Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/auditsc.c
26243 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* auditsc.c -- System-call auditing support
3
* Handles all system-call specific auditing features.
4
*
5
* Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6
* Copyright 2005 Hewlett-Packard Development Company, L.P.
7
* Copyright (C) 2005, 2006 IBM Corporation
8
* All Rights Reserved.
9
*
10
* Written by Rickard E. (Rik) Faith <[email protected]>
11
*
12
* Many of the ideas implemented here are from Stephen C. Tweedie,
13
* especially the idea of avoiding a copy by using getname.
14
*
15
* The method for actual interception of syscall entry and exit (not in
16
* this file -- see entry.S) is based on a GPL'd patch written by
17
* [email protected] and Copyright 2003 SuSE Linux AG.
18
*
19
* POSIX message queue support added by George Wilson <[email protected]>,
20
* 2006.
21
*
22
* The support of additional filter rules compares (>, <, >=, <=) was
23
* added by Dustin Kirkland <[email protected]>, 2005.
24
*
25
* Modified by Amy Griffis <[email protected]> to collect additional
26
* filesystem information.
27
*
28
* Subject and object context labeling support added by <[email protected]>
29
* and <[email protected]> for LSPP certification compliance.
30
*/
31
32
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34
#include <linux/init.h>
35
#include <asm/types.h>
36
#include <linux/atomic.h>
37
#include <linux/fs.h>
38
#include <linux/namei.h>
39
#include <linux/mm.h>
40
#include <linux/export.h>
41
#include <linux/slab.h>
42
#include <linux/mount.h>
43
#include <linux/socket.h>
44
#include <linux/mqueue.h>
45
#include <linux/audit.h>
46
#include <linux/personality.h>
47
#include <linux/time.h>
48
#include <linux/netlink.h>
49
#include <linux/compiler.h>
50
#include <asm/unistd.h>
51
#include <linux/security.h>
52
#include <linux/list.h>
53
#include <linux/binfmts.h>
54
#include <linux/highmem.h>
55
#include <linux/syscalls.h>
56
#include <asm/syscall.h>
57
#include <linux/capability.h>
58
#include <linux/fs_struct.h>
59
#include <linux/compat.h>
60
#include <linux/ctype.h>
61
#include <linux/string.h>
62
#include <linux/uaccess.h>
63
#include <linux/fsnotify_backend.h>
64
#include <uapi/linux/limits.h>
65
#include <uapi/linux/netfilter/nf_tables.h>
66
#include <uapi/linux/openat2.h> // struct open_how
67
#include <uapi/linux/fanotify.h>
68
69
#include "audit.h"
70
71
/* flags stating the success for a syscall */
72
#define AUDITSC_INVALID 0
73
#define AUDITSC_SUCCESS 1
74
#define AUDITSC_FAILURE 2
75
76
/* no execve audit message should be longer than this (userspace limits),
77
* see the note near the top of audit_log_execve_info() about this value */
78
#define MAX_EXECVE_AUDIT_LEN 7500
79
80
/* max length to print of cmdline/proctitle value during audit */
81
#define MAX_PROCTITLE_AUDIT_LEN 128
82
83
/* number of audit rules */
84
int audit_n_rules;
85
86
/* determines whether we collect data for signals sent */
87
int audit_signals;
88
89
struct audit_aux_data {
90
struct audit_aux_data *next;
91
int type;
92
};
93
94
/* Number of target pids per aux struct. */
95
#define AUDIT_AUX_PIDS 16
96
97
struct audit_aux_data_pids {
98
struct audit_aux_data d;
99
pid_t target_pid[AUDIT_AUX_PIDS];
100
kuid_t target_auid[AUDIT_AUX_PIDS];
101
kuid_t target_uid[AUDIT_AUX_PIDS];
102
unsigned int target_sessionid[AUDIT_AUX_PIDS];
103
struct lsm_prop target_ref[AUDIT_AUX_PIDS];
104
char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
105
int pid_count;
106
};
107
108
struct audit_aux_data_bprm_fcaps {
109
struct audit_aux_data d;
110
struct audit_cap_data fcap;
111
unsigned int fcap_ver;
112
struct audit_cap_data old_pcap;
113
struct audit_cap_data new_pcap;
114
};
115
116
struct audit_tree_refs {
117
struct audit_tree_refs *next;
118
struct audit_chunk *c[31];
119
};
120
121
struct audit_nfcfgop_tab {
122
enum audit_nfcfgop op;
123
const char *s;
124
};
125
126
static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
127
{ AUDIT_XT_OP_REGISTER, "xt_register" },
128
{ AUDIT_XT_OP_REPLACE, "xt_replace" },
129
{ AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
130
{ AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
131
{ AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
132
{ AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
133
{ AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
134
{ AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
135
{ AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
136
{ AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
137
{ AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
138
{ AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
139
{ AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
140
{ AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
141
{ AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
142
{ AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
143
{ AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
144
{ AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
145
{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
146
{ AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" },
147
{ AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" },
148
{ AUDIT_NFT_OP_INVALID, "nft_invalid" },
149
};
150
151
static int audit_match_perm(struct audit_context *ctx, int mask)
152
{
153
unsigned n;
154
155
if (unlikely(!ctx))
156
return 0;
157
n = ctx->major;
158
159
switch (audit_classify_syscall(ctx->arch, n)) {
160
case AUDITSC_NATIVE:
161
if ((mask & AUDIT_PERM_WRITE) &&
162
audit_match_class(AUDIT_CLASS_WRITE, n))
163
return 1;
164
if ((mask & AUDIT_PERM_READ) &&
165
audit_match_class(AUDIT_CLASS_READ, n))
166
return 1;
167
if ((mask & AUDIT_PERM_ATTR) &&
168
audit_match_class(AUDIT_CLASS_CHATTR, n))
169
return 1;
170
return 0;
171
case AUDITSC_COMPAT: /* 32bit on biarch */
172
if ((mask & AUDIT_PERM_WRITE) &&
173
audit_match_class(AUDIT_CLASS_WRITE_32, n))
174
return 1;
175
if ((mask & AUDIT_PERM_READ) &&
176
audit_match_class(AUDIT_CLASS_READ_32, n))
177
return 1;
178
if ((mask & AUDIT_PERM_ATTR) &&
179
audit_match_class(AUDIT_CLASS_CHATTR_32, n))
180
return 1;
181
return 0;
182
case AUDITSC_OPEN:
183
return mask & ACC_MODE(ctx->argv[1]);
184
case AUDITSC_OPENAT:
185
return mask & ACC_MODE(ctx->argv[2]);
186
case AUDITSC_SOCKETCALL:
187
return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
188
case AUDITSC_EXECVE:
189
return mask & AUDIT_PERM_EXEC;
190
case AUDITSC_OPENAT2:
191
return mask & ACC_MODE((u32)ctx->openat2.flags);
192
default:
193
return 0;
194
}
195
}
196
197
static int audit_match_filetype(struct audit_context *ctx, int val)
198
{
199
struct audit_names *n;
200
umode_t mode = (umode_t)val;
201
202
if (unlikely(!ctx))
203
return 0;
204
205
list_for_each_entry(n, &ctx->names_list, list) {
206
if ((n->ino != AUDIT_INO_UNSET) &&
207
((n->mode & S_IFMT) == mode))
208
return 1;
209
}
210
211
return 0;
212
}
213
214
/*
215
* We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
216
* ->first_trees points to its beginning, ->trees - to the current end of data.
217
* ->tree_count is the number of free entries in array pointed to by ->trees.
218
* Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
219
* "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
220
* it's going to remain 1-element for almost any setup) until we free context itself.
221
* References in it _are_ dropped - at the same time we free/drop aux stuff.
222
*/
223
224
static void audit_set_auditable(struct audit_context *ctx)
225
{
226
if (!ctx->prio) {
227
ctx->prio = 1;
228
ctx->current_state = AUDIT_STATE_RECORD;
229
}
230
}
231
232
static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
233
{
234
struct audit_tree_refs *p = ctx->trees;
235
int left = ctx->tree_count;
236
237
if (likely(left)) {
238
p->c[--left] = chunk;
239
ctx->tree_count = left;
240
return 1;
241
}
242
if (!p)
243
return 0;
244
p = p->next;
245
if (p) {
246
p->c[30] = chunk;
247
ctx->trees = p;
248
ctx->tree_count = 30;
249
return 1;
250
}
251
return 0;
252
}
253
254
static int grow_tree_refs(struct audit_context *ctx)
255
{
256
struct audit_tree_refs *p = ctx->trees;
257
258
ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
259
if (!ctx->trees) {
260
ctx->trees = p;
261
return 0;
262
}
263
if (p)
264
p->next = ctx->trees;
265
else
266
ctx->first_trees = ctx->trees;
267
ctx->tree_count = 31;
268
return 1;
269
}
270
271
static void unroll_tree_refs(struct audit_context *ctx,
272
struct audit_tree_refs *p, int count)
273
{
274
struct audit_tree_refs *q;
275
int n;
276
277
if (!p) {
278
/* we started with empty chain */
279
p = ctx->first_trees;
280
count = 31;
281
/* if the very first allocation has failed, nothing to do */
282
if (!p)
283
return;
284
}
285
n = count;
286
for (q = p; q != ctx->trees; q = q->next, n = 31) {
287
while (n--) {
288
audit_put_chunk(q->c[n]);
289
q->c[n] = NULL;
290
}
291
}
292
while (n-- > ctx->tree_count) {
293
audit_put_chunk(q->c[n]);
294
q->c[n] = NULL;
295
}
296
ctx->trees = p;
297
ctx->tree_count = count;
298
}
299
300
static void free_tree_refs(struct audit_context *ctx)
301
{
302
struct audit_tree_refs *p, *q;
303
304
for (p = ctx->first_trees; p; p = q) {
305
q = p->next;
306
kfree(p);
307
}
308
}
309
310
static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
311
{
312
struct audit_tree_refs *p;
313
int n;
314
315
if (!tree)
316
return 0;
317
/* full ones */
318
for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
319
for (n = 0; n < 31; n++)
320
if (audit_tree_match(p->c[n], tree))
321
return 1;
322
}
323
/* partial */
324
if (p) {
325
for (n = ctx->tree_count; n < 31; n++)
326
if (audit_tree_match(p->c[n], tree))
327
return 1;
328
}
329
return 0;
330
}
331
332
static int audit_compare_uid(kuid_t uid,
333
struct audit_names *name,
334
struct audit_field *f,
335
struct audit_context *ctx)
336
{
337
struct audit_names *n;
338
int rc;
339
340
if (name) {
341
rc = audit_uid_comparator(uid, f->op, name->uid);
342
if (rc)
343
return rc;
344
}
345
346
if (ctx) {
347
list_for_each_entry(n, &ctx->names_list, list) {
348
rc = audit_uid_comparator(uid, f->op, n->uid);
349
if (rc)
350
return rc;
351
}
352
}
353
return 0;
354
}
355
356
static int audit_compare_gid(kgid_t gid,
357
struct audit_names *name,
358
struct audit_field *f,
359
struct audit_context *ctx)
360
{
361
struct audit_names *n;
362
int rc;
363
364
if (name) {
365
rc = audit_gid_comparator(gid, f->op, name->gid);
366
if (rc)
367
return rc;
368
}
369
370
if (ctx) {
371
list_for_each_entry(n, &ctx->names_list, list) {
372
rc = audit_gid_comparator(gid, f->op, n->gid);
373
if (rc)
374
return rc;
375
}
376
}
377
return 0;
378
}
379
380
static int audit_field_compare(struct task_struct *tsk,
381
const struct cred *cred,
382
struct audit_field *f,
383
struct audit_context *ctx,
384
struct audit_names *name)
385
{
386
switch (f->val) {
387
/* process to file object comparisons */
388
case AUDIT_COMPARE_UID_TO_OBJ_UID:
389
return audit_compare_uid(cred->uid, name, f, ctx);
390
case AUDIT_COMPARE_GID_TO_OBJ_GID:
391
return audit_compare_gid(cred->gid, name, f, ctx);
392
case AUDIT_COMPARE_EUID_TO_OBJ_UID:
393
return audit_compare_uid(cred->euid, name, f, ctx);
394
case AUDIT_COMPARE_EGID_TO_OBJ_GID:
395
return audit_compare_gid(cred->egid, name, f, ctx);
396
case AUDIT_COMPARE_AUID_TO_OBJ_UID:
397
return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
398
case AUDIT_COMPARE_SUID_TO_OBJ_UID:
399
return audit_compare_uid(cred->suid, name, f, ctx);
400
case AUDIT_COMPARE_SGID_TO_OBJ_GID:
401
return audit_compare_gid(cred->sgid, name, f, ctx);
402
case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
403
return audit_compare_uid(cred->fsuid, name, f, ctx);
404
case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
405
return audit_compare_gid(cred->fsgid, name, f, ctx);
406
/* uid comparisons */
407
case AUDIT_COMPARE_UID_TO_AUID:
408
return audit_uid_comparator(cred->uid, f->op,
409
audit_get_loginuid(tsk));
410
case AUDIT_COMPARE_UID_TO_EUID:
411
return audit_uid_comparator(cred->uid, f->op, cred->euid);
412
case AUDIT_COMPARE_UID_TO_SUID:
413
return audit_uid_comparator(cred->uid, f->op, cred->suid);
414
case AUDIT_COMPARE_UID_TO_FSUID:
415
return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
416
/* auid comparisons */
417
case AUDIT_COMPARE_AUID_TO_EUID:
418
return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419
cred->euid);
420
case AUDIT_COMPARE_AUID_TO_SUID:
421
return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422
cred->suid);
423
case AUDIT_COMPARE_AUID_TO_FSUID:
424
return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
425
cred->fsuid);
426
/* euid comparisons */
427
case AUDIT_COMPARE_EUID_TO_SUID:
428
return audit_uid_comparator(cred->euid, f->op, cred->suid);
429
case AUDIT_COMPARE_EUID_TO_FSUID:
430
return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
431
/* suid comparisons */
432
case AUDIT_COMPARE_SUID_TO_FSUID:
433
return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
434
/* gid comparisons */
435
case AUDIT_COMPARE_GID_TO_EGID:
436
return audit_gid_comparator(cred->gid, f->op, cred->egid);
437
case AUDIT_COMPARE_GID_TO_SGID:
438
return audit_gid_comparator(cred->gid, f->op, cred->sgid);
439
case AUDIT_COMPARE_GID_TO_FSGID:
440
return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
441
/* egid comparisons */
442
case AUDIT_COMPARE_EGID_TO_SGID:
443
return audit_gid_comparator(cred->egid, f->op, cred->sgid);
444
case AUDIT_COMPARE_EGID_TO_FSGID:
445
return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
446
/* sgid comparison */
447
case AUDIT_COMPARE_SGID_TO_FSGID:
448
return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
449
default:
450
WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
451
return 0;
452
}
453
return 0;
454
}
455
456
/* Determine if any context name data matches a rule's watch data */
457
/* Compare a task_struct with an audit_rule. Return 1 on match, 0
458
* otherwise.
459
*
460
* If task_creation is true, this is an explicit indication that we are
461
* filtering a task rule at task creation time. This and tsk == current are
462
* the only situations where tsk->cred may be accessed without an rcu read lock.
463
*/
464
static int audit_filter_rules(struct task_struct *tsk,
465
struct audit_krule *rule,
466
struct audit_context *ctx,
467
struct audit_names *name,
468
enum audit_state *state,
469
bool task_creation)
470
{
471
const struct cred *cred;
472
int i, need_sid = 1;
473
struct lsm_prop prop = { };
474
unsigned int sessionid;
475
476
if (ctx && rule->prio <= ctx->prio)
477
return 0;
478
479
cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
480
481
for (i = 0; i < rule->field_count; i++) {
482
struct audit_field *f = &rule->fields[i];
483
struct audit_names *n;
484
int result = 0;
485
pid_t pid;
486
487
switch (f->type) {
488
case AUDIT_PID:
489
pid = task_tgid_nr(tsk);
490
result = audit_comparator(pid, f->op, f->val);
491
break;
492
case AUDIT_PPID:
493
if (ctx) {
494
if (!ctx->ppid)
495
ctx->ppid = task_ppid_nr(tsk);
496
result = audit_comparator(ctx->ppid, f->op, f->val);
497
}
498
break;
499
case AUDIT_EXE:
500
result = audit_exe_compare(tsk, rule->exe);
501
if (f->op == Audit_not_equal)
502
result = !result;
503
break;
504
case AUDIT_UID:
505
result = audit_uid_comparator(cred->uid, f->op, f->uid);
506
break;
507
case AUDIT_EUID:
508
result = audit_uid_comparator(cred->euid, f->op, f->uid);
509
break;
510
case AUDIT_SUID:
511
result = audit_uid_comparator(cred->suid, f->op, f->uid);
512
break;
513
case AUDIT_FSUID:
514
result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515
break;
516
case AUDIT_GID:
517
result = audit_gid_comparator(cred->gid, f->op, f->gid);
518
if (f->op == Audit_equal) {
519
if (!result)
520
result = groups_search(cred->group_info, f->gid);
521
} else if (f->op == Audit_not_equal) {
522
if (result)
523
result = !groups_search(cred->group_info, f->gid);
524
}
525
break;
526
case AUDIT_EGID:
527
result = audit_gid_comparator(cred->egid, f->op, f->gid);
528
if (f->op == Audit_equal) {
529
if (!result)
530
result = groups_search(cred->group_info, f->gid);
531
} else if (f->op == Audit_not_equal) {
532
if (result)
533
result = !groups_search(cred->group_info, f->gid);
534
}
535
break;
536
case AUDIT_SGID:
537
result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538
break;
539
case AUDIT_FSGID:
540
result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
541
break;
542
case AUDIT_SESSIONID:
543
sessionid = audit_get_sessionid(tsk);
544
result = audit_comparator(sessionid, f->op, f->val);
545
break;
546
case AUDIT_PERS:
547
result = audit_comparator(tsk->personality, f->op, f->val);
548
break;
549
case AUDIT_ARCH:
550
if (ctx)
551
result = audit_comparator(ctx->arch, f->op, f->val);
552
break;
553
554
case AUDIT_EXIT:
555
if (ctx && ctx->return_valid != AUDITSC_INVALID)
556
result = audit_comparator(ctx->return_code, f->op, f->val);
557
break;
558
case AUDIT_SUCCESS:
559
if (ctx && ctx->return_valid != AUDITSC_INVALID) {
560
if (f->val)
561
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
562
else
563
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
564
}
565
break;
566
case AUDIT_DEVMAJOR:
567
if (name) {
568
if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569
audit_comparator(MAJOR(name->rdev), f->op, f->val))
570
++result;
571
} else if (ctx) {
572
list_for_each_entry(n, &ctx->names_list, list) {
573
if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574
audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
575
++result;
576
break;
577
}
578
}
579
}
580
break;
581
case AUDIT_DEVMINOR:
582
if (name) {
583
if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584
audit_comparator(MINOR(name->rdev), f->op, f->val))
585
++result;
586
} else if (ctx) {
587
list_for_each_entry(n, &ctx->names_list, list) {
588
if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589
audit_comparator(MINOR(n->rdev), f->op, f->val)) {
590
++result;
591
break;
592
}
593
}
594
}
595
break;
596
case AUDIT_INODE:
597
if (name)
598
result = audit_comparator(name->ino, f->op, f->val);
599
else if (ctx) {
600
list_for_each_entry(n, &ctx->names_list, list) {
601
if (audit_comparator(n->ino, f->op, f->val)) {
602
++result;
603
break;
604
}
605
}
606
}
607
break;
608
case AUDIT_OBJ_UID:
609
if (name) {
610
result = audit_uid_comparator(name->uid, f->op, f->uid);
611
} else if (ctx) {
612
list_for_each_entry(n, &ctx->names_list, list) {
613
if (audit_uid_comparator(n->uid, f->op, f->uid)) {
614
++result;
615
break;
616
}
617
}
618
}
619
break;
620
case AUDIT_OBJ_GID:
621
if (name) {
622
result = audit_gid_comparator(name->gid, f->op, f->gid);
623
} else if (ctx) {
624
list_for_each_entry(n, &ctx->names_list, list) {
625
if (audit_gid_comparator(n->gid, f->op, f->gid)) {
626
++result;
627
break;
628
}
629
}
630
}
631
break;
632
case AUDIT_WATCH:
633
if (name) {
634
result = audit_watch_compare(rule->watch,
635
name->ino,
636
name->dev);
637
if (f->op == Audit_not_equal)
638
result = !result;
639
}
640
break;
641
case AUDIT_DIR:
642
if (ctx) {
643
result = match_tree_refs(ctx, rule->tree);
644
if (f->op == Audit_not_equal)
645
result = !result;
646
}
647
break;
648
case AUDIT_LOGINUID:
649
result = audit_uid_comparator(audit_get_loginuid(tsk),
650
f->op, f->uid);
651
break;
652
case AUDIT_LOGINUID_SET:
653
result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
654
break;
655
case AUDIT_SADDR_FAM:
656
if (ctx && ctx->sockaddr)
657
result = audit_comparator(ctx->sockaddr->ss_family,
658
f->op, f->val);
659
break;
660
case AUDIT_SUBJ_USER:
661
case AUDIT_SUBJ_ROLE:
662
case AUDIT_SUBJ_TYPE:
663
case AUDIT_SUBJ_SEN:
664
case AUDIT_SUBJ_CLR:
665
/* NOTE: this may return negative values indicating
666
a temporary error. We simply treat this as a
667
match for now to avoid losing information that
668
may be wanted. An error message will also be
669
logged upon error */
670
if (f->lsm_rule) {
671
if (need_sid) {
672
/* @tsk should always be equal to
673
* @current with the exception of
674
* fork()/copy_process() in which case
675
* the new @tsk creds are still a dup
676
* of @current's creds so we can still
677
* use
678
* security_current_getlsmprop_subj()
679
* here even though it always refs
680
* @current's creds
681
*/
682
security_current_getlsmprop_subj(&prop);
683
need_sid = 0;
684
}
685
result = security_audit_rule_match(&prop,
686
f->type,
687
f->op,
688
f->lsm_rule);
689
}
690
break;
691
case AUDIT_OBJ_USER:
692
case AUDIT_OBJ_ROLE:
693
case AUDIT_OBJ_TYPE:
694
case AUDIT_OBJ_LEV_LOW:
695
case AUDIT_OBJ_LEV_HIGH:
696
/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
697
also applies here */
698
if (f->lsm_rule) {
699
/* Find files that match */
700
if (name) {
701
result = security_audit_rule_match(
702
&name->oprop,
703
f->type,
704
f->op,
705
f->lsm_rule);
706
} else if (ctx) {
707
list_for_each_entry(n, &ctx->names_list, list) {
708
if (security_audit_rule_match(
709
&n->oprop,
710
f->type,
711
f->op,
712
f->lsm_rule)) {
713
++result;
714
break;
715
}
716
}
717
}
718
/* Find ipc objects that match */
719
if (!ctx || ctx->type != AUDIT_IPC)
720
break;
721
if (security_audit_rule_match(&ctx->ipc.oprop,
722
f->type, f->op,
723
f->lsm_rule))
724
++result;
725
}
726
break;
727
case AUDIT_ARG0:
728
case AUDIT_ARG1:
729
case AUDIT_ARG2:
730
case AUDIT_ARG3:
731
if (ctx)
732
result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
733
break;
734
case AUDIT_FILTERKEY:
735
/* ignore this field for filtering */
736
result = 1;
737
break;
738
case AUDIT_PERM:
739
result = audit_match_perm(ctx, f->val);
740
if (f->op == Audit_not_equal)
741
result = !result;
742
break;
743
case AUDIT_FILETYPE:
744
result = audit_match_filetype(ctx, f->val);
745
if (f->op == Audit_not_equal)
746
result = !result;
747
break;
748
case AUDIT_FIELD_COMPARE:
749
result = audit_field_compare(tsk, cred, f, ctx, name);
750
break;
751
}
752
if (!result)
753
return 0;
754
}
755
756
if (ctx) {
757
if (rule->filterkey) {
758
kfree(ctx->filterkey);
759
ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
760
}
761
ctx->prio = rule->prio;
762
}
763
switch (rule->action) {
764
case AUDIT_NEVER:
765
*state = AUDIT_STATE_DISABLED;
766
break;
767
case AUDIT_ALWAYS:
768
*state = AUDIT_STATE_RECORD;
769
break;
770
}
771
return 1;
772
}
773
774
/* At process creation time, we can determine if system-call auditing is
775
* completely disabled for this task. Since we only have the task
776
* structure at this point, we can only check uid and gid.
777
*/
778
static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
779
{
780
struct audit_entry *e;
781
enum audit_state state;
782
783
rcu_read_lock();
784
list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
785
if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
786
&state, true)) {
787
if (state == AUDIT_STATE_RECORD)
788
*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
789
rcu_read_unlock();
790
return state;
791
}
792
}
793
rcu_read_unlock();
794
return AUDIT_STATE_BUILD;
795
}
796
797
static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
798
{
799
int word, bit;
800
801
if (val > 0xffffffff)
802
return false;
803
804
word = AUDIT_WORD(val);
805
if (word >= AUDIT_BITMASK_SIZE)
806
return false;
807
808
bit = AUDIT_BIT(val);
809
810
return rule->mask[word] & bit;
811
}
812
813
/**
814
* __audit_filter_op - common filter helper for operations (syscall/uring/etc)
815
* @tsk: associated task
816
* @ctx: audit context
817
* @list: audit filter list
818
* @name: audit_name (can be NULL)
819
* @op: current syscall/uring_op
820
*
821
* Run the udit filters specified in @list against @tsk using @ctx,
822
* @name, and @op, as necessary; the caller is responsible for ensuring
823
* that the call is made while the RCU read lock is held. The @name
824
* parameter can be NULL, but all others must be specified.
825
* Returns 1/true if the filter finds a match, 0/false if none are found.
826
*/
827
static int __audit_filter_op(struct task_struct *tsk,
828
struct audit_context *ctx,
829
struct list_head *list,
830
struct audit_names *name,
831
unsigned long op)
832
{
833
struct audit_entry *e;
834
enum audit_state state;
835
836
list_for_each_entry_rcu(e, list, list) {
837
if (audit_in_mask(&e->rule, op) &&
838
audit_filter_rules(tsk, &e->rule, ctx, name,
839
&state, false)) {
840
ctx->current_state = state;
841
return 1;
842
}
843
}
844
return 0;
845
}
846
847
/**
848
* audit_filter_uring - apply filters to an io_uring operation
849
* @tsk: associated task
850
* @ctx: audit context
851
*/
852
static void audit_filter_uring(struct task_struct *tsk,
853
struct audit_context *ctx)
854
{
855
if (auditd_test_task(tsk))
856
return;
857
858
rcu_read_lock();
859
__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
860
NULL, ctx->uring_op);
861
rcu_read_unlock();
862
}
863
864
/* At syscall exit time, this filter is called if the audit_state is
865
* not low enough that auditing cannot take place, but is also not
866
* high enough that we already know we have to write an audit record
867
* (i.e., the state is AUDIT_STATE_BUILD).
868
*/
869
static void audit_filter_syscall(struct task_struct *tsk,
870
struct audit_context *ctx)
871
{
872
if (auditd_test_task(tsk))
873
return;
874
875
rcu_read_lock();
876
__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
877
NULL, ctx->major);
878
rcu_read_unlock();
879
}
880
881
/*
882
* Given an audit_name check the inode hash table to see if they match.
883
* Called holding the rcu read lock to protect the use of audit_inode_hash
884
*/
885
static int audit_filter_inode_name(struct task_struct *tsk,
886
struct audit_names *n,
887
struct audit_context *ctx)
888
{
889
int h = audit_hash_ino((u32)n->ino);
890
struct list_head *list = &audit_inode_hash[h];
891
892
return __audit_filter_op(tsk, ctx, list, n, ctx->major);
893
}
894
895
/* At syscall exit time, this filter is called if any audit_names have been
896
* collected during syscall processing. We only check rules in sublists at hash
897
* buckets applicable to the inode numbers in audit_names.
898
* Regarding audit_state, same rules apply as for audit_filter_syscall().
899
*/
900
void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
901
{
902
struct audit_names *n;
903
904
if (auditd_test_task(tsk))
905
return;
906
907
rcu_read_lock();
908
909
list_for_each_entry(n, &ctx->names_list, list) {
910
if (audit_filter_inode_name(tsk, n, ctx))
911
break;
912
}
913
rcu_read_unlock();
914
}
915
916
static inline void audit_proctitle_free(struct audit_context *context)
917
{
918
kfree(context->proctitle.value);
919
context->proctitle.value = NULL;
920
context->proctitle.len = 0;
921
}
922
923
static inline void audit_free_module(struct audit_context *context)
924
{
925
if (context->type == AUDIT_KERN_MODULE) {
926
kfree(context->module.name);
927
context->module.name = NULL;
928
}
929
}
930
static inline void audit_free_names(struct audit_context *context)
931
{
932
struct audit_names *n, *next;
933
934
list_for_each_entry_safe(n, next, &context->names_list, list) {
935
list_del(&n->list);
936
if (n->name)
937
putname(n->name);
938
if (n->should_free)
939
kfree(n);
940
}
941
context->name_count = 0;
942
path_put(&context->pwd);
943
context->pwd.dentry = NULL;
944
context->pwd.mnt = NULL;
945
}
946
947
static inline void audit_free_aux(struct audit_context *context)
948
{
949
struct audit_aux_data *aux;
950
951
while ((aux = context->aux)) {
952
context->aux = aux->next;
953
kfree(aux);
954
}
955
context->aux = NULL;
956
while ((aux = context->aux_pids)) {
957
context->aux_pids = aux->next;
958
kfree(aux);
959
}
960
context->aux_pids = NULL;
961
}
962
963
/**
964
* audit_reset_context - reset a audit_context structure
965
* @ctx: the audit_context to reset
966
*
967
* All fields in the audit_context will be reset to an initial state, all
968
* references held by fields will be dropped, and private memory will be
969
* released. When this function returns the audit_context will be suitable
970
* for reuse, so long as the passed context is not NULL or a dummy context.
971
*/
972
static void audit_reset_context(struct audit_context *ctx)
973
{
974
if (!ctx)
975
return;
976
977
/* if ctx is non-null, reset the "ctx->context" regardless */
978
ctx->context = AUDIT_CTX_UNUSED;
979
if (ctx->dummy)
980
return;
981
982
/*
983
* NOTE: It shouldn't matter in what order we release the fields, so
984
* release them in the order in which they appear in the struct;
985
* this gives us some hope of quickly making sure we are
986
* resetting the audit_context properly.
987
*
988
* Other things worth mentioning:
989
* - we don't reset "dummy"
990
* - we don't reset "state", we do reset "current_state"
991
* - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
992
* - much of this is likely overkill, but play it safe for now
993
* - we really need to work on improving the audit_context struct
994
*/
995
996
ctx->current_state = ctx->state;
997
ctx->serial = 0;
998
ctx->major = 0;
999
ctx->uring_op = 0;
1000
ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
1001
memset(ctx->argv, 0, sizeof(ctx->argv));
1002
ctx->return_code = 0;
1003
ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1004
ctx->return_valid = AUDITSC_INVALID;
1005
audit_free_names(ctx);
1006
if (ctx->state != AUDIT_STATE_RECORD) {
1007
kfree(ctx->filterkey);
1008
ctx->filterkey = NULL;
1009
}
1010
audit_free_aux(ctx);
1011
kfree(ctx->sockaddr);
1012
ctx->sockaddr = NULL;
1013
ctx->sockaddr_len = 0;
1014
ctx->ppid = 0;
1015
ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1016
ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1017
ctx->personality = 0;
1018
ctx->arch = 0;
1019
ctx->target_pid = 0;
1020
ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1021
ctx->target_sessionid = 0;
1022
lsmprop_init(&ctx->target_ref);
1023
ctx->target_comm[0] = '\0';
1024
unroll_tree_refs(ctx, NULL, 0);
1025
WARN_ON(!list_empty(&ctx->killed_trees));
1026
audit_free_module(ctx);
1027
ctx->fds[0] = -1;
1028
ctx->type = 0; /* reset last for audit_free_*() */
1029
}
1030
1031
static inline struct audit_context *audit_alloc_context(enum audit_state state)
1032
{
1033
struct audit_context *context;
1034
1035
context = kzalloc(sizeof(*context), GFP_KERNEL);
1036
if (!context)
1037
return NULL;
1038
context->context = AUDIT_CTX_UNUSED;
1039
context->state = state;
1040
context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1041
INIT_LIST_HEAD(&context->killed_trees);
1042
INIT_LIST_HEAD(&context->names_list);
1043
context->fds[0] = -1;
1044
context->return_valid = AUDITSC_INVALID;
1045
return context;
1046
}
1047
1048
/**
1049
* audit_alloc - allocate an audit context block for a task
1050
* @tsk: task
1051
*
1052
* Filter on the task information and allocate a per-task audit context
1053
* if necessary. Doing so turns on system call auditing for the
1054
* specified task. This is called from copy_process, so no lock is
1055
* needed.
1056
*/
1057
int audit_alloc(struct task_struct *tsk)
1058
{
1059
struct audit_context *context;
1060
enum audit_state state;
1061
char *key = NULL;
1062
1063
if (likely(!audit_ever_enabled))
1064
return 0;
1065
1066
state = audit_filter_task(tsk, &key);
1067
if (state == AUDIT_STATE_DISABLED) {
1068
clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1069
return 0;
1070
}
1071
1072
context = audit_alloc_context(state);
1073
if (!context) {
1074
kfree(key);
1075
audit_log_lost("out of memory in audit_alloc");
1076
return -ENOMEM;
1077
}
1078
context->filterkey = key;
1079
1080
audit_set_context(tsk, context);
1081
set_task_syscall_work(tsk, SYSCALL_AUDIT);
1082
return 0;
1083
}
1084
1085
static inline void audit_free_context(struct audit_context *context)
1086
{
1087
/* resetting is extra work, but it is likely just noise */
1088
audit_reset_context(context);
1089
audit_proctitle_free(context);
1090
free_tree_refs(context);
1091
kfree(context->filterkey);
1092
kfree(context);
1093
}
1094
1095
static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1096
kuid_t auid, kuid_t uid,
1097
unsigned int sessionid, struct lsm_prop *prop,
1098
char *comm)
1099
{
1100
struct audit_buffer *ab;
1101
struct lsm_context ctx;
1102
int rc = 0;
1103
1104
ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1105
if (!ab)
1106
return rc;
1107
1108
audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1109
from_kuid(&init_user_ns, auid),
1110
from_kuid(&init_user_ns, uid), sessionid);
1111
if (lsmprop_is_set(prop)) {
1112
if (security_lsmprop_to_secctx(prop, &ctx) < 0) {
1113
audit_log_format(ab, " obj=(none)");
1114
rc = 1;
1115
} else {
1116
audit_log_format(ab, " obj=%s", ctx.context);
1117
security_release_secctx(&ctx);
1118
}
1119
}
1120
audit_log_format(ab, " ocomm=");
1121
audit_log_untrustedstring(ab, comm);
1122
audit_log_end(ab);
1123
1124
return rc;
1125
}
1126
1127
static void audit_log_execve_info(struct audit_context *context,
1128
struct audit_buffer **ab)
1129
{
1130
long len_max;
1131
long len_rem;
1132
long len_full;
1133
long len_buf;
1134
long len_abuf = 0;
1135
long len_tmp;
1136
bool require_data;
1137
bool encode;
1138
unsigned int iter;
1139
unsigned int arg;
1140
char *buf_head;
1141
char *buf;
1142
const char __user *p = (const char __user *)current->mm->arg_start;
1143
1144
/* NOTE: this buffer needs to be large enough to hold all the non-arg
1145
* data we put in the audit record for this argument (see the
1146
* code below) ... at this point in time 96 is plenty */
1147
char abuf[96];
1148
1149
/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1150
* current value of 7500 is not as important as the fact that it
1151
* is less than 8k, a setting of 7500 gives us plenty of wiggle
1152
* room if we go over a little bit in the logging below */
1153
WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1154
len_max = MAX_EXECVE_AUDIT_LEN;
1155
1156
/* scratch buffer to hold the userspace args */
1157
buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1158
if (!buf_head) {
1159
audit_panic("out of memory for argv string");
1160
return;
1161
}
1162
buf = buf_head;
1163
1164
audit_log_format(*ab, "argc=%d", context->execve.argc);
1165
1166
len_rem = len_max;
1167
len_buf = 0;
1168
len_full = 0;
1169
require_data = true;
1170
encode = false;
1171
iter = 0;
1172
arg = 0;
1173
do {
1174
/* NOTE: we don't ever want to trust this value for anything
1175
* serious, but the audit record format insists we
1176
* provide an argument length for really long arguments,
1177
* e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1178
* to use strncpy_from_user() to obtain this value for
1179
* recording in the log, although we don't use it
1180
* anywhere here to avoid a double-fetch problem */
1181
if (len_full == 0)
1182
len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1183
1184
/* read more data from userspace */
1185
if (require_data) {
1186
/* can we make more room in the buffer? */
1187
if (buf != buf_head) {
1188
memmove(buf_head, buf, len_buf);
1189
buf = buf_head;
1190
}
1191
1192
/* fetch as much as we can of the argument */
1193
len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1194
len_max - len_buf);
1195
if (len_tmp == -EFAULT) {
1196
/* unable to copy from userspace */
1197
send_sig(SIGKILL, current, 0);
1198
goto out;
1199
} else if (len_tmp == (len_max - len_buf)) {
1200
/* buffer is not large enough */
1201
require_data = true;
1202
/* NOTE: if we are going to span multiple
1203
* buffers force the encoding so we stand
1204
* a chance at a sane len_full value and
1205
* consistent record encoding */
1206
encode = true;
1207
len_full = len_full * 2;
1208
p += len_tmp;
1209
} else {
1210
require_data = false;
1211
if (!encode)
1212
encode = audit_string_contains_control(
1213
buf, len_tmp);
1214
/* try to use a trusted value for len_full */
1215
if (len_full < len_max)
1216
len_full = (encode ?
1217
len_tmp * 2 : len_tmp);
1218
p += len_tmp + 1;
1219
}
1220
len_buf += len_tmp;
1221
buf_head[len_buf] = '\0';
1222
1223
/* length of the buffer in the audit record? */
1224
len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1225
}
1226
1227
/* write as much as we can to the audit log */
1228
if (len_buf >= 0) {
1229
/* NOTE: some magic numbers here - basically if we
1230
* can't fit a reasonable amount of data into the
1231
* existing audit buffer, flush it and start with
1232
* a new buffer */
1233
if ((sizeof(abuf) + 8) > len_rem) {
1234
len_rem = len_max;
1235
audit_log_end(*ab);
1236
*ab = audit_log_start(context,
1237
GFP_KERNEL, AUDIT_EXECVE);
1238
if (!*ab)
1239
goto out;
1240
}
1241
1242
/* create the non-arg portion of the arg record */
1243
len_tmp = 0;
1244
if (require_data || (iter > 0) ||
1245
((len_abuf + sizeof(abuf)) > len_rem)) {
1246
if (iter == 0) {
1247
len_tmp += snprintf(&abuf[len_tmp],
1248
sizeof(abuf) - len_tmp,
1249
" a%d_len=%lu",
1250
arg, len_full);
1251
}
1252
len_tmp += snprintf(&abuf[len_tmp],
1253
sizeof(abuf) - len_tmp,
1254
" a%d[%d]=", arg, iter++);
1255
} else
1256
len_tmp += snprintf(&abuf[len_tmp],
1257
sizeof(abuf) - len_tmp,
1258
" a%d=", arg);
1259
WARN_ON(len_tmp >= sizeof(abuf));
1260
abuf[sizeof(abuf) - 1] = '\0';
1261
1262
/* log the arg in the audit record */
1263
audit_log_format(*ab, "%s", abuf);
1264
len_rem -= len_tmp;
1265
len_tmp = len_buf;
1266
if (encode) {
1267
if (len_abuf > len_rem)
1268
len_tmp = len_rem / 2; /* encoding */
1269
audit_log_n_hex(*ab, buf, len_tmp);
1270
len_rem -= len_tmp * 2;
1271
len_abuf -= len_tmp * 2;
1272
} else {
1273
if (len_abuf > len_rem)
1274
len_tmp = len_rem - 2; /* quotes */
1275
audit_log_n_string(*ab, buf, len_tmp);
1276
len_rem -= len_tmp + 2;
1277
/* don't subtract the "2" because we still need
1278
* to add quotes to the remaining string */
1279
len_abuf -= len_tmp;
1280
}
1281
len_buf -= len_tmp;
1282
buf += len_tmp;
1283
}
1284
1285
/* ready to move to the next argument? */
1286
if ((len_buf == 0) && !require_data) {
1287
arg++;
1288
iter = 0;
1289
len_full = 0;
1290
require_data = true;
1291
encode = false;
1292
}
1293
} while (arg < context->execve.argc);
1294
1295
/* NOTE: the caller handles the final audit_log_end() call */
1296
1297
out:
1298
kfree(buf_head);
1299
}
1300
1301
static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1302
kernel_cap_t *cap)
1303
{
1304
if (cap_isclear(*cap)) {
1305
audit_log_format(ab, " %s=0", prefix);
1306
return;
1307
}
1308
audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1309
}
1310
1311
static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1312
{
1313
if (name->fcap_ver == -1) {
1314
audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1315
return;
1316
}
1317
audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1318
audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1319
audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1320
name->fcap.fE, name->fcap_ver,
1321
from_kuid(&init_user_ns, name->fcap.rootid));
1322
}
1323
1324
static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1325
{
1326
const struct audit_ntp_data *ntp = &context->time.ntp_data;
1327
const struct timespec64 *tk = &context->time.tk_injoffset;
1328
static const char * const ntp_name[] = {
1329
"offset",
1330
"freq",
1331
"status",
1332
"tai",
1333
"tick",
1334
"adjust",
1335
};
1336
int type;
1337
1338
if (context->type == AUDIT_TIME_ADJNTPVAL) {
1339
for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1340
if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1341
if (!*ab) {
1342
*ab = audit_log_start(context,
1343
GFP_KERNEL,
1344
AUDIT_TIME_ADJNTPVAL);
1345
if (!*ab)
1346
return;
1347
}
1348
audit_log_format(*ab, "op=%s old=%lli new=%lli",
1349
ntp_name[type],
1350
ntp->vals[type].oldval,
1351
ntp->vals[type].newval);
1352
audit_log_end(*ab);
1353
*ab = NULL;
1354
}
1355
}
1356
}
1357
if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1358
if (!*ab) {
1359
*ab = audit_log_start(context, GFP_KERNEL,
1360
AUDIT_TIME_INJOFFSET);
1361
if (!*ab)
1362
return;
1363
}
1364
audit_log_format(*ab, "sec=%lli nsec=%li",
1365
(long long)tk->tv_sec, tk->tv_nsec);
1366
audit_log_end(*ab);
1367
*ab = NULL;
1368
}
1369
}
1370
1371
static void show_special(struct audit_context *context, int *call_panic)
1372
{
1373
struct audit_buffer *ab;
1374
int i;
1375
1376
ab = audit_log_start(context, GFP_KERNEL, context->type);
1377
if (!ab)
1378
return;
1379
1380
switch (context->type) {
1381
case AUDIT_SOCKETCALL: {
1382
int nargs = context->socketcall.nargs;
1383
1384
audit_log_format(ab, "nargs=%d", nargs);
1385
for (i = 0; i < nargs; i++)
1386
audit_log_format(ab, " a%d=%lx", i,
1387
context->socketcall.args[i]);
1388
break; }
1389
case AUDIT_IPC:
1390
audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1391
from_kuid(&init_user_ns, context->ipc.uid),
1392
from_kgid(&init_user_ns, context->ipc.gid),
1393
context->ipc.mode);
1394
if (lsmprop_is_set(&context->ipc.oprop)) {
1395
struct lsm_context lsmctx;
1396
1397
if (security_lsmprop_to_secctx(&context->ipc.oprop,
1398
&lsmctx) < 0) {
1399
*call_panic = 1;
1400
} else {
1401
audit_log_format(ab, " obj=%s", lsmctx.context);
1402
security_release_secctx(&lsmctx);
1403
}
1404
}
1405
if (context->ipc.has_perm) {
1406
audit_log_end(ab);
1407
ab = audit_log_start(context, GFP_KERNEL,
1408
AUDIT_IPC_SET_PERM);
1409
if (unlikely(!ab))
1410
return;
1411
audit_log_format(ab,
1412
"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1413
context->ipc.qbytes,
1414
context->ipc.perm_uid,
1415
context->ipc.perm_gid,
1416
context->ipc.perm_mode);
1417
}
1418
break;
1419
case AUDIT_MQ_OPEN:
1420
audit_log_format(ab,
1421
"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1422
"mq_msgsize=%ld mq_curmsgs=%ld",
1423
context->mq_open.oflag, context->mq_open.mode,
1424
context->mq_open.attr.mq_flags,
1425
context->mq_open.attr.mq_maxmsg,
1426
context->mq_open.attr.mq_msgsize,
1427
context->mq_open.attr.mq_curmsgs);
1428
break;
1429
case AUDIT_MQ_SENDRECV:
1430
audit_log_format(ab,
1431
"mqdes=%d msg_len=%zd msg_prio=%u "
1432
"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1433
context->mq_sendrecv.mqdes,
1434
context->mq_sendrecv.msg_len,
1435
context->mq_sendrecv.msg_prio,
1436
(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1437
context->mq_sendrecv.abs_timeout.tv_nsec);
1438
break;
1439
case AUDIT_MQ_NOTIFY:
1440
audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1441
context->mq_notify.mqdes,
1442
context->mq_notify.sigev_signo);
1443
break;
1444
case AUDIT_MQ_GETSETATTR: {
1445
struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1446
1447
audit_log_format(ab,
1448
"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1449
"mq_curmsgs=%ld ",
1450
context->mq_getsetattr.mqdes,
1451
attr->mq_flags, attr->mq_maxmsg,
1452
attr->mq_msgsize, attr->mq_curmsgs);
1453
break; }
1454
case AUDIT_CAPSET:
1455
audit_log_format(ab, "pid=%d", context->capset.pid);
1456
audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1457
audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1458
audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1459
audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1460
break;
1461
case AUDIT_MMAP:
1462
audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1463
context->mmap.flags);
1464
break;
1465
case AUDIT_OPENAT2:
1466
audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1467
context->openat2.flags,
1468
context->openat2.mode,
1469
context->openat2.resolve);
1470
break;
1471
case AUDIT_EXECVE:
1472
audit_log_execve_info(context, &ab);
1473
break;
1474
case AUDIT_KERN_MODULE:
1475
audit_log_format(ab, "name=");
1476
if (context->module.name) {
1477
audit_log_untrustedstring(ab, context->module.name);
1478
} else
1479
audit_log_format(ab, "(null)");
1480
1481
break;
1482
case AUDIT_TIME_ADJNTPVAL:
1483
case AUDIT_TIME_INJOFFSET:
1484
/* this call deviates from the rest, eating the buffer */
1485
audit_log_time(context, &ab);
1486
break;
1487
}
1488
audit_log_end(ab);
1489
}
1490
1491
static inline int audit_proctitle_rtrim(char *proctitle, int len)
1492
{
1493
char *end = proctitle + len - 1;
1494
1495
while (end > proctitle && !isprint(*end))
1496
end--;
1497
1498
/* catch the case where proctitle is only 1 non-print character */
1499
len = end - proctitle + 1;
1500
len -= isprint(proctitle[len-1]) == 0;
1501
return len;
1502
}
1503
1504
/*
1505
* audit_log_name - produce AUDIT_PATH record from struct audit_names
1506
* @context: audit_context for the task
1507
* @n: audit_names structure with reportable details
1508
* @path: optional path to report instead of audit_names->name
1509
* @record_num: record number to report when handling a list of names
1510
* @call_panic: optional pointer to int that will be updated if secid fails
1511
*/
1512
static void audit_log_name(struct audit_context *context, struct audit_names *n,
1513
const struct path *path, int record_num, int *call_panic)
1514
{
1515
struct audit_buffer *ab;
1516
1517
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1518
if (!ab)
1519
return;
1520
1521
audit_log_format(ab, "item=%d", record_num);
1522
1523
if (path)
1524
audit_log_d_path(ab, " name=", path);
1525
else if (n->name) {
1526
switch (n->name_len) {
1527
case AUDIT_NAME_FULL:
1528
/* log the full path */
1529
audit_log_format(ab, " name=");
1530
audit_log_untrustedstring(ab, n->name->name);
1531
break;
1532
case 0:
1533
/* name was specified as a relative path and the
1534
* directory component is the cwd
1535
*/
1536
if (context->pwd.dentry && context->pwd.mnt)
1537
audit_log_d_path(ab, " name=", &context->pwd);
1538
else
1539
audit_log_format(ab, " name=(null)");
1540
break;
1541
default:
1542
/* log the name's directory component */
1543
audit_log_format(ab, " name=");
1544
audit_log_n_untrustedstring(ab, n->name->name,
1545
n->name_len);
1546
}
1547
} else
1548
audit_log_format(ab, " name=(null)");
1549
1550
if (n->ino != AUDIT_INO_UNSET)
1551
audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1552
n->ino,
1553
MAJOR(n->dev),
1554
MINOR(n->dev),
1555
n->mode,
1556
from_kuid(&init_user_ns, n->uid),
1557
from_kgid(&init_user_ns, n->gid),
1558
MAJOR(n->rdev),
1559
MINOR(n->rdev));
1560
if (lsmprop_is_set(&n->oprop)) {
1561
struct lsm_context ctx;
1562
1563
if (security_lsmprop_to_secctx(&n->oprop, &ctx) < 0) {
1564
if (call_panic)
1565
*call_panic = 2;
1566
} else {
1567
audit_log_format(ab, " obj=%s", ctx.context);
1568
security_release_secctx(&ctx);
1569
}
1570
}
1571
1572
/* log the audit_names record type */
1573
switch (n->type) {
1574
case AUDIT_TYPE_NORMAL:
1575
audit_log_format(ab, " nametype=NORMAL");
1576
break;
1577
case AUDIT_TYPE_PARENT:
1578
audit_log_format(ab, " nametype=PARENT");
1579
break;
1580
case AUDIT_TYPE_CHILD_DELETE:
1581
audit_log_format(ab, " nametype=DELETE");
1582
break;
1583
case AUDIT_TYPE_CHILD_CREATE:
1584
audit_log_format(ab, " nametype=CREATE");
1585
break;
1586
default:
1587
audit_log_format(ab, " nametype=UNKNOWN");
1588
break;
1589
}
1590
1591
audit_log_fcaps(ab, n);
1592
audit_log_end(ab);
1593
}
1594
1595
static void audit_log_proctitle(void)
1596
{
1597
int res;
1598
char *buf;
1599
char *msg = "(null)";
1600
int len = strlen(msg);
1601
struct audit_context *context = audit_context();
1602
struct audit_buffer *ab;
1603
1604
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1605
if (!ab)
1606
return; /* audit_panic or being filtered */
1607
1608
audit_log_format(ab, "proctitle=");
1609
1610
/* Not cached */
1611
if (!context->proctitle.value) {
1612
buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1613
if (!buf)
1614
goto out;
1615
/* Historically called this from procfs naming */
1616
res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1617
if (res == 0) {
1618
kfree(buf);
1619
goto out;
1620
}
1621
res = audit_proctitle_rtrim(buf, res);
1622
if (res == 0) {
1623
kfree(buf);
1624
goto out;
1625
}
1626
context->proctitle.value = buf;
1627
context->proctitle.len = res;
1628
}
1629
msg = context->proctitle.value;
1630
len = context->proctitle.len;
1631
out:
1632
audit_log_n_untrustedstring(ab, msg, len);
1633
audit_log_end(ab);
1634
}
1635
1636
/**
1637
* audit_log_uring - generate a AUDIT_URINGOP record
1638
* @ctx: the audit context
1639
*/
1640
static void audit_log_uring(struct audit_context *ctx)
1641
{
1642
struct audit_buffer *ab;
1643
const struct cred *cred;
1644
1645
ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1646
if (!ab)
1647
return;
1648
cred = current_cred();
1649
audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1650
if (ctx->return_valid != AUDITSC_INVALID)
1651
audit_log_format(ab, " success=%s exit=%ld",
1652
str_yes_no(ctx->return_valid ==
1653
AUDITSC_SUCCESS),
1654
ctx->return_code);
1655
audit_log_format(ab,
1656
" items=%d"
1657
" ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1658
" fsuid=%u egid=%u sgid=%u fsgid=%u",
1659
ctx->name_count,
1660
task_ppid_nr(current), task_tgid_nr(current),
1661
from_kuid(&init_user_ns, cred->uid),
1662
from_kgid(&init_user_ns, cred->gid),
1663
from_kuid(&init_user_ns, cred->euid),
1664
from_kuid(&init_user_ns, cred->suid),
1665
from_kuid(&init_user_ns, cred->fsuid),
1666
from_kgid(&init_user_ns, cred->egid),
1667
from_kgid(&init_user_ns, cred->sgid),
1668
from_kgid(&init_user_ns, cred->fsgid));
1669
audit_log_task_context(ab);
1670
audit_log_key(ab, ctx->filterkey);
1671
audit_log_end(ab);
1672
}
1673
1674
static void audit_log_exit(void)
1675
{
1676
int i, call_panic = 0;
1677
struct audit_context *context = audit_context();
1678
struct audit_buffer *ab;
1679
struct audit_aux_data *aux;
1680
struct audit_names *n;
1681
1682
context->personality = current->personality;
1683
1684
switch (context->context) {
1685
case AUDIT_CTX_SYSCALL:
1686
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1687
if (!ab)
1688
return;
1689
audit_log_format(ab, "arch=%x syscall=%d",
1690
context->arch, context->major);
1691
if (context->personality != PER_LINUX)
1692
audit_log_format(ab, " per=%lx", context->personality);
1693
if (context->return_valid != AUDITSC_INVALID)
1694
audit_log_format(ab, " success=%s exit=%ld",
1695
str_yes_no(context->return_valid ==
1696
AUDITSC_SUCCESS),
1697
context->return_code);
1698
audit_log_format(ab,
1699
" a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1700
context->argv[0],
1701
context->argv[1],
1702
context->argv[2],
1703
context->argv[3],
1704
context->name_count);
1705
audit_log_task_info(ab);
1706
audit_log_key(ab, context->filterkey);
1707
audit_log_end(ab);
1708
break;
1709
case AUDIT_CTX_URING:
1710
audit_log_uring(context);
1711
break;
1712
default:
1713
BUG();
1714
break;
1715
}
1716
1717
for (aux = context->aux; aux; aux = aux->next) {
1718
1719
ab = audit_log_start(context, GFP_KERNEL, aux->type);
1720
if (!ab)
1721
continue; /* audit_panic has been called */
1722
1723
switch (aux->type) {
1724
1725
case AUDIT_BPRM_FCAPS: {
1726
struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1727
1728
audit_log_format(ab, "fver=%x", axs->fcap_ver);
1729
audit_log_cap(ab, "fp", &axs->fcap.permitted);
1730
audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1731
audit_log_format(ab, " fe=%d", axs->fcap.fE);
1732
audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1733
audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1734
audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1735
audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1736
audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1737
audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1738
audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1739
audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1740
audit_log_format(ab, " frootid=%d",
1741
from_kuid(&init_user_ns,
1742
axs->fcap.rootid));
1743
break; }
1744
1745
}
1746
audit_log_end(ab);
1747
}
1748
1749
if (context->type)
1750
show_special(context, &call_panic);
1751
1752
if (context->fds[0] >= 0) {
1753
ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1754
if (ab) {
1755
audit_log_format(ab, "fd0=%d fd1=%d",
1756
context->fds[0], context->fds[1]);
1757
audit_log_end(ab);
1758
}
1759
}
1760
1761
if (context->sockaddr_len) {
1762
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1763
if (ab) {
1764
audit_log_format(ab, "saddr=");
1765
audit_log_n_hex(ab, (void *)context->sockaddr,
1766
context->sockaddr_len);
1767
audit_log_end(ab);
1768
}
1769
}
1770
1771
for (aux = context->aux_pids; aux; aux = aux->next) {
1772
struct audit_aux_data_pids *axs = (void *)aux;
1773
1774
for (i = 0; i < axs->pid_count; i++)
1775
if (audit_log_pid_context(context, axs->target_pid[i],
1776
axs->target_auid[i],
1777
axs->target_uid[i],
1778
axs->target_sessionid[i],
1779
&axs->target_ref[i],
1780
axs->target_comm[i]))
1781
call_panic = 1;
1782
}
1783
1784
if (context->target_pid &&
1785
audit_log_pid_context(context, context->target_pid,
1786
context->target_auid, context->target_uid,
1787
context->target_sessionid,
1788
&context->target_ref, context->target_comm))
1789
call_panic = 1;
1790
1791
if (context->pwd.dentry && context->pwd.mnt) {
1792
ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1793
if (ab) {
1794
audit_log_d_path(ab, "cwd=", &context->pwd);
1795
audit_log_end(ab);
1796
}
1797
}
1798
1799
i = 0;
1800
list_for_each_entry(n, &context->names_list, list) {
1801
if (n->hidden)
1802
continue;
1803
audit_log_name(context, n, NULL, i++, &call_panic);
1804
}
1805
1806
if (context->context == AUDIT_CTX_SYSCALL)
1807
audit_log_proctitle();
1808
1809
/* Send end of event record to help user space know we are finished */
1810
ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1811
if (ab)
1812
audit_log_end(ab);
1813
if (call_panic)
1814
audit_panic("error in audit_log_exit()");
1815
}
1816
1817
/**
1818
* __audit_free - free a per-task audit context
1819
* @tsk: task whose audit context block to free
1820
*
1821
* Called from copy_process, do_exit, and the io_uring code
1822
*/
1823
void __audit_free(struct task_struct *tsk)
1824
{
1825
struct audit_context *context = tsk->audit_context;
1826
1827
if (!context)
1828
return;
1829
1830
/* this may generate CONFIG_CHANGE records */
1831
if (!list_empty(&context->killed_trees))
1832
audit_kill_trees(context);
1833
1834
/* We are called either by do_exit() or the fork() error handling code;
1835
* in the former case tsk == current and in the latter tsk is a
1836
* random task_struct that doesn't have any meaningful data we
1837
* need to log via audit_log_exit().
1838
*/
1839
if (tsk == current && !context->dummy) {
1840
context->return_valid = AUDITSC_INVALID;
1841
context->return_code = 0;
1842
if (context->context == AUDIT_CTX_SYSCALL) {
1843
audit_filter_syscall(tsk, context);
1844
audit_filter_inodes(tsk, context);
1845
if (context->current_state == AUDIT_STATE_RECORD)
1846
audit_log_exit();
1847
} else if (context->context == AUDIT_CTX_URING) {
1848
/* TODO: verify this case is real and valid */
1849
audit_filter_uring(tsk, context);
1850
audit_filter_inodes(tsk, context);
1851
if (context->current_state == AUDIT_STATE_RECORD)
1852
audit_log_uring(context);
1853
}
1854
}
1855
1856
audit_set_context(tsk, NULL);
1857
audit_free_context(context);
1858
}
1859
1860
/**
1861
* audit_return_fixup - fixup the return codes in the audit_context
1862
* @ctx: the audit_context
1863
* @success: true/false value to indicate if the operation succeeded or not
1864
* @code: operation return code
1865
*
1866
* We need to fixup the return code in the audit logs if the actual return
1867
* codes are later going to be fixed by the arch specific signal handlers.
1868
*/
1869
static void audit_return_fixup(struct audit_context *ctx,
1870
int success, long code)
1871
{
1872
/*
1873
* This is actually a test for:
1874
* (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1875
* (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1876
*
1877
* but is faster than a bunch of ||
1878
*/
1879
if (unlikely(code <= -ERESTARTSYS) &&
1880
(code >= -ERESTART_RESTARTBLOCK) &&
1881
(code != -ENOIOCTLCMD))
1882
ctx->return_code = -EINTR;
1883
else
1884
ctx->return_code = code;
1885
ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1886
}
1887
1888
/**
1889
* __audit_uring_entry - prepare the kernel task's audit context for io_uring
1890
* @op: the io_uring opcode
1891
*
1892
* This is similar to audit_syscall_entry() but is intended for use by io_uring
1893
* operations. This function should only ever be called from
1894
* audit_uring_entry() as we rely on the audit context checking present in that
1895
* function.
1896
*/
1897
void __audit_uring_entry(u8 op)
1898
{
1899
struct audit_context *ctx = audit_context();
1900
1901
if (ctx->state == AUDIT_STATE_DISABLED)
1902
return;
1903
1904
/*
1905
* NOTE: It's possible that we can be called from the process' context
1906
* before it returns to userspace, and before audit_syscall_exit()
1907
* is called. In this case there is not much to do, just record
1908
* the io_uring details and return.
1909
*/
1910
ctx->uring_op = op;
1911
if (ctx->context == AUDIT_CTX_SYSCALL)
1912
return;
1913
1914
ctx->dummy = !audit_n_rules;
1915
if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1916
ctx->prio = 0;
1917
1918
ctx->context = AUDIT_CTX_URING;
1919
ctx->current_state = ctx->state;
1920
ktime_get_coarse_real_ts64(&ctx->ctime);
1921
}
1922
1923
/**
1924
* __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1925
* @success: true/false value to indicate if the operation succeeded or not
1926
* @code: operation return code
1927
*
1928
* This is similar to audit_syscall_exit() but is intended for use by io_uring
1929
* operations. This function should only ever be called from
1930
* audit_uring_exit() as we rely on the audit context checking present in that
1931
* function.
1932
*/
1933
void __audit_uring_exit(int success, long code)
1934
{
1935
struct audit_context *ctx = audit_context();
1936
1937
if (ctx->dummy) {
1938
if (ctx->context != AUDIT_CTX_URING)
1939
return;
1940
goto out;
1941
}
1942
1943
audit_return_fixup(ctx, success, code);
1944
if (ctx->context == AUDIT_CTX_SYSCALL) {
1945
/*
1946
* NOTE: See the note in __audit_uring_entry() about the case
1947
* where we may be called from process context before we
1948
* return to userspace via audit_syscall_exit(). In this
1949
* case we simply emit a URINGOP record and bail, the
1950
* normal syscall exit handling will take care of
1951
* everything else.
1952
* It is also worth mentioning that when we are called,
1953
* the current process creds may differ from the creds
1954
* used during the normal syscall processing; keep that
1955
* in mind if/when we move the record generation code.
1956
*/
1957
1958
/*
1959
* We need to filter on the syscall info here to decide if we
1960
* should emit a URINGOP record. I know it seems odd but this
1961
* solves the problem where users have a filter to block *all*
1962
* syscall records in the "exit" filter; we want to preserve
1963
* the behavior here.
1964
*/
1965
audit_filter_syscall(current, ctx);
1966
if (ctx->current_state != AUDIT_STATE_RECORD)
1967
audit_filter_uring(current, ctx);
1968
audit_filter_inodes(current, ctx);
1969
if (ctx->current_state != AUDIT_STATE_RECORD)
1970
return;
1971
1972
audit_log_uring(ctx);
1973
return;
1974
}
1975
1976
/* this may generate CONFIG_CHANGE records */
1977
if (!list_empty(&ctx->killed_trees))
1978
audit_kill_trees(ctx);
1979
1980
/* run through both filters to ensure we set the filterkey properly */
1981
audit_filter_uring(current, ctx);
1982
audit_filter_inodes(current, ctx);
1983
if (ctx->current_state != AUDIT_STATE_RECORD)
1984
goto out;
1985
audit_log_exit();
1986
1987
out:
1988
audit_reset_context(ctx);
1989
}
1990
1991
/**
1992
* __audit_syscall_entry - fill in an audit record at syscall entry
1993
* @major: major syscall type (function)
1994
* @a1: additional syscall register 1
1995
* @a2: additional syscall register 2
1996
* @a3: additional syscall register 3
1997
* @a4: additional syscall register 4
1998
*
1999
* Fill in audit context at syscall entry. This only happens if the
2000
* audit context was created when the task was created and the state or
2001
* filters demand the audit context be built. If the state from the
2002
* per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2003
* then the record will be written at syscall exit time (otherwise, it
2004
* will only be written if another part of the kernel requests that it
2005
* be written).
2006
*/
2007
void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2008
unsigned long a3, unsigned long a4)
2009
{
2010
struct audit_context *context = audit_context();
2011
enum audit_state state;
2012
2013
if (!audit_enabled || !context)
2014
return;
2015
2016
WARN_ON(context->context != AUDIT_CTX_UNUSED);
2017
WARN_ON(context->name_count);
2018
if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2019
audit_panic("unrecoverable error in audit_syscall_entry()");
2020
return;
2021
}
2022
2023
state = context->state;
2024
if (state == AUDIT_STATE_DISABLED)
2025
return;
2026
2027
context->dummy = !audit_n_rules;
2028
if (!context->dummy && state == AUDIT_STATE_BUILD) {
2029
context->prio = 0;
2030
if (auditd_test_task(current))
2031
return;
2032
}
2033
2034
context->arch = syscall_get_arch(current);
2035
context->major = major;
2036
context->argv[0] = a1;
2037
context->argv[1] = a2;
2038
context->argv[2] = a3;
2039
context->argv[3] = a4;
2040
context->context = AUDIT_CTX_SYSCALL;
2041
context->current_state = state;
2042
ktime_get_coarse_real_ts64(&context->ctime);
2043
}
2044
2045
/**
2046
* __audit_syscall_exit - deallocate audit context after a system call
2047
* @success: success value of the syscall
2048
* @return_code: return value of the syscall
2049
*
2050
* Tear down after system call. If the audit context has been marked as
2051
* auditable (either because of the AUDIT_STATE_RECORD state from
2052
* filtering, or because some other part of the kernel wrote an audit
2053
* message), then write out the syscall information. In call cases,
2054
* free the names stored from getname().
2055
*/
2056
void __audit_syscall_exit(int success, long return_code)
2057
{
2058
struct audit_context *context = audit_context();
2059
2060
if (!context || context->dummy ||
2061
context->context != AUDIT_CTX_SYSCALL)
2062
goto out;
2063
2064
/* this may generate CONFIG_CHANGE records */
2065
if (!list_empty(&context->killed_trees))
2066
audit_kill_trees(context);
2067
2068
audit_return_fixup(context, success, return_code);
2069
/* run through both filters to ensure we set the filterkey properly */
2070
audit_filter_syscall(current, context);
2071
audit_filter_inodes(current, context);
2072
if (context->current_state != AUDIT_STATE_RECORD)
2073
goto out;
2074
2075
audit_log_exit();
2076
2077
out:
2078
audit_reset_context(context);
2079
}
2080
2081
static inline void handle_one(const struct inode *inode)
2082
{
2083
struct audit_context *context;
2084
struct audit_tree_refs *p;
2085
struct audit_chunk *chunk;
2086
int count;
2087
2088
if (likely(!inode->i_fsnotify_marks))
2089
return;
2090
context = audit_context();
2091
p = context->trees;
2092
count = context->tree_count;
2093
rcu_read_lock();
2094
chunk = audit_tree_lookup(inode);
2095
rcu_read_unlock();
2096
if (!chunk)
2097
return;
2098
if (likely(put_tree_ref(context, chunk)))
2099
return;
2100
if (unlikely(!grow_tree_refs(context))) {
2101
pr_warn("out of memory, audit has lost a tree reference\n");
2102
audit_set_auditable(context);
2103
audit_put_chunk(chunk);
2104
unroll_tree_refs(context, p, count);
2105
return;
2106
}
2107
put_tree_ref(context, chunk);
2108
}
2109
2110
static void handle_path(const struct dentry *dentry)
2111
{
2112
struct audit_context *context;
2113
struct audit_tree_refs *p;
2114
const struct dentry *d, *parent;
2115
struct audit_chunk *drop;
2116
unsigned long seq;
2117
int count;
2118
2119
context = audit_context();
2120
p = context->trees;
2121
count = context->tree_count;
2122
retry:
2123
drop = NULL;
2124
d = dentry;
2125
rcu_read_lock();
2126
seq = read_seqbegin(&rename_lock);
2127
for (;;) {
2128
struct inode *inode = d_backing_inode(d);
2129
2130
if (inode && unlikely(inode->i_fsnotify_marks)) {
2131
struct audit_chunk *chunk;
2132
2133
chunk = audit_tree_lookup(inode);
2134
if (chunk) {
2135
if (unlikely(!put_tree_ref(context, chunk))) {
2136
drop = chunk;
2137
break;
2138
}
2139
}
2140
}
2141
parent = d->d_parent;
2142
if (parent == d)
2143
break;
2144
d = parent;
2145
}
2146
if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2147
rcu_read_unlock();
2148
if (!drop) {
2149
/* just a race with rename */
2150
unroll_tree_refs(context, p, count);
2151
goto retry;
2152
}
2153
audit_put_chunk(drop);
2154
if (grow_tree_refs(context)) {
2155
/* OK, got more space */
2156
unroll_tree_refs(context, p, count);
2157
goto retry;
2158
}
2159
/* too bad */
2160
pr_warn("out of memory, audit has lost a tree reference\n");
2161
unroll_tree_refs(context, p, count);
2162
audit_set_auditable(context);
2163
return;
2164
}
2165
rcu_read_unlock();
2166
}
2167
2168
static struct audit_names *audit_alloc_name(struct audit_context *context,
2169
unsigned char type)
2170
{
2171
struct audit_names *aname;
2172
2173
if (context->name_count < AUDIT_NAMES) {
2174
aname = &context->preallocated_names[context->name_count];
2175
memset(aname, 0, sizeof(*aname));
2176
} else {
2177
aname = kzalloc(sizeof(*aname), GFP_NOFS);
2178
if (!aname)
2179
return NULL;
2180
aname->should_free = true;
2181
}
2182
2183
aname->ino = AUDIT_INO_UNSET;
2184
aname->type = type;
2185
list_add_tail(&aname->list, &context->names_list);
2186
2187
context->name_count++;
2188
if (!context->pwd.dentry)
2189
get_fs_pwd(current->fs, &context->pwd);
2190
return aname;
2191
}
2192
2193
/**
2194
* __audit_reusename - fill out filename with info from existing entry
2195
* @uptr: userland ptr to pathname
2196
*
2197
* Search the audit_names list for the current audit context. If there is an
2198
* existing entry with a matching "uptr" then return the filename
2199
* associated with that audit_name. If not, return NULL.
2200
*/
2201
struct filename *
2202
__audit_reusename(const __user char *uptr)
2203
{
2204
struct audit_context *context = audit_context();
2205
struct audit_names *n;
2206
2207
list_for_each_entry(n, &context->names_list, list) {
2208
if (!n->name)
2209
continue;
2210
if (n->name->uptr == uptr)
2211
return refname(n->name);
2212
}
2213
return NULL;
2214
}
2215
2216
/**
2217
* __audit_getname - add a name to the list
2218
* @name: name to add
2219
*
2220
* Add a name to the list of audit names for this context.
2221
* Called from fs/namei.c:getname().
2222
*/
2223
void __audit_getname(struct filename *name)
2224
{
2225
struct audit_context *context = audit_context();
2226
struct audit_names *n;
2227
2228
if (context->context == AUDIT_CTX_UNUSED)
2229
return;
2230
2231
n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2232
if (!n)
2233
return;
2234
2235
n->name = name;
2236
n->name_len = AUDIT_NAME_FULL;
2237
name->aname = n;
2238
refname(name);
2239
}
2240
2241
static inline int audit_copy_fcaps(struct audit_names *name,
2242
const struct dentry *dentry)
2243
{
2244
struct cpu_vfs_cap_data caps;
2245
int rc;
2246
2247
if (!dentry)
2248
return 0;
2249
2250
rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2251
if (rc)
2252
return rc;
2253
2254
name->fcap.permitted = caps.permitted;
2255
name->fcap.inheritable = caps.inheritable;
2256
name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2257
name->fcap.rootid = caps.rootid;
2258
name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2259
VFS_CAP_REVISION_SHIFT;
2260
2261
return 0;
2262
}
2263
2264
/* Copy inode data into an audit_names. */
2265
static void audit_copy_inode(struct audit_names *name,
2266
const struct dentry *dentry,
2267
struct inode *inode, unsigned int flags)
2268
{
2269
name->ino = inode->i_ino;
2270
name->dev = inode->i_sb->s_dev;
2271
name->mode = inode->i_mode;
2272
name->uid = inode->i_uid;
2273
name->gid = inode->i_gid;
2274
name->rdev = inode->i_rdev;
2275
security_inode_getlsmprop(inode, &name->oprop);
2276
if (flags & AUDIT_INODE_NOEVAL) {
2277
name->fcap_ver = -1;
2278
return;
2279
}
2280
audit_copy_fcaps(name, dentry);
2281
}
2282
2283
/**
2284
* __audit_inode - store the inode and device from a lookup
2285
* @name: name being audited
2286
* @dentry: dentry being audited
2287
* @flags: attributes for this particular entry
2288
*/
2289
void __audit_inode(struct filename *name, const struct dentry *dentry,
2290
unsigned int flags)
2291
{
2292
struct audit_context *context = audit_context();
2293
struct inode *inode = d_backing_inode(dentry);
2294
struct audit_names *n;
2295
bool parent = flags & AUDIT_INODE_PARENT;
2296
struct audit_entry *e;
2297
struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2298
int i;
2299
2300
if (context->context == AUDIT_CTX_UNUSED)
2301
return;
2302
2303
rcu_read_lock();
2304
list_for_each_entry_rcu(e, list, list) {
2305
for (i = 0; i < e->rule.field_count; i++) {
2306
struct audit_field *f = &e->rule.fields[i];
2307
2308
if (f->type == AUDIT_FSTYPE
2309
&& audit_comparator(inode->i_sb->s_magic,
2310
f->op, f->val)
2311
&& e->rule.action == AUDIT_NEVER) {
2312
rcu_read_unlock();
2313
return;
2314
}
2315
}
2316
}
2317
rcu_read_unlock();
2318
2319
if (!name)
2320
goto out_alloc;
2321
2322
/*
2323
* If we have a pointer to an audit_names entry already, then we can
2324
* just use it directly if the type is correct.
2325
*/
2326
n = name->aname;
2327
if (n) {
2328
if (parent) {
2329
if (n->type == AUDIT_TYPE_PARENT ||
2330
n->type == AUDIT_TYPE_UNKNOWN)
2331
goto out;
2332
} else {
2333
if (n->type != AUDIT_TYPE_PARENT)
2334
goto out;
2335
}
2336
}
2337
2338
list_for_each_entry_reverse(n, &context->names_list, list) {
2339
if (n->ino) {
2340
/* valid inode number, use that for the comparison */
2341
if (n->ino != inode->i_ino ||
2342
n->dev != inode->i_sb->s_dev)
2343
continue;
2344
} else if (n->name) {
2345
/* inode number has not been set, check the name */
2346
if (strcmp(n->name->name, name->name))
2347
continue;
2348
} else
2349
/* no inode and no name (?!) ... this is odd ... */
2350
continue;
2351
2352
/* match the correct record type */
2353
if (parent) {
2354
if (n->type == AUDIT_TYPE_PARENT ||
2355
n->type == AUDIT_TYPE_UNKNOWN)
2356
goto out;
2357
} else {
2358
if (n->type != AUDIT_TYPE_PARENT)
2359
goto out;
2360
}
2361
}
2362
2363
out_alloc:
2364
/* unable to find an entry with both a matching name and type */
2365
n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2366
if (!n)
2367
return;
2368
if (name) {
2369
n->name = name;
2370
refname(name);
2371
}
2372
2373
out:
2374
if (parent) {
2375
n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2376
n->type = AUDIT_TYPE_PARENT;
2377
if (flags & AUDIT_INODE_HIDDEN)
2378
n->hidden = true;
2379
} else {
2380
n->name_len = AUDIT_NAME_FULL;
2381
n->type = AUDIT_TYPE_NORMAL;
2382
}
2383
handle_path(dentry);
2384
audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2385
}
2386
2387
void __audit_file(const struct file *file)
2388
{
2389
__audit_inode(NULL, file->f_path.dentry, 0);
2390
}
2391
2392
/**
2393
* __audit_inode_child - collect inode info for created/removed objects
2394
* @parent: inode of dentry parent
2395
* @dentry: dentry being audited
2396
* @type: AUDIT_TYPE_* value that we're looking for
2397
*
2398
* For syscalls that create or remove filesystem objects, audit_inode
2399
* can only collect information for the filesystem object's parent.
2400
* This call updates the audit context with the child's information.
2401
* Syscalls that create a new filesystem object must be hooked after
2402
* the object is created. Syscalls that remove a filesystem object
2403
* must be hooked prior, in order to capture the target inode during
2404
* unsuccessful attempts.
2405
*/
2406
void __audit_inode_child(struct inode *parent,
2407
const struct dentry *dentry,
2408
const unsigned char type)
2409
{
2410
struct audit_context *context = audit_context();
2411
struct inode *inode = d_backing_inode(dentry);
2412
const struct qstr *dname = &dentry->d_name;
2413
struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2414
struct audit_entry *e;
2415
struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2416
int i;
2417
2418
if (context->context == AUDIT_CTX_UNUSED)
2419
return;
2420
2421
rcu_read_lock();
2422
list_for_each_entry_rcu(e, list, list) {
2423
for (i = 0; i < e->rule.field_count; i++) {
2424
struct audit_field *f = &e->rule.fields[i];
2425
2426
if (f->type == AUDIT_FSTYPE
2427
&& audit_comparator(parent->i_sb->s_magic,
2428
f->op, f->val)
2429
&& e->rule.action == AUDIT_NEVER) {
2430
rcu_read_unlock();
2431
return;
2432
}
2433
}
2434
}
2435
rcu_read_unlock();
2436
2437
if (inode)
2438
handle_one(inode);
2439
2440
/* look for a parent entry first */
2441
list_for_each_entry(n, &context->names_list, list) {
2442
if (!n->name ||
2443
(n->type != AUDIT_TYPE_PARENT &&
2444
n->type != AUDIT_TYPE_UNKNOWN))
2445
continue;
2446
2447
if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2448
!audit_compare_dname_path(dname,
2449
n->name->name, n->name_len)) {
2450
if (n->type == AUDIT_TYPE_UNKNOWN)
2451
n->type = AUDIT_TYPE_PARENT;
2452
found_parent = n;
2453
break;
2454
}
2455
}
2456
2457
cond_resched();
2458
2459
/* is there a matching child entry? */
2460
list_for_each_entry(n, &context->names_list, list) {
2461
/* can only match entries that have a name */
2462
if (!n->name ||
2463
(n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2464
continue;
2465
2466
if (!strcmp(dname->name, n->name->name) ||
2467
!audit_compare_dname_path(dname, n->name->name,
2468
found_parent ?
2469
found_parent->name_len :
2470
AUDIT_NAME_FULL)) {
2471
if (n->type == AUDIT_TYPE_UNKNOWN)
2472
n->type = type;
2473
found_child = n;
2474
break;
2475
}
2476
}
2477
2478
if (!found_parent) {
2479
/* create a new, "anonymous" parent record */
2480
n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2481
if (!n)
2482
return;
2483
audit_copy_inode(n, NULL, parent, 0);
2484
}
2485
2486
if (!found_child) {
2487
found_child = audit_alloc_name(context, type);
2488
if (!found_child)
2489
return;
2490
2491
/* Re-use the name belonging to the slot for a matching parent
2492
* directory. All names for this context are relinquished in
2493
* audit_free_names() */
2494
if (found_parent) {
2495
found_child->name = found_parent->name;
2496
found_child->name_len = AUDIT_NAME_FULL;
2497
refname(found_child->name);
2498
}
2499
}
2500
2501
if (inode)
2502
audit_copy_inode(found_child, dentry, inode, 0);
2503
else
2504
found_child->ino = AUDIT_INO_UNSET;
2505
}
2506
EXPORT_SYMBOL_GPL(__audit_inode_child);
2507
2508
/**
2509
* auditsc_get_stamp - get local copies of audit_context values
2510
* @ctx: audit_context for the task
2511
* @t: timespec64 to store time recorded in the audit_context
2512
* @serial: serial value that is recorded in the audit_context
2513
*
2514
* Also sets the context as auditable.
2515
*/
2516
int auditsc_get_stamp(struct audit_context *ctx,
2517
struct timespec64 *t, unsigned int *serial)
2518
{
2519
if (ctx->context == AUDIT_CTX_UNUSED)
2520
return 0;
2521
if (!ctx->serial)
2522
ctx->serial = audit_serial();
2523
t->tv_sec = ctx->ctime.tv_sec;
2524
t->tv_nsec = ctx->ctime.tv_nsec;
2525
*serial = ctx->serial;
2526
if (!ctx->prio) {
2527
ctx->prio = 1;
2528
ctx->current_state = AUDIT_STATE_RECORD;
2529
}
2530
return 1;
2531
}
2532
2533
/**
2534
* __audit_mq_open - record audit data for a POSIX MQ open
2535
* @oflag: open flag
2536
* @mode: mode bits
2537
* @attr: queue attributes
2538
*
2539
*/
2540
void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2541
{
2542
struct audit_context *context = audit_context();
2543
2544
if (attr)
2545
memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2546
else
2547
memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2548
2549
context->mq_open.oflag = oflag;
2550
context->mq_open.mode = mode;
2551
2552
context->type = AUDIT_MQ_OPEN;
2553
}
2554
2555
/**
2556
* __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2557
* @mqdes: MQ descriptor
2558
* @msg_len: Message length
2559
* @msg_prio: Message priority
2560
* @abs_timeout: Message timeout in absolute time
2561
*
2562
*/
2563
void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2564
const struct timespec64 *abs_timeout)
2565
{
2566
struct audit_context *context = audit_context();
2567
struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2568
2569
if (abs_timeout)
2570
memcpy(p, abs_timeout, sizeof(*p));
2571
else
2572
memset(p, 0, sizeof(*p));
2573
2574
context->mq_sendrecv.mqdes = mqdes;
2575
context->mq_sendrecv.msg_len = msg_len;
2576
context->mq_sendrecv.msg_prio = msg_prio;
2577
2578
context->type = AUDIT_MQ_SENDRECV;
2579
}
2580
2581
/**
2582
* __audit_mq_notify - record audit data for a POSIX MQ notify
2583
* @mqdes: MQ descriptor
2584
* @notification: Notification event
2585
*
2586
*/
2587
2588
void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2589
{
2590
struct audit_context *context = audit_context();
2591
2592
if (notification)
2593
context->mq_notify.sigev_signo = notification->sigev_signo;
2594
else
2595
context->mq_notify.sigev_signo = 0;
2596
2597
context->mq_notify.mqdes = mqdes;
2598
context->type = AUDIT_MQ_NOTIFY;
2599
}
2600
2601
/**
2602
* __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2603
* @mqdes: MQ descriptor
2604
* @mqstat: MQ flags
2605
*
2606
*/
2607
void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2608
{
2609
struct audit_context *context = audit_context();
2610
2611
context->mq_getsetattr.mqdes = mqdes;
2612
context->mq_getsetattr.mqstat = *mqstat;
2613
context->type = AUDIT_MQ_GETSETATTR;
2614
}
2615
2616
/**
2617
* __audit_ipc_obj - record audit data for ipc object
2618
* @ipcp: ipc permissions
2619
*
2620
*/
2621
void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2622
{
2623
struct audit_context *context = audit_context();
2624
2625
context->ipc.uid = ipcp->uid;
2626
context->ipc.gid = ipcp->gid;
2627
context->ipc.mode = ipcp->mode;
2628
context->ipc.has_perm = 0;
2629
security_ipc_getlsmprop(ipcp, &context->ipc.oprop);
2630
context->type = AUDIT_IPC;
2631
}
2632
2633
/**
2634
* __audit_ipc_set_perm - record audit data for new ipc permissions
2635
* @qbytes: msgq bytes
2636
* @uid: msgq user id
2637
* @gid: msgq group id
2638
* @mode: msgq mode (permissions)
2639
*
2640
* Called only after audit_ipc_obj().
2641
*/
2642
void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2643
{
2644
struct audit_context *context = audit_context();
2645
2646
context->ipc.qbytes = qbytes;
2647
context->ipc.perm_uid = uid;
2648
context->ipc.perm_gid = gid;
2649
context->ipc.perm_mode = mode;
2650
context->ipc.has_perm = 1;
2651
}
2652
2653
void __audit_bprm(struct linux_binprm *bprm)
2654
{
2655
struct audit_context *context = audit_context();
2656
2657
context->type = AUDIT_EXECVE;
2658
context->execve.argc = bprm->argc;
2659
}
2660
2661
2662
/**
2663
* __audit_socketcall - record audit data for sys_socketcall
2664
* @nargs: number of args, which should not be more than AUDITSC_ARGS.
2665
* @args: args array
2666
*
2667
*/
2668
int __audit_socketcall(int nargs, unsigned long *args)
2669
{
2670
struct audit_context *context = audit_context();
2671
2672
if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2673
return -EINVAL;
2674
context->type = AUDIT_SOCKETCALL;
2675
context->socketcall.nargs = nargs;
2676
memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2677
return 0;
2678
}
2679
2680
/**
2681
* __audit_fd_pair - record audit data for pipe and socketpair
2682
* @fd1: the first file descriptor
2683
* @fd2: the second file descriptor
2684
*
2685
*/
2686
void __audit_fd_pair(int fd1, int fd2)
2687
{
2688
struct audit_context *context = audit_context();
2689
2690
context->fds[0] = fd1;
2691
context->fds[1] = fd2;
2692
}
2693
2694
/**
2695
* __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2696
* @len: data length in user space
2697
* @a: data address in kernel space
2698
*
2699
* Returns 0 for success or NULL context or < 0 on error.
2700
*/
2701
int __audit_sockaddr(int len, void *a)
2702
{
2703
struct audit_context *context = audit_context();
2704
2705
if (!context->sockaddr) {
2706
void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2707
2708
if (!p)
2709
return -ENOMEM;
2710
context->sockaddr = p;
2711
}
2712
2713
context->sockaddr_len = len;
2714
memcpy(context->sockaddr, a, len);
2715
return 0;
2716
}
2717
2718
void __audit_ptrace(struct task_struct *t)
2719
{
2720
struct audit_context *context = audit_context();
2721
2722
context->target_pid = task_tgid_nr(t);
2723
context->target_auid = audit_get_loginuid(t);
2724
context->target_uid = task_uid(t);
2725
context->target_sessionid = audit_get_sessionid(t);
2726
strscpy(context->target_comm, t->comm);
2727
security_task_getlsmprop_obj(t, &context->target_ref);
2728
}
2729
2730
/**
2731
* audit_signal_info_syscall - record signal info for syscalls
2732
* @t: task being signaled
2733
*
2734
* If the audit subsystem is being terminated, record the task (pid)
2735
* and uid that is doing that.
2736
*/
2737
int audit_signal_info_syscall(struct task_struct *t)
2738
{
2739
struct audit_aux_data_pids *axp;
2740
struct audit_context *ctx = audit_context();
2741
kuid_t t_uid = task_uid(t);
2742
2743
if (!audit_signals || audit_dummy_context())
2744
return 0;
2745
2746
/* optimize the common case by putting first signal recipient directly
2747
* in audit_context */
2748
if (!ctx->target_pid) {
2749
ctx->target_pid = task_tgid_nr(t);
2750
ctx->target_auid = audit_get_loginuid(t);
2751
ctx->target_uid = t_uid;
2752
ctx->target_sessionid = audit_get_sessionid(t);
2753
strscpy(ctx->target_comm, t->comm);
2754
security_task_getlsmprop_obj(t, &ctx->target_ref);
2755
return 0;
2756
}
2757
2758
axp = (void *)ctx->aux_pids;
2759
if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2760
axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2761
if (!axp)
2762
return -ENOMEM;
2763
2764
axp->d.type = AUDIT_OBJ_PID;
2765
axp->d.next = ctx->aux_pids;
2766
ctx->aux_pids = (void *)axp;
2767
}
2768
BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2769
2770
axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2771
axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2772
axp->target_uid[axp->pid_count] = t_uid;
2773
axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2774
security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]);
2775
strscpy(axp->target_comm[axp->pid_count], t->comm);
2776
axp->pid_count++;
2777
2778
return 0;
2779
}
2780
2781
/**
2782
* __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2783
* @bprm: pointer to the bprm being processed
2784
* @new: the proposed new credentials
2785
* @old: the old credentials
2786
*
2787
* Simply check if the proc already has the caps given by the file and if not
2788
* store the priv escalation info for later auditing at the end of the syscall
2789
*
2790
* -Eric
2791
*/
2792
int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2793
const struct cred *new, const struct cred *old)
2794
{
2795
struct audit_aux_data_bprm_fcaps *ax;
2796
struct audit_context *context = audit_context();
2797
struct cpu_vfs_cap_data vcaps;
2798
2799
ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2800
if (!ax)
2801
return -ENOMEM;
2802
2803
ax->d.type = AUDIT_BPRM_FCAPS;
2804
ax->d.next = context->aux;
2805
context->aux = (void *)ax;
2806
2807
get_vfs_caps_from_disk(&nop_mnt_idmap,
2808
bprm->file->f_path.dentry, &vcaps);
2809
2810
ax->fcap.permitted = vcaps.permitted;
2811
ax->fcap.inheritable = vcaps.inheritable;
2812
ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2813
ax->fcap.rootid = vcaps.rootid;
2814
ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2815
2816
ax->old_pcap.permitted = old->cap_permitted;
2817
ax->old_pcap.inheritable = old->cap_inheritable;
2818
ax->old_pcap.effective = old->cap_effective;
2819
ax->old_pcap.ambient = old->cap_ambient;
2820
2821
ax->new_pcap.permitted = new->cap_permitted;
2822
ax->new_pcap.inheritable = new->cap_inheritable;
2823
ax->new_pcap.effective = new->cap_effective;
2824
ax->new_pcap.ambient = new->cap_ambient;
2825
return 0;
2826
}
2827
2828
/**
2829
* __audit_log_capset - store information about the arguments to the capset syscall
2830
* @new: the new credentials
2831
* @old: the old (current) credentials
2832
*
2833
* Record the arguments userspace sent to sys_capset for later printing by the
2834
* audit system if applicable
2835
*/
2836
void __audit_log_capset(const struct cred *new, const struct cred *old)
2837
{
2838
struct audit_context *context = audit_context();
2839
2840
context->capset.pid = task_tgid_nr(current);
2841
context->capset.cap.effective = new->cap_effective;
2842
context->capset.cap.inheritable = new->cap_effective;
2843
context->capset.cap.permitted = new->cap_permitted;
2844
context->capset.cap.ambient = new->cap_ambient;
2845
context->type = AUDIT_CAPSET;
2846
}
2847
2848
void __audit_mmap_fd(int fd, int flags)
2849
{
2850
struct audit_context *context = audit_context();
2851
2852
context->mmap.fd = fd;
2853
context->mmap.flags = flags;
2854
context->type = AUDIT_MMAP;
2855
}
2856
2857
void __audit_openat2_how(struct open_how *how)
2858
{
2859
struct audit_context *context = audit_context();
2860
2861
context->openat2.flags = how->flags;
2862
context->openat2.mode = how->mode;
2863
context->openat2.resolve = how->resolve;
2864
context->type = AUDIT_OPENAT2;
2865
}
2866
2867
void __audit_log_kern_module(const char *name)
2868
{
2869
struct audit_context *context = audit_context();
2870
2871
context->module.name = kstrdup(name, GFP_KERNEL);
2872
if (!context->module.name)
2873
audit_log_lost("out of memory in __audit_log_kern_module");
2874
context->type = AUDIT_KERN_MODULE;
2875
}
2876
2877
void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2878
{
2879
/* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2880
switch (friar->hdr.type) {
2881
case FAN_RESPONSE_INFO_NONE:
2882
audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2883
"resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2884
response, FAN_RESPONSE_INFO_NONE);
2885
break;
2886
case FAN_RESPONSE_INFO_AUDIT_RULE:
2887
audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2888
"resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2889
response, friar->hdr.type, friar->rule_number,
2890
friar->subj_trust, friar->obj_trust);
2891
}
2892
}
2893
2894
void __audit_tk_injoffset(struct timespec64 offset)
2895
{
2896
struct audit_context *context = audit_context();
2897
2898
/* only set type if not already set by NTP */
2899
if (!context->type)
2900
context->type = AUDIT_TIME_INJOFFSET;
2901
memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2902
}
2903
2904
void __audit_ntp_log(const struct audit_ntp_data *ad)
2905
{
2906
struct audit_context *context = audit_context();
2907
int type;
2908
2909
for (type = 0; type < AUDIT_NTP_NVALS; type++)
2910
if (ad->vals[type].newval != ad->vals[type].oldval) {
2911
/* unconditionally set type, overwriting TK */
2912
context->type = AUDIT_TIME_ADJNTPVAL;
2913
memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2914
break;
2915
}
2916
}
2917
2918
void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2919
enum audit_nfcfgop op, gfp_t gfp)
2920
{
2921
struct audit_buffer *ab;
2922
char comm[sizeof(current->comm)];
2923
2924
ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2925
if (!ab)
2926
return;
2927
audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2928
name, af, nentries, audit_nfcfgs[op].s);
2929
2930
audit_log_format(ab, " pid=%u", task_tgid_nr(current));
2931
audit_log_task_context(ab); /* subj= */
2932
audit_log_format(ab, " comm=");
2933
audit_log_untrustedstring(ab, get_task_comm(comm, current));
2934
audit_log_end(ab);
2935
}
2936
EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2937
2938
static void audit_log_task(struct audit_buffer *ab)
2939
{
2940
kuid_t auid, uid;
2941
kgid_t gid;
2942
unsigned int sessionid;
2943
char comm[sizeof(current->comm)];
2944
2945
auid = audit_get_loginuid(current);
2946
sessionid = audit_get_sessionid(current);
2947
current_uid_gid(&uid, &gid);
2948
2949
audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2950
from_kuid(&init_user_ns, auid),
2951
from_kuid(&init_user_ns, uid),
2952
from_kgid(&init_user_ns, gid),
2953
sessionid);
2954
audit_log_task_context(ab);
2955
audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2956
audit_log_untrustedstring(ab, get_task_comm(comm, current));
2957
audit_log_d_path_exe(ab, current->mm);
2958
}
2959
2960
/**
2961
* audit_core_dumps - record information about processes that end abnormally
2962
* @signr: signal value
2963
*
2964
* If a process ends with a core dump, something fishy is going on and we
2965
* should record the event for investigation.
2966
*/
2967
void audit_core_dumps(long signr)
2968
{
2969
struct audit_buffer *ab;
2970
2971
if (!audit_enabled)
2972
return;
2973
2974
if (signr == SIGQUIT) /* don't care for those */
2975
return;
2976
2977
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2978
if (unlikely(!ab))
2979
return;
2980
audit_log_task(ab);
2981
audit_log_format(ab, " sig=%ld res=1", signr);
2982
audit_log_end(ab);
2983
}
2984
2985
/**
2986
* audit_seccomp - record information about a seccomp action
2987
* @syscall: syscall number
2988
* @signr: signal value
2989
* @code: the seccomp action
2990
*
2991
* Record the information associated with a seccomp action. Event filtering for
2992
* seccomp actions that are not to be logged is done in seccomp_log().
2993
* Therefore, this function forces auditing independent of the audit_enabled
2994
* and dummy context state because seccomp actions should be logged even when
2995
* audit is not in use.
2996
*/
2997
void audit_seccomp(unsigned long syscall, long signr, int code)
2998
{
2999
struct audit_buffer *ab;
3000
3001
ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3002
if (unlikely(!ab))
3003
return;
3004
audit_log_task(ab);
3005
audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3006
signr, syscall_get_arch(current), syscall,
3007
in_compat_syscall(), KSTK_EIP(current), code);
3008
audit_log_end(ab);
3009
}
3010
3011
void audit_seccomp_actions_logged(const char *names, const char *old_names,
3012
int res)
3013
{
3014
struct audit_buffer *ab;
3015
3016
if (!audit_enabled)
3017
return;
3018
3019
ab = audit_log_start(audit_context(), GFP_KERNEL,
3020
AUDIT_CONFIG_CHANGE);
3021
if (unlikely(!ab))
3022
return;
3023
3024
audit_log_format(ab,
3025
"op=seccomp-logging actions=%s old-actions=%s res=%d",
3026
names, old_names, res);
3027
audit_log_end(ab);
3028
}
3029
3030
struct list_head *audit_killed_trees(void)
3031
{
3032
struct audit_context *ctx = audit_context();
3033
if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3034
return NULL;
3035
return &ctx->killed_trees;
3036
}
3037
3038