Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/bpf/helpers.c
49240 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3
*/
4
#include <linux/bpf.h>
5
#include <linux/btf.h>
6
#include <linux/bpf-cgroup.h>
7
#include <linux/cgroup.h>
8
#include <linux/rcupdate.h>
9
#include <linux/random.h>
10
#include <linux/smp.h>
11
#include <linux/topology.h>
12
#include <linux/ktime.h>
13
#include <linux/sched.h>
14
#include <linux/uidgid.h>
15
#include <linux/filter.h>
16
#include <linux/ctype.h>
17
#include <linux/jiffies.h>
18
#include <linux/pid_namespace.h>
19
#include <linux/poison.h>
20
#include <linux/proc_ns.h>
21
#include <linux/sched/task.h>
22
#include <linux/security.h>
23
#include <linux/btf_ids.h>
24
#include <linux/bpf_mem_alloc.h>
25
#include <linux/kasan.h>
26
#include <linux/bpf_verifier.h>
27
#include <linux/uaccess.h>
28
#include <linux/verification.h>
29
#include <linux/task_work.h>
30
#include <linux/irq_work.h>
31
#include <linux/buildid.h>
32
33
#include "../../lib/kstrtox.h"
34
35
/* If kernel subsystem is allowing eBPF programs to call this function,
36
* inside its own verifier_ops->get_func_proto() callback it should return
37
* bpf_map_lookup_elem_proto, so that verifier can properly check the arguments
38
*
39
* Different map implementations will rely on rcu in map methods
40
* lookup/update/delete, therefore eBPF programs must run under rcu lock
41
* if program is allowed to access maps, so check rcu_read_lock_held() or
42
* rcu_read_lock_trace_held() in all three functions.
43
*/
44
BPF_CALL_2(bpf_map_lookup_elem, struct bpf_map *, map, void *, key)
45
{
46
WARN_ON_ONCE(!bpf_rcu_lock_held());
47
return (unsigned long) map->ops->map_lookup_elem(map, key);
48
}
49
50
const struct bpf_func_proto bpf_map_lookup_elem_proto = {
51
.func = bpf_map_lookup_elem,
52
.gpl_only = false,
53
.pkt_access = true,
54
.ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
55
.arg1_type = ARG_CONST_MAP_PTR,
56
.arg2_type = ARG_PTR_TO_MAP_KEY,
57
};
58
59
BPF_CALL_4(bpf_map_update_elem, struct bpf_map *, map, void *, key,
60
void *, value, u64, flags)
61
{
62
WARN_ON_ONCE(!bpf_rcu_lock_held());
63
return map->ops->map_update_elem(map, key, value, flags);
64
}
65
66
const struct bpf_func_proto bpf_map_update_elem_proto = {
67
.func = bpf_map_update_elem,
68
.gpl_only = false,
69
.pkt_access = true,
70
.ret_type = RET_INTEGER,
71
.arg1_type = ARG_CONST_MAP_PTR,
72
.arg2_type = ARG_PTR_TO_MAP_KEY,
73
.arg3_type = ARG_PTR_TO_MAP_VALUE,
74
.arg4_type = ARG_ANYTHING,
75
};
76
77
BPF_CALL_2(bpf_map_delete_elem, struct bpf_map *, map, void *, key)
78
{
79
WARN_ON_ONCE(!bpf_rcu_lock_held());
80
return map->ops->map_delete_elem(map, key);
81
}
82
83
const struct bpf_func_proto bpf_map_delete_elem_proto = {
84
.func = bpf_map_delete_elem,
85
.gpl_only = false,
86
.pkt_access = true,
87
.ret_type = RET_INTEGER,
88
.arg1_type = ARG_CONST_MAP_PTR,
89
.arg2_type = ARG_PTR_TO_MAP_KEY,
90
};
91
92
BPF_CALL_3(bpf_map_push_elem, struct bpf_map *, map, void *, value, u64, flags)
93
{
94
return map->ops->map_push_elem(map, value, flags);
95
}
96
97
const struct bpf_func_proto bpf_map_push_elem_proto = {
98
.func = bpf_map_push_elem,
99
.gpl_only = false,
100
.pkt_access = true,
101
.ret_type = RET_INTEGER,
102
.arg1_type = ARG_CONST_MAP_PTR,
103
.arg2_type = ARG_PTR_TO_MAP_VALUE,
104
.arg3_type = ARG_ANYTHING,
105
};
106
107
BPF_CALL_2(bpf_map_pop_elem, struct bpf_map *, map, void *, value)
108
{
109
return map->ops->map_pop_elem(map, value);
110
}
111
112
const struct bpf_func_proto bpf_map_pop_elem_proto = {
113
.func = bpf_map_pop_elem,
114
.gpl_only = false,
115
.ret_type = RET_INTEGER,
116
.arg1_type = ARG_CONST_MAP_PTR,
117
.arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
118
};
119
120
BPF_CALL_2(bpf_map_peek_elem, struct bpf_map *, map, void *, value)
121
{
122
return map->ops->map_peek_elem(map, value);
123
}
124
125
const struct bpf_func_proto bpf_map_peek_elem_proto = {
126
.func = bpf_map_peek_elem,
127
.gpl_only = false,
128
.ret_type = RET_INTEGER,
129
.arg1_type = ARG_CONST_MAP_PTR,
130
.arg2_type = ARG_PTR_TO_MAP_VALUE | MEM_UNINIT | MEM_WRITE,
131
};
132
133
BPF_CALL_3(bpf_map_lookup_percpu_elem, struct bpf_map *, map, void *, key, u32, cpu)
134
{
135
WARN_ON_ONCE(!bpf_rcu_lock_held());
136
return (unsigned long) map->ops->map_lookup_percpu_elem(map, key, cpu);
137
}
138
139
const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto = {
140
.func = bpf_map_lookup_percpu_elem,
141
.gpl_only = false,
142
.pkt_access = true,
143
.ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
144
.arg1_type = ARG_CONST_MAP_PTR,
145
.arg2_type = ARG_PTR_TO_MAP_KEY,
146
.arg3_type = ARG_ANYTHING,
147
};
148
149
const struct bpf_func_proto bpf_get_prandom_u32_proto = {
150
.func = bpf_user_rnd_u32,
151
.gpl_only = false,
152
.ret_type = RET_INTEGER,
153
};
154
155
BPF_CALL_0(bpf_get_smp_processor_id)
156
{
157
return smp_processor_id();
158
}
159
160
const struct bpf_func_proto bpf_get_smp_processor_id_proto = {
161
.func = bpf_get_smp_processor_id,
162
.gpl_only = false,
163
.ret_type = RET_INTEGER,
164
.allow_fastcall = true,
165
};
166
167
BPF_CALL_0(bpf_get_numa_node_id)
168
{
169
return numa_node_id();
170
}
171
172
const struct bpf_func_proto bpf_get_numa_node_id_proto = {
173
.func = bpf_get_numa_node_id,
174
.gpl_only = false,
175
.ret_type = RET_INTEGER,
176
};
177
178
BPF_CALL_0(bpf_ktime_get_ns)
179
{
180
/* NMI safe access to clock monotonic */
181
return ktime_get_mono_fast_ns();
182
}
183
184
const struct bpf_func_proto bpf_ktime_get_ns_proto = {
185
.func = bpf_ktime_get_ns,
186
.gpl_only = false,
187
.ret_type = RET_INTEGER,
188
};
189
190
BPF_CALL_0(bpf_ktime_get_boot_ns)
191
{
192
/* NMI safe access to clock boottime */
193
return ktime_get_boot_fast_ns();
194
}
195
196
const struct bpf_func_proto bpf_ktime_get_boot_ns_proto = {
197
.func = bpf_ktime_get_boot_ns,
198
.gpl_only = false,
199
.ret_type = RET_INTEGER,
200
};
201
202
BPF_CALL_0(bpf_ktime_get_coarse_ns)
203
{
204
return ktime_get_coarse_ns();
205
}
206
207
const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto = {
208
.func = bpf_ktime_get_coarse_ns,
209
.gpl_only = false,
210
.ret_type = RET_INTEGER,
211
};
212
213
BPF_CALL_0(bpf_ktime_get_tai_ns)
214
{
215
/* NMI safe access to clock tai */
216
return ktime_get_tai_fast_ns();
217
}
218
219
const struct bpf_func_proto bpf_ktime_get_tai_ns_proto = {
220
.func = bpf_ktime_get_tai_ns,
221
.gpl_only = false,
222
.ret_type = RET_INTEGER,
223
};
224
225
BPF_CALL_0(bpf_get_current_pid_tgid)
226
{
227
struct task_struct *task = current;
228
229
if (unlikely(!task))
230
return -EINVAL;
231
232
return (u64) task->tgid << 32 | task->pid;
233
}
234
235
const struct bpf_func_proto bpf_get_current_pid_tgid_proto = {
236
.func = bpf_get_current_pid_tgid,
237
.gpl_only = false,
238
.ret_type = RET_INTEGER,
239
};
240
241
BPF_CALL_0(bpf_get_current_uid_gid)
242
{
243
struct task_struct *task = current;
244
kuid_t uid;
245
kgid_t gid;
246
247
if (unlikely(!task))
248
return -EINVAL;
249
250
current_uid_gid(&uid, &gid);
251
return (u64) from_kgid(&init_user_ns, gid) << 32 |
252
from_kuid(&init_user_ns, uid);
253
}
254
255
const struct bpf_func_proto bpf_get_current_uid_gid_proto = {
256
.func = bpf_get_current_uid_gid,
257
.gpl_only = false,
258
.ret_type = RET_INTEGER,
259
};
260
261
BPF_CALL_2(bpf_get_current_comm, char *, buf, u32, size)
262
{
263
struct task_struct *task = current;
264
265
if (unlikely(!task))
266
goto err_clear;
267
268
/* Verifier guarantees that size > 0 */
269
strscpy_pad(buf, task->comm, size);
270
return 0;
271
err_clear:
272
memset(buf, 0, size);
273
return -EINVAL;
274
}
275
276
const struct bpf_func_proto bpf_get_current_comm_proto = {
277
.func = bpf_get_current_comm,
278
.gpl_only = false,
279
.ret_type = RET_INTEGER,
280
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
281
.arg2_type = ARG_CONST_SIZE,
282
};
283
284
#if defined(CONFIG_QUEUED_SPINLOCKS) || defined(CONFIG_BPF_ARCH_SPINLOCK)
285
286
static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
287
{
288
arch_spinlock_t *l = (void *)lock;
289
union {
290
__u32 val;
291
arch_spinlock_t lock;
292
} u = { .lock = __ARCH_SPIN_LOCK_UNLOCKED };
293
294
compiletime_assert(u.val == 0, "__ARCH_SPIN_LOCK_UNLOCKED not 0");
295
BUILD_BUG_ON(sizeof(*l) != sizeof(__u32));
296
BUILD_BUG_ON(sizeof(*lock) != sizeof(__u32));
297
preempt_disable();
298
arch_spin_lock(l);
299
}
300
301
static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
302
{
303
arch_spinlock_t *l = (void *)lock;
304
305
arch_spin_unlock(l);
306
preempt_enable();
307
}
308
309
#else
310
311
static inline void __bpf_spin_lock(struct bpf_spin_lock *lock)
312
{
313
atomic_t *l = (void *)lock;
314
315
BUILD_BUG_ON(sizeof(*l) != sizeof(*lock));
316
do {
317
atomic_cond_read_relaxed(l, !VAL);
318
} while (atomic_xchg(l, 1));
319
}
320
321
static inline void __bpf_spin_unlock(struct bpf_spin_lock *lock)
322
{
323
atomic_t *l = (void *)lock;
324
325
atomic_set_release(l, 0);
326
}
327
328
#endif
329
330
static DEFINE_PER_CPU(unsigned long, irqsave_flags);
331
332
static inline void __bpf_spin_lock_irqsave(struct bpf_spin_lock *lock)
333
{
334
unsigned long flags;
335
336
local_irq_save(flags);
337
__bpf_spin_lock(lock);
338
__this_cpu_write(irqsave_flags, flags);
339
}
340
341
NOTRACE_BPF_CALL_1(bpf_spin_lock, struct bpf_spin_lock *, lock)
342
{
343
__bpf_spin_lock_irqsave(lock);
344
return 0;
345
}
346
347
const struct bpf_func_proto bpf_spin_lock_proto = {
348
.func = bpf_spin_lock,
349
.gpl_only = false,
350
.ret_type = RET_VOID,
351
.arg1_type = ARG_PTR_TO_SPIN_LOCK,
352
.arg1_btf_id = BPF_PTR_POISON,
353
};
354
355
static inline void __bpf_spin_unlock_irqrestore(struct bpf_spin_lock *lock)
356
{
357
unsigned long flags;
358
359
flags = __this_cpu_read(irqsave_flags);
360
__bpf_spin_unlock(lock);
361
local_irq_restore(flags);
362
}
363
364
NOTRACE_BPF_CALL_1(bpf_spin_unlock, struct bpf_spin_lock *, lock)
365
{
366
__bpf_spin_unlock_irqrestore(lock);
367
return 0;
368
}
369
370
const struct bpf_func_proto bpf_spin_unlock_proto = {
371
.func = bpf_spin_unlock,
372
.gpl_only = false,
373
.ret_type = RET_VOID,
374
.arg1_type = ARG_PTR_TO_SPIN_LOCK,
375
.arg1_btf_id = BPF_PTR_POISON,
376
};
377
378
void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
379
bool lock_src)
380
{
381
struct bpf_spin_lock *lock;
382
383
if (lock_src)
384
lock = src + map->record->spin_lock_off;
385
else
386
lock = dst + map->record->spin_lock_off;
387
preempt_disable();
388
__bpf_spin_lock_irqsave(lock);
389
copy_map_value(map, dst, src);
390
__bpf_spin_unlock_irqrestore(lock);
391
preempt_enable();
392
}
393
394
BPF_CALL_0(bpf_jiffies64)
395
{
396
return get_jiffies_64();
397
}
398
399
const struct bpf_func_proto bpf_jiffies64_proto = {
400
.func = bpf_jiffies64,
401
.gpl_only = false,
402
.ret_type = RET_INTEGER,
403
};
404
405
#ifdef CONFIG_CGROUPS
406
BPF_CALL_0(bpf_get_current_cgroup_id)
407
{
408
struct cgroup *cgrp;
409
u64 cgrp_id;
410
411
rcu_read_lock();
412
cgrp = task_dfl_cgroup(current);
413
cgrp_id = cgroup_id(cgrp);
414
rcu_read_unlock();
415
416
return cgrp_id;
417
}
418
419
const struct bpf_func_proto bpf_get_current_cgroup_id_proto = {
420
.func = bpf_get_current_cgroup_id,
421
.gpl_only = false,
422
.ret_type = RET_INTEGER,
423
};
424
425
BPF_CALL_1(bpf_get_current_ancestor_cgroup_id, int, ancestor_level)
426
{
427
struct cgroup *cgrp;
428
struct cgroup *ancestor;
429
u64 cgrp_id;
430
431
rcu_read_lock();
432
cgrp = task_dfl_cgroup(current);
433
ancestor = cgroup_ancestor(cgrp, ancestor_level);
434
cgrp_id = ancestor ? cgroup_id(ancestor) : 0;
435
rcu_read_unlock();
436
437
return cgrp_id;
438
}
439
440
const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto = {
441
.func = bpf_get_current_ancestor_cgroup_id,
442
.gpl_only = false,
443
.ret_type = RET_INTEGER,
444
.arg1_type = ARG_ANYTHING,
445
};
446
#endif /* CONFIG_CGROUPS */
447
448
#define BPF_STRTOX_BASE_MASK 0x1F
449
450
static int __bpf_strtoull(const char *buf, size_t buf_len, u64 flags,
451
unsigned long long *res, bool *is_negative)
452
{
453
unsigned int base = flags & BPF_STRTOX_BASE_MASK;
454
const char *cur_buf = buf;
455
size_t cur_len = buf_len;
456
unsigned int consumed;
457
size_t val_len;
458
char str[64];
459
460
if (!buf || !buf_len || !res || !is_negative)
461
return -EINVAL;
462
463
if (base != 0 && base != 8 && base != 10 && base != 16)
464
return -EINVAL;
465
466
if (flags & ~BPF_STRTOX_BASE_MASK)
467
return -EINVAL;
468
469
while (cur_buf < buf + buf_len && isspace(*cur_buf))
470
++cur_buf;
471
472
*is_negative = (cur_buf < buf + buf_len && *cur_buf == '-');
473
if (*is_negative)
474
++cur_buf;
475
476
consumed = cur_buf - buf;
477
cur_len -= consumed;
478
if (!cur_len)
479
return -EINVAL;
480
481
cur_len = min(cur_len, sizeof(str) - 1);
482
memcpy(str, cur_buf, cur_len);
483
str[cur_len] = '\0';
484
cur_buf = str;
485
486
cur_buf = _parse_integer_fixup_radix(cur_buf, &base);
487
val_len = _parse_integer(cur_buf, base, res);
488
489
if (val_len & KSTRTOX_OVERFLOW)
490
return -ERANGE;
491
492
if (val_len == 0)
493
return -EINVAL;
494
495
cur_buf += val_len;
496
consumed += cur_buf - str;
497
498
return consumed;
499
}
500
501
static int __bpf_strtoll(const char *buf, size_t buf_len, u64 flags,
502
long long *res)
503
{
504
unsigned long long _res;
505
bool is_negative;
506
int err;
507
508
err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
509
if (err < 0)
510
return err;
511
if (is_negative) {
512
if ((long long)-_res > 0)
513
return -ERANGE;
514
*res = -_res;
515
} else {
516
if ((long long)_res < 0)
517
return -ERANGE;
518
*res = _res;
519
}
520
return err;
521
}
522
523
BPF_CALL_4(bpf_strtol, const char *, buf, size_t, buf_len, u64, flags,
524
s64 *, res)
525
{
526
long long _res;
527
int err;
528
529
*res = 0;
530
err = __bpf_strtoll(buf, buf_len, flags, &_res);
531
if (err < 0)
532
return err;
533
*res = _res;
534
return err;
535
}
536
537
const struct bpf_func_proto bpf_strtol_proto = {
538
.func = bpf_strtol,
539
.gpl_only = false,
540
.ret_type = RET_INTEGER,
541
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
542
.arg2_type = ARG_CONST_SIZE,
543
.arg3_type = ARG_ANYTHING,
544
.arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
545
.arg4_size = sizeof(s64),
546
};
547
548
BPF_CALL_4(bpf_strtoul, const char *, buf, size_t, buf_len, u64, flags,
549
u64 *, res)
550
{
551
unsigned long long _res;
552
bool is_negative;
553
int err;
554
555
*res = 0;
556
err = __bpf_strtoull(buf, buf_len, flags, &_res, &is_negative);
557
if (err < 0)
558
return err;
559
if (is_negative)
560
return -EINVAL;
561
*res = _res;
562
return err;
563
}
564
565
const struct bpf_func_proto bpf_strtoul_proto = {
566
.func = bpf_strtoul,
567
.gpl_only = false,
568
.ret_type = RET_INTEGER,
569
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
570
.arg2_type = ARG_CONST_SIZE,
571
.arg3_type = ARG_ANYTHING,
572
.arg4_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
573
.arg4_size = sizeof(u64),
574
};
575
576
BPF_CALL_3(bpf_strncmp, const char *, s1, u32, s1_sz, const char *, s2)
577
{
578
return strncmp(s1, s2, s1_sz);
579
}
580
581
static const struct bpf_func_proto bpf_strncmp_proto = {
582
.func = bpf_strncmp,
583
.gpl_only = false,
584
.ret_type = RET_INTEGER,
585
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
586
.arg2_type = ARG_CONST_SIZE,
587
.arg3_type = ARG_PTR_TO_CONST_STR,
588
};
589
590
BPF_CALL_4(bpf_get_ns_current_pid_tgid, u64, dev, u64, ino,
591
struct bpf_pidns_info *, nsdata, u32, size)
592
{
593
struct task_struct *task = current;
594
struct pid_namespace *pidns;
595
int err = -EINVAL;
596
597
if (unlikely(size != sizeof(struct bpf_pidns_info)))
598
goto clear;
599
600
if (unlikely((u64)(dev_t)dev != dev))
601
goto clear;
602
603
if (unlikely(!task))
604
goto clear;
605
606
pidns = task_active_pid_ns(task);
607
if (unlikely(!pidns)) {
608
err = -ENOENT;
609
goto clear;
610
}
611
612
if (!ns_match(&pidns->ns, (dev_t)dev, ino))
613
goto clear;
614
615
nsdata->pid = task_pid_nr_ns(task, pidns);
616
nsdata->tgid = task_tgid_nr_ns(task, pidns);
617
return 0;
618
clear:
619
memset((void *)nsdata, 0, (size_t) size);
620
return err;
621
}
622
623
const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto = {
624
.func = bpf_get_ns_current_pid_tgid,
625
.gpl_only = false,
626
.ret_type = RET_INTEGER,
627
.arg1_type = ARG_ANYTHING,
628
.arg2_type = ARG_ANYTHING,
629
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
630
.arg4_type = ARG_CONST_SIZE,
631
};
632
633
static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
634
.func = bpf_get_raw_cpu_id,
635
.gpl_only = false,
636
.ret_type = RET_INTEGER,
637
};
638
639
BPF_CALL_5(bpf_event_output_data, void *, ctx, struct bpf_map *, map,
640
u64, flags, void *, data, u64, size)
641
{
642
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
643
return -EINVAL;
644
645
return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
646
}
647
648
const struct bpf_func_proto bpf_event_output_data_proto = {
649
.func = bpf_event_output_data,
650
.gpl_only = true,
651
.ret_type = RET_INTEGER,
652
.arg1_type = ARG_PTR_TO_CTX,
653
.arg2_type = ARG_CONST_MAP_PTR,
654
.arg3_type = ARG_ANYTHING,
655
.arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
656
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
657
};
658
659
BPF_CALL_3(bpf_copy_from_user, void *, dst, u32, size,
660
const void __user *, user_ptr)
661
{
662
int ret = copy_from_user(dst, user_ptr, size);
663
664
if (unlikely(ret)) {
665
memset(dst, 0, size);
666
ret = -EFAULT;
667
}
668
669
return ret;
670
}
671
672
const struct bpf_func_proto bpf_copy_from_user_proto = {
673
.func = bpf_copy_from_user,
674
.gpl_only = false,
675
.might_sleep = true,
676
.ret_type = RET_INTEGER,
677
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
678
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
679
.arg3_type = ARG_ANYTHING,
680
};
681
682
BPF_CALL_5(bpf_copy_from_user_task, void *, dst, u32, size,
683
const void __user *, user_ptr, struct task_struct *, tsk, u64, flags)
684
{
685
int ret;
686
687
/* flags is not used yet */
688
if (unlikely(flags))
689
return -EINVAL;
690
691
if (unlikely(!size))
692
return 0;
693
694
ret = access_process_vm(tsk, (unsigned long)user_ptr, dst, size, 0);
695
if (ret == size)
696
return 0;
697
698
memset(dst, 0, size);
699
/* Return -EFAULT for partial read */
700
return ret < 0 ? ret : -EFAULT;
701
}
702
703
const struct bpf_func_proto bpf_copy_from_user_task_proto = {
704
.func = bpf_copy_from_user_task,
705
.gpl_only = true,
706
.might_sleep = true,
707
.ret_type = RET_INTEGER,
708
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
709
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
710
.arg3_type = ARG_ANYTHING,
711
.arg4_type = ARG_PTR_TO_BTF_ID,
712
.arg4_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
713
.arg5_type = ARG_ANYTHING
714
};
715
716
BPF_CALL_2(bpf_per_cpu_ptr, const void *, ptr, u32, cpu)
717
{
718
if (cpu >= nr_cpu_ids)
719
return (unsigned long)NULL;
720
721
return (unsigned long)per_cpu_ptr((const void __percpu *)(const uintptr_t)ptr, cpu);
722
}
723
724
const struct bpf_func_proto bpf_per_cpu_ptr_proto = {
725
.func = bpf_per_cpu_ptr,
726
.gpl_only = false,
727
.ret_type = RET_PTR_TO_MEM_OR_BTF_ID | PTR_MAYBE_NULL | MEM_RDONLY,
728
.arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
729
.arg2_type = ARG_ANYTHING,
730
};
731
732
BPF_CALL_1(bpf_this_cpu_ptr, const void *, percpu_ptr)
733
{
734
return (unsigned long)this_cpu_ptr((const void __percpu *)(const uintptr_t)percpu_ptr);
735
}
736
737
const struct bpf_func_proto bpf_this_cpu_ptr_proto = {
738
.func = bpf_this_cpu_ptr,
739
.gpl_only = false,
740
.ret_type = RET_PTR_TO_MEM_OR_BTF_ID | MEM_RDONLY,
741
.arg1_type = ARG_PTR_TO_PERCPU_BTF_ID,
742
};
743
744
static int bpf_trace_copy_string(char *buf, void *unsafe_ptr, char fmt_ptype,
745
size_t bufsz)
746
{
747
void __user *user_ptr = (__force void __user *)unsafe_ptr;
748
749
buf[0] = 0;
750
751
switch (fmt_ptype) {
752
case 's':
753
#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
754
if ((unsigned long)unsafe_ptr < TASK_SIZE)
755
return strncpy_from_user_nofault(buf, user_ptr, bufsz);
756
fallthrough;
757
#endif
758
case 'k':
759
return strncpy_from_kernel_nofault(buf, unsafe_ptr, bufsz);
760
case 'u':
761
return strncpy_from_user_nofault(buf, user_ptr, bufsz);
762
}
763
764
return -EINVAL;
765
}
766
767
/* Support executing three nested bprintf helper calls on a given CPU */
768
#define MAX_BPRINTF_NEST_LEVEL 3
769
770
static DEFINE_PER_CPU(struct bpf_bprintf_buffers[MAX_BPRINTF_NEST_LEVEL], bpf_bprintf_bufs);
771
static DEFINE_PER_CPU(int, bpf_bprintf_nest_level);
772
773
int bpf_try_get_buffers(struct bpf_bprintf_buffers **bufs)
774
{
775
int nest_level;
776
777
preempt_disable();
778
nest_level = this_cpu_inc_return(bpf_bprintf_nest_level);
779
if (WARN_ON_ONCE(nest_level > MAX_BPRINTF_NEST_LEVEL)) {
780
this_cpu_dec(bpf_bprintf_nest_level);
781
preempt_enable();
782
return -EBUSY;
783
}
784
*bufs = this_cpu_ptr(&bpf_bprintf_bufs[nest_level - 1]);
785
786
return 0;
787
}
788
789
void bpf_put_buffers(void)
790
{
791
if (WARN_ON_ONCE(this_cpu_read(bpf_bprintf_nest_level) == 0))
792
return;
793
this_cpu_dec(bpf_bprintf_nest_level);
794
preempt_enable();
795
}
796
797
void bpf_bprintf_cleanup(struct bpf_bprintf_data *data)
798
{
799
if (!data->bin_args && !data->buf)
800
return;
801
bpf_put_buffers();
802
}
803
804
/*
805
* bpf_bprintf_prepare - Generic pass on format strings for bprintf-like helpers
806
*
807
* Returns a negative value if fmt is an invalid format string or 0 otherwise.
808
*
809
* This can be used in two ways:
810
* - Format string verification only: when data->get_bin_args is false
811
* - Arguments preparation: in addition to the above verification, it writes in
812
* data->bin_args a binary representation of arguments usable by bstr_printf
813
* where pointers from BPF have been sanitized.
814
*
815
* In argument preparation mode, if 0 is returned, safe temporary buffers are
816
* allocated and bpf_bprintf_cleanup should be called to free them after use.
817
*/
818
int bpf_bprintf_prepare(const char *fmt, u32 fmt_size, const u64 *raw_args,
819
u32 num_args, struct bpf_bprintf_data *data)
820
{
821
bool get_buffers = (data->get_bin_args && num_args) || data->get_buf;
822
char *unsafe_ptr = NULL, *tmp_buf = NULL, *tmp_buf_end, *fmt_end;
823
struct bpf_bprintf_buffers *buffers = NULL;
824
size_t sizeof_cur_arg, sizeof_cur_ip;
825
int err, i, num_spec = 0;
826
u64 cur_arg;
827
char fmt_ptype, cur_ip[16], ip_spec[] = "%pXX";
828
829
fmt_end = strnchr(fmt, fmt_size, 0);
830
if (!fmt_end)
831
return -EINVAL;
832
fmt_size = fmt_end - fmt;
833
834
if (get_buffers && bpf_try_get_buffers(&buffers))
835
return -EBUSY;
836
837
if (data->get_bin_args) {
838
if (num_args)
839
tmp_buf = buffers->bin_args;
840
tmp_buf_end = tmp_buf + MAX_BPRINTF_BIN_ARGS;
841
data->bin_args = (u32 *)tmp_buf;
842
}
843
844
if (data->get_buf)
845
data->buf = buffers->buf;
846
847
for (i = 0; i < fmt_size; i++) {
848
if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i])) {
849
err = -EINVAL;
850
goto out;
851
}
852
853
if (fmt[i] != '%')
854
continue;
855
856
if (fmt[i + 1] == '%') {
857
i++;
858
continue;
859
}
860
861
if (num_spec >= num_args) {
862
err = -EINVAL;
863
goto out;
864
}
865
866
/* The string is zero-terminated so if fmt[i] != 0, we can
867
* always access fmt[i + 1], in the worst case it will be a 0
868
*/
869
i++;
870
871
/* skip optional "[0 +-][num]" width formatting field */
872
while (fmt[i] == '0' || fmt[i] == '+' || fmt[i] == '-' ||
873
fmt[i] == ' ')
874
i++;
875
if (fmt[i] >= '1' && fmt[i] <= '9') {
876
i++;
877
while (fmt[i] >= '0' && fmt[i] <= '9')
878
i++;
879
}
880
881
if (fmt[i] == 'p') {
882
sizeof_cur_arg = sizeof(long);
883
884
if (fmt[i + 1] == 0 || isspace(fmt[i + 1]) ||
885
ispunct(fmt[i + 1])) {
886
if (tmp_buf)
887
cur_arg = raw_args[num_spec];
888
goto nocopy_fmt;
889
}
890
891
if ((fmt[i + 1] == 'k' || fmt[i + 1] == 'u') &&
892
fmt[i + 2] == 's') {
893
fmt_ptype = fmt[i + 1];
894
i += 2;
895
goto fmt_str;
896
}
897
898
if (fmt[i + 1] == 'K' ||
899
fmt[i + 1] == 'x' || fmt[i + 1] == 's' ||
900
fmt[i + 1] == 'S') {
901
if (tmp_buf)
902
cur_arg = raw_args[num_spec];
903
i++;
904
goto nocopy_fmt;
905
}
906
907
if (fmt[i + 1] == 'B') {
908
if (tmp_buf) {
909
err = snprintf(tmp_buf,
910
(tmp_buf_end - tmp_buf),
911
"%pB",
912
(void *)(long)raw_args[num_spec]);
913
tmp_buf += (err + 1);
914
}
915
916
i++;
917
num_spec++;
918
continue;
919
}
920
921
/* only support "%pI4", "%pi4", "%pI6" and "%pi6". */
922
if ((fmt[i + 1] != 'i' && fmt[i + 1] != 'I') ||
923
(fmt[i + 2] != '4' && fmt[i + 2] != '6')) {
924
err = -EINVAL;
925
goto out;
926
}
927
928
i += 2;
929
if (!tmp_buf)
930
goto nocopy_fmt;
931
932
sizeof_cur_ip = (fmt[i] == '4') ? 4 : 16;
933
if (tmp_buf_end - tmp_buf < sizeof_cur_ip) {
934
err = -ENOSPC;
935
goto out;
936
}
937
938
unsafe_ptr = (char *)(long)raw_args[num_spec];
939
err = copy_from_kernel_nofault(cur_ip, unsafe_ptr,
940
sizeof_cur_ip);
941
if (err < 0)
942
memset(cur_ip, 0, sizeof_cur_ip);
943
944
/* hack: bstr_printf expects IP addresses to be
945
* pre-formatted as strings, ironically, the easiest way
946
* to do that is to call snprintf.
947
*/
948
ip_spec[2] = fmt[i - 1];
949
ip_spec[3] = fmt[i];
950
err = snprintf(tmp_buf, tmp_buf_end - tmp_buf,
951
ip_spec, &cur_ip);
952
953
tmp_buf += err + 1;
954
num_spec++;
955
956
continue;
957
} else if (fmt[i] == 's') {
958
fmt_ptype = fmt[i];
959
fmt_str:
960
if (fmt[i + 1] != 0 &&
961
!isspace(fmt[i + 1]) &&
962
!ispunct(fmt[i + 1])) {
963
err = -EINVAL;
964
goto out;
965
}
966
967
if (!tmp_buf)
968
goto nocopy_fmt;
969
970
if (tmp_buf_end == tmp_buf) {
971
err = -ENOSPC;
972
goto out;
973
}
974
975
unsafe_ptr = (char *)(long)raw_args[num_spec];
976
err = bpf_trace_copy_string(tmp_buf, unsafe_ptr,
977
fmt_ptype,
978
tmp_buf_end - tmp_buf);
979
if (err < 0) {
980
tmp_buf[0] = '\0';
981
err = 1;
982
}
983
984
tmp_buf += err;
985
num_spec++;
986
987
continue;
988
} else if (fmt[i] == 'c') {
989
if (!tmp_buf)
990
goto nocopy_fmt;
991
992
if (tmp_buf_end == tmp_buf) {
993
err = -ENOSPC;
994
goto out;
995
}
996
997
*tmp_buf = raw_args[num_spec];
998
tmp_buf++;
999
num_spec++;
1000
1001
continue;
1002
}
1003
1004
sizeof_cur_arg = sizeof(int);
1005
1006
if (fmt[i] == 'l') {
1007
sizeof_cur_arg = sizeof(long);
1008
i++;
1009
}
1010
if (fmt[i] == 'l') {
1011
sizeof_cur_arg = sizeof(long long);
1012
i++;
1013
}
1014
1015
if (fmt[i] != 'i' && fmt[i] != 'd' && fmt[i] != 'u' &&
1016
fmt[i] != 'x' && fmt[i] != 'X') {
1017
err = -EINVAL;
1018
goto out;
1019
}
1020
1021
if (tmp_buf)
1022
cur_arg = raw_args[num_spec];
1023
nocopy_fmt:
1024
if (tmp_buf) {
1025
tmp_buf = PTR_ALIGN(tmp_buf, sizeof(u32));
1026
if (tmp_buf_end - tmp_buf < sizeof_cur_arg) {
1027
err = -ENOSPC;
1028
goto out;
1029
}
1030
1031
if (sizeof_cur_arg == 8) {
1032
*(u32 *)tmp_buf = *(u32 *)&cur_arg;
1033
*(u32 *)(tmp_buf + 4) = *((u32 *)&cur_arg + 1);
1034
} else {
1035
*(u32 *)tmp_buf = (u32)(long)cur_arg;
1036
}
1037
tmp_buf += sizeof_cur_arg;
1038
}
1039
num_spec++;
1040
}
1041
1042
err = 0;
1043
out:
1044
if (err)
1045
bpf_bprintf_cleanup(data);
1046
return err;
1047
}
1048
1049
BPF_CALL_5(bpf_snprintf, char *, str, u32, str_size, char *, fmt,
1050
const void *, args, u32, data_len)
1051
{
1052
struct bpf_bprintf_data data = {
1053
.get_bin_args = true,
1054
};
1055
int err, num_args;
1056
1057
if (data_len % 8 || data_len > MAX_BPRINTF_VARARGS * 8 ||
1058
(data_len && !args))
1059
return -EINVAL;
1060
num_args = data_len / 8;
1061
1062
/* ARG_PTR_TO_CONST_STR guarantees that fmt is zero-terminated so we
1063
* can safely give an unbounded size.
1064
*/
1065
err = bpf_bprintf_prepare(fmt, UINT_MAX, args, num_args, &data);
1066
if (err < 0)
1067
return err;
1068
1069
err = bstr_printf(str, str_size, fmt, data.bin_args);
1070
1071
bpf_bprintf_cleanup(&data);
1072
1073
return err + 1;
1074
}
1075
1076
const struct bpf_func_proto bpf_snprintf_proto = {
1077
.func = bpf_snprintf,
1078
.gpl_only = true,
1079
.ret_type = RET_INTEGER,
1080
.arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1081
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
1082
.arg3_type = ARG_PTR_TO_CONST_STR,
1083
.arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
1084
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
1085
};
1086
1087
static void *map_key_from_value(struct bpf_map *map, void *value, u32 *arr_idx)
1088
{
1089
if (map->map_type == BPF_MAP_TYPE_ARRAY) {
1090
struct bpf_array *array = container_of(map, struct bpf_array, map);
1091
1092
*arr_idx = ((char *)value - array->value) / array->elem_size;
1093
return arr_idx;
1094
}
1095
return (void *)value - round_up(map->key_size, 8);
1096
}
1097
1098
struct bpf_async_cb {
1099
struct bpf_map *map;
1100
struct bpf_prog *prog;
1101
void __rcu *callback_fn;
1102
void *value;
1103
union {
1104
struct rcu_head rcu;
1105
struct work_struct delete_work;
1106
};
1107
u64 flags;
1108
};
1109
1110
/* BPF map elements can contain 'struct bpf_timer'.
1111
* Such map owns all of its BPF timers.
1112
* 'struct bpf_timer' is allocated as part of map element allocation
1113
* and it's zero initialized.
1114
* That space is used to keep 'struct bpf_async_kern'.
1115
* bpf_timer_init() allocates 'struct bpf_hrtimer', inits hrtimer, and
1116
* remembers 'struct bpf_map *' pointer it's part of.
1117
* bpf_timer_set_callback() increments prog refcnt and assign bpf callback_fn.
1118
* bpf_timer_start() arms the timer.
1119
* If user space reference to a map goes to zero at this point
1120
* ops->map_release_uref callback is responsible for cancelling the timers,
1121
* freeing their memory, and decrementing prog's refcnts.
1122
* bpf_timer_cancel() cancels the timer and decrements prog's refcnt.
1123
* Inner maps can contain bpf timers as well. ops->map_release_uref is
1124
* freeing the timers when inner map is replaced or deleted by user space.
1125
*/
1126
struct bpf_hrtimer {
1127
struct bpf_async_cb cb;
1128
struct hrtimer timer;
1129
atomic_t cancelling;
1130
};
1131
1132
struct bpf_work {
1133
struct bpf_async_cb cb;
1134
struct work_struct work;
1135
struct work_struct delete_work;
1136
};
1137
1138
/* the actual struct hidden inside uapi struct bpf_timer and bpf_wq */
1139
struct bpf_async_kern {
1140
union {
1141
struct bpf_async_cb *cb;
1142
struct bpf_hrtimer *timer;
1143
struct bpf_work *work;
1144
};
1145
/* bpf_spin_lock is used here instead of spinlock_t to make
1146
* sure that it always fits into space reserved by struct bpf_timer
1147
* regardless of LOCKDEP and spinlock debug flags.
1148
*/
1149
struct bpf_spin_lock lock;
1150
} __attribute__((aligned(8)));
1151
1152
enum bpf_async_type {
1153
BPF_ASYNC_TYPE_TIMER = 0,
1154
BPF_ASYNC_TYPE_WQ,
1155
};
1156
1157
static DEFINE_PER_CPU(struct bpf_hrtimer *, hrtimer_running);
1158
1159
static enum hrtimer_restart bpf_timer_cb(struct hrtimer *hrtimer)
1160
{
1161
struct bpf_hrtimer *t = container_of(hrtimer, struct bpf_hrtimer, timer);
1162
struct bpf_map *map = t->cb.map;
1163
void *value = t->cb.value;
1164
bpf_callback_t callback_fn;
1165
void *key;
1166
u32 idx;
1167
1168
BTF_TYPE_EMIT(struct bpf_timer);
1169
callback_fn = rcu_dereference_check(t->cb.callback_fn, rcu_read_lock_bh_held());
1170
if (!callback_fn)
1171
goto out;
1172
1173
/* bpf_timer_cb() runs in hrtimer_run_softirq. It doesn't migrate and
1174
* cannot be preempted by another bpf_timer_cb() on the same cpu.
1175
* Remember the timer this callback is servicing to prevent
1176
* deadlock if callback_fn() calls bpf_timer_cancel() or
1177
* bpf_map_delete_elem() on the same timer.
1178
*/
1179
this_cpu_write(hrtimer_running, t);
1180
1181
key = map_key_from_value(map, value, &idx);
1182
1183
callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1184
/* The verifier checked that return value is zero. */
1185
1186
this_cpu_write(hrtimer_running, NULL);
1187
out:
1188
return HRTIMER_NORESTART;
1189
}
1190
1191
static void bpf_wq_work(struct work_struct *work)
1192
{
1193
struct bpf_work *w = container_of(work, struct bpf_work, work);
1194
struct bpf_async_cb *cb = &w->cb;
1195
struct bpf_map *map = cb->map;
1196
bpf_callback_t callback_fn;
1197
void *value = cb->value;
1198
void *key;
1199
u32 idx;
1200
1201
BTF_TYPE_EMIT(struct bpf_wq);
1202
1203
callback_fn = READ_ONCE(cb->callback_fn);
1204
if (!callback_fn)
1205
return;
1206
1207
key = map_key_from_value(map, value, &idx);
1208
1209
rcu_read_lock_trace();
1210
migrate_disable();
1211
1212
callback_fn((u64)(long)map, (u64)(long)key, (u64)(long)value, 0, 0);
1213
1214
migrate_enable();
1215
rcu_read_unlock_trace();
1216
}
1217
1218
static void bpf_async_cb_rcu_free(struct rcu_head *rcu)
1219
{
1220
struct bpf_async_cb *cb = container_of(rcu, struct bpf_async_cb, rcu);
1221
1222
kfree_nolock(cb);
1223
}
1224
1225
static void bpf_wq_delete_work(struct work_struct *work)
1226
{
1227
struct bpf_work *w = container_of(work, struct bpf_work, delete_work);
1228
1229
cancel_work_sync(&w->work);
1230
1231
call_rcu(&w->cb.rcu, bpf_async_cb_rcu_free);
1232
}
1233
1234
static void bpf_timer_delete_work(struct work_struct *work)
1235
{
1236
struct bpf_hrtimer *t = container_of(work, struct bpf_hrtimer, cb.delete_work);
1237
1238
/* Cancel the timer and wait for callback to complete if it was running.
1239
* If hrtimer_cancel() can be safely called it's safe to call
1240
* call_rcu() right after for both preallocated and non-preallocated
1241
* maps. The async->cb = NULL was already done and no code path can see
1242
* address 't' anymore. Timer if armed for existing bpf_hrtimer before
1243
* bpf_timer_cancel_and_free will have been cancelled.
1244
*/
1245
hrtimer_cancel(&t->timer);
1246
call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free);
1247
}
1248
1249
static int __bpf_async_init(struct bpf_async_kern *async, struct bpf_map *map, u64 flags,
1250
enum bpf_async_type type)
1251
{
1252
struct bpf_async_cb *cb;
1253
struct bpf_hrtimer *t;
1254
struct bpf_work *w;
1255
clockid_t clockid;
1256
size_t size;
1257
int ret = 0;
1258
1259
if (in_nmi())
1260
return -EOPNOTSUPP;
1261
1262
switch (type) {
1263
case BPF_ASYNC_TYPE_TIMER:
1264
size = sizeof(struct bpf_hrtimer);
1265
break;
1266
case BPF_ASYNC_TYPE_WQ:
1267
size = sizeof(struct bpf_work);
1268
break;
1269
default:
1270
return -EINVAL;
1271
}
1272
1273
__bpf_spin_lock_irqsave(&async->lock);
1274
t = async->timer;
1275
if (t) {
1276
ret = -EBUSY;
1277
goto out;
1278
}
1279
1280
cb = bpf_map_kmalloc_nolock(map, size, 0, map->numa_node);
1281
if (!cb) {
1282
ret = -ENOMEM;
1283
goto out;
1284
}
1285
1286
switch (type) {
1287
case BPF_ASYNC_TYPE_TIMER:
1288
clockid = flags & (MAX_CLOCKS - 1);
1289
t = (struct bpf_hrtimer *)cb;
1290
1291
atomic_set(&t->cancelling, 0);
1292
INIT_WORK(&t->cb.delete_work, bpf_timer_delete_work);
1293
hrtimer_setup(&t->timer, bpf_timer_cb, clockid, HRTIMER_MODE_REL_SOFT);
1294
cb->value = (void *)async - map->record->timer_off;
1295
break;
1296
case BPF_ASYNC_TYPE_WQ:
1297
w = (struct bpf_work *)cb;
1298
1299
INIT_WORK(&w->work, bpf_wq_work);
1300
INIT_WORK(&w->delete_work, bpf_wq_delete_work);
1301
cb->value = (void *)async - map->record->wq_off;
1302
break;
1303
}
1304
cb->map = map;
1305
cb->prog = NULL;
1306
cb->flags = flags;
1307
rcu_assign_pointer(cb->callback_fn, NULL);
1308
1309
WRITE_ONCE(async->cb, cb);
1310
/* Guarantee the order between async->cb and map->usercnt. So
1311
* when there are concurrent uref release and bpf timer init, either
1312
* bpf_timer_cancel_and_free() called by uref release reads a no-NULL
1313
* timer or atomic64_read() below returns a zero usercnt.
1314
*/
1315
smp_mb();
1316
if (!atomic64_read(&map->usercnt)) {
1317
/* maps with timers must be either held by user space
1318
* or pinned in bpffs.
1319
*/
1320
WRITE_ONCE(async->cb, NULL);
1321
kfree_nolock(cb);
1322
ret = -EPERM;
1323
}
1324
out:
1325
__bpf_spin_unlock_irqrestore(&async->lock);
1326
return ret;
1327
}
1328
1329
BPF_CALL_3(bpf_timer_init, struct bpf_async_kern *, timer, struct bpf_map *, map,
1330
u64, flags)
1331
{
1332
clock_t clockid = flags & (MAX_CLOCKS - 1);
1333
1334
BUILD_BUG_ON(MAX_CLOCKS != 16);
1335
BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_timer));
1336
BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_timer));
1337
1338
if (flags >= MAX_CLOCKS ||
1339
/* similar to timerfd except _ALARM variants are not supported */
1340
(clockid != CLOCK_MONOTONIC &&
1341
clockid != CLOCK_REALTIME &&
1342
clockid != CLOCK_BOOTTIME))
1343
return -EINVAL;
1344
1345
return __bpf_async_init(timer, map, flags, BPF_ASYNC_TYPE_TIMER);
1346
}
1347
1348
static const struct bpf_func_proto bpf_timer_init_proto = {
1349
.func = bpf_timer_init,
1350
.gpl_only = true,
1351
.ret_type = RET_INTEGER,
1352
.arg1_type = ARG_PTR_TO_TIMER,
1353
.arg2_type = ARG_CONST_MAP_PTR,
1354
.arg3_type = ARG_ANYTHING,
1355
};
1356
1357
static int __bpf_async_set_callback(struct bpf_async_kern *async, void *callback_fn,
1358
struct bpf_prog_aux *aux, unsigned int flags,
1359
enum bpf_async_type type)
1360
{
1361
struct bpf_prog *prev, *prog = aux->prog;
1362
struct bpf_async_cb *cb;
1363
int ret = 0;
1364
1365
if (in_nmi())
1366
return -EOPNOTSUPP;
1367
__bpf_spin_lock_irqsave(&async->lock);
1368
cb = async->cb;
1369
if (!cb) {
1370
ret = -EINVAL;
1371
goto out;
1372
}
1373
if (!atomic64_read(&cb->map->usercnt)) {
1374
/* maps with timers must be either held by user space
1375
* or pinned in bpffs. Otherwise timer might still be
1376
* running even when bpf prog is detached and user space
1377
* is gone, since map_release_uref won't ever be called.
1378
*/
1379
ret = -EPERM;
1380
goto out;
1381
}
1382
prev = cb->prog;
1383
if (prev != prog) {
1384
/* Bump prog refcnt once. Every bpf_timer_set_callback()
1385
* can pick different callback_fn-s within the same prog.
1386
*/
1387
prog = bpf_prog_inc_not_zero(prog);
1388
if (IS_ERR(prog)) {
1389
ret = PTR_ERR(prog);
1390
goto out;
1391
}
1392
if (prev)
1393
/* Drop prev prog refcnt when swapping with new prog */
1394
bpf_prog_put(prev);
1395
cb->prog = prog;
1396
}
1397
rcu_assign_pointer(cb->callback_fn, callback_fn);
1398
out:
1399
__bpf_spin_unlock_irqrestore(&async->lock);
1400
return ret;
1401
}
1402
1403
BPF_CALL_3(bpf_timer_set_callback, struct bpf_async_kern *, timer, void *, callback_fn,
1404
struct bpf_prog_aux *, aux)
1405
{
1406
return __bpf_async_set_callback(timer, callback_fn, aux, 0, BPF_ASYNC_TYPE_TIMER);
1407
}
1408
1409
static const struct bpf_func_proto bpf_timer_set_callback_proto = {
1410
.func = bpf_timer_set_callback,
1411
.gpl_only = true,
1412
.ret_type = RET_INTEGER,
1413
.arg1_type = ARG_PTR_TO_TIMER,
1414
.arg2_type = ARG_PTR_TO_FUNC,
1415
};
1416
1417
BPF_CALL_3(bpf_timer_start, struct bpf_async_kern *, timer, u64, nsecs, u64, flags)
1418
{
1419
struct bpf_hrtimer *t;
1420
int ret = 0;
1421
enum hrtimer_mode mode;
1422
1423
if (in_nmi())
1424
return -EOPNOTSUPP;
1425
if (flags & ~(BPF_F_TIMER_ABS | BPF_F_TIMER_CPU_PIN))
1426
return -EINVAL;
1427
__bpf_spin_lock_irqsave(&timer->lock);
1428
t = timer->timer;
1429
if (!t || !t->cb.prog) {
1430
ret = -EINVAL;
1431
goto out;
1432
}
1433
1434
if (flags & BPF_F_TIMER_ABS)
1435
mode = HRTIMER_MODE_ABS_SOFT;
1436
else
1437
mode = HRTIMER_MODE_REL_SOFT;
1438
1439
if (flags & BPF_F_TIMER_CPU_PIN)
1440
mode |= HRTIMER_MODE_PINNED;
1441
1442
hrtimer_start(&t->timer, ns_to_ktime(nsecs), mode);
1443
out:
1444
__bpf_spin_unlock_irqrestore(&timer->lock);
1445
return ret;
1446
}
1447
1448
static const struct bpf_func_proto bpf_timer_start_proto = {
1449
.func = bpf_timer_start,
1450
.gpl_only = true,
1451
.ret_type = RET_INTEGER,
1452
.arg1_type = ARG_PTR_TO_TIMER,
1453
.arg2_type = ARG_ANYTHING,
1454
.arg3_type = ARG_ANYTHING,
1455
};
1456
1457
static void drop_prog_refcnt(struct bpf_async_cb *async)
1458
{
1459
struct bpf_prog *prog = async->prog;
1460
1461
if (prog) {
1462
bpf_prog_put(prog);
1463
async->prog = NULL;
1464
rcu_assign_pointer(async->callback_fn, NULL);
1465
}
1466
}
1467
1468
BPF_CALL_1(bpf_timer_cancel, struct bpf_async_kern *, timer)
1469
{
1470
struct bpf_hrtimer *t, *cur_t;
1471
bool inc = false;
1472
int ret = 0;
1473
1474
if (in_nmi())
1475
return -EOPNOTSUPP;
1476
rcu_read_lock();
1477
__bpf_spin_lock_irqsave(&timer->lock);
1478
t = timer->timer;
1479
if (!t) {
1480
ret = -EINVAL;
1481
goto out;
1482
}
1483
1484
cur_t = this_cpu_read(hrtimer_running);
1485
if (cur_t == t) {
1486
/* If bpf callback_fn is trying to bpf_timer_cancel()
1487
* its own timer the hrtimer_cancel() will deadlock
1488
* since it waits for callback_fn to finish.
1489
*/
1490
ret = -EDEADLK;
1491
goto out;
1492
}
1493
1494
/* Only account in-flight cancellations when invoked from a timer
1495
* callback, since we want to avoid waiting only if other _callbacks_
1496
* are waiting on us, to avoid introducing lockups. Non-callback paths
1497
* are ok, since nobody would synchronously wait for their completion.
1498
*/
1499
if (!cur_t)
1500
goto drop;
1501
atomic_inc(&t->cancelling);
1502
/* Need full barrier after relaxed atomic_inc */
1503
smp_mb__after_atomic();
1504
inc = true;
1505
if (atomic_read(&cur_t->cancelling)) {
1506
/* We're cancelling timer t, while some other timer callback is
1507
* attempting to cancel us. In such a case, it might be possible
1508
* that timer t belongs to the other callback, or some other
1509
* callback waiting upon it (creating transitive dependencies
1510
* upon us), and we will enter a deadlock if we continue
1511
* cancelling and waiting for it synchronously, since it might
1512
* do the same. Bail!
1513
*/
1514
ret = -EDEADLK;
1515
goto out;
1516
}
1517
drop:
1518
drop_prog_refcnt(&t->cb);
1519
out:
1520
__bpf_spin_unlock_irqrestore(&timer->lock);
1521
/* Cancel the timer and wait for associated callback to finish
1522
* if it was running.
1523
*/
1524
ret = ret ?: hrtimer_cancel(&t->timer);
1525
if (inc)
1526
atomic_dec(&t->cancelling);
1527
rcu_read_unlock();
1528
return ret;
1529
}
1530
1531
static const struct bpf_func_proto bpf_timer_cancel_proto = {
1532
.func = bpf_timer_cancel,
1533
.gpl_only = true,
1534
.ret_type = RET_INTEGER,
1535
.arg1_type = ARG_PTR_TO_TIMER,
1536
};
1537
1538
static struct bpf_async_cb *__bpf_async_cancel_and_free(struct bpf_async_kern *async)
1539
{
1540
struct bpf_async_cb *cb;
1541
1542
/* Performance optimization: read async->cb without lock first. */
1543
if (!READ_ONCE(async->cb))
1544
return NULL;
1545
1546
__bpf_spin_lock_irqsave(&async->lock);
1547
/* re-read it under lock */
1548
cb = async->cb;
1549
if (!cb)
1550
goto out;
1551
drop_prog_refcnt(cb);
1552
/* The subsequent bpf_timer_start/cancel() helpers won't be able to use
1553
* this timer, since it won't be initialized.
1554
*/
1555
WRITE_ONCE(async->cb, NULL);
1556
out:
1557
__bpf_spin_unlock_irqrestore(&async->lock);
1558
return cb;
1559
}
1560
1561
/* This function is called by map_delete/update_elem for individual element and
1562
* by ops->map_release_uref when the user space reference to a map reaches zero.
1563
*/
1564
void bpf_timer_cancel_and_free(void *val)
1565
{
1566
struct bpf_hrtimer *t;
1567
1568
t = (struct bpf_hrtimer *)__bpf_async_cancel_and_free(val);
1569
1570
if (!t)
1571
return;
1572
/* We check that bpf_map_delete/update_elem() was called from timer
1573
* callback_fn. In such case we don't call hrtimer_cancel() (since it
1574
* will deadlock) and don't call hrtimer_try_to_cancel() (since it will
1575
* just return -1). Though callback_fn is still running on this cpu it's
1576
* safe to do kfree(t) because bpf_timer_cb() read everything it needed
1577
* from 't'. The bpf subprog callback_fn won't be able to access 't',
1578
* since async->cb = NULL was already done. The timer will be
1579
* effectively cancelled because bpf_timer_cb() will return
1580
* HRTIMER_NORESTART.
1581
*
1582
* However, it is possible the timer callback_fn calling us armed the
1583
* timer _before_ calling us, such that failing to cancel it here will
1584
* cause it to possibly use struct hrtimer after freeing bpf_hrtimer.
1585
* Therefore, we _need_ to cancel any outstanding timers before we do
1586
* call_rcu, even though no more timers can be armed.
1587
*
1588
* Moreover, we need to schedule work even if timer does not belong to
1589
* the calling callback_fn, as on two different CPUs, we can end up in a
1590
* situation where both sides run in parallel, try to cancel one
1591
* another, and we end up waiting on both sides in hrtimer_cancel
1592
* without making forward progress, since timer1 depends on time2
1593
* callback to finish, and vice versa.
1594
*
1595
* CPU 1 (timer1_cb) CPU 2 (timer2_cb)
1596
* bpf_timer_cancel_and_free(timer2) bpf_timer_cancel_and_free(timer1)
1597
*
1598
* To avoid these issues, punt to workqueue context when we are in a
1599
* timer callback.
1600
*/
1601
if (this_cpu_read(hrtimer_running)) {
1602
queue_work(system_dfl_wq, &t->cb.delete_work);
1603
return;
1604
}
1605
1606
if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1607
/* If the timer is running on other CPU, also use a kworker to
1608
* wait for the completion of the timer instead of trying to
1609
* acquire a sleepable lock in hrtimer_cancel() to wait for its
1610
* completion.
1611
*/
1612
if (hrtimer_try_to_cancel(&t->timer) >= 0)
1613
call_rcu(&t->cb.rcu, bpf_async_cb_rcu_free);
1614
else
1615
queue_work(system_dfl_wq, &t->cb.delete_work);
1616
} else {
1617
bpf_timer_delete_work(&t->cb.delete_work);
1618
}
1619
}
1620
1621
/* This function is called by map_delete/update_elem for individual element and
1622
* by ops->map_release_uref when the user space reference to a map reaches zero.
1623
*/
1624
void bpf_wq_cancel_and_free(void *val)
1625
{
1626
struct bpf_work *work;
1627
1628
BTF_TYPE_EMIT(struct bpf_wq);
1629
1630
work = (struct bpf_work *)__bpf_async_cancel_and_free(val);
1631
if (!work)
1632
return;
1633
/* Trigger cancel of the sleepable work, but *do not* wait for
1634
* it to finish if it was running as we might not be in a
1635
* sleepable context.
1636
* kfree will be called once the work has finished.
1637
*/
1638
schedule_work(&work->delete_work);
1639
}
1640
1641
BPF_CALL_2(bpf_kptr_xchg, void *, dst, void *, ptr)
1642
{
1643
unsigned long *kptr = dst;
1644
1645
/* This helper may be inlined by verifier. */
1646
return xchg(kptr, (unsigned long)ptr);
1647
}
1648
1649
/* Unlike other PTR_TO_BTF_ID helpers the btf_id in bpf_kptr_xchg()
1650
* helper is determined dynamically by the verifier. Use BPF_PTR_POISON to
1651
* denote type that verifier will determine.
1652
*/
1653
static const struct bpf_func_proto bpf_kptr_xchg_proto = {
1654
.func = bpf_kptr_xchg,
1655
.gpl_only = false,
1656
.ret_type = RET_PTR_TO_BTF_ID_OR_NULL,
1657
.ret_btf_id = BPF_PTR_POISON,
1658
.arg1_type = ARG_KPTR_XCHG_DEST,
1659
.arg2_type = ARG_PTR_TO_BTF_ID_OR_NULL | OBJ_RELEASE,
1660
.arg2_btf_id = BPF_PTR_POISON,
1661
};
1662
1663
struct bpf_dynptr_file_impl {
1664
struct freader freader;
1665
/* 64 bit offset and size overriding 32 bit ones in bpf_dynptr_kern */
1666
u64 offset;
1667
u64 size;
1668
};
1669
1670
/* Since the upper 8 bits of dynptr->size is reserved, the
1671
* maximum supported size is 2^24 - 1.
1672
*/
1673
#define DYNPTR_MAX_SIZE ((1UL << 24) - 1)
1674
#define DYNPTR_TYPE_SHIFT 28
1675
#define DYNPTR_SIZE_MASK 0xFFFFFF
1676
#define DYNPTR_RDONLY_BIT BIT(31)
1677
1678
bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr)
1679
{
1680
return ptr->size & DYNPTR_RDONLY_BIT;
1681
}
1682
1683
void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
1684
{
1685
ptr->size |= DYNPTR_RDONLY_BIT;
1686
}
1687
1688
static void bpf_dynptr_set_type(struct bpf_dynptr_kern *ptr, enum bpf_dynptr_type type)
1689
{
1690
ptr->size |= type << DYNPTR_TYPE_SHIFT;
1691
}
1692
1693
static enum bpf_dynptr_type bpf_dynptr_get_type(const struct bpf_dynptr_kern *ptr)
1694
{
1695
return (ptr->size & ~(DYNPTR_RDONLY_BIT)) >> DYNPTR_TYPE_SHIFT;
1696
}
1697
1698
u64 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr)
1699
{
1700
if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) {
1701
struct bpf_dynptr_file_impl *df = ptr->data;
1702
1703
return df->size;
1704
}
1705
1706
return ptr->size & DYNPTR_SIZE_MASK;
1707
}
1708
1709
static void bpf_dynptr_advance_offset(struct bpf_dynptr_kern *ptr, u64 off)
1710
{
1711
if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) {
1712
struct bpf_dynptr_file_impl *df = ptr->data;
1713
1714
df->offset += off;
1715
return;
1716
}
1717
ptr->offset += off;
1718
}
1719
1720
static void bpf_dynptr_set_size(struct bpf_dynptr_kern *ptr, u64 new_size)
1721
{
1722
u32 metadata = ptr->size & ~DYNPTR_SIZE_MASK;
1723
1724
if (bpf_dynptr_get_type(ptr) == BPF_DYNPTR_TYPE_FILE) {
1725
struct bpf_dynptr_file_impl *df = ptr->data;
1726
1727
df->size = new_size;
1728
return;
1729
}
1730
ptr->size = (u32)new_size | metadata;
1731
}
1732
1733
int bpf_dynptr_check_size(u64 size)
1734
{
1735
return size > DYNPTR_MAX_SIZE ? -E2BIG : 0;
1736
}
1737
1738
static int bpf_file_fetch_bytes(struct bpf_dynptr_file_impl *df, u64 offset, void *buf, u64 len)
1739
{
1740
const void *ptr;
1741
1742
if (!buf)
1743
return -EINVAL;
1744
1745
df->freader.buf = buf;
1746
df->freader.buf_sz = len;
1747
ptr = freader_fetch(&df->freader, offset + df->offset, len);
1748
if (!ptr)
1749
return df->freader.err;
1750
1751
if (ptr != buf) /* Force copying into the buffer */
1752
memcpy(buf, ptr, len);
1753
1754
return 0;
1755
}
1756
1757
void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
1758
enum bpf_dynptr_type type, u32 offset, u32 size)
1759
{
1760
ptr->data = data;
1761
ptr->offset = offset;
1762
ptr->size = size;
1763
bpf_dynptr_set_type(ptr, type);
1764
}
1765
1766
void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
1767
{
1768
memset(ptr, 0, sizeof(*ptr));
1769
}
1770
1771
BPF_CALL_4(bpf_dynptr_from_mem, void *, data, u64, size, u64, flags, struct bpf_dynptr_kern *, ptr)
1772
{
1773
int err;
1774
1775
BTF_TYPE_EMIT(struct bpf_dynptr);
1776
1777
err = bpf_dynptr_check_size(size);
1778
if (err)
1779
goto error;
1780
1781
/* flags is currently unsupported */
1782
if (flags) {
1783
err = -EINVAL;
1784
goto error;
1785
}
1786
1787
bpf_dynptr_init(ptr, data, BPF_DYNPTR_TYPE_LOCAL, 0, size);
1788
1789
return 0;
1790
1791
error:
1792
bpf_dynptr_set_null(ptr);
1793
return err;
1794
}
1795
1796
static const struct bpf_func_proto bpf_dynptr_from_mem_proto = {
1797
.func = bpf_dynptr_from_mem,
1798
.gpl_only = false,
1799
.ret_type = RET_INTEGER,
1800
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
1801
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
1802
.arg3_type = ARG_ANYTHING,
1803
.arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_LOCAL | MEM_UNINIT | MEM_WRITE,
1804
};
1805
1806
static int __bpf_dynptr_read(void *dst, u64 len, const struct bpf_dynptr_kern *src,
1807
u64 offset, u64 flags)
1808
{
1809
enum bpf_dynptr_type type;
1810
int err;
1811
1812
if (!src->data || flags)
1813
return -EINVAL;
1814
1815
err = bpf_dynptr_check_off_len(src, offset, len);
1816
if (err)
1817
return err;
1818
1819
type = bpf_dynptr_get_type(src);
1820
1821
switch (type) {
1822
case BPF_DYNPTR_TYPE_LOCAL:
1823
case BPF_DYNPTR_TYPE_RINGBUF:
1824
/* Source and destination may possibly overlap, hence use memmove to
1825
* copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1826
* pointing to overlapping PTR_TO_MAP_VALUE regions.
1827
*/
1828
memmove(dst, src->data + src->offset + offset, len);
1829
return 0;
1830
case BPF_DYNPTR_TYPE_SKB:
1831
return __bpf_skb_load_bytes(src->data, src->offset + offset, dst, len);
1832
case BPF_DYNPTR_TYPE_XDP:
1833
return __bpf_xdp_load_bytes(src->data, src->offset + offset, dst, len);
1834
case BPF_DYNPTR_TYPE_SKB_META:
1835
memmove(dst, bpf_skb_meta_pointer(src->data, src->offset + offset), len);
1836
return 0;
1837
case BPF_DYNPTR_TYPE_FILE:
1838
return bpf_file_fetch_bytes(src->data, offset, dst, len);
1839
default:
1840
WARN_ONCE(true, "bpf_dynptr_read: unknown dynptr type %d\n", type);
1841
return -EFAULT;
1842
}
1843
}
1844
1845
BPF_CALL_5(bpf_dynptr_read, void *, dst, u64, len, const struct bpf_dynptr_kern *, src,
1846
u64, offset, u64, flags)
1847
{
1848
return __bpf_dynptr_read(dst, len, src, offset, flags);
1849
}
1850
1851
static const struct bpf_func_proto bpf_dynptr_read_proto = {
1852
.func = bpf_dynptr_read,
1853
.gpl_only = false,
1854
.ret_type = RET_INTEGER,
1855
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
1856
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
1857
.arg3_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1858
.arg4_type = ARG_ANYTHING,
1859
.arg5_type = ARG_ANYTHING,
1860
};
1861
1862
int __bpf_dynptr_write(const struct bpf_dynptr_kern *dst, u64 offset, void *src,
1863
u64 len, u64 flags)
1864
{
1865
enum bpf_dynptr_type type;
1866
int err;
1867
1868
if (!dst->data || __bpf_dynptr_is_rdonly(dst))
1869
return -EINVAL;
1870
1871
err = bpf_dynptr_check_off_len(dst, offset, len);
1872
if (err)
1873
return err;
1874
1875
type = bpf_dynptr_get_type(dst);
1876
1877
switch (type) {
1878
case BPF_DYNPTR_TYPE_LOCAL:
1879
case BPF_DYNPTR_TYPE_RINGBUF:
1880
if (flags)
1881
return -EINVAL;
1882
/* Source and destination may possibly overlap, hence use memmove to
1883
* copy the data. E.g. bpf_dynptr_from_mem may create two dynptr
1884
* pointing to overlapping PTR_TO_MAP_VALUE regions.
1885
*/
1886
memmove(dst->data + dst->offset + offset, src, len);
1887
return 0;
1888
case BPF_DYNPTR_TYPE_SKB:
1889
return __bpf_skb_store_bytes(dst->data, dst->offset + offset, src, len,
1890
flags);
1891
case BPF_DYNPTR_TYPE_XDP:
1892
if (flags)
1893
return -EINVAL;
1894
return __bpf_xdp_store_bytes(dst->data, dst->offset + offset, src, len);
1895
case BPF_DYNPTR_TYPE_SKB_META:
1896
return __bpf_skb_meta_store_bytes(dst->data, dst->offset + offset, src,
1897
len, flags);
1898
default:
1899
WARN_ONCE(true, "bpf_dynptr_write: unknown dynptr type %d\n", type);
1900
return -EFAULT;
1901
}
1902
}
1903
1904
BPF_CALL_5(bpf_dynptr_write, const struct bpf_dynptr_kern *, dst, u64, offset, void *, src,
1905
u64, len, u64, flags)
1906
{
1907
return __bpf_dynptr_write(dst, offset, src, len, flags);
1908
}
1909
1910
static const struct bpf_func_proto bpf_dynptr_write_proto = {
1911
.func = bpf_dynptr_write,
1912
.gpl_only = false,
1913
.ret_type = RET_INTEGER,
1914
.arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1915
.arg2_type = ARG_ANYTHING,
1916
.arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
1917
.arg4_type = ARG_CONST_SIZE_OR_ZERO,
1918
.arg5_type = ARG_ANYTHING,
1919
};
1920
1921
BPF_CALL_3(bpf_dynptr_data, const struct bpf_dynptr_kern *, ptr, u64, offset, u64, len)
1922
{
1923
enum bpf_dynptr_type type;
1924
int err;
1925
1926
if (!ptr->data)
1927
return 0;
1928
1929
err = bpf_dynptr_check_off_len(ptr, offset, len);
1930
if (err)
1931
return 0;
1932
1933
if (__bpf_dynptr_is_rdonly(ptr))
1934
return 0;
1935
1936
type = bpf_dynptr_get_type(ptr);
1937
1938
switch (type) {
1939
case BPF_DYNPTR_TYPE_LOCAL:
1940
case BPF_DYNPTR_TYPE_RINGBUF:
1941
return (unsigned long)(ptr->data + ptr->offset + offset);
1942
case BPF_DYNPTR_TYPE_SKB:
1943
case BPF_DYNPTR_TYPE_XDP:
1944
case BPF_DYNPTR_TYPE_SKB_META:
1945
/* skb and xdp dynptrs should use bpf_dynptr_slice / bpf_dynptr_slice_rdwr */
1946
return 0;
1947
default:
1948
WARN_ONCE(true, "bpf_dynptr_data: unknown dynptr type %d\n", type);
1949
return 0;
1950
}
1951
}
1952
1953
static const struct bpf_func_proto bpf_dynptr_data_proto = {
1954
.func = bpf_dynptr_data,
1955
.gpl_only = false,
1956
.ret_type = RET_PTR_TO_DYNPTR_MEM_OR_NULL,
1957
.arg1_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY,
1958
.arg2_type = ARG_ANYTHING,
1959
.arg3_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
1960
};
1961
1962
const struct bpf_func_proto bpf_get_current_task_proto __weak;
1963
const struct bpf_func_proto bpf_get_current_task_btf_proto __weak;
1964
const struct bpf_func_proto bpf_probe_read_user_proto __weak;
1965
const struct bpf_func_proto bpf_probe_read_user_str_proto __weak;
1966
const struct bpf_func_proto bpf_probe_read_kernel_proto __weak;
1967
const struct bpf_func_proto bpf_probe_read_kernel_str_proto __weak;
1968
const struct bpf_func_proto bpf_task_pt_regs_proto __weak;
1969
const struct bpf_func_proto bpf_perf_event_read_proto __weak;
1970
const struct bpf_func_proto bpf_send_signal_proto __weak;
1971
const struct bpf_func_proto bpf_send_signal_thread_proto __weak;
1972
const struct bpf_func_proto bpf_get_task_stack_sleepable_proto __weak;
1973
const struct bpf_func_proto bpf_get_task_stack_proto __weak;
1974
const struct bpf_func_proto bpf_get_branch_snapshot_proto __weak;
1975
1976
const struct bpf_func_proto *
1977
bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1978
{
1979
switch (func_id) {
1980
case BPF_FUNC_map_lookup_elem:
1981
return &bpf_map_lookup_elem_proto;
1982
case BPF_FUNC_map_update_elem:
1983
return &bpf_map_update_elem_proto;
1984
case BPF_FUNC_map_delete_elem:
1985
return &bpf_map_delete_elem_proto;
1986
case BPF_FUNC_map_push_elem:
1987
return &bpf_map_push_elem_proto;
1988
case BPF_FUNC_map_pop_elem:
1989
return &bpf_map_pop_elem_proto;
1990
case BPF_FUNC_map_peek_elem:
1991
return &bpf_map_peek_elem_proto;
1992
case BPF_FUNC_map_lookup_percpu_elem:
1993
return &bpf_map_lookup_percpu_elem_proto;
1994
case BPF_FUNC_get_prandom_u32:
1995
return &bpf_get_prandom_u32_proto;
1996
case BPF_FUNC_get_smp_processor_id:
1997
return &bpf_get_raw_smp_processor_id_proto;
1998
case BPF_FUNC_get_numa_node_id:
1999
return &bpf_get_numa_node_id_proto;
2000
case BPF_FUNC_tail_call:
2001
return &bpf_tail_call_proto;
2002
case BPF_FUNC_ktime_get_ns:
2003
return &bpf_ktime_get_ns_proto;
2004
case BPF_FUNC_ktime_get_boot_ns:
2005
return &bpf_ktime_get_boot_ns_proto;
2006
case BPF_FUNC_ktime_get_tai_ns:
2007
return &bpf_ktime_get_tai_ns_proto;
2008
case BPF_FUNC_ringbuf_output:
2009
return &bpf_ringbuf_output_proto;
2010
case BPF_FUNC_ringbuf_reserve:
2011
return &bpf_ringbuf_reserve_proto;
2012
case BPF_FUNC_ringbuf_submit:
2013
return &bpf_ringbuf_submit_proto;
2014
case BPF_FUNC_ringbuf_discard:
2015
return &bpf_ringbuf_discard_proto;
2016
case BPF_FUNC_ringbuf_query:
2017
return &bpf_ringbuf_query_proto;
2018
case BPF_FUNC_strncmp:
2019
return &bpf_strncmp_proto;
2020
case BPF_FUNC_strtol:
2021
return &bpf_strtol_proto;
2022
case BPF_FUNC_strtoul:
2023
return &bpf_strtoul_proto;
2024
case BPF_FUNC_get_current_pid_tgid:
2025
return &bpf_get_current_pid_tgid_proto;
2026
case BPF_FUNC_get_ns_current_pid_tgid:
2027
return &bpf_get_ns_current_pid_tgid_proto;
2028
case BPF_FUNC_get_current_uid_gid:
2029
return &bpf_get_current_uid_gid_proto;
2030
default:
2031
break;
2032
}
2033
2034
if (!bpf_token_capable(prog->aux->token, CAP_BPF))
2035
return NULL;
2036
2037
switch (func_id) {
2038
case BPF_FUNC_spin_lock:
2039
return &bpf_spin_lock_proto;
2040
case BPF_FUNC_spin_unlock:
2041
return &bpf_spin_unlock_proto;
2042
case BPF_FUNC_jiffies64:
2043
return &bpf_jiffies64_proto;
2044
case BPF_FUNC_per_cpu_ptr:
2045
return &bpf_per_cpu_ptr_proto;
2046
case BPF_FUNC_this_cpu_ptr:
2047
return &bpf_this_cpu_ptr_proto;
2048
case BPF_FUNC_timer_init:
2049
return &bpf_timer_init_proto;
2050
case BPF_FUNC_timer_set_callback:
2051
return &bpf_timer_set_callback_proto;
2052
case BPF_FUNC_timer_start:
2053
return &bpf_timer_start_proto;
2054
case BPF_FUNC_timer_cancel:
2055
return &bpf_timer_cancel_proto;
2056
case BPF_FUNC_kptr_xchg:
2057
return &bpf_kptr_xchg_proto;
2058
case BPF_FUNC_for_each_map_elem:
2059
return &bpf_for_each_map_elem_proto;
2060
case BPF_FUNC_loop:
2061
return &bpf_loop_proto;
2062
case BPF_FUNC_user_ringbuf_drain:
2063
return &bpf_user_ringbuf_drain_proto;
2064
case BPF_FUNC_ringbuf_reserve_dynptr:
2065
return &bpf_ringbuf_reserve_dynptr_proto;
2066
case BPF_FUNC_ringbuf_submit_dynptr:
2067
return &bpf_ringbuf_submit_dynptr_proto;
2068
case BPF_FUNC_ringbuf_discard_dynptr:
2069
return &bpf_ringbuf_discard_dynptr_proto;
2070
case BPF_FUNC_dynptr_from_mem:
2071
return &bpf_dynptr_from_mem_proto;
2072
case BPF_FUNC_dynptr_read:
2073
return &bpf_dynptr_read_proto;
2074
case BPF_FUNC_dynptr_write:
2075
return &bpf_dynptr_write_proto;
2076
case BPF_FUNC_dynptr_data:
2077
return &bpf_dynptr_data_proto;
2078
#ifdef CONFIG_CGROUPS
2079
case BPF_FUNC_cgrp_storage_get:
2080
return &bpf_cgrp_storage_get_proto;
2081
case BPF_FUNC_cgrp_storage_delete:
2082
return &bpf_cgrp_storage_delete_proto;
2083
case BPF_FUNC_get_current_cgroup_id:
2084
return &bpf_get_current_cgroup_id_proto;
2085
case BPF_FUNC_get_current_ancestor_cgroup_id:
2086
return &bpf_get_current_ancestor_cgroup_id_proto;
2087
case BPF_FUNC_current_task_under_cgroup:
2088
return &bpf_current_task_under_cgroup_proto;
2089
#endif
2090
#ifdef CONFIG_CGROUP_NET_CLASSID
2091
case BPF_FUNC_get_cgroup_classid:
2092
return &bpf_get_cgroup_classid_curr_proto;
2093
#endif
2094
case BPF_FUNC_task_storage_get:
2095
if (bpf_prog_check_recur(prog))
2096
return &bpf_task_storage_get_recur_proto;
2097
return &bpf_task_storage_get_proto;
2098
case BPF_FUNC_task_storage_delete:
2099
if (bpf_prog_check_recur(prog))
2100
return &bpf_task_storage_delete_recur_proto;
2101
return &bpf_task_storage_delete_proto;
2102
default:
2103
break;
2104
}
2105
2106
if (!bpf_token_capable(prog->aux->token, CAP_PERFMON))
2107
return NULL;
2108
2109
switch (func_id) {
2110
case BPF_FUNC_trace_printk:
2111
return bpf_get_trace_printk_proto();
2112
case BPF_FUNC_get_current_task:
2113
return &bpf_get_current_task_proto;
2114
case BPF_FUNC_get_current_task_btf:
2115
return &bpf_get_current_task_btf_proto;
2116
case BPF_FUNC_get_current_comm:
2117
return &bpf_get_current_comm_proto;
2118
case BPF_FUNC_probe_read_user:
2119
return &bpf_probe_read_user_proto;
2120
case BPF_FUNC_probe_read_kernel:
2121
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2122
NULL : &bpf_probe_read_kernel_proto;
2123
case BPF_FUNC_probe_read_user_str:
2124
return &bpf_probe_read_user_str_proto;
2125
case BPF_FUNC_probe_read_kernel_str:
2126
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
2127
NULL : &bpf_probe_read_kernel_str_proto;
2128
case BPF_FUNC_copy_from_user:
2129
return &bpf_copy_from_user_proto;
2130
case BPF_FUNC_copy_from_user_task:
2131
return &bpf_copy_from_user_task_proto;
2132
case BPF_FUNC_snprintf_btf:
2133
return &bpf_snprintf_btf_proto;
2134
case BPF_FUNC_snprintf:
2135
return &bpf_snprintf_proto;
2136
case BPF_FUNC_task_pt_regs:
2137
return &bpf_task_pt_regs_proto;
2138
case BPF_FUNC_trace_vprintk:
2139
return bpf_get_trace_vprintk_proto();
2140
case BPF_FUNC_perf_event_read_value:
2141
return bpf_get_perf_event_read_value_proto();
2142
case BPF_FUNC_perf_event_read:
2143
return &bpf_perf_event_read_proto;
2144
case BPF_FUNC_send_signal:
2145
return &bpf_send_signal_proto;
2146
case BPF_FUNC_send_signal_thread:
2147
return &bpf_send_signal_thread_proto;
2148
case BPF_FUNC_get_task_stack:
2149
return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
2150
: &bpf_get_task_stack_proto;
2151
case BPF_FUNC_get_branch_snapshot:
2152
return &bpf_get_branch_snapshot_proto;
2153
case BPF_FUNC_find_vma:
2154
return &bpf_find_vma_proto;
2155
default:
2156
return NULL;
2157
}
2158
}
2159
EXPORT_SYMBOL_GPL(bpf_base_func_proto);
2160
2161
void bpf_list_head_free(const struct btf_field *field, void *list_head,
2162
struct bpf_spin_lock *spin_lock)
2163
{
2164
struct list_head *head = list_head, *orig_head = list_head;
2165
2166
BUILD_BUG_ON(sizeof(struct list_head) > sizeof(struct bpf_list_head));
2167
BUILD_BUG_ON(__alignof__(struct list_head) > __alignof__(struct bpf_list_head));
2168
2169
/* Do the actual list draining outside the lock to not hold the lock for
2170
* too long, and also prevent deadlocks if tracing programs end up
2171
* executing on entry/exit of functions called inside the critical
2172
* section, and end up doing map ops that call bpf_list_head_free for
2173
* the same map value again.
2174
*/
2175
__bpf_spin_lock_irqsave(spin_lock);
2176
if (!head->next || list_empty(head))
2177
goto unlock;
2178
head = head->next;
2179
unlock:
2180
INIT_LIST_HEAD(orig_head);
2181
__bpf_spin_unlock_irqrestore(spin_lock);
2182
2183
while (head != orig_head) {
2184
void *obj = head;
2185
2186
obj -= field->graph_root.node_offset;
2187
head = head->next;
2188
/* The contained type can also have resources, including a
2189
* bpf_list_head which needs to be freed.
2190
*/
2191
__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2192
}
2193
}
2194
2195
/* Like rbtree_postorder_for_each_entry_safe, but 'pos' and 'n' are
2196
* 'rb_node *', so field name of rb_node within containing struct is not
2197
* needed.
2198
*
2199
* Since bpf_rb_tree's node type has a corresponding struct btf_field with
2200
* graph_root.node_offset, it's not necessary to know field name
2201
* or type of node struct
2202
*/
2203
#define bpf_rbtree_postorder_for_each_entry_safe(pos, n, root) \
2204
for (pos = rb_first_postorder(root); \
2205
pos && ({ n = rb_next_postorder(pos); 1; }); \
2206
pos = n)
2207
2208
void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
2209
struct bpf_spin_lock *spin_lock)
2210
{
2211
struct rb_root_cached orig_root, *root = rb_root;
2212
struct rb_node *pos, *n;
2213
void *obj;
2214
2215
BUILD_BUG_ON(sizeof(struct rb_root_cached) > sizeof(struct bpf_rb_root));
2216
BUILD_BUG_ON(__alignof__(struct rb_root_cached) > __alignof__(struct bpf_rb_root));
2217
2218
__bpf_spin_lock_irqsave(spin_lock);
2219
orig_root = *root;
2220
*root = RB_ROOT_CACHED;
2221
__bpf_spin_unlock_irqrestore(spin_lock);
2222
2223
bpf_rbtree_postorder_for_each_entry_safe(pos, n, &orig_root.rb_root) {
2224
obj = pos;
2225
obj -= field->graph_root.node_offset;
2226
2227
2228
__bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
2229
}
2230
}
2231
2232
__bpf_kfunc_start_defs();
2233
2234
__bpf_kfunc void *bpf_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2235
{
2236
struct btf_struct_meta *meta = meta__ign;
2237
u64 size = local_type_id__k;
2238
void *p;
2239
2240
p = bpf_mem_alloc(&bpf_global_ma, size);
2241
if (!p)
2242
return NULL;
2243
if (meta)
2244
bpf_obj_init(meta->record, p);
2245
return p;
2246
}
2247
2248
__bpf_kfunc void *bpf_percpu_obj_new_impl(u64 local_type_id__k, void *meta__ign)
2249
{
2250
u64 size = local_type_id__k;
2251
2252
/* The verifier has ensured that meta__ign must be NULL */
2253
return bpf_mem_alloc(&bpf_global_percpu_ma, size);
2254
}
2255
2256
/* Must be called under migrate_disable(), as required by bpf_mem_free */
2257
void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu)
2258
{
2259
struct bpf_mem_alloc *ma;
2260
2261
if (rec && rec->refcount_off >= 0 &&
2262
!refcount_dec_and_test((refcount_t *)(p + rec->refcount_off))) {
2263
/* Object is refcounted and refcount_dec didn't result in 0
2264
* refcount. Return without freeing the object
2265
*/
2266
return;
2267
}
2268
2269
if (rec)
2270
bpf_obj_free_fields(rec, p);
2271
2272
if (percpu)
2273
ma = &bpf_global_percpu_ma;
2274
else
2275
ma = &bpf_global_ma;
2276
bpf_mem_free_rcu(ma, p);
2277
}
2278
2279
__bpf_kfunc void bpf_obj_drop_impl(void *p__alloc, void *meta__ign)
2280
{
2281
struct btf_struct_meta *meta = meta__ign;
2282
void *p = p__alloc;
2283
2284
__bpf_obj_drop_impl(p, meta ? meta->record : NULL, false);
2285
}
2286
2287
__bpf_kfunc void bpf_percpu_obj_drop_impl(void *p__alloc, void *meta__ign)
2288
{
2289
/* The verifier has ensured that meta__ign must be NULL */
2290
bpf_mem_free_rcu(&bpf_global_percpu_ma, p__alloc);
2291
}
2292
2293
__bpf_kfunc void *bpf_refcount_acquire_impl(void *p__refcounted_kptr, void *meta__ign)
2294
{
2295
struct btf_struct_meta *meta = meta__ign;
2296
struct bpf_refcount *ref;
2297
2298
/* Could just cast directly to refcount_t *, but need some code using
2299
* bpf_refcount type so that it is emitted in vmlinux BTF
2300
*/
2301
ref = (struct bpf_refcount *)(p__refcounted_kptr + meta->record->refcount_off);
2302
if (!refcount_inc_not_zero((refcount_t *)ref))
2303
return NULL;
2304
2305
/* Verifier strips KF_RET_NULL if input is owned ref, see is_kfunc_ret_null
2306
* in verifier.c
2307
*/
2308
return (void *)p__refcounted_kptr;
2309
}
2310
2311
static int __bpf_list_add(struct bpf_list_node_kern *node,
2312
struct bpf_list_head *head,
2313
bool tail, struct btf_record *rec, u64 off)
2314
{
2315
struct list_head *n = &node->list_head, *h = (void *)head;
2316
2317
/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2318
* called on its fields, so init here
2319
*/
2320
if (unlikely(!h->next))
2321
INIT_LIST_HEAD(h);
2322
2323
/* node->owner != NULL implies !list_empty(n), no need to separately
2324
* check the latter
2325
*/
2326
if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2327
/* Only called from BPF prog, no need to migrate_disable */
2328
__bpf_obj_drop_impl((void *)n - off, rec, false);
2329
return -EINVAL;
2330
}
2331
2332
tail ? list_add_tail(n, h) : list_add(n, h);
2333
WRITE_ONCE(node->owner, head);
2334
2335
return 0;
2336
}
2337
2338
__bpf_kfunc int bpf_list_push_front_impl(struct bpf_list_head *head,
2339
struct bpf_list_node *node,
2340
void *meta__ign, u64 off)
2341
{
2342
struct bpf_list_node_kern *n = (void *)node;
2343
struct btf_struct_meta *meta = meta__ign;
2344
2345
return __bpf_list_add(n, head, false, meta ? meta->record : NULL, off);
2346
}
2347
2348
__bpf_kfunc int bpf_list_push_back_impl(struct bpf_list_head *head,
2349
struct bpf_list_node *node,
2350
void *meta__ign, u64 off)
2351
{
2352
struct bpf_list_node_kern *n = (void *)node;
2353
struct btf_struct_meta *meta = meta__ign;
2354
2355
return __bpf_list_add(n, head, true, meta ? meta->record : NULL, off);
2356
}
2357
2358
static struct bpf_list_node *__bpf_list_del(struct bpf_list_head *head, bool tail)
2359
{
2360
struct list_head *n, *h = (void *)head;
2361
struct bpf_list_node_kern *node;
2362
2363
/* If list_head was 0-initialized by map, bpf_obj_init_field wasn't
2364
* called on its fields, so init here
2365
*/
2366
if (unlikely(!h->next))
2367
INIT_LIST_HEAD(h);
2368
if (list_empty(h))
2369
return NULL;
2370
2371
n = tail ? h->prev : h->next;
2372
node = container_of(n, struct bpf_list_node_kern, list_head);
2373
if (WARN_ON_ONCE(READ_ONCE(node->owner) != head))
2374
return NULL;
2375
2376
list_del_init(n);
2377
WRITE_ONCE(node->owner, NULL);
2378
return (struct bpf_list_node *)n;
2379
}
2380
2381
__bpf_kfunc struct bpf_list_node *bpf_list_pop_front(struct bpf_list_head *head)
2382
{
2383
return __bpf_list_del(head, false);
2384
}
2385
2386
__bpf_kfunc struct bpf_list_node *bpf_list_pop_back(struct bpf_list_head *head)
2387
{
2388
return __bpf_list_del(head, true);
2389
}
2390
2391
__bpf_kfunc struct bpf_list_node *bpf_list_front(struct bpf_list_head *head)
2392
{
2393
struct list_head *h = (struct list_head *)head;
2394
2395
if (list_empty(h) || unlikely(!h->next))
2396
return NULL;
2397
2398
return (struct bpf_list_node *)h->next;
2399
}
2400
2401
__bpf_kfunc struct bpf_list_node *bpf_list_back(struct bpf_list_head *head)
2402
{
2403
struct list_head *h = (struct list_head *)head;
2404
2405
if (list_empty(h) || unlikely(!h->next))
2406
return NULL;
2407
2408
return (struct bpf_list_node *)h->prev;
2409
}
2410
2411
__bpf_kfunc struct bpf_rb_node *bpf_rbtree_remove(struct bpf_rb_root *root,
2412
struct bpf_rb_node *node)
2413
{
2414
struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2415
struct rb_root_cached *r = (struct rb_root_cached *)root;
2416
struct rb_node *n = &node_internal->rb_node;
2417
2418
/* node_internal->owner != root implies either RB_EMPTY_NODE(n) or
2419
* n is owned by some other tree. No need to check RB_EMPTY_NODE(n)
2420
*/
2421
if (READ_ONCE(node_internal->owner) != root)
2422
return NULL;
2423
2424
rb_erase_cached(n, r);
2425
RB_CLEAR_NODE(n);
2426
WRITE_ONCE(node_internal->owner, NULL);
2427
return (struct bpf_rb_node *)n;
2428
}
2429
2430
/* Need to copy rbtree_add_cached's logic here because our 'less' is a BPF
2431
* program
2432
*/
2433
static int __bpf_rbtree_add(struct bpf_rb_root *root,
2434
struct bpf_rb_node_kern *node,
2435
void *less, struct btf_record *rec, u64 off)
2436
{
2437
struct rb_node **link = &((struct rb_root_cached *)root)->rb_root.rb_node;
2438
struct rb_node *parent = NULL, *n = &node->rb_node;
2439
bpf_callback_t cb = (bpf_callback_t)less;
2440
bool leftmost = true;
2441
2442
/* node->owner != NULL implies !RB_EMPTY_NODE(n), no need to separately
2443
* check the latter
2444
*/
2445
if (cmpxchg(&node->owner, NULL, BPF_PTR_POISON)) {
2446
/* Only called from BPF prog, no need to migrate_disable */
2447
__bpf_obj_drop_impl((void *)n - off, rec, false);
2448
return -EINVAL;
2449
}
2450
2451
while (*link) {
2452
parent = *link;
2453
if (cb((uintptr_t)node, (uintptr_t)parent, 0, 0, 0)) {
2454
link = &parent->rb_left;
2455
} else {
2456
link = &parent->rb_right;
2457
leftmost = false;
2458
}
2459
}
2460
2461
rb_link_node(n, parent, link);
2462
rb_insert_color_cached(n, (struct rb_root_cached *)root, leftmost);
2463
WRITE_ONCE(node->owner, root);
2464
return 0;
2465
}
2466
2467
__bpf_kfunc int bpf_rbtree_add_impl(struct bpf_rb_root *root, struct bpf_rb_node *node,
2468
bool (less)(struct bpf_rb_node *a, const struct bpf_rb_node *b),
2469
void *meta__ign, u64 off)
2470
{
2471
struct btf_struct_meta *meta = meta__ign;
2472
struct bpf_rb_node_kern *n = (void *)node;
2473
2474
return __bpf_rbtree_add(root, n, (void *)less, meta ? meta->record : NULL, off);
2475
}
2476
2477
__bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
2478
{
2479
struct rb_root_cached *r = (struct rb_root_cached *)root;
2480
2481
return (struct bpf_rb_node *)rb_first_cached(r);
2482
}
2483
2484
__bpf_kfunc struct bpf_rb_node *bpf_rbtree_root(struct bpf_rb_root *root)
2485
{
2486
struct rb_root_cached *r = (struct rb_root_cached *)root;
2487
2488
return (struct bpf_rb_node *)r->rb_root.rb_node;
2489
}
2490
2491
__bpf_kfunc struct bpf_rb_node *bpf_rbtree_left(struct bpf_rb_root *root, struct bpf_rb_node *node)
2492
{
2493
struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2494
2495
if (READ_ONCE(node_internal->owner) != root)
2496
return NULL;
2497
2498
return (struct bpf_rb_node *)node_internal->rb_node.rb_left;
2499
}
2500
2501
__bpf_kfunc struct bpf_rb_node *bpf_rbtree_right(struct bpf_rb_root *root, struct bpf_rb_node *node)
2502
{
2503
struct bpf_rb_node_kern *node_internal = (struct bpf_rb_node_kern *)node;
2504
2505
if (READ_ONCE(node_internal->owner) != root)
2506
return NULL;
2507
2508
return (struct bpf_rb_node *)node_internal->rb_node.rb_right;
2509
}
2510
2511
/**
2512
* bpf_task_acquire - Acquire a reference to a task. A task acquired by this
2513
* kfunc which is not stored in a map as a kptr, must be released by calling
2514
* bpf_task_release().
2515
* @p: The task on which a reference is being acquired.
2516
*/
2517
__bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
2518
{
2519
if (refcount_inc_not_zero(&p->rcu_users))
2520
return p;
2521
return NULL;
2522
}
2523
2524
/**
2525
* bpf_task_release - Release the reference acquired on a task.
2526
* @p: The task on which a reference is being released.
2527
*/
2528
__bpf_kfunc void bpf_task_release(struct task_struct *p)
2529
{
2530
put_task_struct_rcu_user(p);
2531
}
2532
2533
__bpf_kfunc void bpf_task_release_dtor(void *p)
2534
{
2535
put_task_struct_rcu_user(p);
2536
}
2537
CFI_NOSEAL(bpf_task_release_dtor);
2538
2539
#ifdef CONFIG_CGROUPS
2540
/**
2541
* bpf_cgroup_acquire - Acquire a reference to a cgroup. A cgroup acquired by
2542
* this kfunc which is not stored in a map as a kptr, must be released by
2543
* calling bpf_cgroup_release().
2544
* @cgrp: The cgroup on which a reference is being acquired.
2545
*/
2546
__bpf_kfunc struct cgroup *bpf_cgroup_acquire(struct cgroup *cgrp)
2547
{
2548
return cgroup_tryget(cgrp) ? cgrp : NULL;
2549
}
2550
2551
/**
2552
* bpf_cgroup_release - Release the reference acquired on a cgroup.
2553
* If this kfunc is invoked in an RCU read region, the cgroup is guaranteed to
2554
* not be freed until the current grace period has ended, even if its refcount
2555
* drops to 0.
2556
* @cgrp: The cgroup on which a reference is being released.
2557
*/
2558
__bpf_kfunc void bpf_cgroup_release(struct cgroup *cgrp)
2559
{
2560
cgroup_put(cgrp);
2561
}
2562
2563
__bpf_kfunc void bpf_cgroup_release_dtor(void *cgrp)
2564
{
2565
cgroup_put(cgrp);
2566
}
2567
CFI_NOSEAL(bpf_cgroup_release_dtor);
2568
2569
/**
2570
* bpf_cgroup_ancestor - Perform a lookup on an entry in a cgroup's ancestor
2571
* array. A cgroup returned by this kfunc which is not subsequently stored in a
2572
* map, must be released by calling bpf_cgroup_release().
2573
* @cgrp: The cgroup for which we're performing a lookup.
2574
* @level: The level of ancestor to look up.
2575
*/
2576
__bpf_kfunc struct cgroup *bpf_cgroup_ancestor(struct cgroup *cgrp, int level)
2577
{
2578
struct cgroup *ancestor;
2579
2580
if (level > cgrp->level || level < 0)
2581
return NULL;
2582
2583
/* cgrp's refcnt could be 0 here, but ancestors can still be accessed */
2584
ancestor = cgrp->ancestors[level];
2585
if (!cgroup_tryget(ancestor))
2586
return NULL;
2587
return ancestor;
2588
}
2589
2590
/**
2591
* bpf_cgroup_from_id - Find a cgroup from its ID. A cgroup returned by this
2592
* kfunc which is not subsequently stored in a map, must be released by calling
2593
* bpf_cgroup_release().
2594
* @cgid: cgroup id.
2595
*/
2596
__bpf_kfunc struct cgroup *bpf_cgroup_from_id(u64 cgid)
2597
{
2598
struct cgroup *cgrp;
2599
2600
cgrp = __cgroup_get_from_id(cgid);
2601
if (IS_ERR(cgrp))
2602
return NULL;
2603
return cgrp;
2604
}
2605
2606
/**
2607
* bpf_task_under_cgroup - wrap task_under_cgroup_hierarchy() as a kfunc, test
2608
* task's membership of cgroup ancestry.
2609
* @task: the task to be tested
2610
* @ancestor: possible ancestor of @task's cgroup
2611
*
2612
* Tests whether @task's default cgroup hierarchy is a descendant of @ancestor.
2613
* It follows all the same rules as cgroup_is_descendant, and only applies
2614
* to the default hierarchy.
2615
*/
2616
__bpf_kfunc long bpf_task_under_cgroup(struct task_struct *task,
2617
struct cgroup *ancestor)
2618
{
2619
long ret;
2620
2621
rcu_read_lock();
2622
ret = task_under_cgroup_hierarchy(task, ancestor);
2623
rcu_read_unlock();
2624
return ret;
2625
}
2626
2627
BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
2628
{
2629
struct bpf_array *array = container_of(map, struct bpf_array, map);
2630
struct cgroup *cgrp;
2631
2632
if (unlikely(idx >= array->map.max_entries))
2633
return -E2BIG;
2634
2635
cgrp = READ_ONCE(array->ptrs[idx]);
2636
if (unlikely(!cgrp))
2637
return -EAGAIN;
2638
2639
return task_under_cgroup_hierarchy(current, cgrp);
2640
}
2641
2642
const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
2643
.func = bpf_current_task_under_cgroup,
2644
.gpl_only = false,
2645
.ret_type = RET_INTEGER,
2646
.arg1_type = ARG_CONST_MAP_PTR,
2647
.arg2_type = ARG_ANYTHING,
2648
};
2649
2650
/**
2651
* bpf_task_get_cgroup1 - Acquires the associated cgroup of a task within a
2652
* specific cgroup1 hierarchy. The cgroup1 hierarchy is identified by its
2653
* hierarchy ID.
2654
* @task: The target task
2655
* @hierarchy_id: The ID of a cgroup1 hierarchy
2656
*
2657
* On success, the cgroup is returen. On failure, NULL is returned.
2658
*/
2659
__bpf_kfunc struct cgroup *
2660
bpf_task_get_cgroup1(struct task_struct *task, int hierarchy_id)
2661
{
2662
struct cgroup *cgrp = task_get_cgroup1(task, hierarchy_id);
2663
2664
if (IS_ERR(cgrp))
2665
return NULL;
2666
return cgrp;
2667
}
2668
#endif /* CONFIG_CGROUPS */
2669
2670
/**
2671
* bpf_task_from_pid - Find a struct task_struct from its pid by looking it up
2672
* in the root pid namespace idr. If a task is returned, it must either be
2673
* stored in a map, or released with bpf_task_release().
2674
* @pid: The pid of the task being looked up.
2675
*/
2676
__bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
2677
{
2678
struct task_struct *p;
2679
2680
rcu_read_lock();
2681
p = find_task_by_pid_ns(pid, &init_pid_ns);
2682
if (p)
2683
p = bpf_task_acquire(p);
2684
rcu_read_unlock();
2685
2686
return p;
2687
}
2688
2689
/**
2690
* bpf_task_from_vpid - Find a struct task_struct from its vpid by looking it up
2691
* in the pid namespace of the current task. If a task is returned, it must
2692
* either be stored in a map, or released with bpf_task_release().
2693
* @vpid: The vpid of the task being looked up.
2694
*/
2695
__bpf_kfunc struct task_struct *bpf_task_from_vpid(s32 vpid)
2696
{
2697
struct task_struct *p;
2698
2699
rcu_read_lock();
2700
p = find_task_by_vpid(vpid);
2701
if (p)
2702
p = bpf_task_acquire(p);
2703
rcu_read_unlock();
2704
2705
return p;
2706
}
2707
2708
/**
2709
* bpf_dynptr_slice() - Obtain a read-only pointer to the dynptr data.
2710
* @p: The dynptr whose data slice to retrieve
2711
* @offset: Offset into the dynptr
2712
* @buffer__opt: User-provided buffer to copy contents into. May be NULL
2713
* @buffer__szk: Size (in bytes) of the buffer if present. This is the
2714
* length of the requested slice. This must be a constant.
2715
*
2716
* For non-skb and non-xdp type dynptrs, there is no difference between
2717
* bpf_dynptr_slice and bpf_dynptr_data.
2718
*
2719
* If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2720
*
2721
* If the intention is to write to the data slice, please use
2722
* bpf_dynptr_slice_rdwr.
2723
*
2724
* The user must check that the returned pointer is not null before using it.
2725
*
2726
* Please note that in the case of skb and xdp dynptrs, bpf_dynptr_slice
2727
* does not change the underlying packet data pointers, so a call to
2728
* bpf_dynptr_slice will not invalidate any ctx->data/data_end pointers in
2729
* the bpf program.
2730
*
2731
* Return: NULL if the call failed (eg invalid dynptr), pointer to a read-only
2732
* data slice (can be either direct pointer to the data or a pointer to the user
2733
* provided buffer, with its contents containing the data, if unable to obtain
2734
* direct pointer)
2735
*/
2736
__bpf_kfunc void *bpf_dynptr_slice(const struct bpf_dynptr *p, u64 offset,
2737
void *buffer__opt, u64 buffer__szk)
2738
{
2739
const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2740
enum bpf_dynptr_type type;
2741
u64 len = buffer__szk;
2742
int err;
2743
2744
if (!ptr->data)
2745
return NULL;
2746
2747
err = bpf_dynptr_check_off_len(ptr, offset, len);
2748
if (err)
2749
return NULL;
2750
2751
type = bpf_dynptr_get_type(ptr);
2752
2753
switch (type) {
2754
case BPF_DYNPTR_TYPE_LOCAL:
2755
case BPF_DYNPTR_TYPE_RINGBUF:
2756
return ptr->data + ptr->offset + offset;
2757
case BPF_DYNPTR_TYPE_SKB:
2758
if (buffer__opt)
2759
return skb_header_pointer(ptr->data, ptr->offset + offset, len, buffer__opt);
2760
else
2761
return skb_pointer_if_linear(ptr->data, ptr->offset + offset, len);
2762
case BPF_DYNPTR_TYPE_XDP:
2763
{
2764
void *xdp_ptr = bpf_xdp_pointer(ptr->data, ptr->offset + offset, len);
2765
if (!IS_ERR_OR_NULL(xdp_ptr))
2766
return xdp_ptr;
2767
2768
if (!buffer__opt)
2769
return NULL;
2770
bpf_xdp_copy_buf(ptr->data, ptr->offset + offset, buffer__opt, len, false);
2771
return buffer__opt;
2772
}
2773
case BPF_DYNPTR_TYPE_SKB_META:
2774
return bpf_skb_meta_pointer(ptr->data, ptr->offset + offset);
2775
case BPF_DYNPTR_TYPE_FILE:
2776
err = bpf_file_fetch_bytes(ptr->data, offset, buffer__opt, buffer__szk);
2777
return err ? NULL : buffer__opt;
2778
default:
2779
WARN_ONCE(true, "unknown dynptr type %d\n", type);
2780
return NULL;
2781
}
2782
}
2783
2784
/**
2785
* bpf_dynptr_slice_rdwr() - Obtain a writable pointer to the dynptr data.
2786
* @p: The dynptr whose data slice to retrieve
2787
* @offset: Offset into the dynptr
2788
* @buffer__opt: User-provided buffer to copy contents into. May be NULL
2789
* @buffer__szk: Size (in bytes) of the buffer if present. This is the
2790
* length of the requested slice. This must be a constant.
2791
*
2792
* For non-skb and non-xdp type dynptrs, there is no difference between
2793
* bpf_dynptr_slice and bpf_dynptr_data.
2794
*
2795
* If buffer__opt is NULL, the call will fail if buffer_opt was needed.
2796
*
2797
* The returned pointer is writable and may point to either directly the dynptr
2798
* data at the requested offset or to the buffer if unable to obtain a direct
2799
* data pointer to (example: the requested slice is to the paged area of an skb
2800
* packet). In the case where the returned pointer is to the buffer, the user
2801
* is responsible for persisting writes through calling bpf_dynptr_write(). This
2802
* usually looks something like this pattern:
2803
*
2804
* struct eth_hdr *eth = bpf_dynptr_slice_rdwr(&dynptr, 0, buffer, sizeof(buffer));
2805
* if (!eth)
2806
* return TC_ACT_SHOT;
2807
*
2808
* // mutate eth header //
2809
*
2810
* if (eth == buffer)
2811
* bpf_dynptr_write(&ptr, 0, buffer, sizeof(buffer), 0);
2812
*
2813
* Please note that, as in the example above, the user must check that the
2814
* returned pointer is not null before using it.
2815
*
2816
* Please also note that in the case of skb and xdp dynptrs, bpf_dynptr_slice_rdwr
2817
* does not change the underlying packet data pointers, so a call to
2818
* bpf_dynptr_slice_rdwr will not invalidate any ctx->data/data_end pointers in
2819
* the bpf program.
2820
*
2821
* Return: NULL if the call failed (eg invalid dynptr), pointer to a
2822
* data slice (can be either direct pointer to the data or a pointer to the user
2823
* provided buffer, with its contents containing the data, if unable to obtain
2824
* direct pointer)
2825
*/
2826
__bpf_kfunc void *bpf_dynptr_slice_rdwr(const struct bpf_dynptr *p, u64 offset,
2827
void *buffer__opt, u64 buffer__szk)
2828
{
2829
const struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2830
2831
if (!ptr->data || __bpf_dynptr_is_rdonly(ptr))
2832
return NULL;
2833
2834
/* bpf_dynptr_slice_rdwr is the same logic as bpf_dynptr_slice.
2835
*
2836
* For skb-type dynptrs, it is safe to write into the returned pointer
2837
* if the bpf program allows skb data writes. There are two possibilities
2838
* that may occur when calling bpf_dynptr_slice_rdwr:
2839
*
2840
* 1) The requested slice is in the head of the skb. In this case, the
2841
* returned pointer is directly to skb data, and if the skb is cloned, the
2842
* verifier will have uncloned it (see bpf_unclone_prologue()) already.
2843
* The pointer can be directly written into.
2844
*
2845
* 2) Some portion of the requested slice is in the paged buffer area.
2846
* In this case, the requested data will be copied out into the buffer
2847
* and the returned pointer will be a pointer to the buffer. The skb
2848
* will not be pulled. To persist the write, the user will need to call
2849
* bpf_dynptr_write(), which will pull the skb and commit the write.
2850
*
2851
* Similarly for xdp programs, if the requested slice is not across xdp
2852
* fragments, then a direct pointer will be returned, otherwise the data
2853
* will be copied out into the buffer and the user will need to call
2854
* bpf_dynptr_write() to commit changes.
2855
*/
2856
return bpf_dynptr_slice(p, offset, buffer__opt, buffer__szk);
2857
}
2858
2859
__bpf_kfunc int bpf_dynptr_adjust(const struct bpf_dynptr *p, u64 start, u64 end)
2860
{
2861
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2862
u64 size;
2863
2864
if (!ptr->data || start > end)
2865
return -EINVAL;
2866
2867
size = __bpf_dynptr_size(ptr);
2868
2869
if (start > size || end > size)
2870
return -ERANGE;
2871
2872
bpf_dynptr_advance_offset(ptr, start);
2873
bpf_dynptr_set_size(ptr, end - start);
2874
2875
return 0;
2876
}
2877
2878
__bpf_kfunc bool bpf_dynptr_is_null(const struct bpf_dynptr *p)
2879
{
2880
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2881
2882
return !ptr->data;
2883
}
2884
2885
__bpf_kfunc bool bpf_dynptr_is_rdonly(const struct bpf_dynptr *p)
2886
{
2887
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2888
2889
if (!ptr->data)
2890
return false;
2891
2892
return __bpf_dynptr_is_rdonly(ptr);
2893
}
2894
2895
__bpf_kfunc u64 bpf_dynptr_size(const struct bpf_dynptr *p)
2896
{
2897
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2898
2899
if (!ptr->data)
2900
return -EINVAL;
2901
2902
return __bpf_dynptr_size(ptr);
2903
}
2904
2905
__bpf_kfunc int bpf_dynptr_clone(const struct bpf_dynptr *p,
2906
struct bpf_dynptr *clone__uninit)
2907
{
2908
struct bpf_dynptr_kern *clone = (struct bpf_dynptr_kern *)clone__uninit;
2909
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2910
2911
if (!ptr->data) {
2912
bpf_dynptr_set_null(clone);
2913
return -EINVAL;
2914
}
2915
2916
*clone = *ptr;
2917
2918
return 0;
2919
}
2920
2921
/**
2922
* bpf_dynptr_copy() - Copy data from one dynptr to another.
2923
* @dst_ptr: Destination dynptr - where data should be copied to
2924
* @dst_off: Offset into the destination dynptr
2925
* @src_ptr: Source dynptr - where data should be copied from
2926
* @src_off: Offset into the source dynptr
2927
* @size: Length of the data to copy from source to destination
2928
*
2929
* Copies data from source dynptr to destination dynptr.
2930
* Returns 0 on success; negative error, otherwise.
2931
*/
2932
__bpf_kfunc int bpf_dynptr_copy(struct bpf_dynptr *dst_ptr, u64 dst_off,
2933
struct bpf_dynptr *src_ptr, u64 src_off, u64 size)
2934
{
2935
struct bpf_dynptr_kern *dst = (struct bpf_dynptr_kern *)dst_ptr;
2936
struct bpf_dynptr_kern *src = (struct bpf_dynptr_kern *)src_ptr;
2937
void *src_slice, *dst_slice;
2938
char buf[256];
2939
u64 off;
2940
2941
src_slice = bpf_dynptr_slice(src_ptr, src_off, NULL, size);
2942
dst_slice = bpf_dynptr_slice_rdwr(dst_ptr, dst_off, NULL, size);
2943
2944
if (src_slice && dst_slice) {
2945
memmove(dst_slice, src_slice, size);
2946
return 0;
2947
}
2948
2949
if (src_slice)
2950
return __bpf_dynptr_write(dst, dst_off, src_slice, size, 0);
2951
2952
if (dst_slice)
2953
return __bpf_dynptr_read(dst_slice, size, src, src_off, 0);
2954
2955
if (bpf_dynptr_check_off_len(dst, dst_off, size) ||
2956
bpf_dynptr_check_off_len(src, src_off, size))
2957
return -E2BIG;
2958
2959
off = 0;
2960
while (off < size) {
2961
u64 chunk_sz = min_t(u64, sizeof(buf), size - off);
2962
int err;
2963
2964
err = __bpf_dynptr_read(buf, chunk_sz, src, src_off + off, 0);
2965
if (err)
2966
return err;
2967
err = __bpf_dynptr_write(dst, dst_off + off, buf, chunk_sz, 0);
2968
if (err)
2969
return err;
2970
2971
off += chunk_sz;
2972
}
2973
return 0;
2974
}
2975
2976
/**
2977
* bpf_dynptr_memset() - Fill dynptr memory with a constant byte.
2978
* @p: Destination dynptr - where data will be filled
2979
* @offset: Offset into the dynptr to start filling from
2980
* @size: Number of bytes to fill
2981
* @val: Constant byte to fill the memory with
2982
*
2983
* Fills the @size bytes of the memory area pointed to by @p
2984
* at @offset with the constant byte @val.
2985
* Returns 0 on success; negative error, otherwise.
2986
*/
2987
__bpf_kfunc int bpf_dynptr_memset(struct bpf_dynptr *p, u64 offset, u64 size, u8 val)
2988
{
2989
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)p;
2990
u64 chunk_sz, write_off;
2991
char buf[256];
2992
void* slice;
2993
int err;
2994
2995
slice = bpf_dynptr_slice_rdwr(p, offset, NULL, size);
2996
if (likely(slice)) {
2997
memset(slice, val, size);
2998
return 0;
2999
}
3000
3001
if (__bpf_dynptr_is_rdonly(ptr))
3002
return -EINVAL;
3003
3004
err = bpf_dynptr_check_off_len(ptr, offset, size);
3005
if (err)
3006
return err;
3007
3008
/* Non-linear data under the dynptr, write from a local buffer */
3009
chunk_sz = min_t(u64, sizeof(buf), size);
3010
memset(buf, val, chunk_sz);
3011
3012
for (write_off = 0; write_off < size; write_off += chunk_sz) {
3013
chunk_sz = min_t(u64, sizeof(buf), size - write_off);
3014
err = __bpf_dynptr_write(ptr, offset + write_off, buf, chunk_sz, 0);
3015
if (err)
3016
return err;
3017
}
3018
3019
return 0;
3020
}
3021
3022
__bpf_kfunc void *bpf_cast_to_kern_ctx(void *obj)
3023
{
3024
return obj;
3025
}
3026
3027
__bpf_kfunc void *bpf_rdonly_cast(const void *obj__ign, u32 btf_id__k)
3028
{
3029
return (void *)obj__ign;
3030
}
3031
3032
__bpf_kfunc void bpf_rcu_read_lock(void)
3033
{
3034
rcu_read_lock();
3035
}
3036
3037
__bpf_kfunc void bpf_rcu_read_unlock(void)
3038
{
3039
rcu_read_unlock();
3040
}
3041
3042
struct bpf_throw_ctx {
3043
struct bpf_prog_aux *aux;
3044
u64 sp;
3045
u64 bp;
3046
int cnt;
3047
};
3048
3049
static bool bpf_stack_walker(void *cookie, u64 ip, u64 sp, u64 bp)
3050
{
3051
struct bpf_throw_ctx *ctx = cookie;
3052
struct bpf_prog *prog;
3053
3054
/*
3055
* The RCU read lock is held to safely traverse the latch tree, but we
3056
* don't need its protection when accessing the prog, since it has an
3057
* active stack frame on the current stack trace, and won't disappear.
3058
*/
3059
rcu_read_lock();
3060
prog = bpf_prog_ksym_find(ip);
3061
rcu_read_unlock();
3062
if (!prog)
3063
return !ctx->cnt;
3064
ctx->cnt++;
3065
if (bpf_is_subprog(prog))
3066
return true;
3067
ctx->aux = prog->aux;
3068
ctx->sp = sp;
3069
ctx->bp = bp;
3070
return false;
3071
}
3072
3073
__bpf_kfunc void bpf_throw(u64 cookie)
3074
{
3075
struct bpf_throw_ctx ctx = {};
3076
3077
arch_bpf_stack_walk(bpf_stack_walker, &ctx);
3078
WARN_ON_ONCE(!ctx.aux);
3079
if (ctx.aux)
3080
WARN_ON_ONCE(!ctx.aux->exception_boundary);
3081
WARN_ON_ONCE(!ctx.bp);
3082
WARN_ON_ONCE(!ctx.cnt);
3083
/* Prevent KASAN false positives for CONFIG_KASAN_STACK by unpoisoning
3084
* deeper stack depths than ctx.sp as we do not return from bpf_throw,
3085
* which skips compiler generated instrumentation to do the same.
3086
*/
3087
kasan_unpoison_task_stack_below((void *)(long)ctx.sp);
3088
ctx.aux->bpf_exception_cb(cookie, ctx.sp, ctx.bp, 0, 0);
3089
WARN(1, "A call to BPF exception callback should never return\n");
3090
}
3091
3092
__bpf_kfunc int bpf_wq_init(struct bpf_wq *wq, void *p__map, unsigned int flags)
3093
{
3094
struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3095
struct bpf_map *map = p__map;
3096
3097
BUILD_BUG_ON(sizeof(struct bpf_async_kern) > sizeof(struct bpf_wq));
3098
BUILD_BUG_ON(__alignof__(struct bpf_async_kern) != __alignof__(struct bpf_wq));
3099
3100
if (flags)
3101
return -EINVAL;
3102
3103
return __bpf_async_init(async, map, flags, BPF_ASYNC_TYPE_WQ);
3104
}
3105
3106
__bpf_kfunc int bpf_wq_start(struct bpf_wq *wq, unsigned int flags)
3107
{
3108
struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3109
struct bpf_work *w;
3110
3111
if (in_nmi())
3112
return -EOPNOTSUPP;
3113
if (flags)
3114
return -EINVAL;
3115
w = READ_ONCE(async->work);
3116
if (!w || !READ_ONCE(w->cb.prog))
3117
return -EINVAL;
3118
3119
schedule_work(&w->work);
3120
return 0;
3121
}
3122
3123
__bpf_kfunc int bpf_wq_set_callback_impl(struct bpf_wq *wq,
3124
int (callback_fn)(void *map, int *key, void *value),
3125
unsigned int flags,
3126
void *aux__prog)
3127
{
3128
struct bpf_prog_aux *aux = (struct bpf_prog_aux *)aux__prog;
3129
struct bpf_async_kern *async = (struct bpf_async_kern *)wq;
3130
3131
if (flags)
3132
return -EINVAL;
3133
3134
return __bpf_async_set_callback(async, callback_fn, aux, flags, BPF_ASYNC_TYPE_WQ);
3135
}
3136
3137
__bpf_kfunc void bpf_preempt_disable(void)
3138
{
3139
preempt_disable();
3140
}
3141
3142
__bpf_kfunc void bpf_preempt_enable(void)
3143
{
3144
preempt_enable();
3145
}
3146
3147
struct bpf_iter_bits {
3148
__u64 __opaque[2];
3149
} __aligned(8);
3150
3151
#define BITS_ITER_NR_WORDS_MAX 511
3152
3153
struct bpf_iter_bits_kern {
3154
union {
3155
__u64 *bits;
3156
__u64 bits_copy;
3157
};
3158
int nr_bits;
3159
int bit;
3160
} __aligned(8);
3161
3162
/* On 64-bit hosts, unsigned long and u64 have the same size, so passing
3163
* a u64 pointer and an unsigned long pointer to find_next_bit() will
3164
* return the same result, as both point to the same 8-byte area.
3165
*
3166
* For 32-bit little-endian hosts, using a u64 pointer or unsigned long
3167
* pointer also makes no difference. This is because the first iterated
3168
* unsigned long is composed of bits 0-31 of the u64 and the second unsigned
3169
* long is composed of bits 32-63 of the u64.
3170
*
3171
* However, for 32-bit big-endian hosts, this is not the case. The first
3172
* iterated unsigned long will be bits 32-63 of the u64, so swap these two
3173
* ulong values within the u64.
3174
*/
3175
static void swap_ulong_in_u64(u64 *bits, unsigned int nr)
3176
{
3177
#if (BITS_PER_LONG == 32) && defined(__BIG_ENDIAN)
3178
unsigned int i;
3179
3180
for (i = 0; i < nr; i++)
3181
bits[i] = (bits[i] >> 32) | ((u64)(u32)bits[i] << 32);
3182
#endif
3183
}
3184
3185
/**
3186
* bpf_iter_bits_new() - Initialize a new bits iterator for a given memory area
3187
* @it: The new bpf_iter_bits to be created
3188
* @unsafe_ptr__ign: A pointer pointing to a memory area to be iterated over
3189
* @nr_words: The size of the specified memory area, measured in 8-byte units.
3190
* The maximum value of @nr_words is @BITS_ITER_NR_WORDS_MAX. This limit may be
3191
* further reduced by the BPF memory allocator implementation.
3192
*
3193
* This function initializes a new bpf_iter_bits structure for iterating over
3194
* a memory area which is specified by the @unsafe_ptr__ign and @nr_words. It
3195
* copies the data of the memory area to the newly created bpf_iter_bits @it for
3196
* subsequent iteration operations.
3197
*
3198
* On success, 0 is returned. On failure, ERR is returned.
3199
*/
3200
__bpf_kfunc int
3201
bpf_iter_bits_new(struct bpf_iter_bits *it, const u64 *unsafe_ptr__ign, u32 nr_words)
3202
{
3203
struct bpf_iter_bits_kern *kit = (void *)it;
3204
u32 nr_bytes = nr_words * sizeof(u64);
3205
u32 nr_bits = BYTES_TO_BITS(nr_bytes);
3206
int err;
3207
3208
BUILD_BUG_ON(sizeof(struct bpf_iter_bits_kern) != sizeof(struct bpf_iter_bits));
3209
BUILD_BUG_ON(__alignof__(struct bpf_iter_bits_kern) !=
3210
__alignof__(struct bpf_iter_bits));
3211
3212
kit->nr_bits = 0;
3213
kit->bits_copy = 0;
3214
kit->bit = -1;
3215
3216
if (!unsafe_ptr__ign || !nr_words)
3217
return -EINVAL;
3218
if (nr_words > BITS_ITER_NR_WORDS_MAX)
3219
return -E2BIG;
3220
3221
/* Optimization for u64 mask */
3222
if (nr_bits == 64) {
3223
err = bpf_probe_read_kernel_common(&kit->bits_copy, nr_bytes, unsafe_ptr__ign);
3224
if (err)
3225
return -EFAULT;
3226
3227
swap_ulong_in_u64(&kit->bits_copy, nr_words);
3228
3229
kit->nr_bits = nr_bits;
3230
return 0;
3231
}
3232
3233
if (bpf_mem_alloc_check_size(false, nr_bytes))
3234
return -E2BIG;
3235
3236
/* Fallback to memalloc */
3237
kit->bits = bpf_mem_alloc(&bpf_global_ma, nr_bytes);
3238
if (!kit->bits)
3239
return -ENOMEM;
3240
3241
err = bpf_probe_read_kernel_common(kit->bits, nr_bytes, unsafe_ptr__ign);
3242
if (err) {
3243
bpf_mem_free(&bpf_global_ma, kit->bits);
3244
return err;
3245
}
3246
3247
swap_ulong_in_u64(kit->bits, nr_words);
3248
3249
kit->nr_bits = nr_bits;
3250
return 0;
3251
}
3252
3253
/**
3254
* bpf_iter_bits_next() - Get the next bit in a bpf_iter_bits
3255
* @it: The bpf_iter_bits to be checked
3256
*
3257
* This function returns a pointer to a number representing the value of the
3258
* next bit in the bits.
3259
*
3260
* If there are no further bits available, it returns NULL.
3261
*/
3262
__bpf_kfunc int *bpf_iter_bits_next(struct bpf_iter_bits *it)
3263
{
3264
struct bpf_iter_bits_kern *kit = (void *)it;
3265
int bit = kit->bit, nr_bits = kit->nr_bits;
3266
const void *bits;
3267
3268
if (!nr_bits || bit >= nr_bits)
3269
return NULL;
3270
3271
bits = nr_bits == 64 ? &kit->bits_copy : kit->bits;
3272
bit = find_next_bit(bits, nr_bits, bit + 1);
3273
if (bit >= nr_bits) {
3274
kit->bit = bit;
3275
return NULL;
3276
}
3277
3278
kit->bit = bit;
3279
return &kit->bit;
3280
}
3281
3282
/**
3283
* bpf_iter_bits_destroy() - Destroy a bpf_iter_bits
3284
* @it: The bpf_iter_bits to be destroyed
3285
*
3286
* Destroy the resource associated with the bpf_iter_bits.
3287
*/
3288
__bpf_kfunc void bpf_iter_bits_destroy(struct bpf_iter_bits *it)
3289
{
3290
struct bpf_iter_bits_kern *kit = (void *)it;
3291
3292
if (kit->nr_bits <= 64)
3293
return;
3294
bpf_mem_free(&bpf_global_ma, kit->bits);
3295
}
3296
3297
/**
3298
* bpf_copy_from_user_str() - Copy a string from an unsafe user address
3299
* @dst: Destination address, in kernel space. This buffer must be
3300
* at least @dst__sz bytes long.
3301
* @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3302
* @unsafe_ptr__ign: Source address, in user space.
3303
* @flags: The only supported flag is BPF_F_PAD_ZEROS
3304
*
3305
* Copies a NUL-terminated string from userspace to BPF space. If user string is
3306
* too long this will still ensure zero termination in the dst buffer unless
3307
* buffer size is 0.
3308
*
3309
* If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst to 0 on success and
3310
* memset all of @dst on failure.
3311
*/
3312
__bpf_kfunc int bpf_copy_from_user_str(void *dst, u32 dst__sz, const void __user *unsafe_ptr__ign, u64 flags)
3313
{
3314
int ret;
3315
3316
if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3317
return -EINVAL;
3318
3319
if (unlikely(!dst__sz))
3320
return 0;
3321
3322
ret = strncpy_from_user(dst, unsafe_ptr__ign, dst__sz - 1);
3323
if (ret < 0) {
3324
if (flags & BPF_F_PAD_ZEROS)
3325
memset((char *)dst, 0, dst__sz);
3326
3327
return ret;
3328
}
3329
3330
if (flags & BPF_F_PAD_ZEROS)
3331
memset((char *)dst + ret, 0, dst__sz - ret);
3332
else
3333
((char *)dst)[ret] = '\0';
3334
3335
return ret + 1;
3336
}
3337
3338
/**
3339
* bpf_copy_from_user_task_str() - Copy a string from an task's address space
3340
* @dst: Destination address, in kernel space. This buffer must be
3341
* at least @dst__sz bytes long.
3342
* @dst__sz: Maximum number of bytes to copy, includes the trailing NUL.
3343
* @unsafe_ptr__ign: Source address in the task's address space.
3344
* @tsk: The task whose address space will be used
3345
* @flags: The only supported flag is BPF_F_PAD_ZEROS
3346
*
3347
* Copies a NUL terminated string from a task's address space to @dst__sz
3348
* buffer. If user string is too long this will still ensure zero termination
3349
* in the @dst__sz buffer unless buffer size is 0.
3350
*
3351
* If BPF_F_PAD_ZEROS flag is set, memset the tail of @dst__sz to 0 on success
3352
* and memset all of @dst__sz on failure.
3353
*
3354
* Return: The number of copied bytes on success including the NUL terminator.
3355
* A negative error code on failure.
3356
*/
3357
__bpf_kfunc int bpf_copy_from_user_task_str(void *dst, u32 dst__sz,
3358
const void __user *unsafe_ptr__ign,
3359
struct task_struct *tsk, u64 flags)
3360
{
3361
int ret;
3362
3363
if (unlikely(flags & ~BPF_F_PAD_ZEROS))
3364
return -EINVAL;
3365
3366
if (unlikely(dst__sz == 0))
3367
return 0;
3368
3369
ret = copy_remote_vm_str(tsk, (unsigned long)unsafe_ptr__ign, dst, dst__sz, 0);
3370
if (ret < 0) {
3371
if (flags & BPF_F_PAD_ZEROS)
3372
memset(dst, 0, dst__sz);
3373
return ret;
3374
}
3375
3376
if (flags & BPF_F_PAD_ZEROS)
3377
memset(dst + ret, 0, dst__sz - ret);
3378
3379
return ret + 1;
3380
}
3381
3382
/* Keep unsinged long in prototype so that kfunc is usable when emitted to
3383
* vmlinux.h in BPF programs directly, but note that while in BPF prog, the
3384
* unsigned long always points to 8-byte region on stack, the kernel may only
3385
* read and write the 4-bytes on 32-bit.
3386
*/
3387
__bpf_kfunc void bpf_local_irq_save(unsigned long *flags__irq_flag)
3388
{
3389
local_irq_save(*flags__irq_flag);
3390
}
3391
3392
__bpf_kfunc void bpf_local_irq_restore(unsigned long *flags__irq_flag)
3393
{
3394
local_irq_restore(*flags__irq_flag);
3395
}
3396
3397
__bpf_kfunc void __bpf_trap(void)
3398
{
3399
}
3400
3401
/*
3402
* Kfuncs for string operations.
3403
*
3404
* Since strings are not necessarily %NUL-terminated, we cannot directly call
3405
* in-kernel implementations. Instead, we open-code the implementations using
3406
* __get_kernel_nofault instead of plain dereference to make them safe.
3407
*/
3408
3409
static int __bpf_strcasecmp(const char *s1, const char *s2, bool ignore_case)
3410
{
3411
char c1, c2;
3412
int i;
3413
3414
if (!copy_from_kernel_nofault_allowed(s1, 1) ||
3415
!copy_from_kernel_nofault_allowed(s2, 1)) {
3416
return -ERANGE;
3417
}
3418
3419
guard(pagefault)();
3420
for (i = 0; i < XATTR_SIZE_MAX; i++) {
3421
__get_kernel_nofault(&c1, s1, char, err_out);
3422
__get_kernel_nofault(&c2, s2, char, err_out);
3423
if (ignore_case) {
3424
c1 = tolower(c1);
3425
c2 = tolower(c2);
3426
}
3427
if (c1 != c2)
3428
return c1 < c2 ? -1 : 1;
3429
if (c1 == '\0')
3430
return 0;
3431
s1++;
3432
s2++;
3433
}
3434
return -E2BIG;
3435
err_out:
3436
return -EFAULT;
3437
}
3438
3439
/**
3440
* bpf_strcmp - Compare two strings
3441
* @s1__ign: One string
3442
* @s2__ign: Another string
3443
*
3444
* Return:
3445
* * %0 - Strings are equal
3446
* * %-1 - @s1__ign is smaller
3447
* * %1 - @s2__ign is smaller
3448
* * %-EFAULT - Cannot read one of the strings
3449
* * %-E2BIG - One of strings is too large
3450
* * %-ERANGE - One of strings is outside of kernel address space
3451
*/
3452
__bpf_kfunc int bpf_strcmp(const char *s1__ign, const char *s2__ign)
3453
{
3454
return __bpf_strcasecmp(s1__ign, s2__ign, false);
3455
}
3456
3457
/**
3458
* bpf_strcasecmp - Compare two strings, ignoring the case of the characters
3459
* @s1__ign: One string
3460
* @s2__ign: Another string
3461
*
3462
* Return:
3463
* * %0 - Strings are equal
3464
* * %-1 - @s1__ign is smaller
3465
* * %1 - @s2__ign is smaller
3466
* * %-EFAULT - Cannot read one of the strings
3467
* * %-E2BIG - One of strings is too large
3468
* * %-ERANGE - One of strings is outside of kernel address space
3469
*/
3470
__bpf_kfunc int bpf_strcasecmp(const char *s1__ign, const char *s2__ign)
3471
{
3472
return __bpf_strcasecmp(s1__ign, s2__ign, true);
3473
}
3474
3475
/**
3476
* bpf_strnchr - Find a character in a length limited string
3477
* @s__ign: The string to be searched
3478
* @count: The number of characters to be searched
3479
* @c: The character to search for
3480
*
3481
* Note that the %NUL-terminator is considered part of the string, and can
3482
* be searched for.
3483
*
3484
* Return:
3485
* * >=0 - Index of the first occurrence of @c within @s__ign
3486
* * %-ENOENT - @c not found in the first @count characters of @s__ign
3487
* * %-EFAULT - Cannot read @s__ign
3488
* * %-E2BIG - @s__ign is too large
3489
* * %-ERANGE - @s__ign is outside of kernel address space
3490
*/
3491
__bpf_kfunc int bpf_strnchr(const char *s__ign, size_t count, char c)
3492
{
3493
char sc;
3494
int i;
3495
3496
if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3497
return -ERANGE;
3498
3499
guard(pagefault)();
3500
for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3501
__get_kernel_nofault(&sc, s__ign, char, err_out);
3502
if (sc == c)
3503
return i;
3504
if (sc == '\0')
3505
return -ENOENT;
3506
s__ign++;
3507
}
3508
return i == XATTR_SIZE_MAX ? -E2BIG : -ENOENT;
3509
err_out:
3510
return -EFAULT;
3511
}
3512
3513
/**
3514
* bpf_strchr - Find the first occurrence of a character in a string
3515
* @s__ign: The string to be searched
3516
* @c: The character to search for
3517
*
3518
* Note that the %NUL-terminator is considered part of the string, and can
3519
* be searched for.
3520
*
3521
* Return:
3522
* * >=0 - The index of the first occurrence of @c within @s__ign
3523
* * %-ENOENT - @c not found in @s__ign
3524
* * %-EFAULT - Cannot read @s__ign
3525
* * %-E2BIG - @s__ign is too large
3526
* * %-ERANGE - @s__ign is outside of kernel address space
3527
*/
3528
__bpf_kfunc int bpf_strchr(const char *s__ign, char c)
3529
{
3530
return bpf_strnchr(s__ign, XATTR_SIZE_MAX, c);
3531
}
3532
3533
/**
3534
* bpf_strchrnul - Find and return a character in a string, or end of string
3535
* @s__ign: The string to be searched
3536
* @c: The character to search for
3537
*
3538
* Return:
3539
* * >=0 - Index of the first occurrence of @c within @s__ign or index of
3540
* the null byte at the end of @s__ign when @c is not found
3541
* * %-EFAULT - Cannot read @s__ign
3542
* * %-E2BIG - @s__ign is too large
3543
* * %-ERANGE - @s__ign is outside of kernel address space
3544
*/
3545
__bpf_kfunc int bpf_strchrnul(const char *s__ign, char c)
3546
{
3547
char sc;
3548
int i;
3549
3550
if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3551
return -ERANGE;
3552
3553
guard(pagefault)();
3554
for (i = 0; i < XATTR_SIZE_MAX; i++) {
3555
__get_kernel_nofault(&sc, s__ign, char, err_out);
3556
if (sc == '\0' || sc == c)
3557
return i;
3558
s__ign++;
3559
}
3560
return -E2BIG;
3561
err_out:
3562
return -EFAULT;
3563
}
3564
3565
/**
3566
* bpf_strrchr - Find the last occurrence of a character in a string
3567
* @s__ign: The string to be searched
3568
* @c: The character to search for
3569
*
3570
* Return:
3571
* * >=0 - Index of the last occurrence of @c within @s__ign
3572
* * %-ENOENT - @c not found in @s__ign
3573
* * %-EFAULT - Cannot read @s__ign
3574
* * %-E2BIG - @s__ign is too large
3575
* * %-ERANGE - @s__ign is outside of kernel address space
3576
*/
3577
__bpf_kfunc int bpf_strrchr(const char *s__ign, int c)
3578
{
3579
char sc;
3580
int i, last = -ENOENT;
3581
3582
if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3583
return -ERANGE;
3584
3585
guard(pagefault)();
3586
for (i = 0; i < XATTR_SIZE_MAX; i++) {
3587
__get_kernel_nofault(&sc, s__ign, char, err_out);
3588
if (sc == c)
3589
last = i;
3590
if (sc == '\0')
3591
return last;
3592
s__ign++;
3593
}
3594
return -E2BIG;
3595
err_out:
3596
return -EFAULT;
3597
}
3598
3599
/**
3600
* bpf_strnlen - Calculate the length of a length-limited string
3601
* @s__ign: The string
3602
* @count: The maximum number of characters to count
3603
*
3604
* Return:
3605
* * >=0 - The length of @s__ign
3606
* * %-EFAULT - Cannot read @s__ign
3607
* * %-E2BIG - @s__ign is too large
3608
* * %-ERANGE - @s__ign is outside of kernel address space
3609
*/
3610
__bpf_kfunc int bpf_strnlen(const char *s__ign, size_t count)
3611
{
3612
char c;
3613
int i;
3614
3615
if (!copy_from_kernel_nofault_allowed(s__ign, 1))
3616
return -ERANGE;
3617
3618
guard(pagefault)();
3619
for (i = 0; i < count && i < XATTR_SIZE_MAX; i++) {
3620
__get_kernel_nofault(&c, s__ign, char, err_out);
3621
if (c == '\0')
3622
return i;
3623
s__ign++;
3624
}
3625
return i == XATTR_SIZE_MAX ? -E2BIG : i;
3626
err_out:
3627
return -EFAULT;
3628
}
3629
3630
/**
3631
* bpf_strlen - Calculate the length of a string
3632
* @s__ign: The string
3633
*
3634
* Return:
3635
* * >=0 - The length of @s__ign
3636
* * %-EFAULT - Cannot read @s__ign
3637
* * %-E2BIG - @s__ign is too large
3638
* * %-ERANGE - @s__ign is outside of kernel address space
3639
*/
3640
__bpf_kfunc int bpf_strlen(const char *s__ign)
3641
{
3642
return bpf_strnlen(s__ign, XATTR_SIZE_MAX);
3643
}
3644
3645
/**
3646
* bpf_strspn - Calculate the length of the initial substring of @s__ign which
3647
* only contains letters in @accept__ign
3648
* @s__ign: The string to be searched
3649
* @accept__ign: The string to search for
3650
*
3651
* Return:
3652
* * >=0 - The length of the initial substring of @s__ign which only
3653
* contains letters from @accept__ign
3654
* * %-EFAULT - Cannot read one of the strings
3655
* * %-E2BIG - One of the strings is too large
3656
* * %-ERANGE - One of the strings is outside of kernel address space
3657
*/
3658
__bpf_kfunc int bpf_strspn(const char *s__ign, const char *accept__ign)
3659
{
3660
char cs, ca;
3661
int i, j;
3662
3663
if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3664
!copy_from_kernel_nofault_allowed(accept__ign, 1)) {
3665
return -ERANGE;
3666
}
3667
3668
guard(pagefault)();
3669
for (i = 0; i < XATTR_SIZE_MAX; i++) {
3670
__get_kernel_nofault(&cs, s__ign, char, err_out);
3671
if (cs == '\0')
3672
return i;
3673
for (j = 0; j < XATTR_SIZE_MAX; j++) {
3674
__get_kernel_nofault(&ca, accept__ign + j, char, err_out);
3675
if (cs == ca || ca == '\0')
3676
break;
3677
}
3678
if (j == XATTR_SIZE_MAX)
3679
return -E2BIG;
3680
if (ca == '\0')
3681
return i;
3682
s__ign++;
3683
}
3684
return -E2BIG;
3685
err_out:
3686
return -EFAULT;
3687
}
3688
3689
/**
3690
* bpf_strcspn - Calculate the length of the initial substring of @s__ign which
3691
* does not contain letters in @reject__ign
3692
* @s__ign: The string to be searched
3693
* @reject__ign: The string to search for
3694
*
3695
* Return:
3696
* * >=0 - The length of the initial substring of @s__ign which does not
3697
* contain letters from @reject__ign
3698
* * %-EFAULT - Cannot read one of the strings
3699
* * %-E2BIG - One of the strings is too large
3700
* * %-ERANGE - One of the strings is outside of kernel address space
3701
*/
3702
__bpf_kfunc int bpf_strcspn(const char *s__ign, const char *reject__ign)
3703
{
3704
char cs, cr;
3705
int i, j;
3706
3707
if (!copy_from_kernel_nofault_allowed(s__ign, 1) ||
3708
!copy_from_kernel_nofault_allowed(reject__ign, 1)) {
3709
return -ERANGE;
3710
}
3711
3712
guard(pagefault)();
3713
for (i = 0; i < XATTR_SIZE_MAX; i++) {
3714
__get_kernel_nofault(&cs, s__ign, char, err_out);
3715
if (cs == '\0')
3716
return i;
3717
for (j = 0; j < XATTR_SIZE_MAX; j++) {
3718
__get_kernel_nofault(&cr, reject__ign + j, char, err_out);
3719
if (cs == cr || cr == '\0')
3720
break;
3721
}
3722
if (j == XATTR_SIZE_MAX)
3723
return -E2BIG;
3724
if (cr != '\0')
3725
return i;
3726
s__ign++;
3727
}
3728
return -E2BIG;
3729
err_out:
3730
return -EFAULT;
3731
}
3732
3733
static int __bpf_strnstr(const char *s1, const char *s2, size_t len,
3734
bool ignore_case)
3735
{
3736
char c1, c2;
3737
int i, j;
3738
3739
if (!copy_from_kernel_nofault_allowed(s1, 1) ||
3740
!copy_from_kernel_nofault_allowed(s2, 1)) {
3741
return -ERANGE;
3742
}
3743
3744
guard(pagefault)();
3745
for (i = 0; i < XATTR_SIZE_MAX; i++) {
3746
for (j = 0; i + j <= len && j < XATTR_SIZE_MAX; j++) {
3747
__get_kernel_nofault(&c2, s2 + j, char, err_out);
3748
if (c2 == '\0')
3749
return i;
3750
/*
3751
* We allow reading an extra byte from s2 (note the
3752
* `i + j <= len` above) to cover the case when s2 is
3753
* a suffix of the first len chars of s1.
3754
*/
3755
if (i + j == len)
3756
break;
3757
__get_kernel_nofault(&c1, s1 + j, char, err_out);
3758
3759
if (ignore_case) {
3760
c1 = tolower(c1);
3761
c2 = tolower(c2);
3762
}
3763
3764
if (c1 == '\0')
3765
return -ENOENT;
3766
if (c1 != c2)
3767
break;
3768
}
3769
if (j == XATTR_SIZE_MAX)
3770
return -E2BIG;
3771
if (i + j == len)
3772
return -ENOENT;
3773
s1++;
3774
}
3775
return -E2BIG;
3776
err_out:
3777
return -EFAULT;
3778
}
3779
3780
/**
3781
* bpf_strstr - Find the first substring in a string
3782
* @s1__ign: The string to be searched
3783
* @s2__ign: The string to search for
3784
*
3785
* Return:
3786
* * >=0 - Index of the first character of the first occurrence of @s2__ign
3787
* within @s1__ign
3788
* * %-ENOENT - @s2__ign is not a substring of @s1__ign
3789
* * %-EFAULT - Cannot read one of the strings
3790
* * %-E2BIG - One of the strings is too large
3791
* * %-ERANGE - One of the strings is outside of kernel address space
3792
*/
3793
__bpf_kfunc int bpf_strstr(const char *s1__ign, const char *s2__ign)
3794
{
3795
return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, false);
3796
}
3797
3798
/**
3799
* bpf_strcasestr - Find the first substring in a string, ignoring the case of
3800
* the characters
3801
* @s1__ign: The string to be searched
3802
* @s2__ign: The string to search for
3803
*
3804
* Return:
3805
* * >=0 - Index of the first character of the first occurrence of @s2__ign
3806
* within @s1__ign
3807
* * %-ENOENT - @s2__ign is not a substring of @s1__ign
3808
* * %-EFAULT - Cannot read one of the strings
3809
* * %-E2BIG - One of the strings is too large
3810
* * %-ERANGE - One of the strings is outside of kernel address space
3811
*/
3812
__bpf_kfunc int bpf_strcasestr(const char *s1__ign, const char *s2__ign)
3813
{
3814
return __bpf_strnstr(s1__ign, s2__ign, XATTR_SIZE_MAX, true);
3815
}
3816
3817
/**
3818
* bpf_strnstr - Find the first substring in a length-limited string
3819
* @s1__ign: The string to be searched
3820
* @s2__ign: The string to search for
3821
* @len: the maximum number of characters to search
3822
*
3823
* Return:
3824
* * >=0 - Index of the first character of the first occurrence of @s2__ign
3825
* within the first @len characters of @s1__ign
3826
* * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3827
* * %-EFAULT - Cannot read one of the strings
3828
* * %-E2BIG - One of the strings is too large
3829
* * %-ERANGE - One of the strings is outside of kernel address space
3830
*/
3831
__bpf_kfunc int bpf_strnstr(const char *s1__ign, const char *s2__ign,
3832
size_t len)
3833
{
3834
return __bpf_strnstr(s1__ign, s2__ign, len, false);
3835
}
3836
3837
/**
3838
* bpf_strncasestr - Find the first substring in a length-limited string,
3839
* ignoring the case of the characters
3840
* @s1__ign: The string to be searched
3841
* @s2__ign: The string to search for
3842
* @len: the maximum number of characters to search
3843
*
3844
* Return:
3845
* * >=0 - Index of the first character of the first occurrence of @s2__ign
3846
* within the first @len characters of @s1__ign
3847
* * %-ENOENT - @s2__ign not found in the first @len characters of @s1__ign
3848
* * %-EFAULT - Cannot read one of the strings
3849
* * %-E2BIG - One of the strings is too large
3850
* * %-ERANGE - One of the strings is outside of kernel address space
3851
*/
3852
__bpf_kfunc int bpf_strncasestr(const char *s1__ign, const char *s2__ign,
3853
size_t len)
3854
{
3855
return __bpf_strnstr(s1__ign, s2__ign, len, true);
3856
}
3857
3858
#ifdef CONFIG_KEYS
3859
/**
3860
* bpf_lookup_user_key - lookup a key by its serial
3861
* @serial: key handle serial number
3862
* @flags: lookup-specific flags
3863
*
3864
* Search a key with a given *serial* and the provided *flags*.
3865
* If found, increment the reference count of the key by one, and
3866
* return it in the bpf_key structure.
3867
*
3868
* The bpf_key structure must be passed to bpf_key_put() when done
3869
* with it, so that the key reference count is decremented and the
3870
* bpf_key structure is freed.
3871
*
3872
* Permission checks are deferred to the time the key is used by
3873
* one of the available key-specific kfuncs.
3874
*
3875
* Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
3876
* special keyring (e.g. session keyring), if it doesn't yet exist.
3877
* Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
3878
* for the key construction, and to retrieve uninstantiated keys (keys
3879
* without data attached to them).
3880
*
3881
* Return: a bpf_key pointer with a valid key pointer if the key is found, a
3882
* NULL pointer otherwise.
3883
*/
3884
__bpf_kfunc struct bpf_key *bpf_lookup_user_key(s32 serial, u64 flags)
3885
{
3886
key_ref_t key_ref;
3887
struct bpf_key *bkey;
3888
3889
if (flags & ~KEY_LOOKUP_ALL)
3890
return NULL;
3891
3892
/*
3893
* Permission check is deferred until the key is used, as the
3894
* intent of the caller is unknown here.
3895
*/
3896
key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
3897
if (IS_ERR(key_ref))
3898
return NULL;
3899
3900
bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
3901
if (!bkey) {
3902
key_put(key_ref_to_ptr(key_ref));
3903
return NULL;
3904
}
3905
3906
bkey->key = key_ref_to_ptr(key_ref);
3907
bkey->has_ref = true;
3908
3909
return bkey;
3910
}
3911
3912
/**
3913
* bpf_lookup_system_key - lookup a key by a system-defined ID
3914
* @id: key ID
3915
*
3916
* Obtain a bpf_key structure with a key pointer set to the passed key ID.
3917
* The key pointer is marked as invalid, to prevent bpf_key_put() from
3918
* attempting to decrement the key reference count on that pointer. The key
3919
* pointer set in such way is currently understood only by
3920
* verify_pkcs7_signature().
3921
*
3922
* Set *id* to one of the values defined in include/linux/verification.h:
3923
* 0 for the primary keyring (immutable keyring of system keys);
3924
* VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
3925
* (where keys can be added only if they are vouched for by existing keys
3926
* in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
3927
* keyring (primarily used by the integrity subsystem to verify a kexec'ed
3928
* kerned image and, possibly, the initramfs signature).
3929
*
3930
* Return: a bpf_key pointer with an invalid key pointer set from the
3931
* pre-determined ID on success, a NULL pointer otherwise
3932
*/
3933
__bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
3934
{
3935
struct bpf_key *bkey;
3936
3937
if (system_keyring_id_check(id) < 0)
3938
return NULL;
3939
3940
bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
3941
if (!bkey)
3942
return NULL;
3943
3944
bkey->key = (struct key *)(unsigned long)id;
3945
bkey->has_ref = false;
3946
3947
return bkey;
3948
}
3949
3950
/**
3951
* bpf_key_put - decrement key reference count if key is valid and free bpf_key
3952
* @bkey: bpf_key structure
3953
*
3954
* Decrement the reference count of the key inside *bkey*, if the pointer
3955
* is valid, and free *bkey*.
3956
*/
3957
__bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
3958
{
3959
if (bkey->has_ref)
3960
key_put(bkey->key);
3961
3962
kfree(bkey);
3963
}
3964
3965
/**
3966
* bpf_verify_pkcs7_signature - verify a PKCS#7 signature
3967
* @data_p: data to verify
3968
* @sig_p: signature of the data
3969
* @trusted_keyring: keyring with keys trusted for signature verification
3970
*
3971
* Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
3972
* with keys in a keyring referenced by *trusted_keyring*.
3973
*
3974
* Return: 0 on success, a negative value on error.
3975
*/
3976
__bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
3977
struct bpf_dynptr *sig_p,
3978
struct bpf_key *trusted_keyring)
3979
{
3980
#ifdef CONFIG_SYSTEM_DATA_VERIFICATION
3981
struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
3982
struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
3983
const void *data, *sig;
3984
u32 data_len, sig_len;
3985
int ret;
3986
3987
if (trusted_keyring->has_ref) {
3988
/*
3989
* Do the permission check deferred in bpf_lookup_user_key().
3990
* See bpf_lookup_user_key() for more details.
3991
*
3992
* A call to key_task_permission() here would be redundant, as
3993
* it is already done by keyring_search() called by
3994
* find_asymmetric_key().
3995
*/
3996
ret = key_validate(trusted_keyring->key);
3997
if (ret < 0)
3998
return ret;
3999
}
4000
4001
data_len = __bpf_dynptr_size(data_ptr);
4002
data = __bpf_dynptr_data(data_ptr, data_len);
4003
sig_len = __bpf_dynptr_size(sig_ptr);
4004
sig = __bpf_dynptr_data(sig_ptr, sig_len);
4005
4006
return verify_pkcs7_signature(data, data_len, sig, sig_len,
4007
trusted_keyring->key,
4008
VERIFYING_BPF_SIGNATURE, NULL,
4009
NULL);
4010
#else
4011
return -EOPNOTSUPP;
4012
#endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
4013
}
4014
#endif /* CONFIG_KEYS */
4015
4016
typedef int (*bpf_task_work_callback_t)(struct bpf_map *map, void *key, void *value);
4017
4018
enum bpf_task_work_state {
4019
/* bpf_task_work is ready to be used */
4020
BPF_TW_STANDBY = 0,
4021
/* irq work scheduling in progress */
4022
BPF_TW_PENDING,
4023
/* task work scheduling in progress */
4024
BPF_TW_SCHEDULING,
4025
/* task work is scheduled successfully */
4026
BPF_TW_SCHEDULED,
4027
/* callback is running */
4028
BPF_TW_RUNNING,
4029
/* associated BPF map value is deleted */
4030
BPF_TW_FREED,
4031
};
4032
4033
struct bpf_task_work_ctx {
4034
enum bpf_task_work_state state;
4035
refcount_t refcnt;
4036
struct callback_head work;
4037
struct irq_work irq_work;
4038
/* bpf_prog that schedules task work */
4039
struct bpf_prog *prog;
4040
/* task for which callback is scheduled */
4041
struct task_struct *task;
4042
/* the map and map value associated with this context */
4043
struct bpf_map *map;
4044
void *map_val;
4045
enum task_work_notify_mode mode;
4046
bpf_task_work_callback_t callback_fn;
4047
struct rcu_head rcu;
4048
} __aligned(8);
4049
4050
/* Actual type for struct bpf_task_work */
4051
struct bpf_task_work_kern {
4052
struct bpf_task_work_ctx *ctx;
4053
};
4054
4055
static void bpf_task_work_ctx_reset(struct bpf_task_work_ctx *ctx)
4056
{
4057
if (ctx->prog) {
4058
bpf_prog_put(ctx->prog);
4059
ctx->prog = NULL;
4060
}
4061
if (ctx->task) {
4062
bpf_task_release(ctx->task);
4063
ctx->task = NULL;
4064
}
4065
}
4066
4067
static bool bpf_task_work_ctx_tryget(struct bpf_task_work_ctx *ctx)
4068
{
4069
return refcount_inc_not_zero(&ctx->refcnt);
4070
}
4071
4072
static void bpf_task_work_ctx_put(struct bpf_task_work_ctx *ctx)
4073
{
4074
if (!refcount_dec_and_test(&ctx->refcnt))
4075
return;
4076
4077
bpf_task_work_ctx_reset(ctx);
4078
4079
/* bpf_mem_free expects migration to be disabled */
4080
migrate_disable();
4081
bpf_mem_free(&bpf_global_ma, ctx);
4082
migrate_enable();
4083
}
4084
4085
static void bpf_task_work_cancel(struct bpf_task_work_ctx *ctx)
4086
{
4087
/*
4088
* Scheduled task_work callback holds ctx ref, so if we successfully
4089
* cancelled, we put that ref on callback's behalf. If we couldn't
4090
* cancel, callback will inevitably run or has already completed
4091
* running, and it would have taken care of its ctx ref itself.
4092
*/
4093
if (task_work_cancel(ctx->task, &ctx->work))
4094
bpf_task_work_ctx_put(ctx);
4095
}
4096
4097
static void bpf_task_work_callback(struct callback_head *cb)
4098
{
4099
struct bpf_task_work_ctx *ctx = container_of(cb, struct bpf_task_work_ctx, work);
4100
enum bpf_task_work_state state;
4101
u32 idx;
4102
void *key;
4103
4104
/* Read lock is needed to protect ctx and map key/value access */
4105
guard(rcu_tasks_trace)();
4106
/*
4107
* This callback may start running before bpf_task_work_irq() switched to
4108
* SCHEDULED state, so handle both transition variants SCHEDULING|SCHEDULED -> RUNNING.
4109
*/
4110
state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_RUNNING);
4111
if (state == BPF_TW_SCHEDULED)
4112
state = cmpxchg(&ctx->state, BPF_TW_SCHEDULED, BPF_TW_RUNNING);
4113
if (state == BPF_TW_FREED) {
4114
bpf_task_work_ctx_put(ctx);
4115
return;
4116
}
4117
4118
key = (void *)map_key_from_value(ctx->map, ctx->map_val, &idx);
4119
4120
migrate_disable();
4121
ctx->callback_fn(ctx->map, key, ctx->map_val);
4122
migrate_enable();
4123
4124
bpf_task_work_ctx_reset(ctx);
4125
(void)cmpxchg(&ctx->state, BPF_TW_RUNNING, BPF_TW_STANDBY);
4126
4127
bpf_task_work_ctx_put(ctx);
4128
}
4129
4130
static void bpf_task_work_irq(struct irq_work *irq_work)
4131
{
4132
struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work);
4133
enum bpf_task_work_state state;
4134
int err;
4135
4136
guard(rcu_tasks_trace)();
4137
4138
if (cmpxchg(&ctx->state, BPF_TW_PENDING, BPF_TW_SCHEDULING) != BPF_TW_PENDING) {
4139
bpf_task_work_ctx_put(ctx);
4140
return;
4141
}
4142
4143
err = task_work_add(ctx->task, &ctx->work, ctx->mode);
4144
if (err) {
4145
bpf_task_work_ctx_reset(ctx);
4146
/*
4147
* try to switch back to STANDBY for another task_work reuse, but we might have
4148
* gone to FREED already, which is fine as we already cleaned up after ourselves
4149
*/
4150
(void)cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_STANDBY);
4151
bpf_task_work_ctx_put(ctx);
4152
return;
4153
}
4154
4155
/*
4156
* It's technically possible for just scheduled task_work callback to
4157
* complete running by now, going SCHEDULING -> RUNNING and then
4158
* dropping its ctx refcount. Instead of capturing extra ref just to
4159
* protected below ctx->state access, we rely on RCU protection to
4160
* perform below SCHEDULING -> SCHEDULED attempt.
4161
*/
4162
state = cmpxchg(&ctx->state, BPF_TW_SCHEDULING, BPF_TW_SCHEDULED);
4163
if (state == BPF_TW_FREED)
4164
bpf_task_work_cancel(ctx); /* clean up if we switched into FREED state */
4165
}
4166
4167
static struct bpf_task_work_ctx *bpf_task_work_fetch_ctx(struct bpf_task_work *tw,
4168
struct bpf_map *map)
4169
{
4170
struct bpf_task_work_kern *twk = (void *)tw;
4171
struct bpf_task_work_ctx *ctx, *old_ctx;
4172
4173
ctx = READ_ONCE(twk->ctx);
4174
if (ctx)
4175
return ctx;
4176
4177
ctx = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_task_work_ctx));
4178
if (!ctx)
4179
return ERR_PTR(-ENOMEM);
4180
4181
memset(ctx, 0, sizeof(*ctx));
4182
refcount_set(&ctx->refcnt, 1); /* map's own ref */
4183
ctx->state = BPF_TW_STANDBY;
4184
4185
old_ctx = cmpxchg(&twk->ctx, NULL, ctx);
4186
if (old_ctx) {
4187
/*
4188
* tw->ctx is set by concurrent BPF program, release allocated
4189
* memory and try to reuse already set context.
4190
*/
4191
bpf_mem_free(&bpf_global_ma, ctx);
4192
return old_ctx;
4193
}
4194
4195
return ctx; /* Success */
4196
}
4197
4198
static struct bpf_task_work_ctx *bpf_task_work_acquire_ctx(struct bpf_task_work *tw,
4199
struct bpf_map *map)
4200
{
4201
struct bpf_task_work_ctx *ctx;
4202
4203
ctx = bpf_task_work_fetch_ctx(tw, map);
4204
if (IS_ERR(ctx))
4205
return ctx;
4206
4207
/* try to get ref for task_work callback to hold */
4208
if (!bpf_task_work_ctx_tryget(ctx))
4209
return ERR_PTR(-EBUSY);
4210
4211
if (cmpxchg(&ctx->state, BPF_TW_STANDBY, BPF_TW_PENDING) != BPF_TW_STANDBY) {
4212
/* lost acquiring race or map_release_uref() stole it from us, put ref and bail */
4213
bpf_task_work_ctx_put(ctx);
4214
return ERR_PTR(-EBUSY);
4215
}
4216
4217
/*
4218
* If no process or bpffs is holding a reference to the map, no new callbacks should be
4219
* scheduled. This does not address any race or correctness issue, but rather is a policy
4220
* choice: dropping user references should stop everything.
4221
*/
4222
if (!atomic64_read(&map->usercnt)) {
4223
/* drop ref we just got for task_work callback itself */
4224
bpf_task_work_ctx_put(ctx);
4225
/* transfer map's ref into cancel_and_free() */
4226
bpf_task_work_cancel_and_free(tw);
4227
return ERR_PTR(-EBUSY);
4228
}
4229
4230
return ctx;
4231
}
4232
4233
static int bpf_task_work_schedule(struct task_struct *task, struct bpf_task_work *tw,
4234
struct bpf_map *map, bpf_task_work_callback_t callback_fn,
4235
struct bpf_prog_aux *aux, enum task_work_notify_mode mode)
4236
{
4237
struct bpf_prog *prog;
4238
struct bpf_task_work_ctx *ctx;
4239
int err;
4240
4241
BTF_TYPE_EMIT(struct bpf_task_work);
4242
4243
prog = bpf_prog_inc_not_zero(aux->prog);
4244
if (IS_ERR(prog))
4245
return -EBADF;
4246
task = bpf_task_acquire(task);
4247
if (!task) {
4248
err = -EBADF;
4249
goto release_prog;
4250
}
4251
4252
ctx = bpf_task_work_acquire_ctx(tw, map);
4253
if (IS_ERR(ctx)) {
4254
err = PTR_ERR(ctx);
4255
goto release_all;
4256
}
4257
4258
ctx->task = task;
4259
ctx->callback_fn = callback_fn;
4260
ctx->prog = prog;
4261
ctx->mode = mode;
4262
ctx->map = map;
4263
ctx->map_val = (void *)tw - map->record->task_work_off;
4264
init_task_work(&ctx->work, bpf_task_work_callback);
4265
init_irq_work(&ctx->irq_work, bpf_task_work_irq);
4266
4267
irq_work_queue(&ctx->irq_work);
4268
return 0;
4269
4270
release_all:
4271
bpf_task_release(task);
4272
release_prog:
4273
bpf_prog_put(prog);
4274
return err;
4275
}
4276
4277
/**
4278
* bpf_task_work_schedule_signal_impl - Schedule BPF callback using task_work_add with TWA_SIGNAL
4279
* mode
4280
* @task: Task struct for which callback should be scheduled
4281
* @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping
4282
* @map__map: bpf_map that embeds struct bpf_task_work in the values
4283
* @callback: pointer to BPF subprogram to call
4284
* @aux__prog: user should pass NULL
4285
*
4286
* Return: 0 if task work has been scheduled successfully, negative error code otherwise
4287
*/
4288
__bpf_kfunc int bpf_task_work_schedule_signal_impl(struct task_struct *task,
4289
struct bpf_task_work *tw, void *map__map,
4290
bpf_task_work_callback_t callback,
4291
void *aux__prog)
4292
{
4293
return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_SIGNAL);
4294
}
4295
4296
/**
4297
* bpf_task_work_schedule_resume_impl - Schedule BPF callback using task_work_add with TWA_RESUME
4298
* mode
4299
* @task: Task struct for which callback should be scheduled
4300
* @tw: Pointer to struct bpf_task_work in BPF map value for internal bookkeeping
4301
* @map__map: bpf_map that embeds struct bpf_task_work in the values
4302
* @callback: pointer to BPF subprogram to call
4303
* @aux__prog: user should pass NULL
4304
*
4305
* Return: 0 if task work has been scheduled successfully, negative error code otherwise
4306
*/
4307
__bpf_kfunc int bpf_task_work_schedule_resume_impl(struct task_struct *task,
4308
struct bpf_task_work *tw, void *map__map,
4309
bpf_task_work_callback_t callback,
4310
void *aux__prog)
4311
{
4312
return bpf_task_work_schedule(task, tw, map__map, callback, aux__prog, TWA_RESUME);
4313
}
4314
4315
static int make_file_dynptr(struct file *file, u32 flags, bool may_sleep,
4316
struct bpf_dynptr_kern *ptr)
4317
{
4318
struct bpf_dynptr_file_impl *state;
4319
4320
/* flags is currently unsupported */
4321
if (flags) {
4322
bpf_dynptr_set_null(ptr);
4323
return -EINVAL;
4324
}
4325
4326
state = bpf_mem_alloc(&bpf_global_ma, sizeof(struct bpf_dynptr_file_impl));
4327
if (!state) {
4328
bpf_dynptr_set_null(ptr);
4329
return -ENOMEM;
4330
}
4331
state->offset = 0;
4332
state->size = U64_MAX; /* Don't restrict size, as file may change anyways */
4333
freader_init_from_file(&state->freader, NULL, 0, file, may_sleep);
4334
bpf_dynptr_init(ptr, state, BPF_DYNPTR_TYPE_FILE, 0, 0);
4335
bpf_dynptr_set_rdonly(ptr);
4336
return 0;
4337
}
4338
4339
__bpf_kfunc int bpf_dynptr_from_file(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit)
4340
{
4341
return make_file_dynptr(file, flags, false, (struct bpf_dynptr_kern *)ptr__uninit);
4342
}
4343
4344
int bpf_dynptr_from_file_sleepable(struct file *file, u32 flags, struct bpf_dynptr *ptr__uninit)
4345
{
4346
return make_file_dynptr(file, flags, true, (struct bpf_dynptr_kern *)ptr__uninit);
4347
}
4348
4349
__bpf_kfunc int bpf_dynptr_file_discard(struct bpf_dynptr *dynptr)
4350
{
4351
struct bpf_dynptr_kern *ptr = (struct bpf_dynptr_kern *)dynptr;
4352
struct bpf_dynptr_file_impl *df = ptr->data;
4353
4354
if (!df)
4355
return 0;
4356
4357
freader_cleanup(&df->freader);
4358
bpf_mem_free(&bpf_global_ma, df);
4359
bpf_dynptr_set_null(ptr);
4360
return 0;
4361
}
4362
4363
__bpf_kfunc_end_defs();
4364
4365
static void bpf_task_work_cancel_scheduled(struct irq_work *irq_work)
4366
{
4367
struct bpf_task_work_ctx *ctx = container_of(irq_work, struct bpf_task_work_ctx, irq_work);
4368
4369
bpf_task_work_cancel(ctx); /* this might put task_work callback's ref */
4370
bpf_task_work_ctx_put(ctx); /* and here we put map's own ref that was transferred to us */
4371
}
4372
4373
void bpf_task_work_cancel_and_free(void *val)
4374
{
4375
struct bpf_task_work_kern *twk = val;
4376
struct bpf_task_work_ctx *ctx;
4377
enum bpf_task_work_state state;
4378
4379
ctx = xchg(&twk->ctx, NULL);
4380
if (!ctx)
4381
return;
4382
4383
state = xchg(&ctx->state, BPF_TW_FREED);
4384
if (state == BPF_TW_SCHEDULED) {
4385
/* run in irq_work to avoid locks in NMI */
4386
init_irq_work(&ctx->irq_work, bpf_task_work_cancel_scheduled);
4387
irq_work_queue(&ctx->irq_work);
4388
return;
4389
}
4390
4391
bpf_task_work_ctx_put(ctx); /* put bpf map's ref */
4392
}
4393
4394
BTF_KFUNCS_START(generic_btf_ids)
4395
#ifdef CONFIG_CRASH_DUMP
4396
BTF_ID_FLAGS(func, crash_kexec, KF_DESTRUCTIVE)
4397
#endif
4398
BTF_ID_FLAGS(func, bpf_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
4399
BTF_ID_FLAGS(func, bpf_percpu_obj_new_impl, KF_ACQUIRE | KF_RET_NULL)
4400
BTF_ID_FLAGS(func, bpf_obj_drop_impl, KF_RELEASE)
4401
BTF_ID_FLAGS(func, bpf_percpu_obj_drop_impl, KF_RELEASE)
4402
BTF_ID_FLAGS(func, bpf_refcount_acquire_impl, KF_ACQUIRE | KF_RET_NULL | KF_RCU)
4403
BTF_ID_FLAGS(func, bpf_list_push_front_impl)
4404
BTF_ID_FLAGS(func, bpf_list_push_back_impl)
4405
BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
4406
BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
4407
BTF_ID_FLAGS(func, bpf_list_front, KF_RET_NULL)
4408
BTF_ID_FLAGS(func, bpf_list_back, KF_RET_NULL)
4409
BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4410
BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
4411
BTF_ID_FLAGS(func, bpf_rbtree_remove, KF_ACQUIRE | KF_RET_NULL)
4412
BTF_ID_FLAGS(func, bpf_rbtree_add_impl)
4413
BTF_ID_FLAGS(func, bpf_rbtree_first, KF_RET_NULL)
4414
BTF_ID_FLAGS(func, bpf_rbtree_root, KF_RET_NULL)
4415
BTF_ID_FLAGS(func, bpf_rbtree_left, KF_RET_NULL)
4416
BTF_ID_FLAGS(func, bpf_rbtree_right, KF_RET_NULL)
4417
4418
#ifdef CONFIG_CGROUPS
4419
BTF_ID_FLAGS(func, bpf_cgroup_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4420
BTF_ID_FLAGS(func, bpf_cgroup_release, KF_RELEASE)
4421
BTF_ID_FLAGS(func, bpf_cgroup_ancestor, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4422
BTF_ID_FLAGS(func, bpf_cgroup_from_id, KF_ACQUIRE | KF_RET_NULL)
4423
BTF_ID_FLAGS(func, bpf_task_under_cgroup, KF_RCU)
4424
BTF_ID_FLAGS(func, bpf_task_get_cgroup1, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
4425
#endif
4426
BTF_ID_FLAGS(func, bpf_task_from_pid, KF_ACQUIRE | KF_RET_NULL)
4427
BTF_ID_FLAGS(func, bpf_task_from_vpid, KF_ACQUIRE | KF_RET_NULL)
4428
BTF_ID_FLAGS(func, bpf_throw)
4429
#ifdef CONFIG_BPF_EVENTS
4430
BTF_ID_FLAGS(func, bpf_send_signal_task, KF_TRUSTED_ARGS)
4431
#endif
4432
#ifdef CONFIG_KEYS
4433
BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
4434
BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
4435
BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
4436
#ifdef CONFIG_SYSTEM_DATA_VERIFICATION
4437
BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
4438
#endif
4439
#endif
4440
BTF_KFUNCS_END(generic_btf_ids)
4441
4442
static const struct btf_kfunc_id_set generic_kfunc_set = {
4443
.owner = THIS_MODULE,
4444
.set = &generic_btf_ids,
4445
};
4446
4447
4448
BTF_ID_LIST(generic_dtor_ids)
4449
BTF_ID(struct, task_struct)
4450
BTF_ID(func, bpf_task_release_dtor)
4451
#ifdef CONFIG_CGROUPS
4452
BTF_ID(struct, cgroup)
4453
BTF_ID(func, bpf_cgroup_release_dtor)
4454
#endif
4455
4456
BTF_KFUNCS_START(common_btf_ids)
4457
BTF_ID_FLAGS(func, bpf_cast_to_kern_ctx, KF_FASTCALL)
4458
BTF_ID_FLAGS(func, bpf_rdonly_cast, KF_FASTCALL)
4459
BTF_ID_FLAGS(func, bpf_rcu_read_lock)
4460
BTF_ID_FLAGS(func, bpf_rcu_read_unlock)
4461
BTF_ID_FLAGS(func, bpf_dynptr_slice, KF_RET_NULL)
4462
BTF_ID_FLAGS(func, bpf_dynptr_slice_rdwr, KF_RET_NULL)
4463
BTF_ID_FLAGS(func, bpf_iter_num_new, KF_ITER_NEW)
4464
BTF_ID_FLAGS(func, bpf_iter_num_next, KF_ITER_NEXT | KF_RET_NULL)
4465
BTF_ID_FLAGS(func, bpf_iter_num_destroy, KF_ITER_DESTROY)
4466
BTF_ID_FLAGS(func, bpf_iter_task_vma_new, KF_ITER_NEW | KF_RCU)
4467
BTF_ID_FLAGS(func, bpf_iter_task_vma_next, KF_ITER_NEXT | KF_RET_NULL)
4468
BTF_ID_FLAGS(func, bpf_iter_task_vma_destroy, KF_ITER_DESTROY)
4469
#ifdef CONFIG_CGROUPS
4470
BTF_ID_FLAGS(func, bpf_iter_css_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS)
4471
BTF_ID_FLAGS(func, bpf_iter_css_task_next, KF_ITER_NEXT | KF_RET_NULL)
4472
BTF_ID_FLAGS(func, bpf_iter_css_task_destroy, KF_ITER_DESTROY)
4473
BTF_ID_FLAGS(func, bpf_iter_css_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
4474
BTF_ID_FLAGS(func, bpf_iter_css_next, KF_ITER_NEXT | KF_RET_NULL)
4475
BTF_ID_FLAGS(func, bpf_iter_css_destroy, KF_ITER_DESTROY)
4476
#endif
4477
BTF_ID_FLAGS(func, bpf_iter_task_new, KF_ITER_NEW | KF_TRUSTED_ARGS | KF_RCU_PROTECTED)
4478
BTF_ID_FLAGS(func, bpf_iter_task_next, KF_ITER_NEXT | KF_RET_NULL)
4479
BTF_ID_FLAGS(func, bpf_iter_task_destroy, KF_ITER_DESTROY)
4480
BTF_ID_FLAGS(func, bpf_dynptr_adjust)
4481
BTF_ID_FLAGS(func, bpf_dynptr_is_null)
4482
BTF_ID_FLAGS(func, bpf_dynptr_is_rdonly)
4483
BTF_ID_FLAGS(func, bpf_dynptr_size)
4484
BTF_ID_FLAGS(func, bpf_dynptr_clone)
4485
BTF_ID_FLAGS(func, bpf_dynptr_copy)
4486
BTF_ID_FLAGS(func, bpf_dynptr_memset)
4487
#ifdef CONFIG_NET
4488
BTF_ID_FLAGS(func, bpf_modify_return_test_tp)
4489
#endif
4490
BTF_ID_FLAGS(func, bpf_wq_init)
4491
BTF_ID_FLAGS(func, bpf_wq_set_callback_impl)
4492
BTF_ID_FLAGS(func, bpf_wq_start)
4493
BTF_ID_FLAGS(func, bpf_preempt_disable)
4494
BTF_ID_FLAGS(func, bpf_preempt_enable)
4495
BTF_ID_FLAGS(func, bpf_iter_bits_new, KF_ITER_NEW)
4496
BTF_ID_FLAGS(func, bpf_iter_bits_next, KF_ITER_NEXT | KF_RET_NULL)
4497
BTF_ID_FLAGS(func, bpf_iter_bits_destroy, KF_ITER_DESTROY)
4498
BTF_ID_FLAGS(func, bpf_copy_from_user_str, KF_SLEEPABLE)
4499
BTF_ID_FLAGS(func, bpf_copy_from_user_task_str, KF_SLEEPABLE)
4500
BTF_ID_FLAGS(func, bpf_get_kmem_cache)
4501
BTF_ID_FLAGS(func, bpf_iter_kmem_cache_new, KF_ITER_NEW | KF_SLEEPABLE)
4502
BTF_ID_FLAGS(func, bpf_iter_kmem_cache_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
4503
BTF_ID_FLAGS(func, bpf_iter_kmem_cache_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
4504
BTF_ID_FLAGS(func, bpf_local_irq_save)
4505
BTF_ID_FLAGS(func, bpf_local_irq_restore)
4506
#ifdef CONFIG_BPF_EVENTS
4507
BTF_ID_FLAGS(func, bpf_probe_read_user_dynptr)
4508
BTF_ID_FLAGS(func, bpf_probe_read_kernel_dynptr)
4509
BTF_ID_FLAGS(func, bpf_probe_read_user_str_dynptr)
4510
BTF_ID_FLAGS(func, bpf_probe_read_kernel_str_dynptr)
4511
BTF_ID_FLAGS(func, bpf_copy_from_user_dynptr, KF_SLEEPABLE)
4512
BTF_ID_FLAGS(func, bpf_copy_from_user_str_dynptr, KF_SLEEPABLE)
4513
BTF_ID_FLAGS(func, bpf_copy_from_user_task_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
4514
BTF_ID_FLAGS(func, bpf_copy_from_user_task_str_dynptr, KF_SLEEPABLE | KF_TRUSTED_ARGS)
4515
#endif
4516
#ifdef CONFIG_DMA_SHARED_BUFFER
4517
BTF_ID_FLAGS(func, bpf_iter_dmabuf_new, KF_ITER_NEW | KF_SLEEPABLE)
4518
BTF_ID_FLAGS(func, bpf_iter_dmabuf_next, KF_ITER_NEXT | KF_RET_NULL | KF_SLEEPABLE)
4519
BTF_ID_FLAGS(func, bpf_iter_dmabuf_destroy, KF_ITER_DESTROY | KF_SLEEPABLE)
4520
#endif
4521
BTF_ID_FLAGS(func, __bpf_trap)
4522
BTF_ID_FLAGS(func, bpf_strcmp);
4523
BTF_ID_FLAGS(func, bpf_strcasecmp);
4524
BTF_ID_FLAGS(func, bpf_strchr);
4525
BTF_ID_FLAGS(func, bpf_strchrnul);
4526
BTF_ID_FLAGS(func, bpf_strnchr);
4527
BTF_ID_FLAGS(func, bpf_strrchr);
4528
BTF_ID_FLAGS(func, bpf_strlen);
4529
BTF_ID_FLAGS(func, bpf_strnlen);
4530
BTF_ID_FLAGS(func, bpf_strspn);
4531
BTF_ID_FLAGS(func, bpf_strcspn);
4532
BTF_ID_FLAGS(func, bpf_strstr);
4533
BTF_ID_FLAGS(func, bpf_strcasestr);
4534
BTF_ID_FLAGS(func, bpf_strnstr);
4535
BTF_ID_FLAGS(func, bpf_strncasestr);
4536
#if defined(CONFIG_BPF_LSM) && defined(CONFIG_CGROUPS)
4537
BTF_ID_FLAGS(func, bpf_cgroup_read_xattr, KF_RCU)
4538
#endif
4539
BTF_ID_FLAGS(func, bpf_stream_vprintk_impl, KF_TRUSTED_ARGS)
4540
BTF_ID_FLAGS(func, bpf_task_work_schedule_signal_impl, KF_TRUSTED_ARGS)
4541
BTF_ID_FLAGS(func, bpf_task_work_schedule_resume_impl, KF_TRUSTED_ARGS)
4542
BTF_ID_FLAGS(func, bpf_dynptr_from_file, KF_TRUSTED_ARGS)
4543
BTF_ID_FLAGS(func, bpf_dynptr_file_discard)
4544
BTF_KFUNCS_END(common_btf_ids)
4545
4546
static const struct btf_kfunc_id_set common_kfunc_set = {
4547
.owner = THIS_MODULE,
4548
.set = &common_btf_ids,
4549
};
4550
4551
static int __init kfunc_init(void)
4552
{
4553
int ret;
4554
const struct btf_id_dtor_kfunc generic_dtors[] = {
4555
{
4556
.btf_id = generic_dtor_ids[0],
4557
.kfunc_btf_id = generic_dtor_ids[1]
4558
},
4559
#ifdef CONFIG_CGROUPS
4560
{
4561
.btf_id = generic_dtor_ids[2],
4562
.kfunc_btf_id = generic_dtor_ids[3]
4563
},
4564
#endif
4565
};
4566
4567
ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &generic_kfunc_set);
4568
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SCHED_CLS, &generic_kfunc_set);
4569
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &generic_kfunc_set);
4570
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &generic_kfunc_set);
4571
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &generic_kfunc_set);
4572
ret = ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_CGROUP_SKB, &generic_kfunc_set);
4573
ret = ret ?: register_btf_id_dtor_kfuncs(generic_dtors,
4574
ARRAY_SIZE(generic_dtors),
4575
THIS_MODULE);
4576
return ret ?: register_btf_kfunc_id_set(BPF_PROG_TYPE_UNSPEC, &common_kfunc_set);
4577
}
4578
4579
late_initcall(kfunc_init);
4580
4581
/* Get a pointer to dynptr data up to len bytes for read only access. If
4582
* the dynptr doesn't have continuous data up to len bytes, return NULL.
4583
*/
4584
const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u64 len)
4585
{
4586
const struct bpf_dynptr *p = (struct bpf_dynptr *)ptr;
4587
4588
return bpf_dynptr_slice(p, 0, NULL, len);
4589
}
4590
4591
/* Get a pointer to dynptr data up to len bytes for read write access. If
4592
* the dynptr doesn't have continuous data up to len bytes, or the dynptr
4593
* is read only, return NULL.
4594
*/
4595
void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u64 len)
4596
{
4597
if (__bpf_dynptr_is_rdonly(ptr))
4598
return NULL;
4599
return (void *)__bpf_dynptr_data(ptr, len);
4600
}
4601
4602
void bpf_map_free_internal_structs(struct bpf_map *map, void *val)
4603
{
4604
if (btf_record_has_field(map->record, BPF_TIMER))
4605
bpf_obj_free_timer(map->record, val);
4606
if (btf_record_has_field(map->record, BPF_WORKQUEUE))
4607
bpf_obj_free_workqueue(map->record, val);
4608
if (btf_record_has_field(map->record, BPF_TASK_WORK))
4609
bpf_obj_free_task_work(map->record, val);
4610
}
4611
4612