Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/audit_tree.c
26243 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include "audit.h"
3
#include <linux/fsnotify_backend.h>
4
#include <linux/namei.h>
5
#include <linux/mount.h>
6
#include <linux/kthread.h>
7
#include <linux/refcount.h>
8
#include <linux/slab.h>
9
10
struct audit_tree;
11
struct audit_chunk;
12
13
struct audit_tree {
14
refcount_t count;
15
int goner;
16
struct audit_chunk *root;
17
struct list_head chunks;
18
struct list_head rules;
19
struct list_head list;
20
struct list_head same_root;
21
struct rcu_head head;
22
char pathname[];
23
};
24
25
struct audit_chunk {
26
struct list_head hash;
27
unsigned long key;
28
struct fsnotify_mark *mark;
29
struct list_head trees; /* with root here */
30
int count;
31
atomic_long_t refs;
32
struct rcu_head head;
33
struct audit_node {
34
struct list_head list;
35
struct audit_tree *owner;
36
unsigned index; /* index; upper bit indicates 'will prune' */
37
} owners[] __counted_by(count);
38
};
39
40
struct audit_tree_mark {
41
struct fsnotify_mark mark;
42
struct audit_chunk *chunk;
43
};
44
45
static LIST_HEAD(tree_list);
46
static LIST_HEAD(prune_list);
47
static struct task_struct *prune_thread;
48
49
/*
50
* One struct chunk is attached to each inode of interest through
51
* audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
52
* untagging, the mark is stable as long as there is chunk attached. The
53
* association between mark and chunk is protected by hash_lock and
54
* audit_tree_group->mark_mutex. Thus as long as we hold
55
* audit_tree_group->mark_mutex and check that the mark is alive by
56
* FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
57
* the current chunk.
58
*
59
* Rules have pointer to struct audit_tree.
60
* Rules have struct list_head rlist forming a list of rules over
61
* the same tree.
62
* References to struct chunk are collected at audit_inode{,_child}()
63
* time and used in AUDIT_TREE rule matching.
64
* These references are dropped at the same time we are calling
65
* audit_free_names(), etc.
66
*
67
* Cyclic lists galore:
68
* tree.chunks anchors chunk.owners[].list hash_lock
69
* tree.rules anchors rule.rlist audit_filter_mutex
70
* chunk.trees anchors tree.same_root hash_lock
71
* chunk.hash is a hash with middle bits of watch.inode as
72
* a hash function. RCU, hash_lock
73
*
74
* tree is refcounted; one reference for "some rules on rules_list refer to
75
* it", one for each chunk with pointer to it.
76
*
77
* chunk is refcounted by embedded .refs. Mark associated with the chunk holds
78
* one chunk reference. This reference is dropped either when a mark is going
79
* to be freed (corresponding inode goes away) or when chunk attached to the
80
* mark gets replaced. This reference must be dropped using
81
* audit_mark_put_chunk() to make sure the reference is dropped only after RCU
82
* grace period as it protects RCU readers of the hash table.
83
*
84
* node.index allows to get from node.list to containing chunk.
85
* MSB of that sucker is stolen to mark taggings that we might have to
86
* revert - several operations have very unpleasant cleanup logics and
87
* that makes a difference. Some.
88
*/
89
90
static struct fsnotify_group *audit_tree_group __ro_after_init;
91
static struct kmem_cache *audit_tree_mark_cachep __ro_after_init;
92
93
static struct audit_tree *alloc_tree(const char *s)
94
{
95
struct audit_tree *tree;
96
97
tree = kmalloc(struct_size(tree, pathname, strlen(s) + 1), GFP_KERNEL);
98
if (tree) {
99
refcount_set(&tree->count, 1);
100
tree->goner = 0;
101
INIT_LIST_HEAD(&tree->chunks);
102
INIT_LIST_HEAD(&tree->rules);
103
INIT_LIST_HEAD(&tree->list);
104
INIT_LIST_HEAD(&tree->same_root);
105
tree->root = NULL;
106
strcpy(tree->pathname, s);
107
}
108
return tree;
109
}
110
111
static inline void get_tree(struct audit_tree *tree)
112
{
113
refcount_inc(&tree->count);
114
}
115
116
static inline void put_tree(struct audit_tree *tree)
117
{
118
if (refcount_dec_and_test(&tree->count))
119
kfree_rcu(tree, head);
120
}
121
122
/* to avoid bringing the entire thing in audit.h */
123
const char *audit_tree_path(struct audit_tree *tree)
124
{
125
return tree->pathname;
126
}
127
128
static void free_chunk(struct audit_chunk *chunk)
129
{
130
int i;
131
132
for (i = 0; i < chunk->count; i++) {
133
if (chunk->owners[i].owner)
134
put_tree(chunk->owners[i].owner);
135
}
136
kfree(chunk);
137
}
138
139
void audit_put_chunk(struct audit_chunk *chunk)
140
{
141
if (atomic_long_dec_and_test(&chunk->refs))
142
free_chunk(chunk);
143
}
144
145
static void __put_chunk(struct rcu_head *rcu)
146
{
147
struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
148
audit_put_chunk(chunk);
149
}
150
151
/*
152
* Drop reference to the chunk that was held by the mark. This is the reference
153
* that gets dropped after we've removed the chunk from the hash table and we
154
* use it to make sure chunk cannot be freed before RCU grace period expires.
155
*/
156
static void audit_mark_put_chunk(struct audit_chunk *chunk)
157
{
158
call_rcu(&chunk->head, __put_chunk);
159
}
160
161
static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
162
{
163
return container_of(mark, struct audit_tree_mark, mark);
164
}
165
166
static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
167
{
168
return audit_mark(mark)->chunk;
169
}
170
171
static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
172
{
173
kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
174
}
175
176
static struct fsnotify_mark *alloc_mark(void)
177
{
178
struct audit_tree_mark *amark;
179
180
amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
181
if (!amark)
182
return NULL;
183
fsnotify_init_mark(&amark->mark, audit_tree_group);
184
amark->mark.mask = FS_IN_IGNORED;
185
return &amark->mark;
186
}
187
188
static struct audit_chunk *alloc_chunk(int count)
189
{
190
struct audit_chunk *chunk;
191
int i;
192
193
chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL);
194
if (!chunk)
195
return NULL;
196
197
INIT_LIST_HEAD(&chunk->hash);
198
INIT_LIST_HEAD(&chunk->trees);
199
chunk->count = count;
200
atomic_long_set(&chunk->refs, 1);
201
for (i = 0; i < count; i++) {
202
INIT_LIST_HEAD(&chunk->owners[i].list);
203
chunk->owners[i].index = i;
204
}
205
return chunk;
206
}
207
208
enum {HASH_SIZE = 128};
209
static struct list_head chunk_hash_heads[HASH_SIZE];
210
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
211
212
/* Function to return search key in our hash from inode. */
213
static unsigned long inode_to_key(const struct inode *inode)
214
{
215
/* Use address pointed to by connector->obj as the key */
216
return (unsigned long)&inode->i_fsnotify_marks;
217
}
218
219
static inline struct list_head *chunk_hash(unsigned long key)
220
{
221
unsigned long n = key / L1_CACHE_BYTES;
222
return chunk_hash_heads + n % HASH_SIZE;
223
}
224
225
/* hash_lock & mark->group->mark_mutex is held by caller */
226
static void insert_hash(struct audit_chunk *chunk)
227
{
228
struct list_head *list;
229
230
/*
231
* Make sure chunk is fully initialized before making it visible in the
232
* hash. Pairs with a data dependency barrier in READ_ONCE() in
233
* audit_tree_lookup().
234
*/
235
smp_wmb();
236
WARN_ON_ONCE(!chunk->key);
237
list = chunk_hash(chunk->key);
238
list_add_rcu(&chunk->hash, list);
239
}
240
241
/* called under rcu_read_lock */
242
struct audit_chunk *audit_tree_lookup(const struct inode *inode)
243
{
244
unsigned long key = inode_to_key(inode);
245
struct list_head *list = chunk_hash(key);
246
struct audit_chunk *p;
247
248
list_for_each_entry_rcu(p, list, hash) {
249
/*
250
* We use a data dependency barrier in READ_ONCE() to make sure
251
* the chunk we see is fully initialized.
252
*/
253
if (READ_ONCE(p->key) == key) {
254
atomic_long_inc(&p->refs);
255
return p;
256
}
257
}
258
return NULL;
259
}
260
261
bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
262
{
263
int n;
264
for (n = 0; n < chunk->count; n++)
265
if (chunk->owners[n].owner == tree)
266
return true;
267
return false;
268
}
269
270
/* tagging and untagging inodes with trees */
271
272
static struct audit_chunk *find_chunk(struct audit_node *p)
273
{
274
int index = p->index & ~(1U<<31);
275
p -= index;
276
return container_of(p, struct audit_chunk, owners[0]);
277
}
278
279
static void replace_mark_chunk(struct fsnotify_mark *mark,
280
struct audit_chunk *chunk)
281
{
282
struct audit_chunk *old;
283
284
assert_spin_locked(&hash_lock);
285
old = mark_chunk(mark);
286
audit_mark(mark)->chunk = chunk;
287
if (chunk)
288
chunk->mark = mark;
289
if (old)
290
old->mark = NULL;
291
}
292
293
static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
294
{
295
struct audit_tree *owner;
296
int i, j;
297
298
new->key = old->key;
299
list_splice_init(&old->trees, &new->trees);
300
list_for_each_entry(owner, &new->trees, same_root)
301
owner->root = new;
302
for (i = j = 0; j < old->count; i++, j++) {
303
if (!old->owners[j].owner) {
304
i--;
305
continue;
306
}
307
owner = old->owners[j].owner;
308
new->owners[i].owner = owner;
309
new->owners[i].index = old->owners[j].index - j + i;
310
if (!owner) /* result of earlier fallback */
311
continue;
312
get_tree(owner);
313
list_replace_init(&old->owners[j].list, &new->owners[i].list);
314
}
315
replace_mark_chunk(old->mark, new);
316
/*
317
* Make sure chunk is fully initialized before making it visible in the
318
* hash. Pairs with a data dependency barrier in READ_ONCE() in
319
* audit_tree_lookup().
320
*/
321
smp_wmb();
322
list_replace_rcu(&old->hash, &new->hash);
323
}
324
325
static void remove_chunk_node(struct audit_chunk *chunk, struct audit_node *p)
326
{
327
struct audit_tree *owner = p->owner;
328
329
if (owner->root == chunk) {
330
list_del_init(&owner->same_root);
331
owner->root = NULL;
332
}
333
list_del_init(&p->list);
334
p->owner = NULL;
335
put_tree(owner);
336
}
337
338
static int chunk_count_trees(struct audit_chunk *chunk)
339
{
340
int i;
341
int ret = 0;
342
343
for (i = 0; i < chunk->count; i++)
344
if (chunk->owners[i].owner)
345
ret++;
346
return ret;
347
}
348
349
static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
350
{
351
struct audit_chunk *new;
352
int size;
353
354
fsnotify_group_lock(audit_tree_group);
355
/*
356
* mark_mutex stabilizes chunk attached to the mark so we can check
357
* whether it didn't change while we've dropped hash_lock.
358
*/
359
if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
360
mark_chunk(mark) != chunk)
361
goto out_mutex;
362
363
size = chunk_count_trees(chunk);
364
if (!size) {
365
spin_lock(&hash_lock);
366
list_del_init(&chunk->trees);
367
list_del_rcu(&chunk->hash);
368
replace_mark_chunk(mark, NULL);
369
spin_unlock(&hash_lock);
370
fsnotify_detach_mark(mark);
371
fsnotify_group_unlock(audit_tree_group);
372
audit_mark_put_chunk(chunk);
373
fsnotify_free_mark(mark);
374
return;
375
}
376
377
new = alloc_chunk(size);
378
if (!new)
379
goto out_mutex;
380
381
spin_lock(&hash_lock);
382
/*
383
* This has to go last when updating chunk as once replace_chunk() is
384
* called, new RCU readers can see the new chunk.
385
*/
386
replace_chunk(new, chunk);
387
spin_unlock(&hash_lock);
388
fsnotify_group_unlock(audit_tree_group);
389
audit_mark_put_chunk(chunk);
390
return;
391
392
out_mutex:
393
fsnotify_group_unlock(audit_tree_group);
394
}
395
396
/* Call with group->mark_mutex held, releases it */
397
static int create_chunk(struct inode *inode, struct audit_tree *tree)
398
{
399
struct fsnotify_mark *mark;
400
struct audit_chunk *chunk = alloc_chunk(1);
401
402
if (!chunk) {
403
fsnotify_group_unlock(audit_tree_group);
404
return -ENOMEM;
405
}
406
407
mark = alloc_mark();
408
if (!mark) {
409
fsnotify_group_unlock(audit_tree_group);
410
kfree(chunk);
411
return -ENOMEM;
412
}
413
414
if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
415
fsnotify_group_unlock(audit_tree_group);
416
fsnotify_put_mark(mark);
417
kfree(chunk);
418
return -ENOSPC;
419
}
420
421
spin_lock(&hash_lock);
422
if (tree->goner) {
423
spin_unlock(&hash_lock);
424
fsnotify_detach_mark(mark);
425
fsnotify_group_unlock(audit_tree_group);
426
fsnotify_free_mark(mark);
427
fsnotify_put_mark(mark);
428
kfree(chunk);
429
return 0;
430
}
431
replace_mark_chunk(mark, chunk);
432
chunk->owners[0].index = (1U << 31);
433
chunk->owners[0].owner = tree;
434
get_tree(tree);
435
list_add(&chunk->owners[0].list, &tree->chunks);
436
if (!tree->root) {
437
tree->root = chunk;
438
list_add(&tree->same_root, &chunk->trees);
439
}
440
chunk->key = inode_to_key(inode);
441
/*
442
* Inserting into the hash table has to go last as once we do that RCU
443
* readers can see the chunk.
444
*/
445
insert_hash(chunk);
446
spin_unlock(&hash_lock);
447
fsnotify_group_unlock(audit_tree_group);
448
/*
449
* Drop our initial reference. When mark we point to is getting freed,
450
* we get notification through ->freeing_mark callback and cleanup
451
* chunk pointing to this mark.
452
*/
453
fsnotify_put_mark(mark);
454
return 0;
455
}
456
457
/* the first tagged inode becomes root of tree */
458
static int tag_chunk(struct inode *inode, struct audit_tree *tree)
459
{
460
struct fsnotify_mark *mark;
461
struct audit_chunk *chunk, *old;
462
struct audit_node *p;
463
int n;
464
465
fsnotify_group_lock(audit_tree_group);
466
mark = fsnotify_find_inode_mark(inode, audit_tree_group);
467
if (!mark)
468
return create_chunk(inode, tree);
469
470
/*
471
* Found mark is guaranteed to be attached and mark_mutex protects mark
472
* from getting detached and thus it makes sure there is chunk attached
473
* to the mark.
474
*/
475
/* are we already there? */
476
spin_lock(&hash_lock);
477
old = mark_chunk(mark);
478
for (n = 0; n < old->count; n++) {
479
if (old->owners[n].owner == tree) {
480
spin_unlock(&hash_lock);
481
fsnotify_group_unlock(audit_tree_group);
482
fsnotify_put_mark(mark);
483
return 0;
484
}
485
}
486
spin_unlock(&hash_lock);
487
488
chunk = alloc_chunk(old->count + 1);
489
if (!chunk) {
490
fsnotify_group_unlock(audit_tree_group);
491
fsnotify_put_mark(mark);
492
return -ENOMEM;
493
}
494
495
spin_lock(&hash_lock);
496
if (tree->goner) {
497
spin_unlock(&hash_lock);
498
fsnotify_group_unlock(audit_tree_group);
499
fsnotify_put_mark(mark);
500
kfree(chunk);
501
return 0;
502
}
503
p = &chunk->owners[chunk->count - 1];
504
p->index = (chunk->count - 1) | (1U<<31);
505
p->owner = tree;
506
get_tree(tree);
507
list_add(&p->list, &tree->chunks);
508
if (!tree->root) {
509
tree->root = chunk;
510
list_add(&tree->same_root, &chunk->trees);
511
}
512
/*
513
* This has to go last when updating chunk as once replace_chunk() is
514
* called, new RCU readers can see the new chunk.
515
*/
516
replace_chunk(chunk, old);
517
spin_unlock(&hash_lock);
518
fsnotify_group_unlock(audit_tree_group);
519
fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
520
audit_mark_put_chunk(old);
521
522
return 0;
523
}
524
525
static void audit_tree_log_remove_rule(struct audit_context *context,
526
struct audit_krule *rule)
527
{
528
struct audit_buffer *ab;
529
530
if (!audit_enabled)
531
return;
532
ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
533
if (unlikely(!ab))
534
return;
535
audit_log_format(ab, "op=remove_rule dir=");
536
audit_log_untrustedstring(ab, rule->tree->pathname);
537
audit_log_key(ab, rule->filterkey);
538
audit_log_format(ab, " list=%d res=1", rule->listnr);
539
audit_log_end(ab);
540
}
541
542
static void kill_rules(struct audit_context *context, struct audit_tree *tree)
543
{
544
struct audit_krule *rule, *next;
545
struct audit_entry *entry;
546
547
list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
548
entry = container_of(rule, struct audit_entry, rule);
549
550
list_del_init(&rule->rlist);
551
if (rule->tree) {
552
/* not a half-baked one */
553
audit_tree_log_remove_rule(context, rule);
554
if (entry->rule.exe)
555
audit_remove_mark(entry->rule.exe);
556
rule->tree = NULL;
557
list_del_rcu(&entry->list);
558
list_del(&entry->rule.list);
559
call_rcu(&entry->rcu, audit_free_rule_rcu);
560
}
561
}
562
}
563
564
/*
565
* Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
566
* chunks. The function expects tagged chunks are all at the beginning of the
567
* chunks list.
568
*/
569
static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
570
{
571
spin_lock(&hash_lock);
572
while (!list_empty(&victim->chunks)) {
573
struct audit_node *p;
574
struct audit_chunk *chunk;
575
struct fsnotify_mark *mark;
576
577
p = list_first_entry(&victim->chunks, struct audit_node, list);
578
/* have we run out of marked? */
579
if (tagged && !(p->index & (1U<<31)))
580
break;
581
chunk = find_chunk(p);
582
mark = chunk->mark;
583
remove_chunk_node(chunk, p);
584
/* Racing with audit_tree_freeing_mark()? */
585
if (!mark)
586
continue;
587
fsnotify_get_mark(mark);
588
spin_unlock(&hash_lock);
589
590
untag_chunk(chunk, mark);
591
fsnotify_put_mark(mark);
592
593
spin_lock(&hash_lock);
594
}
595
spin_unlock(&hash_lock);
596
}
597
598
/*
599
* finish killing struct audit_tree
600
*/
601
static void prune_one(struct audit_tree *victim)
602
{
603
prune_tree_chunks(victim, false);
604
put_tree(victim);
605
}
606
607
/* trim the uncommitted chunks from tree */
608
609
static void trim_marked(struct audit_tree *tree)
610
{
611
struct list_head *p, *q;
612
spin_lock(&hash_lock);
613
if (tree->goner) {
614
spin_unlock(&hash_lock);
615
return;
616
}
617
/* reorder */
618
for (p = tree->chunks.next; p != &tree->chunks; p = q) {
619
struct audit_node *node = list_entry(p, struct audit_node, list);
620
q = p->next;
621
if (node->index & (1U<<31)) {
622
list_del_init(p);
623
list_add(p, &tree->chunks);
624
}
625
}
626
spin_unlock(&hash_lock);
627
628
prune_tree_chunks(tree, true);
629
630
spin_lock(&hash_lock);
631
if (!tree->root && !tree->goner) {
632
tree->goner = 1;
633
spin_unlock(&hash_lock);
634
mutex_lock(&audit_filter_mutex);
635
kill_rules(audit_context(), tree);
636
list_del_init(&tree->list);
637
mutex_unlock(&audit_filter_mutex);
638
prune_one(tree);
639
} else {
640
spin_unlock(&hash_lock);
641
}
642
}
643
644
static void audit_schedule_prune(void);
645
646
/* called with audit_filter_mutex */
647
int audit_remove_tree_rule(struct audit_krule *rule)
648
{
649
struct audit_tree *tree;
650
tree = rule->tree;
651
if (tree) {
652
spin_lock(&hash_lock);
653
list_del_init(&rule->rlist);
654
if (list_empty(&tree->rules) && !tree->goner) {
655
tree->root = NULL;
656
list_del_init(&tree->same_root);
657
tree->goner = 1;
658
list_move(&tree->list, &prune_list);
659
rule->tree = NULL;
660
spin_unlock(&hash_lock);
661
audit_schedule_prune();
662
return 1;
663
}
664
rule->tree = NULL;
665
spin_unlock(&hash_lock);
666
return 1;
667
}
668
return 0;
669
}
670
671
void audit_trim_trees(void)
672
{
673
struct list_head cursor;
674
675
mutex_lock(&audit_filter_mutex);
676
list_add(&cursor, &tree_list);
677
while (cursor.next != &tree_list) {
678
struct audit_tree *tree;
679
struct path path;
680
struct audit_node *node;
681
struct path *paths;
682
struct path array[16];
683
int err;
684
685
tree = container_of(cursor.next, struct audit_tree, list);
686
get_tree(tree);
687
list_move(&cursor, &tree->list);
688
mutex_unlock(&audit_filter_mutex);
689
690
err = kern_path(tree->pathname, 0, &path);
691
if (err)
692
goto skip_it;
693
694
paths = collect_paths(&path, array, 16);
695
path_put(&path);
696
if (IS_ERR(paths))
697
goto skip_it;
698
699
spin_lock(&hash_lock);
700
list_for_each_entry(node, &tree->chunks, list) {
701
struct audit_chunk *chunk = find_chunk(node);
702
/* this could be NULL if the watch is dying else where... */
703
node->index |= 1U<<31;
704
for (struct path *p = paths; p->dentry; p++) {
705
struct inode *inode = p->dentry->d_inode;
706
if (inode_to_key(inode) == chunk->key) {
707
node->index &= ~(1U<<31);
708
break;
709
}
710
}
711
}
712
spin_unlock(&hash_lock);
713
trim_marked(tree);
714
drop_collected_paths(paths, array);
715
skip_it:
716
put_tree(tree);
717
mutex_lock(&audit_filter_mutex);
718
}
719
list_del(&cursor);
720
mutex_unlock(&audit_filter_mutex);
721
}
722
723
int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
724
{
725
726
if (pathname[0] != '/' ||
727
(rule->listnr != AUDIT_FILTER_EXIT &&
728
rule->listnr != AUDIT_FILTER_URING_EXIT) ||
729
op != Audit_equal ||
730
rule->inode_f || rule->watch || rule->tree)
731
return -EINVAL;
732
rule->tree = alloc_tree(pathname);
733
if (!rule->tree)
734
return -ENOMEM;
735
return 0;
736
}
737
738
void audit_put_tree(struct audit_tree *tree)
739
{
740
put_tree(tree);
741
}
742
743
static int tag_mounts(struct path *paths, struct audit_tree *tree)
744
{
745
for (struct path *p = paths; p->dentry; p++) {
746
int err = tag_chunk(p->dentry->d_inode, tree);
747
if (err)
748
return err;
749
}
750
return 0;
751
}
752
753
/*
754
* That gets run when evict_chunk() ends up needing to kill audit_tree.
755
* Runs from a separate thread.
756
*/
757
static int prune_tree_thread(void *unused)
758
{
759
for (;;) {
760
if (list_empty(&prune_list)) {
761
set_current_state(TASK_INTERRUPTIBLE);
762
schedule();
763
}
764
765
audit_ctl_lock();
766
mutex_lock(&audit_filter_mutex);
767
768
while (!list_empty(&prune_list)) {
769
struct audit_tree *victim;
770
771
victim = list_entry(prune_list.next,
772
struct audit_tree, list);
773
list_del_init(&victim->list);
774
775
mutex_unlock(&audit_filter_mutex);
776
777
prune_one(victim);
778
779
mutex_lock(&audit_filter_mutex);
780
}
781
782
mutex_unlock(&audit_filter_mutex);
783
audit_ctl_unlock();
784
}
785
return 0;
786
}
787
788
static int audit_launch_prune(void)
789
{
790
if (prune_thread)
791
return 0;
792
prune_thread = kthread_run(prune_tree_thread, NULL,
793
"audit_prune_tree");
794
if (IS_ERR(prune_thread)) {
795
pr_err("cannot start thread audit_prune_tree");
796
prune_thread = NULL;
797
return -ENOMEM;
798
}
799
return 0;
800
}
801
802
/* called with audit_filter_mutex */
803
int audit_add_tree_rule(struct audit_krule *rule)
804
{
805
struct audit_tree *seed = rule->tree, *tree;
806
struct path path;
807
struct path array[16];
808
struct path *paths;
809
int err;
810
811
rule->tree = NULL;
812
list_for_each_entry(tree, &tree_list, list) {
813
if (!strcmp(seed->pathname, tree->pathname)) {
814
put_tree(seed);
815
rule->tree = tree;
816
list_add(&rule->rlist, &tree->rules);
817
return 0;
818
}
819
}
820
tree = seed;
821
list_add(&tree->list, &tree_list);
822
list_add(&rule->rlist, &tree->rules);
823
/* do not set rule->tree yet */
824
mutex_unlock(&audit_filter_mutex);
825
826
if (unlikely(!prune_thread)) {
827
err = audit_launch_prune();
828
if (err)
829
goto Err;
830
}
831
832
err = kern_path(tree->pathname, 0, &path);
833
if (err)
834
goto Err;
835
paths = collect_paths(&path, array, 16);
836
path_put(&path);
837
if (IS_ERR(paths)) {
838
err = PTR_ERR(paths);
839
goto Err;
840
}
841
842
get_tree(tree);
843
err = tag_mounts(paths, tree);
844
drop_collected_paths(paths, array);
845
846
if (!err) {
847
struct audit_node *node;
848
spin_lock(&hash_lock);
849
list_for_each_entry(node, &tree->chunks, list)
850
node->index &= ~(1U<<31);
851
spin_unlock(&hash_lock);
852
} else {
853
trim_marked(tree);
854
goto Err;
855
}
856
857
mutex_lock(&audit_filter_mutex);
858
if (list_empty(&rule->rlist)) {
859
put_tree(tree);
860
return -ENOENT;
861
}
862
rule->tree = tree;
863
put_tree(tree);
864
865
return 0;
866
Err:
867
mutex_lock(&audit_filter_mutex);
868
list_del_init(&tree->list);
869
list_del_init(&tree->rules);
870
put_tree(tree);
871
return err;
872
}
873
874
int audit_tag_tree(char *old, char *new)
875
{
876
struct list_head cursor, barrier;
877
int failed = 0;
878
struct path path1, path2;
879
struct path array[16];
880
struct path *paths;
881
int err;
882
883
err = kern_path(new, 0, &path2);
884
if (err)
885
return err;
886
paths = collect_paths(&path2, array, 16);
887
path_put(&path2);
888
if (IS_ERR(paths))
889
return PTR_ERR(paths);
890
891
err = kern_path(old, 0, &path1);
892
if (err) {
893
drop_collected_paths(paths, array);
894
return err;
895
}
896
897
mutex_lock(&audit_filter_mutex);
898
list_add(&barrier, &tree_list);
899
list_add(&cursor, &barrier);
900
901
while (cursor.next != &tree_list) {
902
struct audit_tree *tree;
903
int good_one = 0;
904
905
tree = container_of(cursor.next, struct audit_tree, list);
906
get_tree(tree);
907
list_move(&cursor, &tree->list);
908
mutex_unlock(&audit_filter_mutex);
909
910
err = kern_path(tree->pathname, 0, &path2);
911
if (!err) {
912
good_one = path_is_under(&path1, &path2);
913
path_put(&path2);
914
}
915
916
if (!good_one) {
917
put_tree(tree);
918
mutex_lock(&audit_filter_mutex);
919
continue;
920
}
921
922
failed = tag_mounts(paths, tree);
923
if (failed) {
924
put_tree(tree);
925
mutex_lock(&audit_filter_mutex);
926
break;
927
}
928
929
mutex_lock(&audit_filter_mutex);
930
spin_lock(&hash_lock);
931
if (!tree->goner) {
932
list_move(&tree->list, &tree_list);
933
}
934
spin_unlock(&hash_lock);
935
put_tree(tree);
936
}
937
938
while (barrier.prev != &tree_list) {
939
struct audit_tree *tree;
940
941
tree = container_of(barrier.prev, struct audit_tree, list);
942
get_tree(tree);
943
list_move(&tree->list, &barrier);
944
mutex_unlock(&audit_filter_mutex);
945
946
if (!failed) {
947
struct audit_node *node;
948
spin_lock(&hash_lock);
949
list_for_each_entry(node, &tree->chunks, list)
950
node->index &= ~(1U<<31);
951
spin_unlock(&hash_lock);
952
} else {
953
trim_marked(tree);
954
}
955
956
put_tree(tree);
957
mutex_lock(&audit_filter_mutex);
958
}
959
list_del(&barrier);
960
list_del(&cursor);
961
mutex_unlock(&audit_filter_mutex);
962
path_put(&path1);
963
drop_collected_paths(paths, array);
964
return failed;
965
}
966
967
968
static void audit_schedule_prune(void)
969
{
970
wake_up_process(prune_thread);
971
}
972
973
/*
974
* ... and that one is done if evict_chunk() decides to delay until the end
975
* of syscall. Runs synchronously.
976
*/
977
void audit_kill_trees(struct audit_context *context)
978
{
979
struct list_head *list = &context->killed_trees;
980
981
audit_ctl_lock();
982
mutex_lock(&audit_filter_mutex);
983
984
while (!list_empty(list)) {
985
struct audit_tree *victim;
986
987
victim = list_entry(list->next, struct audit_tree, list);
988
kill_rules(context, victim);
989
list_del_init(&victim->list);
990
991
mutex_unlock(&audit_filter_mutex);
992
993
prune_one(victim);
994
995
mutex_lock(&audit_filter_mutex);
996
}
997
998
mutex_unlock(&audit_filter_mutex);
999
audit_ctl_unlock();
1000
}
1001
1002
/*
1003
* Here comes the stuff asynchronous to auditctl operations
1004
*/
1005
1006
static void evict_chunk(struct audit_chunk *chunk)
1007
{
1008
struct audit_tree *owner;
1009
struct list_head *postponed = audit_killed_trees();
1010
int need_prune = 0;
1011
int n;
1012
1013
mutex_lock(&audit_filter_mutex);
1014
spin_lock(&hash_lock);
1015
while (!list_empty(&chunk->trees)) {
1016
owner = list_entry(chunk->trees.next,
1017
struct audit_tree, same_root);
1018
owner->goner = 1;
1019
owner->root = NULL;
1020
list_del_init(&owner->same_root);
1021
spin_unlock(&hash_lock);
1022
if (!postponed) {
1023
kill_rules(audit_context(), owner);
1024
list_move(&owner->list, &prune_list);
1025
need_prune = 1;
1026
} else {
1027
list_move(&owner->list, postponed);
1028
}
1029
spin_lock(&hash_lock);
1030
}
1031
list_del_rcu(&chunk->hash);
1032
for (n = 0; n < chunk->count; n++)
1033
list_del_init(&chunk->owners[n].list);
1034
spin_unlock(&hash_lock);
1035
mutex_unlock(&audit_filter_mutex);
1036
if (need_prune)
1037
audit_schedule_prune();
1038
}
1039
1040
static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask,
1041
struct inode *inode, struct inode *dir,
1042
const struct qstr *file_name, u32 cookie)
1043
{
1044
return 0;
1045
}
1046
1047
static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
1048
struct fsnotify_group *group)
1049
{
1050
struct audit_chunk *chunk;
1051
1052
fsnotify_group_lock(mark->group);
1053
spin_lock(&hash_lock);
1054
chunk = mark_chunk(mark);
1055
replace_mark_chunk(mark, NULL);
1056
spin_unlock(&hash_lock);
1057
fsnotify_group_unlock(mark->group);
1058
if (chunk) {
1059
evict_chunk(chunk);
1060
audit_mark_put_chunk(chunk);
1061
}
1062
1063
/*
1064
* We are guaranteed to have at least one reference to the mark from
1065
* either the inode or the caller of fsnotify_destroy_mark().
1066
*/
1067
BUG_ON(refcount_read(&mark->refcnt) < 1);
1068
}
1069
1070
static const struct fsnotify_ops audit_tree_ops = {
1071
.handle_inode_event = audit_tree_handle_event,
1072
.freeing_mark = audit_tree_freeing_mark,
1073
.free_mark = audit_tree_destroy_watch,
1074
};
1075
1076
static int __init audit_tree_init(void)
1077
{
1078
int i;
1079
1080
audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
1081
1082
audit_tree_group = fsnotify_alloc_group(&audit_tree_ops, 0);
1083
if (IS_ERR(audit_tree_group))
1084
audit_panic("cannot initialize fsnotify group for rectree watches");
1085
1086
for (i = 0; i < HASH_SIZE; i++)
1087
INIT_LIST_HEAD(&chunk_hash_heads[i]);
1088
1089
return 0;
1090
}
1091
__initcall(audit_tree_init);
1092
1093