Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/cpu.c
26243 views
1
/* CPU control.
2
* (C) 2001, 2002, 2003, 2004 Rusty Russell
3
*
4
* This code is licenced under the GPL.
5
*/
6
#include <linux/sched/mm.h>
7
#include <linux/proc_fs.h>
8
#include <linux/smp.h>
9
#include <linux/init.h>
10
#include <linux/notifier.h>
11
#include <linux/sched/signal.h>
12
#include <linux/sched/hotplug.h>
13
#include <linux/sched/isolation.h>
14
#include <linux/sched/task.h>
15
#include <linux/sched/smt.h>
16
#include <linux/unistd.h>
17
#include <linux/cpu.h>
18
#include <linux/oom.h>
19
#include <linux/rcupdate.h>
20
#include <linux/delay.h>
21
#include <linux/export.h>
22
#include <linux/bug.h>
23
#include <linux/kthread.h>
24
#include <linux/stop_machine.h>
25
#include <linux/mutex.h>
26
#include <linux/gfp.h>
27
#include <linux/suspend.h>
28
#include <linux/lockdep.h>
29
#include <linux/tick.h>
30
#include <linux/irq.h>
31
#include <linux/nmi.h>
32
#include <linux/smpboot.h>
33
#include <linux/relay.h>
34
#include <linux/slab.h>
35
#include <linux/scs.h>
36
#include <linux/percpu-rwsem.h>
37
#include <linux/cpuset.h>
38
#include <linux/random.h>
39
#include <linux/cc_platform.h>
40
#include <linux/parser.h>
41
42
#include <trace/events/power.h>
43
#define CREATE_TRACE_POINTS
44
#include <trace/events/cpuhp.h>
45
46
#include "smpboot.h"
47
48
/**
49
* struct cpuhp_cpu_state - Per cpu hotplug state storage
50
* @state: The current cpu state
51
* @target: The target state
52
* @fail: Current CPU hotplug callback state
53
* @thread: Pointer to the hotplug thread
54
* @should_run: Thread should execute
55
* @rollback: Perform a rollback
56
* @single: Single callback invocation
57
* @bringup: Single callback bringup or teardown selector
58
* @node: Remote CPU node; for multi-instance, do a
59
* single entry callback for install/remove
60
* @last: For multi-instance rollback, remember how far we got
61
* @cb_state: The state for a single callback (install/uninstall)
62
* @result: Result of the operation
63
* @ap_sync_state: State for AP synchronization
64
* @done_up: Signal completion to the issuer of the task for cpu-up
65
* @done_down: Signal completion to the issuer of the task for cpu-down
66
*/
67
struct cpuhp_cpu_state {
68
enum cpuhp_state state;
69
enum cpuhp_state target;
70
enum cpuhp_state fail;
71
#ifdef CONFIG_SMP
72
struct task_struct *thread;
73
bool should_run;
74
bool rollback;
75
bool single;
76
bool bringup;
77
struct hlist_node *node;
78
struct hlist_node *last;
79
enum cpuhp_state cb_state;
80
int result;
81
atomic_t ap_sync_state;
82
struct completion done_up;
83
struct completion done_down;
84
#endif
85
};
86
87
static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
88
.fail = CPUHP_INVALID,
89
};
90
91
#ifdef CONFIG_SMP
92
cpumask_t cpus_booted_once_mask;
93
#endif
94
95
#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
96
static struct lockdep_map cpuhp_state_up_map =
97
STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
98
static struct lockdep_map cpuhp_state_down_map =
99
STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
100
101
102
static inline void cpuhp_lock_acquire(bool bringup)
103
{
104
lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105
}
106
107
static inline void cpuhp_lock_release(bool bringup)
108
{
109
lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
110
}
111
#else
112
113
static inline void cpuhp_lock_acquire(bool bringup) { }
114
static inline void cpuhp_lock_release(bool bringup) { }
115
116
#endif
117
118
/**
119
* struct cpuhp_step - Hotplug state machine step
120
* @name: Name of the step
121
* @startup: Startup function of the step
122
* @teardown: Teardown function of the step
123
* @cant_stop: Bringup/teardown can't be stopped at this step
124
* @multi_instance: State has multiple instances which get added afterwards
125
*/
126
struct cpuhp_step {
127
const char *name;
128
union {
129
int (*single)(unsigned int cpu);
130
int (*multi)(unsigned int cpu,
131
struct hlist_node *node);
132
} startup;
133
union {
134
int (*single)(unsigned int cpu);
135
int (*multi)(unsigned int cpu,
136
struct hlist_node *node);
137
} teardown;
138
/* private: */
139
struct hlist_head list;
140
/* public: */
141
bool cant_stop;
142
bool multi_instance;
143
};
144
145
static DEFINE_MUTEX(cpuhp_state_mutex);
146
static struct cpuhp_step cpuhp_hp_states[];
147
148
static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
149
{
150
return cpuhp_hp_states + state;
151
}
152
153
static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
154
{
155
return bringup ? !step->startup.single : !step->teardown.single;
156
}
157
158
/**
159
* cpuhp_invoke_callback - Invoke the callbacks for a given state
160
* @cpu: The cpu for which the callback should be invoked
161
* @state: The state to do callbacks for
162
* @bringup: True if the bringup callback should be invoked
163
* @node: For multi-instance, do a single entry callback for install/remove
164
* @lastp: For multi-instance rollback, remember how far we got
165
*
166
* Called from cpu hotplug and from the state register machinery.
167
*
168
* Return: %0 on success or a negative errno code
169
*/
170
static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
171
bool bringup, struct hlist_node *node,
172
struct hlist_node **lastp)
173
{
174
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
175
struct cpuhp_step *step = cpuhp_get_step(state);
176
int (*cbm)(unsigned int cpu, struct hlist_node *node);
177
int (*cb)(unsigned int cpu);
178
int ret, cnt;
179
180
if (st->fail == state) {
181
st->fail = CPUHP_INVALID;
182
return -EAGAIN;
183
}
184
185
if (cpuhp_step_empty(bringup, step)) {
186
WARN_ON_ONCE(1);
187
return 0;
188
}
189
190
if (!step->multi_instance) {
191
WARN_ON_ONCE(lastp && *lastp);
192
cb = bringup ? step->startup.single : step->teardown.single;
193
194
trace_cpuhp_enter(cpu, st->target, state, cb);
195
ret = cb(cpu);
196
trace_cpuhp_exit(cpu, st->state, state, ret);
197
return ret;
198
}
199
cbm = bringup ? step->startup.multi : step->teardown.multi;
200
201
/* Single invocation for instance add/remove */
202
if (node) {
203
WARN_ON_ONCE(lastp && *lastp);
204
trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
205
ret = cbm(cpu, node);
206
trace_cpuhp_exit(cpu, st->state, state, ret);
207
return ret;
208
}
209
210
/* State transition. Invoke on all instances */
211
cnt = 0;
212
hlist_for_each(node, &step->list) {
213
if (lastp && node == *lastp)
214
break;
215
216
trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
217
ret = cbm(cpu, node);
218
trace_cpuhp_exit(cpu, st->state, state, ret);
219
if (ret) {
220
if (!lastp)
221
goto err;
222
223
*lastp = node;
224
return ret;
225
}
226
cnt++;
227
}
228
if (lastp)
229
*lastp = NULL;
230
return 0;
231
err:
232
/* Rollback the instances if one failed */
233
cbm = !bringup ? step->startup.multi : step->teardown.multi;
234
if (!cbm)
235
return ret;
236
237
hlist_for_each(node, &step->list) {
238
if (!cnt--)
239
break;
240
241
trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
242
ret = cbm(cpu, node);
243
trace_cpuhp_exit(cpu, st->state, state, ret);
244
/*
245
* Rollback must not fail,
246
*/
247
WARN_ON_ONCE(ret);
248
}
249
return ret;
250
}
251
252
#ifdef CONFIG_SMP
253
static bool cpuhp_is_ap_state(enum cpuhp_state state)
254
{
255
/*
256
* The extra check for CPUHP_TEARDOWN_CPU is only for documentation
257
* purposes as that state is handled explicitly in cpu_down.
258
*/
259
return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
260
}
261
262
static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
263
{
264
struct completion *done = bringup ? &st->done_up : &st->done_down;
265
wait_for_completion(done);
266
}
267
268
static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
269
{
270
struct completion *done = bringup ? &st->done_up : &st->done_down;
271
complete(done);
272
}
273
274
/*
275
* The former STARTING/DYING states, ran with IRQs disabled and must not fail.
276
*/
277
static bool cpuhp_is_atomic_state(enum cpuhp_state state)
278
{
279
return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
280
}
281
282
/* Synchronization state management */
283
enum cpuhp_sync_state {
284
SYNC_STATE_DEAD,
285
SYNC_STATE_KICKED,
286
SYNC_STATE_SHOULD_DIE,
287
SYNC_STATE_ALIVE,
288
SYNC_STATE_SHOULD_ONLINE,
289
SYNC_STATE_ONLINE,
290
};
291
292
#ifdef CONFIG_HOTPLUG_CORE_SYNC
293
/**
294
* cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
295
* @state: The synchronization state to set
296
*
297
* No synchronization point. Just update of the synchronization state, but implies
298
* a full barrier so that the AP changes are visible before the control CPU proceeds.
299
*/
300
static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
301
{
302
atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
303
304
(void)atomic_xchg(st, state);
305
}
306
307
void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
308
309
static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
310
enum cpuhp_sync_state next_state)
311
{
312
atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
313
ktime_t now, end, start = ktime_get();
314
int sync;
315
316
end = start + 10ULL * NSEC_PER_SEC;
317
318
sync = atomic_read(st);
319
while (1) {
320
if (sync == state) {
321
if (!atomic_try_cmpxchg(st, &sync, next_state))
322
continue;
323
return true;
324
}
325
326
now = ktime_get();
327
if (now > end) {
328
/* Timeout. Leave the state unchanged */
329
return false;
330
} else if (now - start < NSEC_PER_MSEC) {
331
/* Poll for one millisecond */
332
arch_cpuhp_sync_state_poll();
333
} else {
334
usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
335
}
336
sync = atomic_read(st);
337
}
338
return true;
339
}
340
#else /* CONFIG_HOTPLUG_CORE_SYNC */
341
static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
342
#endif /* !CONFIG_HOTPLUG_CORE_SYNC */
343
344
#ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
345
/**
346
* cpuhp_ap_report_dead - Update synchronization state to DEAD
347
*
348
* No synchronization point. Just update of the synchronization state.
349
*/
350
void cpuhp_ap_report_dead(void)
351
{
352
cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
353
}
354
355
void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
356
357
/*
358
* Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
359
* because the AP cannot issue complete() at this stage.
360
*/
361
static void cpuhp_bp_sync_dead(unsigned int cpu)
362
{
363
atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
364
int sync = atomic_read(st);
365
366
do {
367
/* CPU can have reported dead already. Don't overwrite that! */
368
if (sync == SYNC_STATE_DEAD)
369
break;
370
} while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
371
372
if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
373
/* CPU reached dead state. Invoke the cleanup function */
374
arch_cpuhp_cleanup_dead_cpu(cpu);
375
return;
376
}
377
378
/* No further action possible. Emit message and give up. */
379
pr_err("CPU%u failed to report dead state\n", cpu);
380
}
381
#else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
382
static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
383
#endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
384
385
#ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
386
/**
387
* cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
388
*
389
* Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
390
* for the BP to release it.
391
*/
392
void cpuhp_ap_sync_alive(void)
393
{
394
atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
395
396
cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
397
398
/* Wait for the control CPU to release it. */
399
while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
400
cpu_relax();
401
}
402
403
static bool cpuhp_can_boot_ap(unsigned int cpu)
404
{
405
atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
406
int sync = atomic_read(st);
407
408
again:
409
switch (sync) {
410
case SYNC_STATE_DEAD:
411
/* CPU is properly dead */
412
break;
413
case SYNC_STATE_KICKED:
414
/* CPU did not come up in previous attempt */
415
break;
416
case SYNC_STATE_ALIVE:
417
/* CPU is stuck cpuhp_ap_sync_alive(). */
418
break;
419
default:
420
/* CPU failed to report online or dead and is in limbo state. */
421
return false;
422
}
423
424
/* Prepare for booting */
425
if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
426
goto again;
427
428
return true;
429
}
430
431
void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
432
433
/*
434
* Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
435
* because the AP cannot issue complete() so early in the bringup.
436
*/
437
static int cpuhp_bp_sync_alive(unsigned int cpu)
438
{
439
int ret = 0;
440
441
if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
442
return 0;
443
444
if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
445
pr_err("CPU%u failed to report alive state\n", cpu);
446
ret = -EIO;
447
}
448
449
/* Let the architecture cleanup the kick alive mechanics. */
450
arch_cpuhp_cleanup_kick_cpu(cpu);
451
return ret;
452
}
453
#else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
454
static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
455
static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
456
#endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
457
458
/* Serializes the updates to cpu_online_mask, cpu_present_mask */
459
static DEFINE_MUTEX(cpu_add_remove_lock);
460
bool cpuhp_tasks_frozen;
461
EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
462
463
/*
464
* The following two APIs (cpu_maps_update_begin/done) must be used when
465
* attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
466
*/
467
void cpu_maps_update_begin(void)
468
{
469
mutex_lock(&cpu_add_remove_lock);
470
}
471
472
void cpu_maps_update_done(void)
473
{
474
mutex_unlock(&cpu_add_remove_lock);
475
}
476
477
/*
478
* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
479
* Should always be manipulated under cpu_add_remove_lock
480
*/
481
static int cpu_hotplug_disabled;
482
483
#ifdef CONFIG_HOTPLUG_CPU
484
485
DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
486
487
static bool cpu_hotplug_offline_disabled __ro_after_init;
488
489
void cpus_read_lock(void)
490
{
491
percpu_down_read(&cpu_hotplug_lock);
492
}
493
EXPORT_SYMBOL_GPL(cpus_read_lock);
494
495
int cpus_read_trylock(void)
496
{
497
return percpu_down_read_trylock(&cpu_hotplug_lock);
498
}
499
EXPORT_SYMBOL_GPL(cpus_read_trylock);
500
501
void cpus_read_unlock(void)
502
{
503
percpu_up_read(&cpu_hotplug_lock);
504
}
505
EXPORT_SYMBOL_GPL(cpus_read_unlock);
506
507
void cpus_write_lock(void)
508
{
509
percpu_down_write(&cpu_hotplug_lock);
510
}
511
512
void cpus_write_unlock(void)
513
{
514
percpu_up_write(&cpu_hotplug_lock);
515
}
516
517
void lockdep_assert_cpus_held(void)
518
{
519
/*
520
* We can't have hotplug operations before userspace starts running,
521
* and some init codepaths will knowingly not take the hotplug lock.
522
* This is all valid, so mute lockdep until it makes sense to report
523
* unheld locks.
524
*/
525
if (system_state < SYSTEM_RUNNING)
526
return;
527
528
percpu_rwsem_assert_held(&cpu_hotplug_lock);
529
}
530
EXPORT_SYMBOL_GPL(lockdep_assert_cpus_held);
531
532
#ifdef CONFIG_LOCKDEP
533
int lockdep_is_cpus_held(void)
534
{
535
return percpu_rwsem_is_held(&cpu_hotplug_lock);
536
}
537
#endif
538
539
static void lockdep_acquire_cpus_lock(void)
540
{
541
rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
542
}
543
544
static void lockdep_release_cpus_lock(void)
545
{
546
rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
547
}
548
549
/* Declare CPU offlining not supported */
550
void cpu_hotplug_disable_offlining(void)
551
{
552
cpu_maps_update_begin();
553
cpu_hotplug_offline_disabled = true;
554
cpu_maps_update_done();
555
}
556
557
/*
558
* Wait for currently running CPU hotplug operations to complete (if any) and
559
* disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
560
* the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
561
* hotplug path before performing hotplug operations. So acquiring that lock
562
* guarantees mutual exclusion from any currently running hotplug operations.
563
*/
564
void cpu_hotplug_disable(void)
565
{
566
cpu_maps_update_begin();
567
cpu_hotplug_disabled++;
568
cpu_maps_update_done();
569
}
570
EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
571
572
static void __cpu_hotplug_enable(void)
573
{
574
if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
575
return;
576
cpu_hotplug_disabled--;
577
}
578
579
void cpu_hotplug_enable(void)
580
{
581
cpu_maps_update_begin();
582
__cpu_hotplug_enable();
583
cpu_maps_update_done();
584
}
585
EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
586
587
#else
588
589
static void lockdep_acquire_cpus_lock(void)
590
{
591
}
592
593
static void lockdep_release_cpus_lock(void)
594
{
595
}
596
597
#endif /* CONFIG_HOTPLUG_CPU */
598
599
/*
600
* Architectures that need SMT-specific errata handling during SMT hotplug
601
* should override this.
602
*/
603
void __weak arch_smt_update(void) { }
604
605
#ifdef CONFIG_HOTPLUG_SMT
606
607
enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
608
static unsigned int cpu_smt_max_threads __ro_after_init;
609
unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
610
611
void __init cpu_smt_disable(bool force)
612
{
613
if (!cpu_smt_possible())
614
return;
615
616
if (force) {
617
pr_info("SMT: Force disabled\n");
618
cpu_smt_control = CPU_SMT_FORCE_DISABLED;
619
} else {
620
pr_info("SMT: disabled\n");
621
cpu_smt_control = CPU_SMT_DISABLED;
622
}
623
cpu_smt_num_threads = 1;
624
}
625
626
/*
627
* The decision whether SMT is supported can only be done after the full
628
* CPU identification. Called from architecture code.
629
*/
630
void __init cpu_smt_set_num_threads(unsigned int num_threads,
631
unsigned int max_threads)
632
{
633
WARN_ON(!num_threads || (num_threads > max_threads));
634
635
if (max_threads == 1)
636
cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
637
638
cpu_smt_max_threads = max_threads;
639
640
/*
641
* If SMT has been disabled via the kernel command line or SMT is
642
* not supported, set cpu_smt_num_threads to 1 for consistency.
643
* If enabled, take the architecture requested number of threads
644
* to bring up into account.
645
*/
646
if (cpu_smt_control != CPU_SMT_ENABLED)
647
cpu_smt_num_threads = 1;
648
else if (num_threads < cpu_smt_num_threads)
649
cpu_smt_num_threads = num_threads;
650
}
651
652
static int __init smt_cmdline_disable(char *str)
653
{
654
cpu_smt_disable(str && !strcmp(str, "force"));
655
return 0;
656
}
657
early_param("nosmt", smt_cmdline_disable);
658
659
/*
660
* For Archicture supporting partial SMT states check if the thread is allowed.
661
* Otherwise this has already been checked through cpu_smt_max_threads when
662
* setting the SMT level.
663
*/
664
static inline bool cpu_smt_thread_allowed(unsigned int cpu)
665
{
666
#ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
667
return topology_smt_thread_allowed(cpu);
668
#else
669
return true;
670
#endif
671
}
672
673
static inline bool cpu_bootable(unsigned int cpu)
674
{
675
if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
676
return true;
677
678
/* All CPUs are bootable if controls are not configured */
679
if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
680
return true;
681
682
/* All CPUs are bootable if CPU is not SMT capable */
683
if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
684
return true;
685
686
if (topology_is_primary_thread(cpu))
687
return true;
688
689
/*
690
* On x86 it's required to boot all logical CPUs at least once so
691
* that the init code can get a chance to set CR4.MCE on each
692
* CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
693
* core will shutdown the machine.
694
*/
695
return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
696
}
697
698
/* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
699
bool cpu_smt_possible(void)
700
{
701
return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
702
cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
703
}
704
EXPORT_SYMBOL_GPL(cpu_smt_possible);
705
706
#else
707
static inline bool cpu_bootable(unsigned int cpu) { return true; }
708
#endif
709
710
static inline enum cpuhp_state
711
cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
712
{
713
enum cpuhp_state prev_state = st->state;
714
bool bringup = st->state < target;
715
716
st->rollback = false;
717
st->last = NULL;
718
719
st->target = target;
720
st->single = false;
721
st->bringup = bringup;
722
if (cpu_dying(cpu) != !bringup)
723
set_cpu_dying(cpu, !bringup);
724
725
return prev_state;
726
}
727
728
static inline void
729
cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
730
enum cpuhp_state prev_state)
731
{
732
bool bringup = !st->bringup;
733
734
st->target = prev_state;
735
736
/*
737
* Already rolling back. No need invert the bringup value or to change
738
* the current state.
739
*/
740
if (st->rollback)
741
return;
742
743
st->rollback = true;
744
745
/*
746
* If we have st->last we need to undo partial multi_instance of this
747
* state first. Otherwise start undo at the previous state.
748
*/
749
if (!st->last) {
750
if (st->bringup)
751
st->state--;
752
else
753
st->state++;
754
}
755
756
st->bringup = bringup;
757
if (cpu_dying(cpu) != !bringup)
758
set_cpu_dying(cpu, !bringup);
759
}
760
761
/* Regular hotplug invocation of the AP hotplug thread */
762
static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
763
{
764
if (!st->single && st->state == st->target)
765
return;
766
767
st->result = 0;
768
/*
769
* Make sure the above stores are visible before should_run becomes
770
* true. Paired with the mb() above in cpuhp_thread_fun()
771
*/
772
smp_mb();
773
st->should_run = true;
774
wake_up_process(st->thread);
775
wait_for_ap_thread(st, st->bringup);
776
}
777
778
static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
779
enum cpuhp_state target)
780
{
781
enum cpuhp_state prev_state;
782
int ret;
783
784
prev_state = cpuhp_set_state(cpu, st, target);
785
__cpuhp_kick_ap(st);
786
if ((ret = st->result)) {
787
cpuhp_reset_state(cpu, st, prev_state);
788
__cpuhp_kick_ap(st);
789
}
790
791
return ret;
792
}
793
794
static int bringup_wait_for_ap_online(unsigned int cpu)
795
{
796
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
797
798
/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
799
wait_for_ap_thread(st, true);
800
if (WARN_ON_ONCE((!cpu_online(cpu))))
801
return -ECANCELED;
802
803
/* Unpark the hotplug thread of the target cpu */
804
kthread_unpark(st->thread);
805
806
/*
807
* SMT soft disabling on X86 requires to bring the CPU out of the
808
* BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
809
* CPU marked itself as booted_once in notify_cpu_starting() so the
810
* cpu_bootable() check will now return false if this is not the
811
* primary sibling.
812
*/
813
if (!cpu_bootable(cpu))
814
return -ECANCELED;
815
return 0;
816
}
817
818
#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
819
static int cpuhp_kick_ap_alive(unsigned int cpu)
820
{
821
if (!cpuhp_can_boot_ap(cpu))
822
return -EAGAIN;
823
824
return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
825
}
826
827
static int cpuhp_bringup_ap(unsigned int cpu)
828
{
829
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
830
int ret;
831
832
/*
833
* Some architectures have to walk the irq descriptors to
834
* setup the vector space for the cpu which comes online.
835
* Prevent irq alloc/free across the bringup.
836
*/
837
irq_lock_sparse();
838
839
ret = cpuhp_bp_sync_alive(cpu);
840
if (ret)
841
goto out_unlock;
842
843
ret = bringup_wait_for_ap_online(cpu);
844
if (ret)
845
goto out_unlock;
846
847
irq_unlock_sparse();
848
849
if (st->target <= CPUHP_AP_ONLINE_IDLE)
850
return 0;
851
852
return cpuhp_kick_ap(cpu, st, st->target);
853
854
out_unlock:
855
irq_unlock_sparse();
856
return ret;
857
}
858
#else
859
static int bringup_cpu(unsigned int cpu)
860
{
861
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
862
struct task_struct *idle = idle_thread_get(cpu);
863
int ret;
864
865
if (!cpuhp_can_boot_ap(cpu))
866
return -EAGAIN;
867
868
/*
869
* Some architectures have to walk the irq descriptors to
870
* setup the vector space for the cpu which comes online.
871
*
872
* Prevent irq alloc/free across the bringup by acquiring the
873
* sparse irq lock. Hold it until the upcoming CPU completes the
874
* startup in cpuhp_online_idle() which allows to avoid
875
* intermediate synchronization points in the architecture code.
876
*/
877
irq_lock_sparse();
878
879
ret = __cpu_up(cpu, idle);
880
if (ret)
881
goto out_unlock;
882
883
ret = cpuhp_bp_sync_alive(cpu);
884
if (ret)
885
goto out_unlock;
886
887
ret = bringup_wait_for_ap_online(cpu);
888
if (ret)
889
goto out_unlock;
890
891
irq_unlock_sparse();
892
893
if (st->target <= CPUHP_AP_ONLINE_IDLE)
894
return 0;
895
896
return cpuhp_kick_ap(cpu, st, st->target);
897
898
out_unlock:
899
irq_unlock_sparse();
900
return ret;
901
}
902
#endif
903
904
static int finish_cpu(unsigned int cpu)
905
{
906
struct task_struct *idle = idle_thread_get(cpu);
907
struct mm_struct *mm = idle->active_mm;
908
909
/*
910
* sched_force_init_mm() ensured the use of &init_mm,
911
* drop that refcount now that the CPU has stopped.
912
*/
913
WARN_ON(mm != &init_mm);
914
idle->active_mm = NULL;
915
mmdrop_lazy_tlb(mm);
916
917
return 0;
918
}
919
920
/*
921
* Hotplug state machine related functions
922
*/
923
924
/*
925
* Get the next state to run. Empty ones will be skipped. Returns true if a
926
* state must be run.
927
*
928
* st->state will be modified ahead of time, to match state_to_run, as if it
929
* has already ran.
930
*/
931
static bool cpuhp_next_state(bool bringup,
932
enum cpuhp_state *state_to_run,
933
struct cpuhp_cpu_state *st,
934
enum cpuhp_state target)
935
{
936
do {
937
if (bringup) {
938
if (st->state >= target)
939
return false;
940
941
*state_to_run = ++st->state;
942
} else {
943
if (st->state <= target)
944
return false;
945
946
*state_to_run = st->state--;
947
}
948
949
if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
950
break;
951
} while (true);
952
953
return true;
954
}
955
956
static int __cpuhp_invoke_callback_range(bool bringup,
957
unsigned int cpu,
958
struct cpuhp_cpu_state *st,
959
enum cpuhp_state target,
960
bool nofail)
961
{
962
enum cpuhp_state state;
963
int ret = 0;
964
965
while (cpuhp_next_state(bringup, &state, st, target)) {
966
int err;
967
968
err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
969
if (!err)
970
continue;
971
972
if (nofail) {
973
pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
974
cpu, bringup ? "UP" : "DOWN",
975
cpuhp_get_step(st->state)->name,
976
st->state, err);
977
ret = -1;
978
} else {
979
ret = err;
980
break;
981
}
982
}
983
984
return ret;
985
}
986
987
static inline int cpuhp_invoke_callback_range(bool bringup,
988
unsigned int cpu,
989
struct cpuhp_cpu_state *st,
990
enum cpuhp_state target)
991
{
992
return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
993
}
994
995
static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
996
unsigned int cpu,
997
struct cpuhp_cpu_state *st,
998
enum cpuhp_state target)
999
{
1000
__cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
1001
}
1002
1003
static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1004
{
1005
if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1006
return true;
1007
/*
1008
* When CPU hotplug is disabled, then taking the CPU down is not
1009
* possible because takedown_cpu() and the architecture and
1010
* subsystem specific mechanisms are not available. So the CPU
1011
* which would be completely unplugged again needs to stay around
1012
* in the current state.
1013
*/
1014
return st->state <= CPUHP_BRINGUP_CPU;
1015
}
1016
1017
static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1018
enum cpuhp_state target)
1019
{
1020
enum cpuhp_state prev_state = st->state;
1021
int ret = 0;
1022
1023
ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1024
if (ret) {
1025
pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1026
ret, cpu, cpuhp_get_step(st->state)->name,
1027
st->state);
1028
1029
cpuhp_reset_state(cpu, st, prev_state);
1030
if (can_rollback_cpu(st))
1031
WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1032
prev_state));
1033
}
1034
return ret;
1035
}
1036
1037
/*
1038
* The cpu hotplug threads manage the bringup and teardown of the cpus
1039
*/
1040
static int cpuhp_should_run(unsigned int cpu)
1041
{
1042
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1043
1044
return st->should_run;
1045
}
1046
1047
/*
1048
* Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1049
* callbacks when a state gets [un]installed at runtime.
1050
*
1051
* Each invocation of this function by the smpboot thread does a single AP
1052
* state callback.
1053
*
1054
* It has 3 modes of operation:
1055
* - single: runs st->cb_state
1056
* - up: runs ++st->state, while st->state < st->target
1057
* - down: runs st->state--, while st->state > st->target
1058
*
1059
* When complete or on error, should_run is cleared and the completion is fired.
1060
*/
1061
static void cpuhp_thread_fun(unsigned int cpu)
1062
{
1063
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1064
bool bringup = st->bringup;
1065
enum cpuhp_state state;
1066
1067
if (WARN_ON_ONCE(!st->should_run))
1068
return;
1069
1070
/*
1071
* ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1072
* that if we see ->should_run we also see the rest of the state.
1073
*/
1074
smp_mb();
1075
1076
/*
1077
* The BP holds the hotplug lock, but we're now running on the AP,
1078
* ensure that anybody asserting the lock is held, will actually find
1079
* it so.
1080
*/
1081
lockdep_acquire_cpus_lock();
1082
cpuhp_lock_acquire(bringup);
1083
1084
if (st->single) {
1085
state = st->cb_state;
1086
st->should_run = false;
1087
} else {
1088
st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1089
if (!st->should_run)
1090
goto end;
1091
}
1092
1093
WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1094
1095
if (cpuhp_is_atomic_state(state)) {
1096
local_irq_disable();
1097
st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1098
local_irq_enable();
1099
1100
/*
1101
* STARTING/DYING must not fail!
1102
*/
1103
WARN_ON_ONCE(st->result);
1104
} else {
1105
st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1106
}
1107
1108
if (st->result) {
1109
/*
1110
* If we fail on a rollback, we're up a creek without no
1111
* paddle, no way forward, no way back. We loose, thanks for
1112
* playing.
1113
*/
1114
WARN_ON_ONCE(st->rollback);
1115
st->should_run = false;
1116
}
1117
1118
end:
1119
cpuhp_lock_release(bringup);
1120
lockdep_release_cpus_lock();
1121
1122
if (!st->should_run)
1123
complete_ap_thread(st, bringup);
1124
}
1125
1126
/* Invoke a single callback on a remote cpu */
1127
static int
1128
cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1129
struct hlist_node *node)
1130
{
1131
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1132
int ret;
1133
1134
if (!cpu_online(cpu))
1135
return 0;
1136
1137
cpuhp_lock_acquire(false);
1138
cpuhp_lock_release(false);
1139
1140
cpuhp_lock_acquire(true);
1141
cpuhp_lock_release(true);
1142
1143
/*
1144
* If we are up and running, use the hotplug thread. For early calls
1145
* we invoke the thread function directly.
1146
*/
1147
if (!st->thread)
1148
return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1149
1150
st->rollback = false;
1151
st->last = NULL;
1152
1153
st->node = node;
1154
st->bringup = bringup;
1155
st->cb_state = state;
1156
st->single = true;
1157
1158
__cpuhp_kick_ap(st);
1159
1160
/*
1161
* If we failed and did a partial, do a rollback.
1162
*/
1163
if ((ret = st->result) && st->last) {
1164
st->rollback = true;
1165
st->bringup = !bringup;
1166
1167
__cpuhp_kick_ap(st);
1168
}
1169
1170
/*
1171
* Clean up the leftovers so the next hotplug operation wont use stale
1172
* data.
1173
*/
1174
st->node = st->last = NULL;
1175
return ret;
1176
}
1177
1178
static int cpuhp_kick_ap_work(unsigned int cpu)
1179
{
1180
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1181
enum cpuhp_state prev_state = st->state;
1182
int ret;
1183
1184
cpuhp_lock_acquire(false);
1185
cpuhp_lock_release(false);
1186
1187
cpuhp_lock_acquire(true);
1188
cpuhp_lock_release(true);
1189
1190
trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1191
ret = cpuhp_kick_ap(cpu, st, st->target);
1192
trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1193
1194
return ret;
1195
}
1196
1197
static struct smp_hotplug_thread cpuhp_threads = {
1198
.store = &cpuhp_state.thread,
1199
.thread_should_run = cpuhp_should_run,
1200
.thread_fn = cpuhp_thread_fun,
1201
.thread_comm = "cpuhp/%u",
1202
.selfparking = true,
1203
};
1204
1205
static __init void cpuhp_init_state(void)
1206
{
1207
struct cpuhp_cpu_state *st;
1208
int cpu;
1209
1210
for_each_possible_cpu(cpu) {
1211
st = per_cpu_ptr(&cpuhp_state, cpu);
1212
init_completion(&st->done_up);
1213
init_completion(&st->done_down);
1214
}
1215
}
1216
1217
void __init cpuhp_threads_init(void)
1218
{
1219
cpuhp_init_state();
1220
BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1221
kthread_unpark(this_cpu_read(cpuhp_state.thread));
1222
}
1223
1224
#ifdef CONFIG_HOTPLUG_CPU
1225
#ifndef arch_clear_mm_cpumask_cpu
1226
#define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1227
#endif
1228
1229
/**
1230
* clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1231
* @cpu: a CPU id
1232
*
1233
* This function walks all processes, finds a valid mm struct for each one and
1234
* then clears a corresponding bit in mm's cpumask. While this all sounds
1235
* trivial, there are various non-obvious corner cases, which this function
1236
* tries to solve in a safe manner.
1237
*
1238
* Also note that the function uses a somewhat relaxed locking scheme, so it may
1239
* be called only for an already offlined CPU.
1240
*/
1241
void clear_tasks_mm_cpumask(int cpu)
1242
{
1243
struct task_struct *p;
1244
1245
/*
1246
* This function is called after the cpu is taken down and marked
1247
* offline, so its not like new tasks will ever get this cpu set in
1248
* their mm mask. -- Peter Zijlstra
1249
* Thus, we may use rcu_read_lock() here, instead of grabbing
1250
* full-fledged tasklist_lock.
1251
*/
1252
WARN_ON(cpu_online(cpu));
1253
rcu_read_lock();
1254
for_each_process(p) {
1255
struct task_struct *t;
1256
1257
/*
1258
* Main thread might exit, but other threads may still have
1259
* a valid mm. Find one.
1260
*/
1261
t = find_lock_task_mm(p);
1262
if (!t)
1263
continue;
1264
arch_clear_mm_cpumask_cpu(cpu, t->mm);
1265
task_unlock(t);
1266
}
1267
rcu_read_unlock();
1268
}
1269
1270
/* Take this CPU down. */
1271
static int take_cpu_down(void *_param)
1272
{
1273
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1274
enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1275
int err, cpu = smp_processor_id();
1276
1277
/* Ensure this CPU doesn't handle any more interrupts. */
1278
err = __cpu_disable();
1279
if (err < 0)
1280
return err;
1281
1282
/*
1283
* Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1284
* down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1285
*/
1286
WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1287
1288
/*
1289
* Invoke the former CPU_DYING callbacks. DYING must not fail!
1290
*/
1291
cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1292
1293
/* Park the stopper thread */
1294
stop_machine_park(cpu);
1295
return 0;
1296
}
1297
1298
static int takedown_cpu(unsigned int cpu)
1299
{
1300
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1301
int err;
1302
1303
/* Park the smpboot threads */
1304
kthread_park(st->thread);
1305
1306
/*
1307
* Prevent irq alloc/free while the dying cpu reorganizes the
1308
* interrupt affinities.
1309
*/
1310
irq_lock_sparse();
1311
1312
err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1313
if (err) {
1314
/* CPU refused to die */
1315
irq_unlock_sparse();
1316
/* Unpark the hotplug thread so we can rollback there */
1317
kthread_unpark(st->thread);
1318
return err;
1319
}
1320
BUG_ON(cpu_online(cpu));
1321
1322
/*
1323
* The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1324
* all runnable tasks from the CPU, there's only the idle task left now
1325
* that the migration thread is done doing the stop_machine thing.
1326
*
1327
* Wait for the stop thread to go away.
1328
*/
1329
wait_for_ap_thread(st, false);
1330
BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1331
1332
/* Interrupts are moved away from the dying cpu, reenable alloc/free */
1333
irq_unlock_sparse();
1334
1335
hotplug_cpu__broadcast_tick_pull(cpu);
1336
/* This actually kills the CPU. */
1337
__cpu_die(cpu);
1338
1339
cpuhp_bp_sync_dead(cpu);
1340
1341
lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu));
1342
1343
/*
1344
* Callbacks must be re-integrated right away to the RCU state machine.
1345
* Otherwise an RCU callback could block a further teardown function
1346
* waiting for its completion.
1347
*/
1348
rcutree_migrate_callbacks(cpu);
1349
1350
return 0;
1351
}
1352
1353
static void cpuhp_complete_idle_dead(void *arg)
1354
{
1355
struct cpuhp_cpu_state *st = arg;
1356
1357
complete_ap_thread(st, false);
1358
}
1359
1360
void cpuhp_report_idle_dead(void)
1361
{
1362
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1363
1364
BUG_ON(st->state != CPUHP_AP_OFFLINE);
1365
tick_assert_timekeeping_handover();
1366
rcutree_report_cpu_dead();
1367
st->state = CPUHP_AP_IDLE_DEAD;
1368
/*
1369
* We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1370
* to an online cpu.
1371
*/
1372
smp_call_function_single(cpumask_first(cpu_online_mask),
1373
cpuhp_complete_idle_dead, st, 0);
1374
}
1375
1376
static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1377
enum cpuhp_state target)
1378
{
1379
enum cpuhp_state prev_state = st->state;
1380
int ret = 0;
1381
1382
ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1383
if (ret) {
1384
pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1385
ret, cpu, cpuhp_get_step(st->state)->name,
1386
st->state);
1387
1388
cpuhp_reset_state(cpu, st, prev_state);
1389
1390
if (st->state < prev_state)
1391
WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1392
prev_state));
1393
}
1394
1395
return ret;
1396
}
1397
1398
/* Requires cpu_add_remove_lock to be held */
1399
static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1400
enum cpuhp_state target)
1401
{
1402
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1403
int prev_state, ret = 0;
1404
1405
if (num_online_cpus() == 1)
1406
return -EBUSY;
1407
1408
if (!cpu_present(cpu))
1409
return -EINVAL;
1410
1411
cpus_write_lock();
1412
1413
cpuhp_tasks_frozen = tasks_frozen;
1414
1415
prev_state = cpuhp_set_state(cpu, st, target);
1416
/*
1417
* If the current CPU state is in the range of the AP hotplug thread,
1418
* then we need to kick the thread.
1419
*/
1420
if (st->state > CPUHP_TEARDOWN_CPU) {
1421
st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1422
ret = cpuhp_kick_ap_work(cpu);
1423
/*
1424
* The AP side has done the error rollback already. Just
1425
* return the error code..
1426
*/
1427
if (ret)
1428
goto out;
1429
1430
/*
1431
* We might have stopped still in the range of the AP hotplug
1432
* thread. Nothing to do anymore.
1433
*/
1434
if (st->state > CPUHP_TEARDOWN_CPU)
1435
goto out;
1436
1437
st->target = target;
1438
}
1439
/*
1440
* The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1441
* to do the further cleanups.
1442
*/
1443
ret = cpuhp_down_callbacks(cpu, st, target);
1444
if (ret && st->state < prev_state) {
1445
if (st->state == CPUHP_TEARDOWN_CPU) {
1446
cpuhp_reset_state(cpu, st, prev_state);
1447
__cpuhp_kick_ap(st);
1448
} else {
1449
WARN(1, "DEAD callback error for CPU%d", cpu);
1450
}
1451
}
1452
1453
out:
1454
cpus_write_unlock();
1455
arch_smt_update();
1456
return ret;
1457
}
1458
1459
struct cpu_down_work {
1460
unsigned int cpu;
1461
enum cpuhp_state target;
1462
};
1463
1464
static long __cpu_down_maps_locked(void *arg)
1465
{
1466
struct cpu_down_work *work = arg;
1467
1468
return _cpu_down(work->cpu, 0, work->target);
1469
}
1470
1471
static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1472
{
1473
struct cpu_down_work work = { .cpu = cpu, .target = target, };
1474
1475
/*
1476
* If the platform does not support hotplug, report it explicitly to
1477
* differentiate it from a transient offlining failure.
1478
*/
1479
if (cpu_hotplug_offline_disabled)
1480
return -EOPNOTSUPP;
1481
if (cpu_hotplug_disabled)
1482
return -EBUSY;
1483
1484
/*
1485
* Ensure that the control task does not run on the to be offlined
1486
* CPU to prevent a deadlock against cfs_b->period_timer.
1487
* Also keep at least one housekeeping cpu onlined to avoid generating
1488
* an empty sched_domain span.
1489
*/
1490
for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1491
if (cpu != work.cpu)
1492
return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1493
}
1494
return -EBUSY;
1495
}
1496
1497
static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1498
{
1499
int err;
1500
1501
cpu_maps_update_begin();
1502
err = cpu_down_maps_locked(cpu, target);
1503
cpu_maps_update_done();
1504
return err;
1505
}
1506
1507
/**
1508
* cpu_device_down - Bring down a cpu device
1509
* @dev: Pointer to the cpu device to offline
1510
*
1511
* This function is meant to be used by device core cpu subsystem only.
1512
*
1513
* Other subsystems should use remove_cpu() instead.
1514
*
1515
* Return: %0 on success or a negative errno code
1516
*/
1517
int cpu_device_down(struct device *dev)
1518
{
1519
return cpu_down(dev->id, CPUHP_OFFLINE);
1520
}
1521
1522
int remove_cpu(unsigned int cpu)
1523
{
1524
int ret;
1525
1526
lock_device_hotplug();
1527
ret = device_offline(get_cpu_device(cpu));
1528
unlock_device_hotplug();
1529
1530
return ret;
1531
}
1532
EXPORT_SYMBOL_GPL(remove_cpu);
1533
1534
void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1535
{
1536
unsigned int cpu;
1537
int error;
1538
1539
cpu_maps_update_begin();
1540
1541
/*
1542
* Make certain the cpu I'm about to reboot on is online.
1543
*
1544
* This is inline to what migrate_to_reboot_cpu() already do.
1545
*/
1546
if (!cpu_online(primary_cpu))
1547
primary_cpu = cpumask_first(cpu_online_mask);
1548
1549
for_each_online_cpu(cpu) {
1550
if (cpu == primary_cpu)
1551
continue;
1552
1553
error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1554
if (error) {
1555
pr_err("Failed to offline CPU%d - error=%d",
1556
cpu, error);
1557
break;
1558
}
1559
}
1560
1561
/*
1562
* Ensure all but the reboot CPU are offline.
1563
*/
1564
BUG_ON(num_online_cpus() > 1);
1565
1566
/*
1567
* Make sure the CPUs won't be enabled by someone else after this
1568
* point. Kexec will reboot to a new kernel shortly resetting
1569
* everything along the way.
1570
*/
1571
cpu_hotplug_disabled++;
1572
1573
cpu_maps_update_done();
1574
}
1575
1576
#else
1577
#define takedown_cpu NULL
1578
#endif /*CONFIG_HOTPLUG_CPU*/
1579
1580
/**
1581
* notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1582
* @cpu: cpu that just started
1583
*
1584
* It must be called by the arch code on the new cpu, before the new cpu
1585
* enables interrupts and before the "boot" cpu returns from __cpu_up().
1586
*/
1587
void notify_cpu_starting(unsigned int cpu)
1588
{
1589
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1590
enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1591
1592
rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1593
cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1594
1595
/*
1596
* STARTING must not fail!
1597
*/
1598
cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1599
}
1600
1601
/*
1602
* Called from the idle task. Wake up the controlling task which brings the
1603
* hotplug thread of the upcoming CPU up and then delegates the rest of the
1604
* online bringup to the hotplug thread.
1605
*/
1606
void cpuhp_online_idle(enum cpuhp_state state)
1607
{
1608
struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1609
1610
/* Happens for the boot cpu */
1611
if (state != CPUHP_AP_ONLINE_IDLE)
1612
return;
1613
1614
cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1615
1616
/*
1617
* Unpark the stopper thread before we start the idle loop (and start
1618
* scheduling); this ensures the stopper task is always available.
1619
*/
1620
stop_machine_unpark(smp_processor_id());
1621
1622
st->state = CPUHP_AP_ONLINE_IDLE;
1623
complete_ap_thread(st, true);
1624
}
1625
1626
/* Requires cpu_add_remove_lock to be held */
1627
static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1628
{
1629
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1630
struct task_struct *idle;
1631
int ret = 0;
1632
1633
cpus_write_lock();
1634
1635
if (!cpu_present(cpu)) {
1636
ret = -EINVAL;
1637
goto out;
1638
}
1639
1640
/*
1641
* The caller of cpu_up() might have raced with another
1642
* caller. Nothing to do.
1643
*/
1644
if (st->state >= target)
1645
goto out;
1646
1647
if (st->state == CPUHP_OFFLINE) {
1648
/* Let it fail before we try to bring the cpu up */
1649
idle = idle_thread_get(cpu);
1650
if (IS_ERR(idle)) {
1651
ret = PTR_ERR(idle);
1652
goto out;
1653
}
1654
1655
/*
1656
* Reset stale stack state from the last time this CPU was online.
1657
*/
1658
scs_task_reset(idle);
1659
kasan_unpoison_task_stack(idle);
1660
}
1661
1662
cpuhp_tasks_frozen = tasks_frozen;
1663
1664
cpuhp_set_state(cpu, st, target);
1665
/*
1666
* If the current CPU state is in the range of the AP hotplug thread,
1667
* then we need to kick the thread once more.
1668
*/
1669
if (st->state > CPUHP_BRINGUP_CPU) {
1670
ret = cpuhp_kick_ap_work(cpu);
1671
/*
1672
* The AP side has done the error rollback already. Just
1673
* return the error code..
1674
*/
1675
if (ret)
1676
goto out;
1677
}
1678
1679
/*
1680
* Try to reach the target state. We max out on the BP at
1681
* CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1682
* responsible for bringing it up to the target state.
1683
*/
1684
target = min((int)target, CPUHP_BRINGUP_CPU);
1685
ret = cpuhp_up_callbacks(cpu, st, target);
1686
out:
1687
cpus_write_unlock();
1688
arch_smt_update();
1689
return ret;
1690
}
1691
1692
static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1693
{
1694
int err = 0;
1695
1696
if (!cpu_possible(cpu)) {
1697
pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1698
cpu);
1699
return -EINVAL;
1700
}
1701
1702
err = try_online_node(cpu_to_node(cpu));
1703
if (err)
1704
return err;
1705
1706
cpu_maps_update_begin();
1707
1708
if (cpu_hotplug_disabled) {
1709
err = -EBUSY;
1710
goto out;
1711
}
1712
if (!cpu_bootable(cpu)) {
1713
err = -EPERM;
1714
goto out;
1715
}
1716
1717
err = _cpu_up(cpu, 0, target);
1718
out:
1719
cpu_maps_update_done();
1720
return err;
1721
}
1722
1723
/**
1724
* cpu_device_up - Bring up a cpu device
1725
* @dev: Pointer to the cpu device to online
1726
*
1727
* This function is meant to be used by device core cpu subsystem only.
1728
*
1729
* Other subsystems should use add_cpu() instead.
1730
*
1731
* Return: %0 on success or a negative errno code
1732
*/
1733
int cpu_device_up(struct device *dev)
1734
{
1735
return cpu_up(dev->id, CPUHP_ONLINE);
1736
}
1737
1738
int add_cpu(unsigned int cpu)
1739
{
1740
int ret;
1741
1742
lock_device_hotplug();
1743
ret = device_online(get_cpu_device(cpu));
1744
unlock_device_hotplug();
1745
1746
return ret;
1747
}
1748
EXPORT_SYMBOL_GPL(add_cpu);
1749
1750
/**
1751
* bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1752
* @sleep_cpu: The cpu we hibernated on and should be brought up.
1753
*
1754
* On some architectures like arm64, we can hibernate on any CPU, but on
1755
* wake up the CPU we hibernated on might be offline as a side effect of
1756
* using maxcpus= for example.
1757
*
1758
* Return: %0 on success or a negative errno code
1759
*/
1760
int bringup_hibernate_cpu(unsigned int sleep_cpu)
1761
{
1762
int ret;
1763
1764
if (!cpu_online(sleep_cpu)) {
1765
pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1766
ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1767
if (ret) {
1768
pr_err("Failed to bring hibernate-CPU up!\n");
1769
return ret;
1770
}
1771
}
1772
return 0;
1773
}
1774
1775
static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1776
enum cpuhp_state target)
1777
{
1778
unsigned int cpu;
1779
1780
for_each_cpu(cpu, mask) {
1781
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1782
1783
if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1784
/*
1785
* If this failed then cpu_up() might have only
1786
* rolled back to CPUHP_BP_KICK_AP for the final
1787
* online. Clean it up. NOOP if already rolled back.
1788
*/
1789
WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1790
}
1791
1792
if (!--ncpus)
1793
break;
1794
}
1795
}
1796
1797
#ifdef CONFIG_HOTPLUG_PARALLEL
1798
static bool __cpuhp_parallel_bringup __ro_after_init = true;
1799
1800
static int __init parallel_bringup_parse_param(char *arg)
1801
{
1802
return kstrtobool(arg, &__cpuhp_parallel_bringup);
1803
}
1804
early_param("cpuhp.parallel", parallel_bringup_parse_param);
1805
1806
#ifdef CONFIG_HOTPLUG_SMT
1807
static inline bool cpuhp_smt_aware(void)
1808
{
1809
return cpu_smt_max_threads > 1;
1810
}
1811
1812
static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1813
{
1814
return cpu_primary_thread_mask;
1815
}
1816
#else
1817
static inline bool cpuhp_smt_aware(void)
1818
{
1819
return false;
1820
}
1821
static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1822
{
1823
return cpu_none_mask;
1824
}
1825
#endif
1826
1827
bool __weak arch_cpuhp_init_parallel_bringup(void)
1828
{
1829
return true;
1830
}
1831
1832
/*
1833
* On architectures which have enabled parallel bringup this invokes all BP
1834
* prepare states for each of the to be onlined APs first. The last state
1835
* sends the startup IPI to the APs. The APs proceed through the low level
1836
* bringup code in parallel and then wait for the control CPU to release
1837
* them one by one for the final onlining procedure.
1838
*
1839
* This avoids waiting for each AP to respond to the startup IPI in
1840
* CPUHP_BRINGUP_CPU.
1841
*/
1842
static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1843
{
1844
const struct cpumask *mask = cpu_present_mask;
1845
1846
if (__cpuhp_parallel_bringup)
1847
__cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1848
if (!__cpuhp_parallel_bringup)
1849
return false;
1850
1851
if (cpuhp_smt_aware()) {
1852
const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1853
static struct cpumask tmp_mask __initdata;
1854
1855
/*
1856
* X86 requires to prevent that SMT siblings stopped while
1857
* the primary thread does a microcode update for various
1858
* reasons. Bring the primary threads up first.
1859
*/
1860
cpumask_and(&tmp_mask, mask, pmask);
1861
cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1862
cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1863
/* Account for the online CPUs */
1864
ncpus -= num_online_cpus();
1865
if (!ncpus)
1866
return true;
1867
/* Create the mask for secondary CPUs */
1868
cpumask_andnot(&tmp_mask, mask, pmask);
1869
mask = &tmp_mask;
1870
}
1871
1872
/* Bring the not-yet started CPUs up */
1873
cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1874
cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1875
return true;
1876
}
1877
#else
1878
static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1879
#endif /* CONFIG_HOTPLUG_PARALLEL */
1880
1881
void __init bringup_nonboot_cpus(unsigned int max_cpus)
1882
{
1883
if (!max_cpus)
1884
return;
1885
1886
/* Try parallel bringup optimization if enabled */
1887
if (cpuhp_bringup_cpus_parallel(max_cpus))
1888
return;
1889
1890
/* Full per CPU serialized bringup */
1891
cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1892
}
1893
1894
#ifdef CONFIG_PM_SLEEP_SMP
1895
static cpumask_var_t frozen_cpus;
1896
1897
int freeze_secondary_cpus(int primary)
1898
{
1899
int cpu, error = 0;
1900
1901
cpu_maps_update_begin();
1902
if (primary == -1) {
1903
primary = cpumask_first(cpu_online_mask);
1904
if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1905
primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1906
} else {
1907
if (!cpu_online(primary))
1908
primary = cpumask_first(cpu_online_mask);
1909
}
1910
1911
/*
1912
* We take down all of the non-boot CPUs in one shot to avoid races
1913
* with the userspace trying to use the CPU hotplug at the same time
1914
*/
1915
cpumask_clear(frozen_cpus);
1916
1917
pr_info("Disabling non-boot CPUs ...\n");
1918
for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1919
if (!cpu_online(cpu) || cpu == primary)
1920
continue;
1921
1922
if (pm_wakeup_pending()) {
1923
pr_info("Wakeup pending. Abort CPU freeze\n");
1924
error = -EBUSY;
1925
break;
1926
}
1927
1928
trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1929
error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1930
trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1931
if (!error)
1932
cpumask_set_cpu(cpu, frozen_cpus);
1933
else {
1934
pr_err("Error taking CPU%d down: %d\n", cpu, error);
1935
break;
1936
}
1937
}
1938
1939
if (!error)
1940
BUG_ON(num_online_cpus() > 1);
1941
else
1942
pr_err("Non-boot CPUs are not disabled\n");
1943
1944
/*
1945
* Make sure the CPUs won't be enabled by someone else. We need to do
1946
* this even in case of failure as all freeze_secondary_cpus() users are
1947
* supposed to do thaw_secondary_cpus() on the failure path.
1948
*/
1949
cpu_hotplug_disabled++;
1950
1951
cpu_maps_update_done();
1952
return error;
1953
}
1954
1955
void __weak arch_thaw_secondary_cpus_begin(void)
1956
{
1957
}
1958
1959
void __weak arch_thaw_secondary_cpus_end(void)
1960
{
1961
}
1962
1963
void thaw_secondary_cpus(void)
1964
{
1965
int cpu, error;
1966
1967
/* Allow everyone to use the CPU hotplug again */
1968
cpu_maps_update_begin();
1969
__cpu_hotplug_enable();
1970
if (cpumask_empty(frozen_cpus))
1971
goto out;
1972
1973
pr_info("Enabling non-boot CPUs ...\n");
1974
1975
arch_thaw_secondary_cpus_begin();
1976
1977
for_each_cpu(cpu, frozen_cpus) {
1978
trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1979
error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1980
trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1981
if (!error) {
1982
pr_info("CPU%d is up\n", cpu);
1983
continue;
1984
}
1985
pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1986
}
1987
1988
arch_thaw_secondary_cpus_end();
1989
1990
cpumask_clear(frozen_cpus);
1991
out:
1992
cpu_maps_update_done();
1993
}
1994
1995
static int __init alloc_frozen_cpus(void)
1996
{
1997
if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1998
return -ENOMEM;
1999
return 0;
2000
}
2001
core_initcall(alloc_frozen_cpus);
2002
2003
/*
2004
* When callbacks for CPU hotplug notifications are being executed, we must
2005
* ensure that the state of the system with respect to the tasks being frozen
2006
* or not, as reported by the notification, remains unchanged *throughout the
2007
* duration* of the execution of the callbacks.
2008
* Hence we need to prevent the freezer from racing with regular CPU hotplug.
2009
*
2010
* This synchronization is implemented by mutually excluding regular CPU
2011
* hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2012
* Hibernate notifications.
2013
*/
2014
static int
2015
cpu_hotplug_pm_callback(struct notifier_block *nb,
2016
unsigned long action, void *ptr)
2017
{
2018
switch (action) {
2019
2020
case PM_SUSPEND_PREPARE:
2021
case PM_HIBERNATION_PREPARE:
2022
cpu_hotplug_disable();
2023
break;
2024
2025
case PM_POST_SUSPEND:
2026
case PM_POST_HIBERNATION:
2027
cpu_hotplug_enable();
2028
break;
2029
2030
default:
2031
return NOTIFY_DONE;
2032
}
2033
2034
return NOTIFY_OK;
2035
}
2036
2037
2038
static int __init cpu_hotplug_pm_sync_init(void)
2039
{
2040
/*
2041
* cpu_hotplug_pm_callback has higher priority than x86
2042
* bsp_pm_callback which depends on cpu_hotplug_pm_callback
2043
* to disable cpu hotplug to avoid cpu hotplug race.
2044
*/
2045
pm_notifier(cpu_hotplug_pm_callback, 0);
2046
return 0;
2047
}
2048
core_initcall(cpu_hotplug_pm_sync_init);
2049
2050
#endif /* CONFIG_PM_SLEEP_SMP */
2051
2052
int __boot_cpu_id;
2053
2054
#endif /* CONFIG_SMP */
2055
2056
/* Boot processor state steps */
2057
static struct cpuhp_step cpuhp_hp_states[] = {
2058
[CPUHP_OFFLINE] = {
2059
.name = "offline",
2060
.startup.single = NULL,
2061
.teardown.single = NULL,
2062
},
2063
#ifdef CONFIG_SMP
2064
[CPUHP_CREATE_THREADS]= {
2065
.name = "threads:prepare",
2066
.startup.single = smpboot_create_threads,
2067
.teardown.single = NULL,
2068
.cant_stop = true,
2069
},
2070
[CPUHP_RANDOM_PREPARE] = {
2071
.name = "random:prepare",
2072
.startup.single = random_prepare_cpu,
2073
.teardown.single = NULL,
2074
},
2075
[CPUHP_WORKQUEUE_PREP] = {
2076
.name = "workqueue:prepare",
2077
.startup.single = workqueue_prepare_cpu,
2078
.teardown.single = NULL,
2079
},
2080
[CPUHP_HRTIMERS_PREPARE] = {
2081
.name = "hrtimers:prepare",
2082
.startup.single = hrtimers_prepare_cpu,
2083
.teardown.single = NULL,
2084
},
2085
[CPUHP_SMPCFD_PREPARE] = {
2086
.name = "smpcfd:prepare",
2087
.startup.single = smpcfd_prepare_cpu,
2088
.teardown.single = smpcfd_dead_cpu,
2089
},
2090
[CPUHP_RELAY_PREPARE] = {
2091
.name = "relay:prepare",
2092
.startup.single = relay_prepare_cpu,
2093
.teardown.single = NULL,
2094
},
2095
[CPUHP_RCUTREE_PREP] = {
2096
.name = "RCU/tree:prepare",
2097
.startup.single = rcutree_prepare_cpu,
2098
.teardown.single = rcutree_dead_cpu,
2099
},
2100
/*
2101
* On the tear-down path, timers_dead_cpu() must be invoked
2102
* before blk_mq_queue_reinit_notify() from notify_dead(),
2103
* otherwise a RCU stall occurs.
2104
*/
2105
[CPUHP_TIMERS_PREPARE] = {
2106
.name = "timers:prepare",
2107
.startup.single = timers_prepare_cpu,
2108
.teardown.single = timers_dead_cpu,
2109
},
2110
2111
#ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2112
/*
2113
* Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2114
* the next step will release it.
2115
*/
2116
[CPUHP_BP_KICK_AP] = {
2117
.name = "cpu:kick_ap",
2118
.startup.single = cpuhp_kick_ap_alive,
2119
},
2120
2121
/*
2122
* Waits for the AP to reach cpuhp_ap_sync_alive() and then
2123
* releases it for the complete bringup.
2124
*/
2125
[CPUHP_BRINGUP_CPU] = {
2126
.name = "cpu:bringup",
2127
.startup.single = cpuhp_bringup_ap,
2128
.teardown.single = finish_cpu,
2129
.cant_stop = true,
2130
},
2131
#else
2132
/*
2133
* All-in-one CPU bringup state which includes the kick alive.
2134
*/
2135
[CPUHP_BRINGUP_CPU] = {
2136
.name = "cpu:bringup",
2137
.startup.single = bringup_cpu,
2138
.teardown.single = finish_cpu,
2139
.cant_stop = true,
2140
},
2141
#endif
2142
/* Final state before CPU kills itself */
2143
[CPUHP_AP_IDLE_DEAD] = {
2144
.name = "idle:dead",
2145
},
2146
/*
2147
* Last state before CPU enters the idle loop to die. Transient state
2148
* for synchronization.
2149
*/
2150
[CPUHP_AP_OFFLINE] = {
2151
.name = "ap:offline",
2152
.cant_stop = true,
2153
},
2154
/* First state is scheduler control. Interrupts are disabled */
2155
[CPUHP_AP_SCHED_STARTING] = {
2156
.name = "sched:starting",
2157
.startup.single = sched_cpu_starting,
2158
.teardown.single = sched_cpu_dying,
2159
},
2160
[CPUHP_AP_RCUTREE_DYING] = {
2161
.name = "RCU/tree:dying",
2162
.startup.single = NULL,
2163
.teardown.single = rcutree_dying_cpu,
2164
},
2165
[CPUHP_AP_SMPCFD_DYING] = {
2166
.name = "smpcfd:dying",
2167
.startup.single = NULL,
2168
.teardown.single = smpcfd_dying_cpu,
2169
},
2170
[CPUHP_AP_HRTIMERS_DYING] = {
2171
.name = "hrtimers:dying",
2172
.startup.single = hrtimers_cpu_starting,
2173
.teardown.single = hrtimers_cpu_dying,
2174
},
2175
[CPUHP_AP_TICK_DYING] = {
2176
.name = "tick:dying",
2177
.startup.single = NULL,
2178
.teardown.single = tick_cpu_dying,
2179
},
2180
/* Entry state on starting. Interrupts enabled from here on. Transient
2181
* state for synchronsization */
2182
[CPUHP_AP_ONLINE] = {
2183
.name = "ap:online",
2184
},
2185
/*
2186
* Handled on control processor until the plugged processor manages
2187
* this itself.
2188
*/
2189
[CPUHP_TEARDOWN_CPU] = {
2190
.name = "cpu:teardown",
2191
.startup.single = NULL,
2192
.teardown.single = takedown_cpu,
2193
.cant_stop = true,
2194
},
2195
2196
[CPUHP_AP_SCHED_WAIT_EMPTY] = {
2197
.name = "sched:waitempty",
2198
.startup.single = NULL,
2199
.teardown.single = sched_cpu_wait_empty,
2200
},
2201
2202
/* Handle smpboot threads park/unpark */
2203
[CPUHP_AP_SMPBOOT_THREADS] = {
2204
.name = "smpboot/threads:online",
2205
.startup.single = smpboot_unpark_threads,
2206
.teardown.single = smpboot_park_threads,
2207
},
2208
[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2209
.name = "irq/affinity:online",
2210
.startup.single = irq_affinity_online_cpu,
2211
.teardown.single = NULL,
2212
},
2213
[CPUHP_AP_PERF_ONLINE] = {
2214
.name = "perf:online",
2215
.startup.single = perf_event_init_cpu,
2216
.teardown.single = perf_event_exit_cpu,
2217
},
2218
[CPUHP_AP_WATCHDOG_ONLINE] = {
2219
.name = "lockup_detector:online",
2220
.startup.single = lockup_detector_online_cpu,
2221
.teardown.single = lockup_detector_offline_cpu,
2222
},
2223
[CPUHP_AP_WORKQUEUE_ONLINE] = {
2224
.name = "workqueue:online",
2225
.startup.single = workqueue_online_cpu,
2226
.teardown.single = workqueue_offline_cpu,
2227
},
2228
[CPUHP_AP_RANDOM_ONLINE] = {
2229
.name = "random:online",
2230
.startup.single = random_online_cpu,
2231
.teardown.single = NULL,
2232
},
2233
[CPUHP_AP_RCUTREE_ONLINE] = {
2234
.name = "RCU/tree:online",
2235
.startup.single = rcutree_online_cpu,
2236
.teardown.single = rcutree_offline_cpu,
2237
},
2238
#endif
2239
/*
2240
* The dynamically registered state space is here
2241
*/
2242
2243
#ifdef CONFIG_SMP
2244
/* Last state is scheduler control setting the cpu active */
2245
[CPUHP_AP_ACTIVE] = {
2246
.name = "sched:active",
2247
.startup.single = sched_cpu_activate,
2248
.teardown.single = sched_cpu_deactivate,
2249
},
2250
#endif
2251
2252
/* CPU is fully up and running. */
2253
[CPUHP_ONLINE] = {
2254
.name = "online",
2255
.startup.single = NULL,
2256
.teardown.single = NULL,
2257
},
2258
};
2259
2260
/* Sanity check for callbacks */
2261
static int cpuhp_cb_check(enum cpuhp_state state)
2262
{
2263
if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2264
return -EINVAL;
2265
return 0;
2266
}
2267
2268
/*
2269
* Returns a free for dynamic slot assignment of the Online state. The states
2270
* are protected by the cpuhp_slot_states mutex and an empty slot is identified
2271
* by having no name assigned.
2272
*/
2273
static int cpuhp_reserve_state(enum cpuhp_state state)
2274
{
2275
enum cpuhp_state i, end;
2276
struct cpuhp_step *step;
2277
2278
switch (state) {
2279
case CPUHP_AP_ONLINE_DYN:
2280
step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2281
end = CPUHP_AP_ONLINE_DYN_END;
2282
break;
2283
case CPUHP_BP_PREPARE_DYN:
2284
step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2285
end = CPUHP_BP_PREPARE_DYN_END;
2286
break;
2287
default:
2288
return -EINVAL;
2289
}
2290
2291
for (i = state; i <= end; i++, step++) {
2292
if (!step->name)
2293
return i;
2294
}
2295
WARN(1, "No more dynamic states available for CPU hotplug\n");
2296
return -ENOSPC;
2297
}
2298
2299
static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2300
int (*startup)(unsigned int cpu),
2301
int (*teardown)(unsigned int cpu),
2302
bool multi_instance)
2303
{
2304
/* (Un)Install the callbacks for further cpu hotplug operations */
2305
struct cpuhp_step *sp;
2306
int ret = 0;
2307
2308
/*
2309
* If name is NULL, then the state gets removed.
2310
*
2311
* CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2312
* the first allocation from these dynamic ranges, so the removal
2313
* would trigger a new allocation and clear the wrong (already
2314
* empty) state, leaving the callbacks of the to be cleared state
2315
* dangling, which causes wreckage on the next hotplug operation.
2316
*/
2317
if (name && (state == CPUHP_AP_ONLINE_DYN ||
2318
state == CPUHP_BP_PREPARE_DYN)) {
2319
ret = cpuhp_reserve_state(state);
2320
if (ret < 0)
2321
return ret;
2322
state = ret;
2323
}
2324
sp = cpuhp_get_step(state);
2325
if (name && sp->name)
2326
return -EBUSY;
2327
2328
sp->startup.single = startup;
2329
sp->teardown.single = teardown;
2330
sp->name = name;
2331
sp->multi_instance = multi_instance;
2332
INIT_HLIST_HEAD(&sp->list);
2333
return ret;
2334
}
2335
2336
static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2337
{
2338
return cpuhp_get_step(state)->teardown.single;
2339
}
2340
2341
/*
2342
* Call the startup/teardown function for a step either on the AP or
2343
* on the current CPU.
2344
*/
2345
static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2346
struct hlist_node *node)
2347
{
2348
struct cpuhp_step *sp = cpuhp_get_step(state);
2349
int ret;
2350
2351
/*
2352
* If there's nothing to do, we done.
2353
* Relies on the union for multi_instance.
2354
*/
2355
if (cpuhp_step_empty(bringup, sp))
2356
return 0;
2357
/*
2358
* The non AP bound callbacks can fail on bringup. On teardown
2359
* e.g. module removal we crash for now.
2360
*/
2361
#ifdef CONFIG_SMP
2362
if (cpuhp_is_ap_state(state))
2363
ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2364
else
2365
ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2366
#else
2367
ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2368
#endif
2369
BUG_ON(ret && !bringup);
2370
return ret;
2371
}
2372
2373
/*
2374
* Called from __cpuhp_setup_state on a recoverable failure.
2375
*
2376
* Note: The teardown callbacks for rollback are not allowed to fail!
2377
*/
2378
static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2379
struct hlist_node *node)
2380
{
2381
int cpu;
2382
2383
/* Roll back the already executed steps on the other cpus */
2384
for_each_present_cpu(cpu) {
2385
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2386
int cpustate = st->state;
2387
2388
if (cpu >= failedcpu)
2389
break;
2390
2391
/* Did we invoke the startup call on that cpu ? */
2392
if (cpustate >= state)
2393
cpuhp_issue_call(cpu, state, false, node);
2394
}
2395
}
2396
2397
int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2398
struct hlist_node *node,
2399
bool invoke)
2400
{
2401
struct cpuhp_step *sp;
2402
int cpu;
2403
int ret;
2404
2405
lockdep_assert_cpus_held();
2406
2407
sp = cpuhp_get_step(state);
2408
if (sp->multi_instance == false)
2409
return -EINVAL;
2410
2411
mutex_lock(&cpuhp_state_mutex);
2412
2413
if (!invoke || !sp->startup.multi)
2414
goto add_node;
2415
2416
/*
2417
* Try to call the startup callback for each present cpu
2418
* depending on the hotplug state of the cpu.
2419
*/
2420
for_each_present_cpu(cpu) {
2421
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2422
int cpustate = st->state;
2423
2424
if (cpustate < state)
2425
continue;
2426
2427
ret = cpuhp_issue_call(cpu, state, true, node);
2428
if (ret) {
2429
if (sp->teardown.multi)
2430
cpuhp_rollback_install(cpu, state, node);
2431
goto unlock;
2432
}
2433
}
2434
add_node:
2435
ret = 0;
2436
hlist_add_head(node, &sp->list);
2437
unlock:
2438
mutex_unlock(&cpuhp_state_mutex);
2439
return ret;
2440
}
2441
2442
int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2443
bool invoke)
2444
{
2445
int ret;
2446
2447
cpus_read_lock();
2448
ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2449
cpus_read_unlock();
2450
return ret;
2451
}
2452
EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2453
2454
/**
2455
* __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2456
* @state: The state to setup
2457
* @name: Name of the step
2458
* @invoke: If true, the startup function is invoked for cpus where
2459
* cpu state >= @state
2460
* @startup: startup callback function
2461
* @teardown: teardown callback function
2462
* @multi_instance: State is set up for multiple instances which get
2463
* added afterwards.
2464
*
2465
* The caller needs to hold cpus read locked while calling this function.
2466
* Return:
2467
* On success:
2468
* Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2469
* 0 for all other states
2470
* On failure: proper (negative) error code
2471
*/
2472
int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2473
const char *name, bool invoke,
2474
int (*startup)(unsigned int cpu),
2475
int (*teardown)(unsigned int cpu),
2476
bool multi_instance)
2477
{
2478
int cpu, ret = 0;
2479
bool dynstate;
2480
2481
lockdep_assert_cpus_held();
2482
2483
if (cpuhp_cb_check(state) || !name)
2484
return -EINVAL;
2485
2486
mutex_lock(&cpuhp_state_mutex);
2487
2488
ret = cpuhp_store_callbacks(state, name, startup, teardown,
2489
multi_instance);
2490
2491
dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2492
if (ret > 0 && dynstate) {
2493
state = ret;
2494
ret = 0;
2495
}
2496
2497
if (ret || !invoke || !startup)
2498
goto out;
2499
2500
/*
2501
* Try to call the startup callback for each present cpu
2502
* depending on the hotplug state of the cpu.
2503
*/
2504
for_each_present_cpu(cpu) {
2505
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2506
int cpustate = st->state;
2507
2508
if (cpustate < state)
2509
continue;
2510
2511
ret = cpuhp_issue_call(cpu, state, true, NULL);
2512
if (ret) {
2513
if (teardown)
2514
cpuhp_rollback_install(cpu, state, NULL);
2515
cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2516
goto out;
2517
}
2518
}
2519
out:
2520
mutex_unlock(&cpuhp_state_mutex);
2521
/*
2522
* If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2523
* return the dynamically allocated state in case of success.
2524
*/
2525
if (!ret && dynstate)
2526
return state;
2527
return ret;
2528
}
2529
EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2530
2531
int __cpuhp_setup_state(enum cpuhp_state state,
2532
const char *name, bool invoke,
2533
int (*startup)(unsigned int cpu),
2534
int (*teardown)(unsigned int cpu),
2535
bool multi_instance)
2536
{
2537
int ret;
2538
2539
cpus_read_lock();
2540
ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2541
teardown, multi_instance);
2542
cpus_read_unlock();
2543
return ret;
2544
}
2545
EXPORT_SYMBOL(__cpuhp_setup_state);
2546
2547
int __cpuhp_state_remove_instance(enum cpuhp_state state,
2548
struct hlist_node *node, bool invoke)
2549
{
2550
struct cpuhp_step *sp = cpuhp_get_step(state);
2551
int cpu;
2552
2553
BUG_ON(cpuhp_cb_check(state));
2554
2555
if (!sp->multi_instance)
2556
return -EINVAL;
2557
2558
cpus_read_lock();
2559
mutex_lock(&cpuhp_state_mutex);
2560
2561
if (!invoke || !cpuhp_get_teardown_cb(state))
2562
goto remove;
2563
/*
2564
* Call the teardown callback for each present cpu depending
2565
* on the hotplug state of the cpu. This function is not
2566
* allowed to fail currently!
2567
*/
2568
for_each_present_cpu(cpu) {
2569
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2570
int cpustate = st->state;
2571
2572
if (cpustate >= state)
2573
cpuhp_issue_call(cpu, state, false, node);
2574
}
2575
2576
remove:
2577
hlist_del(node);
2578
mutex_unlock(&cpuhp_state_mutex);
2579
cpus_read_unlock();
2580
2581
return 0;
2582
}
2583
EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2584
2585
/**
2586
* __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2587
* @state: The state to remove
2588
* @invoke: If true, the teardown function is invoked for cpus where
2589
* cpu state >= @state
2590
*
2591
* The caller needs to hold cpus read locked while calling this function.
2592
* The teardown callback is currently not allowed to fail. Think
2593
* about module removal!
2594
*/
2595
void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2596
{
2597
struct cpuhp_step *sp = cpuhp_get_step(state);
2598
int cpu;
2599
2600
BUG_ON(cpuhp_cb_check(state));
2601
2602
lockdep_assert_cpus_held();
2603
2604
mutex_lock(&cpuhp_state_mutex);
2605
if (sp->multi_instance) {
2606
WARN(!hlist_empty(&sp->list),
2607
"Error: Removing state %d which has instances left.\n",
2608
state);
2609
goto remove;
2610
}
2611
2612
if (!invoke || !cpuhp_get_teardown_cb(state))
2613
goto remove;
2614
2615
/*
2616
* Call the teardown callback for each present cpu depending
2617
* on the hotplug state of the cpu. This function is not
2618
* allowed to fail currently!
2619
*/
2620
for_each_present_cpu(cpu) {
2621
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2622
int cpustate = st->state;
2623
2624
if (cpustate >= state)
2625
cpuhp_issue_call(cpu, state, false, NULL);
2626
}
2627
remove:
2628
cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2629
mutex_unlock(&cpuhp_state_mutex);
2630
}
2631
EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2632
2633
void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2634
{
2635
cpus_read_lock();
2636
__cpuhp_remove_state_cpuslocked(state, invoke);
2637
cpus_read_unlock();
2638
}
2639
EXPORT_SYMBOL(__cpuhp_remove_state);
2640
2641
#ifdef CONFIG_HOTPLUG_SMT
2642
static void cpuhp_offline_cpu_device(unsigned int cpu)
2643
{
2644
struct device *dev = get_cpu_device(cpu);
2645
2646
dev->offline = true;
2647
/* Tell user space about the state change */
2648
kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2649
}
2650
2651
static void cpuhp_online_cpu_device(unsigned int cpu)
2652
{
2653
struct device *dev = get_cpu_device(cpu);
2654
2655
dev->offline = false;
2656
/* Tell user space about the state change */
2657
kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2658
}
2659
2660
int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2661
{
2662
int cpu, ret = 0;
2663
2664
cpu_maps_update_begin();
2665
for_each_online_cpu(cpu) {
2666
if (topology_is_primary_thread(cpu))
2667
continue;
2668
/*
2669
* Disable can be called with CPU_SMT_ENABLED when changing
2670
* from a higher to lower number of SMT threads per core.
2671
*/
2672
if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2673
continue;
2674
ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2675
if (ret)
2676
break;
2677
/*
2678
* As this needs to hold the cpu maps lock it's impossible
2679
* to call device_offline() because that ends up calling
2680
* cpu_down() which takes cpu maps lock. cpu maps lock
2681
* needs to be held as this might race against in kernel
2682
* abusers of the hotplug machinery (thermal management).
2683
*
2684
* So nothing would update device:offline state. That would
2685
* leave the sysfs entry stale and prevent onlining after
2686
* smt control has been changed to 'off' again. This is
2687
* called under the sysfs hotplug lock, so it is properly
2688
* serialized against the regular offline usage.
2689
*/
2690
cpuhp_offline_cpu_device(cpu);
2691
}
2692
if (!ret)
2693
cpu_smt_control = ctrlval;
2694
cpu_maps_update_done();
2695
return ret;
2696
}
2697
2698
/* Check if the core a CPU belongs to is online */
2699
#if !defined(topology_is_core_online)
2700
static inline bool topology_is_core_online(unsigned int cpu)
2701
{
2702
return true;
2703
}
2704
#endif
2705
2706
int cpuhp_smt_enable(void)
2707
{
2708
int cpu, ret = 0;
2709
2710
cpu_maps_update_begin();
2711
cpu_smt_control = CPU_SMT_ENABLED;
2712
for_each_present_cpu(cpu) {
2713
/* Skip online CPUs and CPUs on offline nodes */
2714
if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2715
continue;
2716
if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2717
continue;
2718
ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2719
if (ret)
2720
break;
2721
/* See comment in cpuhp_smt_disable() */
2722
cpuhp_online_cpu_device(cpu);
2723
}
2724
cpu_maps_update_done();
2725
return ret;
2726
}
2727
#endif
2728
2729
#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
2730
static ssize_t state_show(struct device *dev,
2731
struct device_attribute *attr, char *buf)
2732
{
2733
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2734
2735
return sprintf(buf, "%d\n", st->state);
2736
}
2737
static DEVICE_ATTR_RO(state);
2738
2739
static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2740
const char *buf, size_t count)
2741
{
2742
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2743
struct cpuhp_step *sp;
2744
int target, ret;
2745
2746
ret = kstrtoint(buf, 10, &target);
2747
if (ret)
2748
return ret;
2749
2750
#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2751
if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2752
return -EINVAL;
2753
#else
2754
if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2755
return -EINVAL;
2756
#endif
2757
2758
ret = lock_device_hotplug_sysfs();
2759
if (ret)
2760
return ret;
2761
2762
mutex_lock(&cpuhp_state_mutex);
2763
sp = cpuhp_get_step(target);
2764
ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2765
mutex_unlock(&cpuhp_state_mutex);
2766
if (ret)
2767
goto out;
2768
2769
if (st->state < target)
2770
ret = cpu_up(dev->id, target);
2771
else if (st->state > target)
2772
ret = cpu_down(dev->id, target);
2773
else if (WARN_ON(st->target != target))
2774
st->target = target;
2775
out:
2776
unlock_device_hotplug();
2777
return ret ? ret : count;
2778
}
2779
2780
static ssize_t target_show(struct device *dev,
2781
struct device_attribute *attr, char *buf)
2782
{
2783
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2784
2785
return sprintf(buf, "%d\n", st->target);
2786
}
2787
static DEVICE_ATTR_RW(target);
2788
2789
static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2790
const char *buf, size_t count)
2791
{
2792
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2793
struct cpuhp_step *sp;
2794
int fail, ret;
2795
2796
ret = kstrtoint(buf, 10, &fail);
2797
if (ret)
2798
return ret;
2799
2800
if (fail == CPUHP_INVALID) {
2801
st->fail = fail;
2802
return count;
2803
}
2804
2805
if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2806
return -EINVAL;
2807
2808
/*
2809
* Cannot fail STARTING/DYING callbacks.
2810
*/
2811
if (cpuhp_is_atomic_state(fail))
2812
return -EINVAL;
2813
2814
/*
2815
* DEAD callbacks cannot fail...
2816
* ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2817
* triggering STARTING callbacks, a failure in this state would
2818
* hinder rollback.
2819
*/
2820
if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2821
return -EINVAL;
2822
2823
/*
2824
* Cannot fail anything that doesn't have callbacks.
2825
*/
2826
mutex_lock(&cpuhp_state_mutex);
2827
sp = cpuhp_get_step(fail);
2828
if (!sp->startup.single && !sp->teardown.single)
2829
ret = -EINVAL;
2830
mutex_unlock(&cpuhp_state_mutex);
2831
if (ret)
2832
return ret;
2833
2834
st->fail = fail;
2835
2836
return count;
2837
}
2838
2839
static ssize_t fail_show(struct device *dev,
2840
struct device_attribute *attr, char *buf)
2841
{
2842
struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2843
2844
return sprintf(buf, "%d\n", st->fail);
2845
}
2846
2847
static DEVICE_ATTR_RW(fail);
2848
2849
static struct attribute *cpuhp_cpu_attrs[] = {
2850
&dev_attr_state.attr,
2851
&dev_attr_target.attr,
2852
&dev_attr_fail.attr,
2853
NULL
2854
};
2855
2856
static const struct attribute_group cpuhp_cpu_attr_group = {
2857
.attrs = cpuhp_cpu_attrs,
2858
.name = "hotplug",
2859
};
2860
2861
static ssize_t states_show(struct device *dev,
2862
struct device_attribute *attr, char *buf)
2863
{
2864
ssize_t cur, res = 0;
2865
int i;
2866
2867
mutex_lock(&cpuhp_state_mutex);
2868
for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2869
struct cpuhp_step *sp = cpuhp_get_step(i);
2870
2871
if (sp->name) {
2872
cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2873
buf += cur;
2874
res += cur;
2875
}
2876
}
2877
mutex_unlock(&cpuhp_state_mutex);
2878
return res;
2879
}
2880
static DEVICE_ATTR_RO(states);
2881
2882
static struct attribute *cpuhp_cpu_root_attrs[] = {
2883
&dev_attr_states.attr,
2884
NULL
2885
};
2886
2887
static const struct attribute_group cpuhp_cpu_root_attr_group = {
2888
.attrs = cpuhp_cpu_root_attrs,
2889
.name = "hotplug",
2890
};
2891
2892
#ifdef CONFIG_HOTPLUG_SMT
2893
2894
static bool cpu_smt_num_threads_valid(unsigned int threads)
2895
{
2896
if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2897
return threads >= 1 && threads <= cpu_smt_max_threads;
2898
return threads == 1 || threads == cpu_smt_max_threads;
2899
}
2900
2901
static ssize_t
2902
__store_smt_control(struct device *dev, struct device_attribute *attr,
2903
const char *buf, size_t count)
2904
{
2905
int ctrlval, ret, num_threads, orig_threads;
2906
bool force_off;
2907
2908
if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2909
return -EPERM;
2910
2911
if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2912
return -ENODEV;
2913
2914
if (sysfs_streq(buf, "on")) {
2915
ctrlval = CPU_SMT_ENABLED;
2916
num_threads = cpu_smt_max_threads;
2917
} else if (sysfs_streq(buf, "off")) {
2918
ctrlval = CPU_SMT_DISABLED;
2919
num_threads = 1;
2920
} else if (sysfs_streq(buf, "forceoff")) {
2921
ctrlval = CPU_SMT_FORCE_DISABLED;
2922
num_threads = 1;
2923
} else if (kstrtoint(buf, 10, &num_threads) == 0) {
2924
if (num_threads == 1)
2925
ctrlval = CPU_SMT_DISABLED;
2926
else if (cpu_smt_num_threads_valid(num_threads))
2927
ctrlval = CPU_SMT_ENABLED;
2928
else
2929
return -EINVAL;
2930
} else {
2931
return -EINVAL;
2932
}
2933
2934
ret = lock_device_hotplug_sysfs();
2935
if (ret)
2936
return ret;
2937
2938
orig_threads = cpu_smt_num_threads;
2939
cpu_smt_num_threads = num_threads;
2940
2941
force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2942
2943
if (num_threads > orig_threads)
2944
ret = cpuhp_smt_enable();
2945
else if (num_threads < orig_threads || force_off)
2946
ret = cpuhp_smt_disable(ctrlval);
2947
2948
unlock_device_hotplug();
2949
return ret ? ret : count;
2950
}
2951
2952
#else /* !CONFIG_HOTPLUG_SMT */
2953
static ssize_t
2954
__store_smt_control(struct device *dev, struct device_attribute *attr,
2955
const char *buf, size_t count)
2956
{
2957
return -ENODEV;
2958
}
2959
#endif /* CONFIG_HOTPLUG_SMT */
2960
2961
static const char *smt_states[] = {
2962
[CPU_SMT_ENABLED] = "on",
2963
[CPU_SMT_DISABLED] = "off",
2964
[CPU_SMT_FORCE_DISABLED] = "forceoff",
2965
[CPU_SMT_NOT_SUPPORTED] = "notsupported",
2966
[CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2967
};
2968
2969
static ssize_t control_show(struct device *dev,
2970
struct device_attribute *attr, char *buf)
2971
{
2972
const char *state = smt_states[cpu_smt_control];
2973
2974
#ifdef CONFIG_HOTPLUG_SMT
2975
/*
2976
* If SMT is enabled but not all threads are enabled then show the
2977
* number of threads. If all threads are enabled show "on". Otherwise
2978
* show the state name.
2979
*/
2980
if (cpu_smt_control == CPU_SMT_ENABLED &&
2981
cpu_smt_num_threads != cpu_smt_max_threads)
2982
return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2983
#endif
2984
2985
return sysfs_emit(buf, "%s\n", state);
2986
}
2987
2988
static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2989
const char *buf, size_t count)
2990
{
2991
return __store_smt_control(dev, attr, buf, count);
2992
}
2993
static DEVICE_ATTR_RW(control);
2994
2995
static ssize_t active_show(struct device *dev,
2996
struct device_attribute *attr, char *buf)
2997
{
2998
return sysfs_emit(buf, "%d\n", sched_smt_active());
2999
}
3000
static DEVICE_ATTR_RO(active);
3001
3002
static struct attribute *cpuhp_smt_attrs[] = {
3003
&dev_attr_control.attr,
3004
&dev_attr_active.attr,
3005
NULL
3006
};
3007
3008
static const struct attribute_group cpuhp_smt_attr_group = {
3009
.attrs = cpuhp_smt_attrs,
3010
.name = "smt",
3011
};
3012
3013
static int __init cpu_smt_sysfs_init(void)
3014
{
3015
struct device *dev_root;
3016
int ret = -ENODEV;
3017
3018
dev_root = bus_get_dev_root(&cpu_subsys);
3019
if (dev_root) {
3020
ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3021
put_device(dev_root);
3022
}
3023
return ret;
3024
}
3025
3026
static int __init cpuhp_sysfs_init(void)
3027
{
3028
struct device *dev_root;
3029
int cpu, ret;
3030
3031
ret = cpu_smt_sysfs_init();
3032
if (ret)
3033
return ret;
3034
3035
dev_root = bus_get_dev_root(&cpu_subsys);
3036
if (dev_root) {
3037
ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3038
put_device(dev_root);
3039
if (ret)
3040
return ret;
3041
}
3042
3043
for_each_possible_cpu(cpu) {
3044
struct device *dev = get_cpu_device(cpu);
3045
3046
if (!dev)
3047
continue;
3048
ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3049
if (ret)
3050
return ret;
3051
}
3052
return 0;
3053
}
3054
device_initcall(cpuhp_sysfs_init);
3055
#endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3056
3057
/*
3058
* cpu_bit_bitmap[] is a special, "compressed" data structure that
3059
* represents all NR_CPUS bits binary values of 1<<nr.
3060
*
3061
* It is used by cpumask_of() to get a constant address to a CPU
3062
* mask value that has a single bit set only.
3063
*/
3064
3065
/* cpu_bit_bitmap[0] is empty - so we can back into it */
3066
#define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
3067
#define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3068
#define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3069
#define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3070
3071
const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3072
3073
MASK_DECLARE_8(0), MASK_DECLARE_8(8),
3074
MASK_DECLARE_8(16), MASK_DECLARE_8(24),
3075
#if BITS_PER_LONG > 32
3076
MASK_DECLARE_8(32), MASK_DECLARE_8(40),
3077
MASK_DECLARE_8(48), MASK_DECLARE_8(56),
3078
#endif
3079
};
3080
EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3081
3082
const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3083
EXPORT_SYMBOL(cpu_all_bits);
3084
3085
#ifdef CONFIG_INIT_ALL_POSSIBLE
3086
struct cpumask __cpu_possible_mask __ro_after_init
3087
= {CPU_BITS_ALL};
3088
#else
3089
struct cpumask __cpu_possible_mask __ro_after_init;
3090
#endif
3091
EXPORT_SYMBOL(__cpu_possible_mask);
3092
3093
struct cpumask __cpu_online_mask __read_mostly;
3094
EXPORT_SYMBOL(__cpu_online_mask);
3095
3096
struct cpumask __cpu_enabled_mask __read_mostly;
3097
EXPORT_SYMBOL(__cpu_enabled_mask);
3098
3099
struct cpumask __cpu_present_mask __read_mostly;
3100
EXPORT_SYMBOL(__cpu_present_mask);
3101
3102
struct cpumask __cpu_active_mask __read_mostly;
3103
EXPORT_SYMBOL(__cpu_active_mask);
3104
3105
struct cpumask __cpu_dying_mask __read_mostly;
3106
EXPORT_SYMBOL(__cpu_dying_mask);
3107
3108
atomic_t __num_online_cpus __read_mostly;
3109
EXPORT_SYMBOL(__num_online_cpus);
3110
3111
void init_cpu_present(const struct cpumask *src)
3112
{
3113
cpumask_copy(&__cpu_present_mask, src);
3114
}
3115
3116
void init_cpu_possible(const struct cpumask *src)
3117
{
3118
cpumask_copy(&__cpu_possible_mask, src);
3119
}
3120
3121
void set_cpu_online(unsigned int cpu, bool online)
3122
{
3123
/*
3124
* atomic_inc/dec() is required to handle the horrid abuse of this
3125
* function by the reboot and kexec code which invoke it from
3126
* IPI/NMI broadcasts when shutting down CPUs. Invocation from
3127
* regular CPU hotplug is properly serialized.
3128
*
3129
* Note, that the fact that __num_online_cpus is of type atomic_t
3130
* does not protect readers which are not serialized against
3131
* concurrent hotplug operations.
3132
*/
3133
if (online) {
3134
if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3135
atomic_inc(&__num_online_cpus);
3136
} else {
3137
if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3138
atomic_dec(&__num_online_cpus);
3139
}
3140
}
3141
3142
/*
3143
* Activate the first processor.
3144
*/
3145
void __init boot_cpu_init(void)
3146
{
3147
int cpu = smp_processor_id();
3148
3149
/* Mark the boot cpu "present", "online" etc for SMP and UP case */
3150
set_cpu_online(cpu, true);
3151
set_cpu_active(cpu, true);
3152
set_cpu_present(cpu, true);
3153
set_cpu_possible(cpu, true);
3154
3155
#ifdef CONFIG_SMP
3156
__boot_cpu_id = cpu;
3157
#endif
3158
}
3159
3160
/*
3161
* Must be called _AFTER_ setting up the per_cpu areas
3162
*/
3163
void __init boot_cpu_hotplug_init(void)
3164
{
3165
#ifdef CONFIG_SMP
3166
cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3167
atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3168
#endif
3169
this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3170
this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3171
}
3172
3173
#ifdef CONFIG_CPU_MITIGATIONS
3174
/*
3175
* All except the cross-thread attack vector are mitigated by default.
3176
* Cross-thread mitigation often requires disabling SMT which is expensive
3177
* so cross-thread mitigations are only partially enabled by default.
3178
*
3179
* Guest-to-Host and Guest-to-Guest vectors are only needed if KVM support is
3180
* present.
3181
*/
3182
static bool attack_vectors[NR_CPU_ATTACK_VECTORS] __ro_after_init = {
3183
[CPU_MITIGATE_USER_KERNEL] = true,
3184
[CPU_MITIGATE_USER_USER] = true,
3185
[CPU_MITIGATE_GUEST_HOST] = IS_ENABLED(CONFIG_KVM),
3186
[CPU_MITIGATE_GUEST_GUEST] = IS_ENABLED(CONFIG_KVM),
3187
};
3188
3189
bool cpu_attack_vector_mitigated(enum cpu_attack_vectors v)
3190
{
3191
if (v < NR_CPU_ATTACK_VECTORS)
3192
return attack_vectors[v];
3193
3194
WARN_ONCE(1, "Invalid attack vector %d\n", v);
3195
return false;
3196
}
3197
3198
/*
3199
* There are 3 global options, 'off', 'auto', 'auto,nosmt'. These may optionally
3200
* be combined with attack-vector disables which follow them.
3201
*
3202
* Examples:
3203
* mitigations=auto,no_user_kernel,no_user_user,no_cross_thread
3204
* mitigations=auto,nosmt,no_guest_host,no_guest_guest
3205
*
3206
* mitigations=off is equivalent to disabling all attack vectors.
3207
*/
3208
enum cpu_mitigations {
3209
CPU_MITIGATIONS_OFF,
3210
CPU_MITIGATIONS_AUTO,
3211
CPU_MITIGATIONS_AUTO_NOSMT,
3212
};
3213
3214
enum {
3215
NO_USER_KERNEL,
3216
NO_USER_USER,
3217
NO_GUEST_HOST,
3218
NO_GUEST_GUEST,
3219
NO_CROSS_THREAD,
3220
NR_VECTOR_PARAMS,
3221
};
3222
3223
enum smt_mitigations smt_mitigations __ro_after_init = SMT_MITIGATIONS_AUTO;
3224
static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3225
3226
static const match_table_t global_mitigations = {
3227
{ CPU_MITIGATIONS_AUTO_NOSMT, "auto,nosmt"},
3228
{ CPU_MITIGATIONS_AUTO, "auto"},
3229
{ CPU_MITIGATIONS_OFF, "off"},
3230
};
3231
3232
static const match_table_t vector_mitigations = {
3233
{ NO_USER_KERNEL, "no_user_kernel"},
3234
{ NO_USER_USER, "no_user_user"},
3235
{ NO_GUEST_HOST, "no_guest_host"},
3236
{ NO_GUEST_GUEST, "no_guest_guest"},
3237
{ NO_CROSS_THREAD, "no_cross_thread"},
3238
{ NR_VECTOR_PARAMS, NULL},
3239
};
3240
3241
static int __init mitigations_parse_global_opt(char *arg)
3242
{
3243
int i;
3244
3245
for (i = 0; i < ARRAY_SIZE(global_mitigations); i++) {
3246
const char *pattern = global_mitigations[i].pattern;
3247
3248
if (!strncmp(arg, pattern, strlen(pattern))) {
3249
cpu_mitigations = global_mitigations[i].token;
3250
return strlen(pattern);
3251
}
3252
}
3253
3254
return 0;
3255
}
3256
3257
static int __init mitigations_parse_cmdline(char *arg)
3258
{
3259
char *s, *p;
3260
int len;
3261
3262
len = mitigations_parse_global_opt(arg);
3263
3264
if (cpu_mitigations_off()) {
3265
memset(attack_vectors, 0, sizeof(attack_vectors));
3266
smt_mitigations = SMT_MITIGATIONS_OFF;
3267
} else if (cpu_mitigations_auto_nosmt()) {
3268
smt_mitigations = SMT_MITIGATIONS_ON;
3269
}
3270
3271
p = arg + len;
3272
3273
if (!*p)
3274
return 0;
3275
3276
/* Attack vector controls may come after the ',' */
3277
if (*p++ != ',' || !IS_ENABLED(CONFIG_ARCH_HAS_CPU_ATTACK_VECTORS)) {
3278
pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", arg);
3279
return 0;
3280
}
3281
3282
while ((s = strsep(&p, ",")) != NULL) {
3283
switch (match_token(s, vector_mitigations, NULL)) {
3284
case NO_USER_KERNEL:
3285
attack_vectors[CPU_MITIGATE_USER_KERNEL] = false;
3286
break;
3287
case NO_USER_USER:
3288
attack_vectors[CPU_MITIGATE_USER_USER] = false;
3289
break;
3290
case NO_GUEST_HOST:
3291
attack_vectors[CPU_MITIGATE_GUEST_HOST] = false;
3292
break;
3293
case NO_GUEST_GUEST:
3294
attack_vectors[CPU_MITIGATE_GUEST_GUEST] = false;
3295
break;
3296
case NO_CROSS_THREAD:
3297
smt_mitigations = SMT_MITIGATIONS_OFF;
3298
break;
3299
default:
3300
pr_crit("Unsupported mitigations options %s\n", s);
3301
return 0;
3302
}
3303
}
3304
3305
return 0;
3306
}
3307
3308
/* mitigations=off */
3309
bool cpu_mitigations_off(void)
3310
{
3311
return cpu_mitigations == CPU_MITIGATIONS_OFF;
3312
}
3313
EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3314
3315
/* mitigations=auto,nosmt */
3316
bool cpu_mitigations_auto_nosmt(void)
3317
{
3318
return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3319
}
3320
EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3321
#else
3322
static int __init mitigations_parse_cmdline(char *arg)
3323
{
3324
pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3325
return 0;
3326
}
3327
#endif
3328
early_param("mitigations", mitigations_parse_cmdline);
3329
3330