Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/crash_core.c
26243 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* crash.c - kernel crash support code.
4
* Copyright (C) 2002-2004 Eric Biederman <[email protected]>
5
*/
6
7
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9
#include <linux/buildid.h>
10
#include <linux/init.h>
11
#include <linux/utsname.h>
12
#include <linux/vmalloc.h>
13
#include <linux/sizes.h>
14
#include <linux/kexec.h>
15
#include <linux/memory.h>
16
#include <linux/mm.h>
17
#include <linux/cpuhotplug.h>
18
#include <linux/memblock.h>
19
#include <linux/kmemleak.h>
20
#include <linux/crash_core.h>
21
#include <linux/reboot.h>
22
#include <linux/btf.h>
23
#include <linux/objtool.h>
24
#include <linux/delay.h>
25
26
#include <asm/page.h>
27
#include <asm/sections.h>
28
29
#include <crypto/sha1.h>
30
31
#include "kallsyms_internal.h"
32
#include "kexec_internal.h"
33
34
/* Per cpu memory for storing cpu states in case of system crash. */
35
note_buf_t __percpu *crash_notes;
36
37
/* time to wait for possible DMA to finish before starting the kdump kernel
38
* when a CMA reservation is used
39
*/
40
#define CMA_DMA_TIMEOUT_SEC 10
41
42
#ifdef CONFIG_CRASH_DUMP
43
44
int kimage_crash_copy_vmcoreinfo(struct kimage *image)
45
{
46
struct page *vmcoreinfo_page;
47
void *safecopy;
48
49
if (!IS_ENABLED(CONFIG_CRASH_DUMP))
50
return 0;
51
if (image->type != KEXEC_TYPE_CRASH)
52
return 0;
53
54
/*
55
* For kdump, allocate one vmcoreinfo safe copy from the
56
* crash memory. as we have arch_kexec_protect_crashkres()
57
* after kexec syscall, we naturally protect it from write
58
* (even read) access under kernel direct mapping. But on
59
* the other hand, we still need to operate it when crash
60
* happens to generate vmcoreinfo note, hereby we rely on
61
* vmap for this purpose.
62
*/
63
vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
64
if (!vmcoreinfo_page) {
65
pr_warn("Could not allocate vmcoreinfo buffer\n");
66
return -ENOMEM;
67
}
68
safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
69
if (!safecopy) {
70
pr_warn("Could not vmap vmcoreinfo buffer\n");
71
return -ENOMEM;
72
}
73
74
image->vmcoreinfo_data_copy = safecopy;
75
crash_update_vmcoreinfo_safecopy(safecopy);
76
77
return 0;
78
}
79
80
81
82
int kexec_should_crash(struct task_struct *p)
83
{
84
/*
85
* If crash_kexec_post_notifiers is enabled, don't run
86
* crash_kexec() here yet, which must be run after panic
87
* notifiers in panic().
88
*/
89
if (crash_kexec_post_notifiers)
90
return 0;
91
/*
92
* There are 4 panic() calls in make_task_dead() path, each of which
93
* corresponds to each of these 4 conditions.
94
*/
95
if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
96
return 1;
97
return 0;
98
}
99
100
int kexec_crash_loaded(void)
101
{
102
return !!kexec_crash_image;
103
}
104
EXPORT_SYMBOL_GPL(kexec_crash_loaded);
105
106
static void crash_cma_clear_pending_dma(void)
107
{
108
if (!crashk_cma_cnt)
109
return;
110
111
mdelay(CMA_DMA_TIMEOUT_SEC * 1000);
112
}
113
114
/*
115
* No panic_cpu check version of crash_kexec(). This function is called
116
* only when panic_cpu holds the current CPU number; this is the only CPU
117
* which processes crash_kexec routines.
118
*/
119
void __noclone __crash_kexec(struct pt_regs *regs)
120
{
121
/* Take the kexec_lock here to prevent sys_kexec_load
122
* running on one cpu from replacing the crash kernel
123
* we are using after a panic on a different cpu.
124
*
125
* If the crash kernel was not located in a fixed area
126
* of memory the xchg(&kexec_crash_image) would be
127
* sufficient. But since I reuse the memory...
128
*/
129
if (kexec_trylock()) {
130
if (kexec_crash_image) {
131
struct pt_regs fixed_regs;
132
133
crash_setup_regs(&fixed_regs, regs);
134
crash_save_vmcoreinfo();
135
machine_crash_shutdown(&fixed_regs);
136
crash_cma_clear_pending_dma();
137
machine_kexec(kexec_crash_image);
138
}
139
kexec_unlock();
140
}
141
}
142
STACK_FRAME_NON_STANDARD(__crash_kexec);
143
144
__bpf_kfunc void crash_kexec(struct pt_regs *regs)
145
{
146
int old_cpu, this_cpu;
147
148
/*
149
* Only one CPU is allowed to execute the crash_kexec() code as with
150
* panic(). Otherwise parallel calls of panic() and crash_kexec()
151
* may stop each other. To exclude them, we use panic_cpu here too.
152
*/
153
old_cpu = PANIC_CPU_INVALID;
154
this_cpu = raw_smp_processor_id();
155
156
if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
157
/* This is the 1st CPU which comes here, so go ahead. */
158
__crash_kexec(regs);
159
160
/*
161
* Reset panic_cpu to allow another panic()/crash_kexec()
162
* call.
163
*/
164
atomic_set(&panic_cpu, PANIC_CPU_INVALID);
165
}
166
}
167
168
static inline resource_size_t crash_resource_size(const struct resource *res)
169
{
170
return !res->end ? 0 : resource_size(res);
171
}
172
173
174
175
176
int crash_prepare_elf64_headers(struct crash_mem *mem, int need_kernel_map,
177
void **addr, unsigned long *sz)
178
{
179
Elf64_Ehdr *ehdr;
180
Elf64_Phdr *phdr;
181
unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
182
unsigned char *buf;
183
unsigned int cpu, i;
184
unsigned long long notes_addr;
185
unsigned long mstart, mend;
186
187
/* extra phdr for vmcoreinfo ELF note */
188
nr_phdr = nr_cpus + 1;
189
nr_phdr += mem->nr_ranges;
190
191
/*
192
* kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
193
* area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
194
* I think this is required by tools like gdb. So same physical
195
* memory will be mapped in two ELF headers. One will contain kernel
196
* text virtual addresses and other will have __va(physical) addresses.
197
*/
198
199
nr_phdr++;
200
elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
201
elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
202
203
buf = vzalloc(elf_sz);
204
if (!buf)
205
return -ENOMEM;
206
207
ehdr = (Elf64_Ehdr *)buf;
208
phdr = (Elf64_Phdr *)(ehdr + 1);
209
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
210
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
211
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
212
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
213
ehdr->e_ident[EI_OSABI] = ELF_OSABI;
214
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
215
ehdr->e_type = ET_CORE;
216
ehdr->e_machine = ELF_ARCH;
217
ehdr->e_version = EV_CURRENT;
218
ehdr->e_phoff = sizeof(Elf64_Ehdr);
219
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
220
ehdr->e_phentsize = sizeof(Elf64_Phdr);
221
222
/* Prepare one phdr of type PT_NOTE for each possible CPU */
223
for_each_possible_cpu(cpu) {
224
phdr->p_type = PT_NOTE;
225
notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
226
phdr->p_offset = phdr->p_paddr = notes_addr;
227
phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
228
(ehdr->e_phnum)++;
229
phdr++;
230
}
231
232
/* Prepare one PT_NOTE header for vmcoreinfo */
233
phdr->p_type = PT_NOTE;
234
phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
235
phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
236
(ehdr->e_phnum)++;
237
phdr++;
238
239
/* Prepare PT_LOAD type program header for kernel text region */
240
if (need_kernel_map) {
241
phdr->p_type = PT_LOAD;
242
phdr->p_flags = PF_R|PF_W|PF_X;
243
phdr->p_vaddr = (unsigned long) _text;
244
phdr->p_filesz = phdr->p_memsz = _end - _text;
245
phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
246
ehdr->e_phnum++;
247
phdr++;
248
}
249
250
/* Go through all the ranges in mem->ranges[] and prepare phdr */
251
for (i = 0; i < mem->nr_ranges; i++) {
252
mstart = mem->ranges[i].start;
253
mend = mem->ranges[i].end;
254
255
phdr->p_type = PT_LOAD;
256
phdr->p_flags = PF_R|PF_W|PF_X;
257
phdr->p_offset = mstart;
258
259
phdr->p_paddr = mstart;
260
phdr->p_vaddr = (unsigned long) __va(mstart);
261
phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
262
phdr->p_align = 0;
263
ehdr->e_phnum++;
264
#ifdef CONFIG_KEXEC_FILE
265
kexec_dprintk("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
266
phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
267
ehdr->e_phnum, phdr->p_offset);
268
#endif
269
phdr++;
270
}
271
272
*addr = buf;
273
*sz = elf_sz;
274
return 0;
275
}
276
277
int crash_exclude_mem_range(struct crash_mem *mem,
278
unsigned long long mstart, unsigned long long mend)
279
{
280
int i;
281
unsigned long long start, end, p_start, p_end;
282
283
for (i = 0; i < mem->nr_ranges; i++) {
284
start = mem->ranges[i].start;
285
end = mem->ranges[i].end;
286
p_start = mstart;
287
p_end = mend;
288
289
if (p_start > end)
290
continue;
291
292
/*
293
* Because the memory ranges in mem->ranges are stored in
294
* ascending order, when we detect `p_end < start`, we can
295
* immediately exit the for loop, as the subsequent memory
296
* ranges will definitely be outside the range we are looking
297
* for.
298
*/
299
if (p_end < start)
300
break;
301
302
/* Truncate any area outside of range */
303
if (p_start < start)
304
p_start = start;
305
if (p_end > end)
306
p_end = end;
307
308
/* Found completely overlapping range */
309
if (p_start == start && p_end == end) {
310
memmove(&mem->ranges[i], &mem->ranges[i + 1],
311
(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
312
i--;
313
mem->nr_ranges--;
314
} else if (p_start > start && p_end < end) {
315
/* Split original range */
316
if (mem->nr_ranges >= mem->max_nr_ranges)
317
return -ENOMEM;
318
319
memmove(&mem->ranges[i + 2], &mem->ranges[i + 1],
320
(mem->nr_ranges - (i + 1)) * sizeof(mem->ranges[i]));
321
322
mem->ranges[i].end = p_start - 1;
323
mem->ranges[i + 1].start = p_end + 1;
324
mem->ranges[i + 1].end = end;
325
326
i++;
327
mem->nr_ranges++;
328
} else if (p_start != start)
329
mem->ranges[i].end = p_start - 1;
330
else
331
mem->ranges[i].start = p_end + 1;
332
}
333
334
return 0;
335
}
336
337
ssize_t crash_get_memory_size(void)
338
{
339
ssize_t size = 0;
340
341
if (!kexec_trylock())
342
return -EBUSY;
343
344
size += crash_resource_size(&crashk_res);
345
size += crash_resource_size(&crashk_low_res);
346
347
kexec_unlock();
348
return size;
349
}
350
351
static int __crash_shrink_memory(struct resource *old_res,
352
unsigned long new_size)
353
{
354
struct resource *ram_res;
355
356
ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
357
if (!ram_res)
358
return -ENOMEM;
359
360
ram_res->start = old_res->start + new_size;
361
ram_res->end = old_res->end;
362
ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
363
ram_res->name = "System RAM";
364
365
if (!new_size) {
366
release_resource(old_res);
367
old_res->start = 0;
368
old_res->end = 0;
369
} else {
370
crashk_res.end = ram_res->start - 1;
371
}
372
373
crash_free_reserved_phys_range(ram_res->start, ram_res->end);
374
insert_resource(&iomem_resource, ram_res);
375
376
return 0;
377
}
378
379
int crash_shrink_memory(unsigned long new_size)
380
{
381
int ret = 0;
382
unsigned long old_size, low_size;
383
384
if (!kexec_trylock())
385
return -EBUSY;
386
387
if (kexec_crash_image) {
388
ret = -ENOENT;
389
goto unlock;
390
}
391
392
low_size = crash_resource_size(&crashk_low_res);
393
old_size = crash_resource_size(&crashk_res) + low_size;
394
new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
395
if (new_size >= old_size) {
396
ret = (new_size == old_size) ? 0 : -EINVAL;
397
goto unlock;
398
}
399
400
/*
401
* (low_size > new_size) implies that low_size is greater than zero.
402
* This also means that if low_size is zero, the else branch is taken.
403
*
404
* If low_size is greater than 0, (low_size > new_size) indicates that
405
* crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
406
* needs to be shrunken.
407
*/
408
if (low_size > new_size) {
409
ret = __crash_shrink_memory(&crashk_res, 0);
410
if (ret)
411
goto unlock;
412
413
ret = __crash_shrink_memory(&crashk_low_res, new_size);
414
} else {
415
ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
416
}
417
418
/* Swap crashk_res and crashk_low_res if needed */
419
if (!crashk_res.end && crashk_low_res.end) {
420
crashk_res.start = crashk_low_res.start;
421
crashk_res.end = crashk_low_res.end;
422
release_resource(&crashk_low_res);
423
crashk_low_res.start = 0;
424
crashk_low_res.end = 0;
425
insert_resource(&iomem_resource, &crashk_res);
426
}
427
428
unlock:
429
kexec_unlock();
430
return ret;
431
}
432
433
void crash_save_cpu(struct pt_regs *regs, int cpu)
434
{
435
struct elf_prstatus prstatus;
436
u32 *buf;
437
438
if ((cpu < 0) || (cpu >= nr_cpu_ids))
439
return;
440
441
/* Using ELF notes here is opportunistic.
442
* I need a well defined structure format
443
* for the data I pass, and I need tags
444
* on the data to indicate what information I have
445
* squirrelled away. ELF notes happen to provide
446
* all of that, so there is no need to invent something new.
447
*/
448
buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
449
if (!buf)
450
return;
451
memset(&prstatus, 0, sizeof(prstatus));
452
prstatus.common.pr_pid = current->pid;
453
elf_core_copy_regs(&prstatus.pr_reg, regs);
454
buf = append_elf_note(buf, NN_PRSTATUS, NT_PRSTATUS,
455
&prstatus, sizeof(prstatus));
456
final_note(buf);
457
}
458
459
460
461
static int __init crash_notes_memory_init(void)
462
{
463
/* Allocate memory for saving cpu registers. */
464
size_t size, align;
465
466
/*
467
* crash_notes could be allocated across 2 vmalloc pages when percpu
468
* is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
469
* pages are also on 2 continuous physical pages. In this case the
470
* 2nd part of crash_notes in 2nd page could be lost since only the
471
* starting address and size of crash_notes are exported through sysfs.
472
* Here round up the size of crash_notes to the nearest power of two
473
* and pass it to __alloc_percpu as align value. This can make sure
474
* crash_notes is allocated inside one physical page.
475
*/
476
size = sizeof(note_buf_t);
477
align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
478
479
/*
480
* Break compile if size is bigger than PAGE_SIZE since crash_notes
481
* definitely will be in 2 pages with that.
482
*/
483
BUILD_BUG_ON(size > PAGE_SIZE);
484
485
crash_notes = __alloc_percpu(size, align);
486
if (!crash_notes) {
487
pr_warn("Memory allocation for saving cpu register states failed\n");
488
return -ENOMEM;
489
}
490
return 0;
491
}
492
subsys_initcall(crash_notes_memory_init);
493
494
#endif /*CONFIG_CRASH_DUMP*/
495
496
#ifdef CONFIG_CRASH_HOTPLUG
497
#undef pr_fmt
498
#define pr_fmt(fmt) "crash hp: " fmt
499
500
/*
501
* Different than kexec/kdump loading/unloading/jumping/shrinking which
502
* usually rarely happen, there will be many crash hotplug events notified
503
* during one short period, e.g one memory board is hot added and memory
504
* regions are online. So mutex lock __crash_hotplug_lock is used to
505
* serialize the crash hotplug handling specifically.
506
*/
507
static DEFINE_MUTEX(__crash_hotplug_lock);
508
#define crash_hotplug_lock() mutex_lock(&__crash_hotplug_lock)
509
#define crash_hotplug_unlock() mutex_unlock(&__crash_hotplug_lock)
510
511
/*
512
* This routine utilized when the crash_hotplug sysfs node is read.
513
* It reflects the kernel's ability/permission to update the kdump
514
* image directly.
515
*/
516
int crash_check_hotplug_support(void)
517
{
518
int rc = 0;
519
520
crash_hotplug_lock();
521
/* Obtain lock while reading crash information */
522
if (!kexec_trylock()) {
523
if (!kexec_in_progress)
524
pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
525
crash_hotplug_unlock();
526
return 0;
527
}
528
if (kexec_crash_image) {
529
rc = kexec_crash_image->hotplug_support;
530
}
531
/* Release lock now that update complete */
532
kexec_unlock();
533
crash_hotplug_unlock();
534
535
return rc;
536
}
537
538
/*
539
* To accurately reflect hot un/plug changes of CPU and Memory resources
540
* (including onling and offlining of those resources), the relevant
541
* kexec segments must be updated with latest CPU and Memory resources.
542
*
543
* Architectures must ensure two things for all segments that need
544
* updating during hotplug events:
545
*
546
* 1. Segments must be large enough to accommodate a growing number of
547
* resources.
548
* 2. Exclude the segments from SHA verification.
549
*
550
* For example, on most architectures, the elfcorehdr (which is passed
551
* to the crash kernel via the elfcorehdr= parameter) must include the
552
* new list of CPUs and memory. To make changes to the elfcorehdr, it
553
* should be large enough to permit a growing number of CPU and Memory
554
* resources. One can estimate the elfcorehdr memory size based on
555
* NR_CPUS_DEFAULT and CRASH_MAX_MEMORY_RANGES. The elfcorehdr is
556
* excluded from SHA verification by default if the architecture
557
* supports crash hotplug.
558
*/
559
static void crash_handle_hotplug_event(unsigned int hp_action, unsigned int cpu, void *arg)
560
{
561
struct kimage *image;
562
563
crash_hotplug_lock();
564
/* Obtain lock while changing crash information */
565
if (!kexec_trylock()) {
566
if (!kexec_in_progress)
567
pr_info("kexec_trylock() failed, kdump image may be inaccurate\n");
568
crash_hotplug_unlock();
569
return;
570
}
571
572
/* Check kdump is not loaded */
573
if (!kexec_crash_image)
574
goto out;
575
576
image = kexec_crash_image;
577
578
/* Check that kexec segments update is permitted */
579
if (!image->hotplug_support)
580
goto out;
581
582
if (hp_action == KEXEC_CRASH_HP_ADD_CPU ||
583
hp_action == KEXEC_CRASH_HP_REMOVE_CPU)
584
pr_debug("hp_action %u, cpu %u\n", hp_action, cpu);
585
else
586
pr_debug("hp_action %u\n", hp_action);
587
588
/*
589
* The elfcorehdr_index is set to -1 when the struct kimage
590
* is allocated. Find the segment containing the elfcorehdr,
591
* if not already found.
592
*/
593
if (image->elfcorehdr_index < 0) {
594
unsigned long mem;
595
unsigned char *ptr;
596
unsigned int n;
597
598
for (n = 0; n < image->nr_segments; n++) {
599
mem = image->segment[n].mem;
600
ptr = kmap_local_page(pfn_to_page(mem >> PAGE_SHIFT));
601
if (ptr) {
602
/* The segment containing elfcorehdr */
603
if (memcmp(ptr, ELFMAG, SELFMAG) == 0)
604
image->elfcorehdr_index = (int)n;
605
kunmap_local(ptr);
606
}
607
}
608
}
609
610
if (image->elfcorehdr_index < 0) {
611
pr_err("unable to locate elfcorehdr segment");
612
goto out;
613
}
614
615
/* Needed in order for the segments to be updated */
616
arch_kexec_unprotect_crashkres();
617
618
/* Differentiate between normal load and hotplug update */
619
image->hp_action = hp_action;
620
621
/* Now invoke arch-specific update handler */
622
arch_crash_handle_hotplug_event(image, arg);
623
624
/* No longer handling a hotplug event */
625
image->hp_action = KEXEC_CRASH_HP_NONE;
626
image->elfcorehdr_updated = true;
627
628
/* Change back to read-only */
629
arch_kexec_protect_crashkres();
630
631
/* Errors in the callback is not a reason to rollback state */
632
out:
633
/* Release lock now that update complete */
634
kexec_unlock();
635
crash_hotplug_unlock();
636
}
637
638
static int crash_memhp_notifier(struct notifier_block *nb, unsigned long val, void *arg)
639
{
640
switch (val) {
641
case MEM_ONLINE:
642
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_MEMORY,
643
KEXEC_CRASH_HP_INVALID_CPU, arg);
644
break;
645
646
case MEM_OFFLINE:
647
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_MEMORY,
648
KEXEC_CRASH_HP_INVALID_CPU, arg);
649
break;
650
}
651
return NOTIFY_OK;
652
}
653
654
static struct notifier_block crash_memhp_nb = {
655
.notifier_call = crash_memhp_notifier,
656
.priority = 0
657
};
658
659
static int crash_cpuhp_online(unsigned int cpu)
660
{
661
crash_handle_hotplug_event(KEXEC_CRASH_HP_ADD_CPU, cpu, NULL);
662
return 0;
663
}
664
665
static int crash_cpuhp_offline(unsigned int cpu)
666
{
667
crash_handle_hotplug_event(KEXEC_CRASH_HP_REMOVE_CPU, cpu, NULL);
668
return 0;
669
}
670
671
static int __init crash_hotplug_init(void)
672
{
673
int result = 0;
674
675
if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG))
676
register_memory_notifier(&crash_memhp_nb);
677
678
if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
679
result = cpuhp_setup_state_nocalls(CPUHP_BP_PREPARE_DYN,
680
"crash/cpuhp", crash_cpuhp_online, crash_cpuhp_offline);
681
}
682
683
return result;
684
}
685
686
subsys_initcall(crash_hotplug_init);
687
#endif
688
689