Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/bpf/ringbuf.c
25922 views
1
#include <linux/bpf.h>
2
#include <linux/btf.h>
3
#include <linux/err.h>
4
#include <linux/irq_work.h>
5
#include <linux/slab.h>
6
#include <linux/filter.h>
7
#include <linux/mm.h>
8
#include <linux/vmalloc.h>
9
#include <linux/wait.h>
10
#include <linux/poll.h>
11
#include <linux/kmemleak.h>
12
#include <uapi/linux/btf.h>
13
#include <linux/btf_ids.h>
14
#include <asm/rqspinlock.h>
15
16
#define RINGBUF_CREATE_FLAG_MASK (BPF_F_NUMA_NODE)
17
18
/* non-mmap()'able part of bpf_ringbuf (everything up to consumer page) */
19
#define RINGBUF_PGOFF \
20
(offsetof(struct bpf_ringbuf, consumer_pos) >> PAGE_SHIFT)
21
/* consumer page and producer page */
22
#define RINGBUF_POS_PAGES 2
23
#define RINGBUF_NR_META_PAGES (RINGBUF_PGOFF + RINGBUF_POS_PAGES)
24
25
#define RINGBUF_MAX_RECORD_SZ (UINT_MAX/4)
26
27
struct bpf_ringbuf {
28
wait_queue_head_t waitq;
29
struct irq_work work;
30
u64 mask;
31
struct page **pages;
32
int nr_pages;
33
rqspinlock_t spinlock ____cacheline_aligned_in_smp;
34
/* For user-space producer ring buffers, an atomic_t busy bit is used
35
* to synchronize access to the ring buffers in the kernel, rather than
36
* the spinlock that is used for kernel-producer ring buffers. This is
37
* done because the ring buffer must hold a lock across a BPF program's
38
* callback:
39
*
40
* __bpf_user_ringbuf_peek() // lock acquired
41
* -> program callback_fn()
42
* -> __bpf_user_ringbuf_sample_release() // lock released
43
*
44
* It is unsafe and incorrect to hold an IRQ spinlock across what could
45
* be a long execution window, so we instead simply disallow concurrent
46
* access to the ring buffer by kernel consumers, and return -EBUSY from
47
* __bpf_user_ringbuf_peek() if the busy bit is held by another task.
48
*/
49
atomic_t busy ____cacheline_aligned_in_smp;
50
/* Consumer and producer counters are put into separate pages to
51
* allow each position to be mapped with different permissions.
52
* This prevents a user-space application from modifying the
53
* position and ruining in-kernel tracking. The permissions of the
54
* pages depend on who is producing samples: user-space or the
55
* kernel. Note that the pending counter is placed in the same
56
* page as the producer, so that it shares the same cache line.
57
*
58
* Kernel-producer
59
* ---------------
60
* The producer position and data pages are mapped as r/o in
61
* userspace. For this approach, bits in the header of samples are
62
* used to signal to user-space, and to other producers, whether a
63
* sample is currently being written.
64
*
65
* User-space producer
66
* -------------------
67
* Only the page containing the consumer position is mapped r/o in
68
* user-space. User-space producers also use bits of the header to
69
* communicate to the kernel, but the kernel must carefully check and
70
* validate each sample to ensure that they're correctly formatted, and
71
* fully contained within the ring buffer.
72
*/
73
unsigned long consumer_pos __aligned(PAGE_SIZE);
74
unsigned long producer_pos __aligned(PAGE_SIZE);
75
unsigned long pending_pos;
76
char data[] __aligned(PAGE_SIZE);
77
};
78
79
struct bpf_ringbuf_map {
80
struct bpf_map map;
81
struct bpf_ringbuf *rb;
82
};
83
84
/* 8-byte ring buffer record header structure */
85
struct bpf_ringbuf_hdr {
86
u32 len;
87
u32 pg_off;
88
};
89
90
static struct bpf_ringbuf *bpf_ringbuf_area_alloc(size_t data_sz, int numa_node)
91
{
92
const gfp_t flags = GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL |
93
__GFP_NOWARN | __GFP_ZERO;
94
int nr_meta_pages = RINGBUF_NR_META_PAGES;
95
int nr_data_pages = data_sz >> PAGE_SHIFT;
96
int nr_pages = nr_meta_pages + nr_data_pages;
97
struct page **pages, *page;
98
struct bpf_ringbuf *rb;
99
size_t array_size;
100
int i;
101
102
/* Each data page is mapped twice to allow "virtual"
103
* continuous read of samples wrapping around the end of ring
104
* buffer area:
105
* ------------------------------------------------------
106
* | meta pages | real data pages | same data pages |
107
* ------------------------------------------------------
108
* | | 1 2 3 4 5 6 7 8 9 | 1 2 3 4 5 6 7 8 9 |
109
* ------------------------------------------------------
110
* | | TA DA | TA DA |
111
* ------------------------------------------------------
112
* ^^^^^^^
113
* |
114
* Here, no need to worry about special handling of wrapped-around
115
* data due to double-mapped data pages. This works both in kernel and
116
* when mmap()'ed in user-space, simplifying both kernel and
117
* user-space implementations significantly.
118
*/
119
array_size = (nr_meta_pages + 2 * nr_data_pages) * sizeof(*pages);
120
pages = bpf_map_area_alloc(array_size, numa_node);
121
if (!pages)
122
return NULL;
123
124
for (i = 0; i < nr_pages; i++) {
125
page = alloc_pages_node(numa_node, flags, 0);
126
if (!page) {
127
nr_pages = i;
128
goto err_free_pages;
129
}
130
pages[i] = page;
131
if (i >= nr_meta_pages)
132
pages[nr_data_pages + i] = page;
133
}
134
135
rb = vmap(pages, nr_meta_pages + 2 * nr_data_pages,
136
VM_MAP | VM_USERMAP, PAGE_KERNEL);
137
if (rb) {
138
kmemleak_not_leak(pages);
139
rb->pages = pages;
140
rb->nr_pages = nr_pages;
141
return rb;
142
}
143
144
err_free_pages:
145
for (i = 0; i < nr_pages; i++)
146
__free_page(pages[i]);
147
bpf_map_area_free(pages);
148
return NULL;
149
}
150
151
static void bpf_ringbuf_notify(struct irq_work *work)
152
{
153
struct bpf_ringbuf *rb = container_of(work, struct bpf_ringbuf, work);
154
155
wake_up_all(&rb->waitq);
156
}
157
158
/* Maximum size of ring buffer area is limited by 32-bit page offset within
159
* record header, counted in pages. Reserve 8 bits for extensibility, and
160
* take into account few extra pages for consumer/producer pages and
161
* non-mmap()'able parts, the current maximum size would be:
162
*
163
* (((1ULL << 24) - RINGBUF_POS_PAGES - RINGBUF_PGOFF) * PAGE_SIZE)
164
*
165
* This gives 64GB limit, which seems plenty for single ring buffer. Now
166
* considering that the maximum value of data_sz is (4GB - 1), there
167
* will be no overflow, so just note the size limit in the comments.
168
*/
169
static struct bpf_ringbuf *bpf_ringbuf_alloc(size_t data_sz, int numa_node)
170
{
171
struct bpf_ringbuf *rb;
172
173
rb = bpf_ringbuf_area_alloc(data_sz, numa_node);
174
if (!rb)
175
return NULL;
176
177
raw_res_spin_lock_init(&rb->spinlock);
178
atomic_set(&rb->busy, 0);
179
init_waitqueue_head(&rb->waitq);
180
init_irq_work(&rb->work, bpf_ringbuf_notify);
181
182
rb->mask = data_sz - 1;
183
rb->consumer_pos = 0;
184
rb->producer_pos = 0;
185
rb->pending_pos = 0;
186
187
return rb;
188
}
189
190
static struct bpf_map *ringbuf_map_alloc(union bpf_attr *attr)
191
{
192
struct bpf_ringbuf_map *rb_map;
193
194
if (attr->map_flags & ~RINGBUF_CREATE_FLAG_MASK)
195
return ERR_PTR(-EINVAL);
196
197
if (attr->key_size || attr->value_size ||
198
!is_power_of_2(attr->max_entries) ||
199
!PAGE_ALIGNED(attr->max_entries))
200
return ERR_PTR(-EINVAL);
201
202
rb_map = bpf_map_area_alloc(sizeof(*rb_map), NUMA_NO_NODE);
203
if (!rb_map)
204
return ERR_PTR(-ENOMEM);
205
206
bpf_map_init_from_attr(&rb_map->map, attr);
207
208
rb_map->rb = bpf_ringbuf_alloc(attr->max_entries, rb_map->map.numa_node);
209
if (!rb_map->rb) {
210
bpf_map_area_free(rb_map);
211
return ERR_PTR(-ENOMEM);
212
}
213
214
return &rb_map->map;
215
}
216
217
static void bpf_ringbuf_free(struct bpf_ringbuf *rb)
218
{
219
/* copy pages pointer and nr_pages to local variable, as we are going
220
* to unmap rb itself with vunmap() below
221
*/
222
struct page **pages = rb->pages;
223
int i, nr_pages = rb->nr_pages;
224
225
vunmap(rb);
226
for (i = 0; i < nr_pages; i++)
227
__free_page(pages[i]);
228
bpf_map_area_free(pages);
229
}
230
231
static void ringbuf_map_free(struct bpf_map *map)
232
{
233
struct bpf_ringbuf_map *rb_map;
234
235
rb_map = container_of(map, struct bpf_ringbuf_map, map);
236
bpf_ringbuf_free(rb_map->rb);
237
bpf_map_area_free(rb_map);
238
}
239
240
static void *ringbuf_map_lookup_elem(struct bpf_map *map, void *key)
241
{
242
return ERR_PTR(-ENOTSUPP);
243
}
244
245
static long ringbuf_map_update_elem(struct bpf_map *map, void *key, void *value,
246
u64 flags)
247
{
248
return -ENOTSUPP;
249
}
250
251
static long ringbuf_map_delete_elem(struct bpf_map *map, void *key)
252
{
253
return -ENOTSUPP;
254
}
255
256
static int ringbuf_map_get_next_key(struct bpf_map *map, void *key,
257
void *next_key)
258
{
259
return -ENOTSUPP;
260
}
261
262
static int ringbuf_map_mmap_kern(struct bpf_map *map, struct vm_area_struct *vma)
263
{
264
struct bpf_ringbuf_map *rb_map;
265
266
rb_map = container_of(map, struct bpf_ringbuf_map, map);
267
268
if (vma->vm_flags & VM_WRITE) {
269
/* allow writable mapping for the consumer_pos only */
270
if (vma->vm_pgoff != 0 || vma->vm_end - vma->vm_start != PAGE_SIZE)
271
return -EPERM;
272
}
273
/* remap_vmalloc_range() checks size and offset constraints */
274
return remap_vmalloc_range(vma, rb_map->rb,
275
vma->vm_pgoff + RINGBUF_PGOFF);
276
}
277
278
static int ringbuf_map_mmap_user(struct bpf_map *map, struct vm_area_struct *vma)
279
{
280
struct bpf_ringbuf_map *rb_map;
281
282
rb_map = container_of(map, struct bpf_ringbuf_map, map);
283
284
if (vma->vm_flags & VM_WRITE) {
285
if (vma->vm_pgoff == 0)
286
/* Disallow writable mappings to the consumer pointer,
287
* and allow writable mappings to both the producer
288
* position, and the ring buffer data itself.
289
*/
290
return -EPERM;
291
}
292
/* remap_vmalloc_range() checks size and offset constraints */
293
return remap_vmalloc_range(vma, rb_map->rb, vma->vm_pgoff + RINGBUF_PGOFF);
294
}
295
296
static unsigned long ringbuf_avail_data_sz(struct bpf_ringbuf *rb)
297
{
298
unsigned long cons_pos, prod_pos;
299
300
cons_pos = smp_load_acquire(&rb->consumer_pos);
301
prod_pos = smp_load_acquire(&rb->producer_pos);
302
return prod_pos - cons_pos;
303
}
304
305
static u32 ringbuf_total_data_sz(const struct bpf_ringbuf *rb)
306
{
307
return rb->mask + 1;
308
}
309
310
static __poll_t ringbuf_map_poll_kern(struct bpf_map *map, struct file *filp,
311
struct poll_table_struct *pts)
312
{
313
struct bpf_ringbuf_map *rb_map;
314
315
rb_map = container_of(map, struct bpf_ringbuf_map, map);
316
poll_wait(filp, &rb_map->rb->waitq, pts);
317
318
if (ringbuf_avail_data_sz(rb_map->rb))
319
return EPOLLIN | EPOLLRDNORM;
320
return 0;
321
}
322
323
static __poll_t ringbuf_map_poll_user(struct bpf_map *map, struct file *filp,
324
struct poll_table_struct *pts)
325
{
326
struct bpf_ringbuf_map *rb_map;
327
328
rb_map = container_of(map, struct bpf_ringbuf_map, map);
329
poll_wait(filp, &rb_map->rb->waitq, pts);
330
331
if (ringbuf_avail_data_sz(rb_map->rb) < ringbuf_total_data_sz(rb_map->rb))
332
return EPOLLOUT | EPOLLWRNORM;
333
return 0;
334
}
335
336
static u64 ringbuf_map_mem_usage(const struct bpf_map *map)
337
{
338
struct bpf_ringbuf *rb;
339
int nr_data_pages;
340
int nr_meta_pages;
341
u64 usage = sizeof(struct bpf_ringbuf_map);
342
343
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
344
usage += (u64)rb->nr_pages << PAGE_SHIFT;
345
nr_meta_pages = RINGBUF_NR_META_PAGES;
346
nr_data_pages = map->max_entries >> PAGE_SHIFT;
347
usage += (nr_meta_pages + 2 * nr_data_pages) * sizeof(struct page *);
348
return usage;
349
}
350
351
BTF_ID_LIST_SINGLE(ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
352
const struct bpf_map_ops ringbuf_map_ops = {
353
.map_meta_equal = bpf_map_meta_equal,
354
.map_alloc = ringbuf_map_alloc,
355
.map_free = ringbuf_map_free,
356
.map_mmap = ringbuf_map_mmap_kern,
357
.map_poll = ringbuf_map_poll_kern,
358
.map_lookup_elem = ringbuf_map_lookup_elem,
359
.map_update_elem = ringbuf_map_update_elem,
360
.map_delete_elem = ringbuf_map_delete_elem,
361
.map_get_next_key = ringbuf_map_get_next_key,
362
.map_mem_usage = ringbuf_map_mem_usage,
363
.map_btf_id = &ringbuf_map_btf_ids[0],
364
};
365
366
BTF_ID_LIST_SINGLE(user_ringbuf_map_btf_ids, struct, bpf_ringbuf_map)
367
const struct bpf_map_ops user_ringbuf_map_ops = {
368
.map_meta_equal = bpf_map_meta_equal,
369
.map_alloc = ringbuf_map_alloc,
370
.map_free = ringbuf_map_free,
371
.map_mmap = ringbuf_map_mmap_user,
372
.map_poll = ringbuf_map_poll_user,
373
.map_lookup_elem = ringbuf_map_lookup_elem,
374
.map_update_elem = ringbuf_map_update_elem,
375
.map_delete_elem = ringbuf_map_delete_elem,
376
.map_get_next_key = ringbuf_map_get_next_key,
377
.map_mem_usage = ringbuf_map_mem_usage,
378
.map_btf_id = &user_ringbuf_map_btf_ids[0],
379
};
380
381
/* Given pointer to ring buffer record metadata and struct bpf_ringbuf itself,
382
* calculate offset from record metadata to ring buffer in pages, rounded
383
* down. This page offset is stored as part of record metadata and allows to
384
* restore struct bpf_ringbuf * from record pointer. This page offset is
385
* stored at offset 4 of record metadata header.
386
*/
387
static size_t bpf_ringbuf_rec_pg_off(struct bpf_ringbuf *rb,
388
struct bpf_ringbuf_hdr *hdr)
389
{
390
return ((void *)hdr - (void *)rb) >> PAGE_SHIFT;
391
}
392
393
/* Given pointer to ring buffer record header, restore pointer to struct
394
* bpf_ringbuf itself by using page offset stored at offset 4
395
*/
396
static struct bpf_ringbuf *
397
bpf_ringbuf_restore_from_rec(struct bpf_ringbuf_hdr *hdr)
398
{
399
unsigned long addr = (unsigned long)(void *)hdr;
400
unsigned long off = (unsigned long)hdr->pg_off << PAGE_SHIFT;
401
402
return (void*)((addr & PAGE_MASK) - off);
403
}
404
405
static void *__bpf_ringbuf_reserve(struct bpf_ringbuf *rb, u64 size)
406
{
407
unsigned long cons_pos, prod_pos, new_prod_pos, pend_pos, flags;
408
struct bpf_ringbuf_hdr *hdr;
409
u32 len, pg_off, tmp_size, hdr_len;
410
411
if (unlikely(size > RINGBUF_MAX_RECORD_SZ))
412
return NULL;
413
414
len = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
415
if (len > ringbuf_total_data_sz(rb))
416
return NULL;
417
418
cons_pos = smp_load_acquire(&rb->consumer_pos);
419
420
if (raw_res_spin_lock_irqsave(&rb->spinlock, flags))
421
return NULL;
422
423
pend_pos = rb->pending_pos;
424
prod_pos = rb->producer_pos;
425
new_prod_pos = prod_pos + len;
426
427
while (pend_pos < prod_pos) {
428
hdr = (void *)rb->data + (pend_pos & rb->mask);
429
hdr_len = READ_ONCE(hdr->len);
430
if (hdr_len & BPF_RINGBUF_BUSY_BIT)
431
break;
432
tmp_size = hdr_len & ~BPF_RINGBUF_DISCARD_BIT;
433
tmp_size = round_up(tmp_size + BPF_RINGBUF_HDR_SZ, 8);
434
pend_pos += tmp_size;
435
}
436
rb->pending_pos = pend_pos;
437
438
/* check for out of ringbuf space:
439
* - by ensuring producer position doesn't advance more than
440
* (ringbuf_size - 1) ahead
441
* - by ensuring oldest not yet committed record until newest
442
* record does not span more than (ringbuf_size - 1)
443
*/
444
if (new_prod_pos - cons_pos > rb->mask ||
445
new_prod_pos - pend_pos > rb->mask) {
446
raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
447
return NULL;
448
}
449
450
hdr = (void *)rb->data + (prod_pos & rb->mask);
451
pg_off = bpf_ringbuf_rec_pg_off(rb, hdr);
452
hdr->len = size | BPF_RINGBUF_BUSY_BIT;
453
hdr->pg_off = pg_off;
454
455
/* pairs with consumer's smp_load_acquire() */
456
smp_store_release(&rb->producer_pos, new_prod_pos);
457
458
raw_res_spin_unlock_irqrestore(&rb->spinlock, flags);
459
460
return (void *)hdr + BPF_RINGBUF_HDR_SZ;
461
}
462
463
BPF_CALL_3(bpf_ringbuf_reserve, struct bpf_map *, map, u64, size, u64, flags)
464
{
465
struct bpf_ringbuf_map *rb_map;
466
467
if (unlikely(flags))
468
return 0;
469
470
rb_map = container_of(map, struct bpf_ringbuf_map, map);
471
return (unsigned long)__bpf_ringbuf_reserve(rb_map->rb, size);
472
}
473
474
const struct bpf_func_proto bpf_ringbuf_reserve_proto = {
475
.func = bpf_ringbuf_reserve,
476
.ret_type = RET_PTR_TO_RINGBUF_MEM_OR_NULL,
477
.arg1_type = ARG_CONST_MAP_PTR,
478
.arg2_type = ARG_CONST_ALLOC_SIZE_OR_ZERO,
479
.arg3_type = ARG_ANYTHING,
480
};
481
482
static void bpf_ringbuf_commit(void *sample, u64 flags, bool discard)
483
{
484
unsigned long rec_pos, cons_pos;
485
struct bpf_ringbuf_hdr *hdr;
486
struct bpf_ringbuf *rb;
487
u32 new_len;
488
489
hdr = sample - BPF_RINGBUF_HDR_SZ;
490
rb = bpf_ringbuf_restore_from_rec(hdr);
491
new_len = hdr->len ^ BPF_RINGBUF_BUSY_BIT;
492
if (discard)
493
new_len |= BPF_RINGBUF_DISCARD_BIT;
494
495
/* update record header with correct final size prefix */
496
xchg(&hdr->len, new_len);
497
498
/* if consumer caught up and is waiting for our record, notify about
499
* new data availability
500
*/
501
rec_pos = (void *)hdr - (void *)rb->data;
502
cons_pos = smp_load_acquire(&rb->consumer_pos) & rb->mask;
503
504
if (flags & BPF_RB_FORCE_WAKEUP)
505
irq_work_queue(&rb->work);
506
else if (cons_pos == rec_pos && !(flags & BPF_RB_NO_WAKEUP))
507
irq_work_queue(&rb->work);
508
}
509
510
BPF_CALL_2(bpf_ringbuf_submit, void *, sample, u64, flags)
511
{
512
bpf_ringbuf_commit(sample, flags, false /* discard */);
513
return 0;
514
}
515
516
const struct bpf_func_proto bpf_ringbuf_submit_proto = {
517
.func = bpf_ringbuf_submit,
518
.ret_type = RET_VOID,
519
.arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
520
.arg2_type = ARG_ANYTHING,
521
};
522
523
BPF_CALL_2(bpf_ringbuf_discard, void *, sample, u64, flags)
524
{
525
bpf_ringbuf_commit(sample, flags, true /* discard */);
526
return 0;
527
}
528
529
const struct bpf_func_proto bpf_ringbuf_discard_proto = {
530
.func = bpf_ringbuf_discard,
531
.ret_type = RET_VOID,
532
.arg1_type = ARG_PTR_TO_RINGBUF_MEM | OBJ_RELEASE,
533
.arg2_type = ARG_ANYTHING,
534
};
535
536
BPF_CALL_4(bpf_ringbuf_output, struct bpf_map *, map, void *, data, u64, size,
537
u64, flags)
538
{
539
struct bpf_ringbuf_map *rb_map;
540
void *rec;
541
542
if (unlikely(flags & ~(BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP)))
543
return -EINVAL;
544
545
rb_map = container_of(map, struct bpf_ringbuf_map, map);
546
rec = __bpf_ringbuf_reserve(rb_map->rb, size);
547
if (!rec)
548
return -EAGAIN;
549
550
memcpy(rec, data, size);
551
bpf_ringbuf_commit(rec, flags, false /* discard */);
552
return 0;
553
}
554
555
const struct bpf_func_proto bpf_ringbuf_output_proto = {
556
.func = bpf_ringbuf_output,
557
.ret_type = RET_INTEGER,
558
.arg1_type = ARG_CONST_MAP_PTR,
559
.arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
560
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
561
.arg4_type = ARG_ANYTHING,
562
};
563
564
BPF_CALL_2(bpf_ringbuf_query, struct bpf_map *, map, u64, flags)
565
{
566
struct bpf_ringbuf *rb;
567
568
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
569
570
switch (flags) {
571
case BPF_RB_AVAIL_DATA:
572
return ringbuf_avail_data_sz(rb);
573
case BPF_RB_RING_SIZE:
574
return ringbuf_total_data_sz(rb);
575
case BPF_RB_CONS_POS:
576
return smp_load_acquire(&rb->consumer_pos);
577
case BPF_RB_PROD_POS:
578
return smp_load_acquire(&rb->producer_pos);
579
default:
580
return 0;
581
}
582
}
583
584
const struct bpf_func_proto bpf_ringbuf_query_proto = {
585
.func = bpf_ringbuf_query,
586
.ret_type = RET_INTEGER,
587
.arg1_type = ARG_CONST_MAP_PTR,
588
.arg2_type = ARG_ANYTHING,
589
};
590
591
BPF_CALL_4(bpf_ringbuf_reserve_dynptr, struct bpf_map *, map, u32, size, u64, flags,
592
struct bpf_dynptr_kern *, ptr)
593
{
594
struct bpf_ringbuf_map *rb_map;
595
void *sample;
596
int err;
597
598
if (unlikely(flags)) {
599
bpf_dynptr_set_null(ptr);
600
return -EINVAL;
601
}
602
603
err = bpf_dynptr_check_size(size);
604
if (err) {
605
bpf_dynptr_set_null(ptr);
606
return err;
607
}
608
609
rb_map = container_of(map, struct bpf_ringbuf_map, map);
610
611
sample = __bpf_ringbuf_reserve(rb_map->rb, size);
612
if (!sample) {
613
bpf_dynptr_set_null(ptr);
614
return -EINVAL;
615
}
616
617
bpf_dynptr_init(ptr, sample, BPF_DYNPTR_TYPE_RINGBUF, 0, size);
618
619
return 0;
620
}
621
622
const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto = {
623
.func = bpf_ringbuf_reserve_dynptr,
624
.ret_type = RET_INTEGER,
625
.arg1_type = ARG_CONST_MAP_PTR,
626
.arg2_type = ARG_ANYTHING,
627
.arg3_type = ARG_ANYTHING,
628
.arg4_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | MEM_UNINIT | MEM_WRITE,
629
};
630
631
BPF_CALL_2(bpf_ringbuf_submit_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
632
{
633
if (!ptr->data)
634
return 0;
635
636
bpf_ringbuf_commit(ptr->data, flags, false /* discard */);
637
638
bpf_dynptr_set_null(ptr);
639
640
return 0;
641
}
642
643
const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto = {
644
.func = bpf_ringbuf_submit_dynptr,
645
.ret_type = RET_VOID,
646
.arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
647
.arg2_type = ARG_ANYTHING,
648
};
649
650
BPF_CALL_2(bpf_ringbuf_discard_dynptr, struct bpf_dynptr_kern *, ptr, u64, flags)
651
{
652
if (!ptr->data)
653
return 0;
654
655
bpf_ringbuf_commit(ptr->data, flags, true /* discard */);
656
657
bpf_dynptr_set_null(ptr);
658
659
return 0;
660
}
661
662
const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto = {
663
.func = bpf_ringbuf_discard_dynptr,
664
.ret_type = RET_VOID,
665
.arg1_type = ARG_PTR_TO_DYNPTR | DYNPTR_TYPE_RINGBUF | OBJ_RELEASE,
666
.arg2_type = ARG_ANYTHING,
667
};
668
669
static int __bpf_user_ringbuf_peek(struct bpf_ringbuf *rb, void **sample, u32 *size)
670
{
671
int err;
672
u32 hdr_len, sample_len, total_len, flags, *hdr;
673
u64 cons_pos, prod_pos;
674
675
/* Synchronizes with smp_store_release() in user-space producer. */
676
prod_pos = smp_load_acquire(&rb->producer_pos);
677
if (prod_pos % 8)
678
return -EINVAL;
679
680
/* Synchronizes with smp_store_release() in __bpf_user_ringbuf_sample_release() */
681
cons_pos = smp_load_acquire(&rb->consumer_pos);
682
if (cons_pos >= prod_pos)
683
return -ENODATA;
684
685
hdr = (u32 *)((uintptr_t)rb->data + (uintptr_t)(cons_pos & rb->mask));
686
/* Synchronizes with smp_store_release() in user-space producer. */
687
hdr_len = smp_load_acquire(hdr);
688
flags = hdr_len & (BPF_RINGBUF_BUSY_BIT | BPF_RINGBUF_DISCARD_BIT);
689
sample_len = hdr_len & ~flags;
690
total_len = round_up(sample_len + BPF_RINGBUF_HDR_SZ, 8);
691
692
/* The sample must fit within the region advertised by the producer position. */
693
if (total_len > prod_pos - cons_pos)
694
return -EINVAL;
695
696
/* The sample must fit within the data region of the ring buffer. */
697
if (total_len > ringbuf_total_data_sz(rb))
698
return -E2BIG;
699
700
/* The sample must fit into a struct bpf_dynptr. */
701
err = bpf_dynptr_check_size(sample_len);
702
if (err)
703
return -E2BIG;
704
705
if (flags & BPF_RINGBUF_DISCARD_BIT) {
706
/* If the discard bit is set, the sample should be skipped.
707
*
708
* Update the consumer pos, and return -EAGAIN so the caller
709
* knows to skip this sample and try to read the next one.
710
*/
711
smp_store_release(&rb->consumer_pos, cons_pos + total_len);
712
return -EAGAIN;
713
}
714
715
if (flags & BPF_RINGBUF_BUSY_BIT)
716
return -ENODATA;
717
718
*sample = (void *)((uintptr_t)rb->data +
719
(uintptr_t)((cons_pos + BPF_RINGBUF_HDR_SZ) & rb->mask));
720
*size = sample_len;
721
return 0;
722
}
723
724
static void __bpf_user_ringbuf_sample_release(struct bpf_ringbuf *rb, size_t size, u64 flags)
725
{
726
u64 consumer_pos;
727
u32 rounded_size = round_up(size + BPF_RINGBUF_HDR_SZ, 8);
728
729
/* Using smp_load_acquire() is unnecessary here, as the busy-bit
730
* prevents another task from writing to consumer_pos after it was read
731
* by this task with smp_load_acquire() in __bpf_user_ringbuf_peek().
732
*/
733
consumer_pos = rb->consumer_pos;
734
/* Synchronizes with smp_load_acquire() in user-space producer. */
735
smp_store_release(&rb->consumer_pos, consumer_pos + rounded_size);
736
}
737
738
BPF_CALL_4(bpf_user_ringbuf_drain, struct bpf_map *, map,
739
void *, callback_fn, void *, callback_ctx, u64, flags)
740
{
741
struct bpf_ringbuf *rb;
742
long samples, discarded_samples = 0, ret = 0;
743
bpf_callback_t callback = (bpf_callback_t)callback_fn;
744
u64 wakeup_flags = BPF_RB_NO_WAKEUP | BPF_RB_FORCE_WAKEUP;
745
int busy = 0;
746
747
if (unlikely(flags & ~wakeup_flags))
748
return -EINVAL;
749
750
rb = container_of(map, struct bpf_ringbuf_map, map)->rb;
751
752
/* If another consumer is already consuming a sample, wait for them to finish. */
753
if (!atomic_try_cmpxchg(&rb->busy, &busy, 1))
754
return -EBUSY;
755
756
for (samples = 0; samples < BPF_MAX_USER_RINGBUF_SAMPLES && ret == 0; samples++) {
757
int err;
758
u32 size;
759
void *sample;
760
struct bpf_dynptr_kern dynptr;
761
762
err = __bpf_user_ringbuf_peek(rb, &sample, &size);
763
if (err) {
764
if (err == -ENODATA) {
765
break;
766
} else if (err == -EAGAIN) {
767
discarded_samples++;
768
continue;
769
} else {
770
ret = err;
771
goto schedule_work_return;
772
}
773
}
774
775
bpf_dynptr_init(&dynptr, sample, BPF_DYNPTR_TYPE_LOCAL, 0, size);
776
ret = callback((uintptr_t)&dynptr, (uintptr_t)callback_ctx, 0, 0, 0);
777
__bpf_user_ringbuf_sample_release(rb, size, flags);
778
}
779
ret = samples - discarded_samples;
780
781
schedule_work_return:
782
/* Prevent the clearing of the busy-bit from being reordered before the
783
* storing of any rb consumer or producer positions.
784
*/
785
atomic_set_release(&rb->busy, 0);
786
787
if (flags & BPF_RB_FORCE_WAKEUP)
788
irq_work_queue(&rb->work);
789
else if (!(flags & BPF_RB_NO_WAKEUP) && samples > 0)
790
irq_work_queue(&rb->work);
791
return ret;
792
}
793
794
const struct bpf_func_proto bpf_user_ringbuf_drain_proto = {
795
.func = bpf_user_ringbuf_drain,
796
.ret_type = RET_INTEGER,
797
.arg1_type = ARG_CONST_MAP_PTR,
798
.arg2_type = ARG_PTR_TO_FUNC,
799
.arg3_type = ARG_PTR_TO_STACK_OR_NULL,
800
.arg4_type = ARG_ANYTHING,
801
};
802
803