured into the kernel. Lots of users
1038
* configure their PAM stack (because that's what the distro does)
1039
* to reject login if unable to send messages to audit. If we return
1040
* ECONNREFUSED the PAM stack thinks the kernel does not have audit
1041
* configured in and will let login proceed. If we return EPERM
1042
* userspace will reject all logins. This should be removed when we
1043
* support non init namespaces!!
1044
*/
1045
if (current_user_ns() != &init_user_ns)
1046
return -ECONNREFUSED;
1047
1048
switch (msg_type) {
1049
case AUDIT_LIST:
1050
case AUDIT_ADD:
1051
case AUDIT_DEL:
1052
return -EOPNOTSUPP;
1053
case AUDIT_GET:
1054
case AUDIT_SET:
1055
case AUDIT_GET_FEATURE:
1056
case AUDIT_SET_FEATURE:
1057
case AUDIT_LIST_RULES:
1058
case AUDIT_ADD_RULE:
1059
case AUDIT_DEL_RULE:
1060
case AUDIT_SIGNAL_INFO:
1061
case AUDIT_TTY_GET:
1062
case AUDIT_TTY_SET:
1063
case AUDIT_TRIM:
1064
case AUDIT_MAKE_EQUIV:
1065
/* Only support auditd and auditctl in initial pid namespace
1066
* for now. */
1067
if (task_active_pid_ns(current) != &init_pid_ns)
1068
return -EPERM;
1069
1070
if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1071
err = -EPERM;
1072
break;
1073
case AUDIT_USER:
1074
case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1075
case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1076
if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1077
err = -EPERM;
1078
break;
1079
default: /* bad msg */
1080
err = -EINVAL;
1081
}
1082
1083
return err;
1084
}
1085
1086
static void audit_log_common_recv_msg(struct audit_context *context,
1087
struct audit_buffer **ab, u16 msg_type)
1088
{
1089
uid_t uid = from_kuid(&init_user_ns, current_uid());
1090
pid_t pid = task_tgid_nr(current);
1091
1092
if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1093
*ab = NULL;
1094
return;
1095
}
1096
1097
*ab = audit_log_start(context, GFP_KERNEL, msg_type);
1098
if (unlikely(!*ab))
1099
return;
1100
audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1101
audit_log_session_info(*ab);
1102
audit_log_task_context(*ab);
1103
}
1104
1105
static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1106
u16 msg_type)
1107
{
1108
audit_log_common_recv_msg(NULL, ab, msg_type);
1109
}
1110
1111
static int is_audit_feature_set(int i)
1112
{
1113
return af.features & AUDIT_FEATURE_TO_MASK(i);
1114
}
1115
1116
1117
static int audit_get_feature(struct sk_buff *skb)
1118
{
1119
u32 seq;
1120
1121
seq = nlmsg_hdr(skb)->nlmsg_seq;
1122
1123
audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1124
1125
return 0;
1126
}
1127
1128
static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1129
u32 old_lock, u32 new_lock, int res)
1130
{
1131
struct audit_buffer *ab;
1132
1133
if (audit_enabled == AUDIT_OFF)
1134
return;
1135
1136
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1137
if (!ab)
1138
return;
1139
audit_log_task_info(ab);
1140
audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1141
audit_feature_names[which], !!old_feature, !!new_feature,
1142
!!old_lock, !!new_lock, res);
1143
audit_log_end(ab);
1144
}
1145
1146
static int audit_set_feature(struct audit_features *uaf)
1147
{
1148
int i;
1149
1150
BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1151
1152
/* if there is ever a version 2 we should handle that here */
1153
1154
for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1155
u32 feature = AUDIT_FEATURE_TO_MASK(i);
1156
u32 old_feature, new_feature, old_lock, new_lock;
1157
1158
/* if we are not changing this feature, move along */
1159
if (!(feature & uaf->mask))
1160
continue;
1161
1162
old_feature = af.features & feature;
1163
new_feature = uaf->features & feature;
1164
new_lock = (uaf->lock | af.lock) & feature;
1165
old_lock = af.lock & feature;
1166
1167
/* are we changing a locked feature? */
1168
if (old_lock && (new_feature != old_feature)) {
1169
audit_log_feature_change(i, old_feature, new_feature,
1170
old_lock, new_lock, 0);
1171
return -EPERM;
1172
}
1173
}
1174
/* nothing invalid, do the changes */
1175
for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1176
u32 feature = AUDIT_FEATURE_TO_MASK(i);
1177
u32 old_feature, new_feature, old_lock, new_lock;
1178
1179
/* if we are not changing this feature, move along */
1180
if (!(feature & uaf->mask))
1181
continue;
1182
1183
old_feature = af.features & feature;
1184
new_feature = uaf->features & feature;
1185
old_lock = af.lock & feature;
1186
new_lock = (uaf->lock | af.lock) & feature;
1187
1188
if (new_feature != old_feature)
1189
audit_log_feature_change(i, old_feature, new_feature,
1190
old_lock, new_lock, 1);
1191
1192
if (new_feature)
1193
af.features |= feature;
1194
else
1195
af.features &= ~feature;
1196
af.lock |= new_lock;
1197
}
1198
1199
return 0;
1200
}
1201
1202
static int audit_replace(struct pid *pid)
1203
{
1204
pid_t pvnr;
1205
struct sk_buff *skb;
1206
1207
pvnr = pid_vnr(pid);
1208
skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1209
if (!skb)
1210
return -ENOMEM;
1211
return auditd_send_unicast_skb(skb);
1212
}
1213
1214
static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1215
bool *ack)
1216
{
1217
u32 seq;
1218
void *data;
1219
int data_len;
1220
int err;
1221
struct audit_buffer *ab;
1222
u16 msg_type = nlh->nlmsg_type;
1223
struct audit_sig_info *sig_data;
1224
struct lsm_context lsmctx = { NULL, 0, 0 };
1225
1226
err = audit_netlink_ok(skb, msg_type);
1227
if (err)
1228
return err;
1229
1230
seq = nlh->nlmsg_seq;
1231
data = nlmsg_data(nlh);
1232
data_len = nlmsg_len(nlh);
1233
1234
switch (msg_type) {
1235
case AUDIT_GET: {
1236
struct audit_status s;
1237
memset(&s, 0, sizeof(s));
1238
s.enabled = audit_enabled;
1239
s.failure = audit_failure;
1240
/* NOTE: use pid_vnr() so the PID is relative to the current
1241
* namespace */
1242
s.pid = auditd_pid_vnr();
1243
s.rate_limit = audit_rate_limit;
1244
s.backlog_limit = audit_backlog_limit;
1245
s.lost = atomic_read(&audit_lost);
1246
s.backlog = skb_queue_len(&audit_queue);
1247
s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1248
s.backlog_wait_time = audit_backlog_wait_time;
1249
s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1250
audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1251
break;
1252
}
1253
case AUDIT_SET: {
1254
struct audit_status s;
1255
memset(&s, 0, sizeof(s));
1256
/* guard against past and future API changes */
1257
memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1258
if (s.mask & AUDIT_STATUS_ENABLED) {
1259
err = audit_set_enabled(s.enabled);
1260
if (err < 0)
1261
return err;
1262
}
1263
if (s.mask & AUDIT_STATUS_FAILURE) {
1264
err = audit_set_failure(s.failure);
1265
if (err < 0)
1266
return err;
1267
}
1268
if (s.mask & AUDIT_STATUS_PID) {
1269
/* NOTE: we are using the vnr PID functions below
1270
* because the s.pid value is relative to the
1271
* namespace of the caller; at present this
1272
* doesn't matter much since you can really only
1273
* run auditd from the initial pid namespace, but
1274
* something to keep in mind if this changes */
1275
pid_t new_pid = s.pid;
1276
pid_t auditd_pid;
1277
struct pid *req_pid = task_tgid(current);
1278
1279
/* Sanity check - PID values must match. Setting
1280
* pid to 0 is how auditd ends auditing. */
1281
if (new_pid && (new_pid != pid_vnr(req_pid)))
1282
return -EINVAL;
1283
1284
/* test the auditd connection */
1285
audit_replace(req_pid);
1286
1287
auditd_pid = auditd_pid_vnr();
1288
if (auditd_pid) {
1289
/* replacing a healthy auditd is not allowed */
1290
if (new_pid) {
1291
audit_log_config_change("audit_pid",
1292
new_pid, auditd_pid, 0);
1293
return -EEXIST;
1294
}
1295
/* only current auditd can unregister itself */
1296
if (pid_vnr(req_pid) != auditd_pid) {
1297
audit_log_config_change("audit_pid",
1298
new_pid, auditd_pid, 0);
1299
return -EACCES;
1300
}
1301
}
1302
1303
if (new_pid) {
1304
/* register a new auditd connection */
1305
err = auditd_set(req_pid,
1306
NETLINK_CB(skb).portid,
1307
sock_net(NETLINK_CB(skb).sk),
1308
skb, ack);
1309
if (audit_enabled != AUDIT_OFF)
1310
audit_log_config_change("audit_pid",
1311
new_pid,
1312
auditd_pid,
1313
err ? 0 : 1);
1314
if (err)
1315
return err;
1316
1317
/* try to process any backlog */
1318
wake_up_interruptible(&kauditd_wait);
1319
} else {
1320
if (audit_enabled != AUDIT_OFF)
1321
audit_log_config_change("audit_pid",
1322
new_pid,
1323
auditd_pid, 1);
1324
1325
/* unregister the auditd connection */
1326
auditd_reset(NULL);
1327
}
1328
}
1329
if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1330
err = audit_set_rate_limit(s.rate_limit);
1331
if (err < 0)
1332
return err;
1333
}
1334
if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1335
err = audit_set_backlog_limit(s.backlog_limit);
1336
if (err < 0)
1337
return err;
1338
}
1339
if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1340
if (sizeof(s) > (size_t)nlh->nlmsg_len)
1341
return -EINVAL;
1342
if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1343
return -EINVAL;
1344
err = audit_set_backlog_wait_time(s.backlog_wait_time);
1345
if (err < 0)
1346
return err;
1347
}
1348
if (s.mask == AUDIT_STATUS_LOST) {
1349
u32 lost = atomic_xchg(&audit_lost, 0);
1350
1351
audit_log_config_change("lost", 0, lost, 1);
1352
return lost;
1353
}
1354
if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1355
u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1356
1357
audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1358
return actual;
1359
}
1360
break;
1361
}
1362
case AUDIT_GET_FEATURE:
1363
err = audit_get_feature(skb);
1364
if (err)
1365
return err;
1366
break;
1367
case AUDIT_SET_FEATURE:
1368
if (data_len < sizeof(struct audit_features))
1369
return -EINVAL;
1370
err = audit_set_feature(data);
1371
if (err)
1372
return err;
1373
break;
1374
case AUDIT_USER:
1375
case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1376
case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1377
if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1378
return 0;
1379
/* exit early if there isn't at least one character to print */
1380
if (data_len < 2)
1381
return -EINVAL;
1382
1383
err = audit_filter(msg_type, AUDIT_FILTER_USER);
1384
if (err == 1) { /* match or error */
1385
char *str = data;
1386
1387
err = 0;
1388
if (msg_type == AUDIT_USER_TTY) {
1389
err = tty_audit_push();
1390
if (err)
1391
break;
1392
}
1393
audit_log_user_recv_msg(&ab, msg_type);
1394
if (msg_type != AUDIT_USER_TTY) {
1395
/* ensure NULL termination */
1396
str[data_len - 1] = '\0';
1397
audit_log_format(ab, " msg='%.*s'",
1398
AUDIT_MESSAGE_TEXT_MAX,
1399
str);
1400
} else {
1401
audit_log_format(ab, " data=");
1402
if (str[data_len - 1] == '\0')
1403
data_len--;
1404
audit_log_n_untrustedstring(ab, str, data_len);
1405
}
1406
audit_log_end(ab);
1407
}
1408
break;
1409
case AUDIT_ADD_RULE:
1410
case AUDIT_DEL_RULE:
1411
if (data_len < sizeof(struct audit_rule_data))
1412
return -EINVAL;
1413
if (audit_enabled == AUDIT_LOCKED) {
1414
audit_log_common_recv_msg(audit_context(), &ab,
1415
AUDIT_CONFIG_CHANGE);
1416
audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1417
msg_type == AUDIT_ADD_RULE ?
1418
"add_rule" : "remove_rule",
1419
audit_enabled);
1420
audit_log_end(ab);
1421
return -EPERM;
1422
}
1423
err = audit_rule_change(msg_type, seq, data, data_len);
1424
break;
1425
case AUDIT_LIST_RULES:
1426
err = audit_list_rules_send(skb, seq);
1427
break;
1428
case AUDIT_TRIM:
1429
audit_trim_trees();
1430
audit_log_common_recv_msg(audit_context(), &ab,
1431
AUDIT_CONFIG_CHANGE);
1432
audit_log_format(ab, " op=trim res=1");
1433
audit_log_end(ab);
1434
break;
1435
case AUDIT_MAKE_EQUIV: {
1436
void *bufp = data;
1437
u32 sizes[2];
1438
size_t msglen = data_len;
1439
char *old, *new;
1440
1441
err = -EINVAL;
1442
if (msglen < 2 * sizeof(u32))
1443
break;
1444
memcpy(sizes, bufp, 2 * sizeof(u32));
1445
bufp += 2 * sizeof(u32);
1446
msglen -= 2 * sizeof(u32);
1447
old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1448
if (IS_ERR(old)) {
1449
err = PTR_ERR(old);
1450
break;
1451
}
1452
new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1453
if (IS_ERR(new)) {
1454
err = PTR_ERR(new);
1455
kfree(old);
1456
break;
1457
}
1458
/* OK, here comes... */
1459
err = audit_tag_tree(old, new);
1460
1461
audit_log_common_recv_msg(audit_context(), &ab,
1462
AUDIT_CONFIG_CHANGE);
1463
audit_log_format(ab, " op=make_equiv old=");
1464
audit_log_untrustedstring(ab, old);
1465
audit_log_format(ab, " new=");
1466
audit_log_untrustedstring(ab, new);
1467
audit_log_format(ab, " res=%d", !err);
1468
audit_log_end(ab);
1469
kfree(old);
1470
kfree(new);
1471
break;
1472
}
1473
case AUDIT_SIGNAL_INFO:
1474
if (lsmprop_is_set(&audit_sig_lsm)) {
1475
err = security_lsmprop_to_secctx(&audit_sig_lsm,
1476
&lsmctx);
1477
if (err < 0)
1478
return err;
1479
}
1480
sig_data = kmalloc(struct_size(sig_data, ctx, lsmctx.len),
1481
GFP_KERNEL);
1482
if (!sig_data) {
1483
if (lsmprop_is_set(&audit_sig_lsm))
1484
security_release_secctx(&lsmctx);
1485
return -ENOMEM;
1486
}
1487
sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1488
sig_data->pid = audit_sig_pid;
1489
if (lsmprop_is_set(&audit_sig_lsm)) {
1490
memcpy(sig_data->ctx, lsmctx.context, lsmctx.len);
1491
security_release_secctx(&lsmctx);
1492
}
1493
audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1494
sig_data, struct_size(sig_data, ctx,
1495
lsmctx.len));
1496
kfree(sig_data);
1497
break;
1498
case AUDIT_TTY_GET: {
1499
struct audit_tty_status s;
1500
unsigned int t;
1501
1502
t = READ_ONCE(current->signal->audit_tty);
1503
s.enabled = t & AUDIT_TTY_ENABLE;
1504
s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1505
1506
audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1507
break;
1508
}
1509
case AUDIT_TTY_SET: {
1510
struct audit_tty_status s, old;
1511
struct audit_buffer *ab;
1512
unsigned int t;
1513
1514
memset(&s, 0, sizeof(s));
1515
/* guard against past and future API changes */
1516
memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1517
/* check if new data is valid */
1518
if ((s.enabled != 0 && s.enabled != 1) ||
1519
(s.log_passwd != 0 && s.log_passwd != 1))
1520
err = -EINVAL;
1521
1522
if (err)
1523
t = READ_ONCE(current->signal->audit_tty);
1524
else {
1525
t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1526
t = xchg(&current->signal->audit_tty, t);
1527
}
1528
old.enabled = t & AUDIT_TTY_ENABLE;
1529
old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1530
1531
audit_log_common_recv_msg(audit_context(), &ab,
1532
AUDIT_CONFIG_CHANGE);
1533
audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1534
" old-log_passwd=%d new-log_passwd=%d res=%d",
1535
old.enabled, s.enabled, old.log_passwd,
1536
s.log_passwd, !err);
1537
audit_log_end(ab);
1538
break;
1539
}
1540
default:
1541
err = -EINVAL;
1542
break;
1543
}
1544
1545
return err < 0 ? err : 0;
1546
}
1547
1548
/**
1549
* audit_receive - receive messages from a netlink control socket
1550
* @skb: the message buffer
1551
*
1552
* Parse the provided skb and deal with any messages that may be present,
1553
* malformed skbs are discarded.
1554
*/
1555
static void audit_receive(struct sk_buff *skb)
1556
{
1557
struct nlmsghdr *nlh;
1558
bool ack;
1559
/*
1560
* len MUST be signed for nlmsg_next to be able to dec it below 0
1561
* if the nlmsg_len was not aligned
1562
*/
1563
int len;
1564
int err;
1565
1566
nlh = nlmsg_hdr(skb);
1567
len = skb->len;
1568
1569
audit_ctl_lock();
1570
while (nlmsg_ok(nlh, len)) {
1571
ack = nlh->nlmsg_flags & NLM_F_ACK;
1572
err = audit_receive_msg(skb, nlh, &ack);
1573
1574
/* send an ack if the user asked for one and audit_receive_msg
1575
* didn't already do it, or if there was an error. */
1576
if (ack || err)
1577
netlink_ack(skb, nlh, err, NULL);
1578
1579
nlh = nlmsg_next(nlh, &len);
1580
}
1581
audit_ctl_unlock();
1582
1583
/* can't block with the ctrl lock, so penalize the sender now */
1584
if (audit_backlog_limit &&
1585
(skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1586
DECLARE_WAITQUEUE(wait, current);
1587
1588
/* wake kauditd to try and flush the queue */
1589
wake_up_interruptible(&kauditd_wait);
1590
1591
add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1592
set_current_state(TASK_UNINTERRUPTIBLE);
1593
schedule_timeout(audit_backlog_wait_time);
1594
remove_wait_queue(&audit_backlog_wait, &wait);
1595
}
1596
}
1597
1598
/* Log information about who is connecting to the audit multicast socket */
1599
static void audit_log_multicast(int group, const char *op, int err)
1600
{
1601
const struct cred *cred;
1602
struct tty_struct *tty;
1603
char comm[sizeof(current->comm)];
1604
struct audit_buffer *ab;
1605
1606
if (!audit_enabled)
1607
return;
1608
1609
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1610
if (!ab)
1611
return;
1612
1613
cred = current_cred();
1614
tty = audit_get_tty();
1615
audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1616
task_tgid_nr(current),
1617
from_kuid(&init_user_ns, cred->uid),
1618
from_kuid(&init_user_ns, audit_get_loginuid(current)),
1619
tty ? tty_name(tty) : "(none)",
1620
audit_get_sessionid(current));
1621
audit_put_tty(tty);
1622
audit_log_task_context(ab); /* subj= */
1623
audit_log_format(ab, " comm=");
1624
audit_log_untrustedstring(ab, get_task_comm(comm, current));
1625
audit_log_d_path_exe(ab, current->mm); /* exe= */
1626
audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1627
audit_log_end(ab);
1628
}
1629
1630
/* Run custom bind function on netlink socket group connect or bind requests. */
1631
static int audit_multicast_bind(struct net *net, int group)
1632
{
1633
int err = 0;
1634
1635
if (!capable(CAP_AUDIT_READ))
1636
err = -EPERM;
1637
audit_log_multicast(group, "connect", err);
1638
return err;
1639
}
1640
1641
static void audit_multicast_unbind(struct net *net, int group)
1642
{
1643
audit_log_multicast(group, "disconnect", 0);
1644
}
1645
1646
static int __net_init audit_net_init(struct net *net)
1647
{
1648
struct netlink_kernel_cfg cfg = {
1649
.input = audit_receive,
1650
.bind = audit_multicast_bind,
1651
.unbind = audit_multicast_unbind,
1652
.flags = NL_CFG_F_NONROOT_RECV,
1653
.groups = AUDIT_NLGRP_MAX,
1654
};
1655
1656
struct audit_net *aunet = net_generic(net, audit_net_id);
1657
1658
aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1659
if (aunet->sk == NULL) {
1660
audit_panic("cannot initialize netlink socket in namespace");
1661
return -ENOMEM;
1662
}
1663
/* limit the timeout in case auditd is blocked/stopped */
1664
aunet->sk->sk_sndtimeo = HZ / 10;
1665
1666
return 0;
1667
}
1668
1669
static void __net_exit audit_net_exit(struct net *net)
1670
{
1671
struct audit_net *aunet = net_generic(net, audit_net_id);
1672
1673
/* NOTE: you would think that we would want to check the auditd
1674
* connection and potentially reset it here if it lives in this
1675
* namespace, but since the auditd connection tracking struct holds a
1676
* reference to this namespace (see auditd_set()) we are only ever
1677
* going to get here after that connection has been released */
1678
1679
netlink_kernel_release(aunet->sk);
1680
}
1681
1682
static struct pernet_operations audit_net_ops __net_initdata = {
1683
.init = audit_net_init,
1684
.exit = audit_net_exit,
1685
.id = &audit_net_id,
1686
.size = sizeof(struct audit_net),
1687
};
1688
1689
/* Initialize audit support at boot time. */
1690
static int __init audit_init(void)
1691
{
1692
int i;
1693
1694
if (audit_initialized == AUDIT_DISABLED)
1695
return 0;
1696
1697
audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC);
1698
1699
skb_queue_head_init(&audit_queue);
1700
skb_queue_head_init(&audit_retry_queue);
1701
skb_queue_head_init(&audit_hold_queue);
1702
1703
for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1704
INIT_LIST_HEAD(&audit_inode_hash[i]);
1705
1706
mutex_init(&audit_cmd_mutex.lock);
1707
audit_cmd_mutex.owner = NULL;
1708
1709
pr_info("initializing netlink subsys (%s)\n",
1710
str_enabled_disabled(audit_default));
1711
register_pernet_subsys(&audit_net_ops);
1712
1713
audit_initialized = AUDIT_INITIALIZED;
1714
1715
kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1716
if (IS_ERR(kauditd_task)) {
1717
int err = PTR_ERR(kauditd_task);
1718
panic("audit: failed to start the kauditd thread (%d)\n", err);
1719
}
1720
1721
audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1722
"state=initialized audit_enabled=%u res=1",
1723
audit_enabled);
1724
1725
return 0;
1726
}
1727
postcore_initcall(audit_init);
1728
1729
/*
1730
* Process kernel command-line parameter at boot time.
1731
* audit={0|off} or audit={1|on}.
1732
*/
1733
static int __init audit_enable(char *str)
1734
{
1735
if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1736
audit_default = AUDIT_OFF;
1737
else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1738
audit_default = AUDIT_ON;
1739
else {
1740
pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1741
audit_default = AUDIT_ON;
1742
}
1743
1744
if (audit_default == AUDIT_OFF)
1745
audit_initialized = AUDIT_DISABLED;
1746
if (audit_set_enabled(audit_default))
1747
pr_err("audit: error setting audit state (%d)\n",
1748
audit_default);
1749
1750
pr_info("%s\n", audit_default ?
1751
"enabled (after initialization)" : "disabled (until reboot)");
1752
1753
return 1;
1754
}
1755
__setup("audit=", audit_enable);
1756
1757
/* Process kernel command-line parameter at boot time.
1758
* audit_backlog_limit=<n> */
1759
static int __init audit_backlog_limit_set(char *str)
1760
{
1761
u32 audit_backlog_limit_arg;
1762
1763
pr_info("audit_backlog_limit: ");
1764
if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1765
pr_cont("using default of %u, unable to parse %s\n",
1766
audit_backlog_limit, str);
1767
return 1;
1768
}
1769
1770
audit_backlog_limit = audit_backlog_limit_arg;
1771
pr_cont("%d\n", audit_backlog_limit);
1772
1773
return 1;
1774
}
1775
__setup("audit_backlog_limit=", audit_backlog_limit_set);
1776
1777
static void audit_buffer_free(struct audit_buffer *ab)
1778
{
1779
if (!ab)
1780
return;
1781
1782
kfree_skb(ab->skb);
1783
kmem_cache_free(audit_buffer_cache, ab);
1784
}
1785
1786
static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1787
gfp_t gfp_mask, int type)
1788
{
1789
struct audit_buffer *ab;
1790
1791
ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1792
if (!ab)
1793
return NULL;
1794
1795
ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1796
if (!ab->skb)
1797
goto err;
1798
if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1799
goto err;
1800
1801
ab->ctx = ctx;
1802
ab->gfp_mask = gfp_mask;
1803
1804
return ab;
1805
1806
err:
1807
audit_buffer_free(ab);
1808
return NULL;
1809
}
1810
1811
/**
1812
* audit_serial - compute a serial number for the audit record
1813
*
1814
* Compute a serial number for the audit record. Audit records are
1815
* written to user-space as soon as they are generated, so a complete
1816
* audit record may be written in several pieces. The timestamp of the
1817
* record and this serial number are used by the user-space tools to
1818
* determine which pieces belong to the same audit record. The
1819
* (timestamp,serial) tuple is unique for each syscall and is live from
1820
* syscall entry to syscall exit.
1821
*
1822
* NOTE: Another possibility is to store the formatted records off the
1823
* audit context (for those records that have a context), and emit them
1824
* all at syscall exit. However, this could delay the reporting of
1825
* significant errors until syscall exit (or never, if the system
1826
* halts).
1827
*/
1828
unsigned int audit_serial(void)
1829
{
1830
static atomic_t serial = ATOMIC_INIT(0);
1831
1832
return atomic_inc_return(&serial);
1833
}
1834
1835
static inline void audit_get_stamp(struct audit_context *ctx,
1836
struct timespec64 *t, unsigned int *serial)
1837
{
1838
if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1839
ktime_get_coarse_real_ts64(t);
1840
*serial = audit_serial();
1841
}
1842
}
1843
1844
/**
1845
* audit_log_start - obtain an audit buffer
1846
* @ctx: audit_context (may be NULL)
1847
* @gfp_mask: type of allocation
1848
* @type: audit message type
1849
*
1850
* Returns audit_buffer pointer on success or NULL on error.
1851
*
1852
* Obtain an audit buffer. This routine does locking to obtain the
1853
* audit buffer, but then no locking is required for calls to
1854
* audit_log_*format. If the task (ctx) is a task that is currently in a
1855
* syscall, then the syscall is marked as auditable and an audit record
1856
* will be written at syscall exit. If there is no associated task, then
1857
* task context (ctx) should be NULL.
1858
*/
1859
struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1860
int type)
1861
{
1862
struct audit_buffer *ab;
1863
struct timespec64 t;
1864
unsigned int serial;
1865
1866
if (audit_initialized != AUDIT_INITIALIZED)
1867
return NULL;
1868
1869
if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1870
return NULL;
1871
1872
/* NOTE: don't ever fail/sleep on these two conditions:
1873
* 1. auditd generated record - since we need auditd to drain the
1874
* queue; also, when we are checking for auditd, compare PIDs using
1875
* task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1876
* using a PID anchored in the caller's namespace
1877
* 2. generator holding the audit_cmd_mutex - we don't want to block
1878
* while holding the mutex, although we do penalize the sender
1879
* later in audit_receive() when it is safe to block
1880
*/
1881
if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1882
long stime = audit_backlog_wait_time;
1883
1884
while (audit_backlog_limit &&
1885
(skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1886
/* wake kauditd to try and flush the queue */
1887
wake_up_interruptible(&kauditd_wait);
1888
1889
/* sleep if we are allowed and we haven't exhausted our
1890
* backlog wait limit */
1891
if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1892
long rtime = stime;
1893
1894
DECLARE_WAITQUEUE(wait, current);
1895
1896
add_wait_queue_exclusive(&audit_backlog_wait,
1897
&wait);
1898
set_current_state(TASK_UNINTERRUPTIBLE);
1899
stime = schedule_timeout(rtime);
1900
atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1901
remove_wait_queue(&audit_backlog_wait, &wait);
1902
} else {
1903
if (audit_rate_check() && printk_ratelimit())
1904
pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1905
skb_queue_len(&audit_queue),
1906
audit_backlog_limit);
1907
audit_log_lost("backlog limit exceeded");
1908
return NULL;
1909
}
1910
}
1911
}
1912
1913
ab = audit_buffer_alloc(ctx, gfp_mask, type);
1914
if (!ab) {
1915
audit_log_lost("out of memory in audit_log_start");
1916
return NULL;
1917
}
1918
1919
audit_get_stamp(ab->ctx, &t, &serial);
1920
/* cancel dummy context to enable supporting records */
1921
if (ctx)
1922
ctx->dummy = 0;
1923
audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1924
(unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1925
1926
return ab;
1927
}
1928
1929
/**
1930
* audit_expand - expand skb in the audit buffer
1931
* @ab: audit_buffer
1932
* @extra: space to add at tail of the skb
1933
*
1934
* Returns 0 (no space) on failed expansion, or available space if
1935
* successful.
1936
*/
1937
static inline int audit_expand(struct audit_buffer *ab, int extra)
1938
{
1939
struct sk_buff *skb = ab->skb;
1940
int oldtail = skb_tailroom(skb);
1941
int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1942
int newtail = skb_tailroom(skb);
1943
1944
if (ret < 0) {
1945
audit_log_lost("out of memory in audit_expand");
1946
return 0;
1947
}
1948
1949
skb->truesize += newtail - oldtail;
1950
return newtail;
1951
}
1952
1953
/*
1954
* Format an audit message into the audit buffer. If there isn't enough
1955
* room in the audit buffer, more room will be allocated and vsnprint
1956
* will be called a second time. Currently, we assume that a printk
1957
* can't format message larger than 1024 bytes, so we don't either.
1958
*/
1959
static __printf(2, 0)
1960
void audit_log_vformat(struct audit_buffer *ab, const char *fmt, va_list args)
1961
{
1962
int len, avail;
1963
struct sk_buff *skb;
1964
va_list args2;
1965
1966
if (!ab)
1967
return;
1968
1969
BUG_ON(!ab->skb);
1970
skb = ab->skb;
1971
avail = skb_tailroom(skb);
1972
if (avail == 0) {
1973
avail = audit_expand(ab, AUDIT_BUFSIZ);
1974
if (!avail)
1975
goto out;
1976
}
1977
va_copy(args2, args);
1978
len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1979
if (len >= avail) {
1980
/* The printk buffer is 1024 bytes long, so if we get
1981
* here and AUDIT_BUFSIZ is at least 1024, then we can
1982
* log everything that printk could have logged. */
1983
avail = audit_expand(ab,
1984
max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1985
if (!avail)
1986
goto out_va_end;
1987
len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1988
}
1989
if (len > 0)
1990
skb_put(skb, len);
1991
out_va_end:
1992
va_end(args2);
1993
out:
1994
return;
1995
}
1996
1997
/**
1998
* audit_log_format - format a message into the audit buffer.
1999
* @ab: audit_buffer
2000
* @fmt: format string
2001
* @...: optional parameters matching @fmt string
2002
*
2003
* All the work is done in audit_log_vformat.
2004
*/
2005
void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2006
{
2007
va_list args;
2008
2009
if (!ab)
2010
return;
2011
va_start(args, fmt);
2012
audit_log_vformat(ab, fmt, args);
2013
va_end(args);
2014
}
2015
2016
/**
2017
* audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2018
* @ab: the audit_buffer
2019
* @buf: buffer to convert to hex
2020
* @len: length of @buf to be converted
2021
*
2022
* No return value; failure to expand is silently ignored.
2023
*
2024
* This function will take the passed buf and convert it into a string of
2025
* ascii hex digits. The new string is placed onto the skb.
2026
*/
2027
void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2028
size_t len)
2029
{
2030
int i, avail, new_len;
2031
unsigned char *ptr;
2032
struct sk_buff *skb;
2033
2034
if (!ab)
2035
return;
2036
2037
BUG_ON(!ab->skb);
2038
skb = ab->skb;
2039
avail = skb_tailroom(skb);
2040
new_len = len<<1;
2041
if (new_len >= avail) {
2042
/* Round the buffer request up to the next multiple */
2043
new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2044
avail = audit_expand(ab, new_len);
2045
if (!avail)
2046
return;
2047
}
2048
2049
ptr = skb_tail_pointer(skb);
2050
for (i = 0; i < len; i++)
2051
ptr = hex_byte_pack_upper(ptr, buf[i]);
2052
*ptr = 0;
2053
skb_put(skb, len << 1); /* new string is twice the old string */
2054
}
2055
2056
/*
2057
* Format a string of no more than slen characters into the audit buffer,
2058
* enclosed in quote marks.
2059
*/
2060
void audit_log_n_string(struct audit_buffer *ab, const char *string,
2061
size_t slen)
2062
{
2063
int avail, new_len;
2064
unsigned char *ptr;
2065
struct sk_buff *skb;
2066
2067
if (!ab)
2068
return;
2069
2070
BUG_ON(!ab->skb);
2071
skb = ab->skb;
2072
avail = skb_tailroom(skb);
2073
new_len = slen + 3; /* enclosing quotes + null terminator */
2074
if (new_len > avail) {
2075
avail = audit_expand(ab, new_len);
2076
if (!avail)
2077
return;
2078
}
2079
ptr = skb_tail_pointer(skb);
2080
*ptr++ = '"';
2081
memcpy(ptr, string, slen);
2082
ptr += slen;
2083
*ptr++ = '"';
2084
*ptr = 0;
2085
skb_put(skb, slen + 2); /* don't include null terminator */
2086
}
2087
2088
/**
2089
* audit_string_contains_control - does a string need to be logged in hex
2090
* @string: string to be checked
2091
* @len: max length of the string to check
2092
*/
2093
bool audit_string_contains_control(const char *string, size_t len)
2094
{
2095
const unsigned char *p;
2096
for (p = string; p < (const unsigned char *)string + len; p++) {
2097
if (*p == '"' || *p < 0x21 || *p > 0x7e)
2098
return true;
2099
}
2100
return false;
2101
}
2102
2103
/**
2104
* audit_log_n_untrustedstring - log a string that may contain random characters
2105
* @ab: audit_buffer
2106
* @string: string to be logged
2107
* @len: length of string (not including trailing null)
2108
*
2109
* This code will escape a string that is passed to it if the string
2110
* contains a control character, unprintable character, double quote mark,
2111
* or a space. Unescaped strings will start and end with a double quote mark.
2112
* Strings that are escaped are printed in hex (2 digits per char).
2113
*
2114
* The caller specifies the number of characters in the string to log, which may
2115
* or may not be the entire string.
2116
*/
2117
void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2118
size_t len)
2119
{
2120
if (audit_string_contains_control(string, len))
2121
audit_log_n_hex(ab, string, len);
2122
else
2123
audit_log_n_string(ab, string, len);
2124
}
2125
2126
/**
2127
* audit_log_untrustedstring - log a string that may contain random characters
2128
* @ab: audit_buffer
2129
* @string: string to be logged
2130
*
2131
* Same as audit_log_n_untrustedstring(), except that strlen is used to
2132
* determine string length.
2133
*/
2134
void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2135
{
2136
audit_log_n_untrustedstring(ab, string, strlen(string));
2137
}
2138
2139
/* This is a helper-function to print the escaped d_path */
2140
void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2141
const struct path *path)
2142
{
2143
char *p, *pathname;
2144
2145
if (prefix)
2146
audit_log_format(ab, "%s", prefix);
2147
2148
/* We will allow 11 spaces for ' (deleted)' to be appended */
2149
pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2150
if (!pathname) {
2151
audit_log_format(ab, "\"<no_memory>\"");
2152
return;
2153
}
2154
p = d_path(path, pathname, PATH_MAX+11);
2155
if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2156
/* FIXME: can we save some information here? */
2157
audit_log_format(ab, "\"<too_long>\"");
2158
} else
2159
audit_log_untrustedstring(ab, p);
2160
kfree(pathname);
2161
}
2162
2163
void audit_log_session_info(struct audit_buffer *ab)
2164
{
2165
unsigned int sessionid = audit_get_sessionid(current);
2166
uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2167
2168
audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2169
}
2170
2171
void audit_log_key(struct audit_buffer *ab, char *key)
2172
{
2173
audit_log_format(ab, " key=");
2174
if (key)
2175
audit_log_untrustedstring(ab, key);
2176
else
2177
audit_log_format(ab, "(null)");
2178
}
2179
2180
int audit_log_task_context(struct audit_buffer *ab)
2181
{
2182
struct lsm_prop prop;
2183
struct lsm_context ctx;
2184
int error;
2185
2186
security_current_getlsmprop_subj(&prop);
2187
if (!lsmprop_is_set(&prop))
2188
return 0;
2189
2190
error = security_lsmprop_to_secctx(&prop, &ctx);
2191
if (error < 0) {
2192
if (error != -EINVAL)
2193
goto error_path;
2194
return 0;
2195
}
2196
2197
audit_log_format(ab, " subj=%s", ctx.context);
2198
security_release_secctx(&ctx);
2199
return 0;
2200
2201
error_path:
2202
audit_panic("error in audit_log_task_context");
2203
return error;
2204
}
2205
EXPORT_SYMBOL(audit_log_task_context);
2206
2207
void audit_log_d_path_exe(struct audit_buffer *ab,
2208
struct mm_struct *mm)
2209
{
2210
struct file *exe_file;
2211
2212
if (!mm)
2213
goto out_null;
2214
2215
exe_file = get_mm_exe_file(mm);
2216
if (!exe_file)
2217
goto out_null;
2218
2219
audit_log_d_path(ab, " exe=", &exe_file->f_path);
2220
fput(exe_file);
2221
return;
2222
out_null:
2223
audit_log_format(ab, " exe=(null)");
2224
}
2225
2226
struct tty_struct *audit_get_tty(void)
2227
{
2228
struct tty_struct *tty = NULL;
2229
unsigned long flags;
2230
2231
spin_lock_irqsave(&current->sighand->siglock, flags);
2232
if (current->signal)
2233
tty = tty_kref_get(current->signal->tty);
2234
spin_unlock_irqrestore(&current->sighand->siglock, flags);
2235
return tty;
2236
}
2237
2238
void audit_put_tty(struct tty_struct *tty)
2239
{
2240
tty_kref_put(tty);
2241
}
2242
2243
void audit_log_task_info(struct audit_buffer *ab)
2244
{
2245
const struct cred *cred;
2246
char comm[sizeof(current->comm)];
2247
struct tty_struct *tty;
2248
2249
if (!ab)
2250
return;
2251
2252
cred = current_cred();
2253
tty = audit_get_tty();
2254
audit_log_format(ab,
2255
" ppid=%d pid=%d auid=%u uid=%u gid=%u"
2256
" euid=%u suid=%u fsuid=%u"
2257
" egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2258
task_ppid_nr(current),
2259
task_tgid_nr(current),
2260
from_kuid(&init_user_ns, audit_get_loginuid(current)),
2261
from_kuid(&init_user_ns, cred->uid),
2262
from_kgid(&init_user_ns, cred->gid),
2263
from_kuid(&init_user_ns, cred->euid),
2264
from_kuid(&init_user_ns, cred->suid),
2265
from_kuid(&init_user_ns, cred->fsuid),
2266
from_kgid(&init_user_ns, cred->egid),
2267
from_kgid(&init_user_ns, cred->sgid),
2268
from_kgid(&init_user_ns, cred->fsgid),
2269
tty ? tty_name(tty) : "(none)",
2270
audit_get_sessionid(current));
2271
audit_put_tty(tty);
2272
audit_log_format(ab, " comm=");
2273
audit_log_untrustedstring(ab, get_task_comm(comm, current));
2274
audit_log_d_path_exe(ab, current->mm);
2275
audit_log_task_context(ab);
2276
}
2277
EXPORT_SYMBOL(audit_log_task_info);
2278
2279
/**
2280
* audit_log_path_denied - report a path restriction denial
2281
* @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2282
* @operation: specific operation name
2283
*/
2284
void audit_log_path_denied(int type, const char *operation)
2285
{
2286
struct audit_buffer *ab;
2287
2288
if (!audit_enabled)
2289
return;
2290
2291
/* Generate log with subject, operation, outcome. */
2292
ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2293
if (!ab)
2294
return;
2295
audit_log_format(ab, "op=%s", operation);
2296
audit_log_task_info(ab);
2297
audit_log_format(ab, " res=0");
2298
audit_log_end(ab);
2299
}
2300
2301
/* global counter which is incremented every time something logs in */
2302
static atomic_t session_id = ATOMIC_INIT(0);
2303
2304
static int audit_set_loginuid_perm(kuid_t loginuid)
2305
{
2306
/* if we are unset, we don't need privs */
2307
if (!audit_loginuid_set(current))
2308
return 0;
2309
/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2310
if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2311
return -EPERM;
2312
/* it is set, you need permission */
2313
if (!capable(CAP_AUDIT_CONTROL))
2314
return -EPERM;
2315
/* reject if this is not an unset and we don't allow that */
2316
if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2317
&& uid_valid(loginuid))
2318
return -EPERM;
2319
return 0;
2320
}
2321
2322
static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2323
unsigned int oldsessionid,
2324
unsigned int sessionid, int rc)
2325
{
2326
struct audit_buffer *ab;
2327
uid_t uid, oldloginuid, loginuid;
2328
struct tty_struct *tty;
2329
2330
if (!audit_enabled)
2331
return;
2332
2333
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2334
if (!ab)
2335
return;
2336
2337
uid = from_kuid(&init_user_ns, task_uid(current));
2338
oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2339
loginuid = from_kuid(&init_user_ns, kloginuid);
2340
tty = audit_get_tty();
2341
2342
audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2343
audit_log_task_context(ab);
2344
audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2345
oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2346
oldsessionid, sessionid, !rc);
2347
audit_put_tty(tty);
2348
audit_log_end(ab);
2349
}
2350
2351
/**
2352
* audit_set_loginuid - set current task's loginuid
2353
* @loginuid: loginuid value
2354
*
2355
* Returns 0.
2356
*
2357
* Called (set) from fs/proc/base.c::proc_loginuid_write().
2358
*/
2359
int audit_set_loginuid(kuid_t loginuid)
2360
{
2361
unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2362
kuid_t oldloginuid;
2363
int rc;
2364
2365
oldloginuid = audit_get_loginuid(current);
2366
oldsessionid = audit_get_sessionid(current);
2367
2368
rc = audit_set_loginuid_perm(loginuid);
2369
if (rc)
2370
goto out;
2371
2372
/* are we setting or clearing? */
2373
if (uid_valid(loginuid)) {
2374
sessionid = (unsigned int)atomic_inc_return(&session_id);
2375
if (unlikely(sessionid == AUDIT_SID_UNSET))
2376
sessionid = (unsigned int)atomic_inc_return(&session_id);
2377
}
2378
2379
current->sessionid = sessionid;
2380
current->loginuid = loginuid;
2381
out:
2382
audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2383
return rc;
2384
}
2385
2386
/**
2387
* audit_signal_info - record signal info for shutting down audit subsystem
2388
* @sig: signal value
2389
* @t: task being signaled
2390
*
2391
* If the audit subsystem is being terminated, record the task (pid)
2392
* and uid that is doing that.
2393
*/
2394
int audit_signal_info(int sig, struct task_struct *t)
2395
{
2396
kuid_t uid = current_uid(), auid;
2397
2398
if (auditd_test_task(t) &&
2399
(sig == SIGTERM || sig == SIGHUP ||
2400
sig == SIGUSR1 || sig == SIGUSR2)) {
2401
audit_sig_pid = task_tgid_nr(current);
2402
auid = audit_get_loginuid(current);
2403
if (uid_valid(auid))
2404
audit_sig_uid = auid;
2405
else
2406
audit_sig_uid = uid;
2407
security_current_getlsmprop_subj(&audit_sig_lsm);
2408
}
2409
2410
return audit_signal_info_syscall(t);
2411
}
2412
2413
/**
2414
* audit_log_end - end one audit record
2415
* @ab: the audit_buffer
2416
*
2417
* We can not do a netlink send inside an irq context because it blocks (last
2418
* arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2419
* queue and a kthread is scheduled to remove them from the queue outside the
2420
* irq context. May be called in any context.
2421
*/
2422
void audit_log_end(struct audit_buffer *ab)
2423
{
2424
struct sk_buff *skb;
2425
struct nlmsghdr *nlh;
2426
2427
if (!ab)
2428
return;
2429
2430
if (audit_rate_check()) {
2431
skb = ab->skb;
2432
ab->skb = NULL;
2433
2434
/* setup the netlink header, see the comments in
2435
* kauditd_send_multicast_skb() for length quirks */
2436
nlh = nlmsg_hdr(skb);
2437
nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2438
2439
/* queue the netlink packet and poke the kauditd thread */
2440
skb_queue_tail(&audit_queue, skb);
2441
wake_up_interruptible(&kauditd_wait);
2442
} else
2443
audit_log_lost("rate limit exceeded");
2444
2445
audit_buffer_free(ab);
2446
}
2447
2448
/**
2449
* audit_log - Log an audit record
2450
* @ctx: audit context
2451
* @gfp_mask: type of allocation
2452
* @type: audit message type
2453
* @fmt: format string to use
2454
* @...: variable parameters matching the format string
2455
*
2456
* This is a convenience function that calls audit_log_start,
2457
* audit_log_vformat, and audit_log_end. It may be called
2458
* in any context.
2459
*/
2460
void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2461
const char *fmt, ...)
2462
{
2463
struct audit_buffer *ab;
2464
va_list args;
2465
2466
ab = audit_log_start(ctx, gfp_mask, type);
2467
if (ab) {
2468
va_start(args, fmt);
2469
audit_log_vformat(ab, fmt, args);
2470
va_end(args);
2471
audit_log_end(ab);
2472
}
2473
}
2474
2475
EXPORT_SYMBOL(audit_log_start);
2476
EXPORT_SYMBOL(audit_log_end);
2477
EXPORT_SYMBOL(audit_log_format);
2478
EXPORT_SYMBOL(audit_log);
2479
2480