Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/dma/mapping.c
49179 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* arch-independent dma-mapping routines
4
*
5
* Copyright (c) 2006 SUSE Linux Products GmbH
6
* Copyright (c) 2006 Tejun Heo <[email protected]>
7
*/
8
#include <linux/memblock.h> /* for max_pfn */
9
#include <linux/acpi.h>
10
#include <linux/dma-map-ops.h>
11
#include <linux/export.h>
12
#include <linux/gfp.h>
13
#include <linux/iommu-dma.h>
14
#include <linux/kmsan.h>
15
#include <linux/of_device.h>
16
#include <linux/slab.h>
17
#include <linux/vmalloc.h>
18
#include "debug.h"
19
#include "direct.h"
20
21
#define CREATE_TRACE_POINTS
22
#include <trace/events/dma.h>
23
24
#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26
defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27
bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28
#endif
29
30
/*
31
* Managed DMA API
32
*/
33
struct dma_devres {
34
size_t size;
35
void *vaddr;
36
dma_addr_t dma_handle;
37
unsigned long attrs;
38
};
39
40
static void dmam_release(struct device *dev, void *res)
41
{
42
struct dma_devres *this = res;
43
44
dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45
this->attrs);
46
}
47
48
static int dmam_match(struct device *dev, void *res, void *match_data)
49
{
50
struct dma_devres *this = res, *match = match_data;
51
52
if (this->vaddr == match->vaddr) {
53
WARN_ON(this->size != match->size ||
54
this->dma_handle != match->dma_handle);
55
return 1;
56
}
57
return 0;
58
}
59
60
/**
61
* dmam_free_coherent - Managed dma_free_coherent()
62
* @dev: Device to free coherent memory for
63
* @size: Size of allocation
64
* @vaddr: Virtual address of the memory to free
65
* @dma_handle: DMA handle of the memory to free
66
*
67
* Managed dma_free_coherent().
68
*/
69
void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70
dma_addr_t dma_handle)
71
{
72
struct dma_devres match_data = { size, vaddr, dma_handle };
73
74
WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75
dma_free_coherent(dev, size, vaddr, dma_handle);
76
}
77
EXPORT_SYMBOL(dmam_free_coherent);
78
79
/**
80
* dmam_alloc_attrs - Managed dma_alloc_attrs()
81
* @dev: Device to allocate non_coherent memory for
82
* @size: Size of allocation
83
* @dma_handle: Out argument for allocated DMA handle
84
* @gfp: Allocation flags
85
* @attrs: Flags in the DMA_ATTR_* namespace.
86
*
87
* Managed dma_alloc_attrs(). Memory allocated using this function will be
88
* automatically released on driver detach.
89
*
90
* RETURNS:
91
* Pointer to allocated memory on success, NULL on failure.
92
*/
93
void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94
gfp_t gfp, unsigned long attrs)
95
{
96
struct dma_devres *dr;
97
void *vaddr;
98
99
dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100
if (!dr)
101
return NULL;
102
103
vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104
if (!vaddr) {
105
devres_free(dr);
106
return NULL;
107
}
108
109
dr->vaddr = vaddr;
110
dr->dma_handle = *dma_handle;
111
dr->size = size;
112
dr->attrs = attrs;
113
114
devres_add(dev, dr);
115
116
return vaddr;
117
}
118
EXPORT_SYMBOL(dmam_alloc_attrs);
119
120
static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121
const struct dma_map_ops *ops)
122
{
123
if (use_dma_iommu(dev))
124
return false;
125
126
if (likely(!ops))
127
return true;
128
129
#ifdef CONFIG_DMA_OPS_BYPASS
130
if (dev->dma_ops_bypass)
131
return min_not_zero(mask, dev->bus_dma_limit) >=
132
dma_direct_get_required_mask(dev);
133
#endif
134
return false;
135
}
136
137
138
/*
139
* Check if the devices uses a direct mapping for streaming DMA operations.
140
* This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141
* enough.
142
*/
143
static inline bool dma_alloc_direct(struct device *dev,
144
const struct dma_map_ops *ops)
145
{
146
return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147
}
148
149
static inline bool dma_map_direct(struct device *dev,
150
const struct dma_map_ops *ops)
151
{
152
return dma_go_direct(dev, *dev->dma_mask, ops);
153
}
154
155
dma_addr_t dma_map_phys(struct device *dev, phys_addr_t phys, size_t size,
156
enum dma_data_direction dir, unsigned long attrs)
157
{
158
const struct dma_map_ops *ops = get_dma_ops(dev);
159
bool is_mmio = attrs & DMA_ATTR_MMIO;
160
dma_addr_t addr = DMA_MAPPING_ERROR;
161
162
BUG_ON(!valid_dma_direction(dir));
163
164
if (WARN_ON_ONCE(!dev->dma_mask))
165
return DMA_MAPPING_ERROR;
166
167
if (dma_map_direct(dev, ops) ||
168
(!is_mmio && arch_dma_map_phys_direct(dev, phys + size)))
169
addr = dma_direct_map_phys(dev, phys, size, dir, attrs);
170
else if (use_dma_iommu(dev))
171
addr = iommu_dma_map_phys(dev, phys, size, dir, attrs);
172
else if (ops->map_phys)
173
addr = ops->map_phys(dev, phys, size, dir, attrs);
174
175
if (!is_mmio)
176
kmsan_handle_dma(phys, size, dir);
177
trace_dma_map_phys(dev, phys, addr, size, dir, attrs);
178
debug_dma_map_phys(dev, phys, size, dir, addr, attrs);
179
180
return addr;
181
}
182
EXPORT_SYMBOL_GPL(dma_map_phys);
183
184
dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
185
size_t offset, size_t size, enum dma_data_direction dir,
186
unsigned long attrs)
187
{
188
phys_addr_t phys = page_to_phys(page) + offset;
189
190
if (unlikely(attrs & DMA_ATTR_MMIO))
191
return DMA_MAPPING_ERROR;
192
193
if (IS_ENABLED(CONFIG_DMA_API_DEBUG) &&
194
WARN_ON_ONCE(is_zone_device_page(page)))
195
return DMA_MAPPING_ERROR;
196
197
return dma_map_phys(dev, phys, size, dir, attrs);
198
}
199
EXPORT_SYMBOL(dma_map_page_attrs);
200
201
void dma_unmap_phys(struct device *dev, dma_addr_t addr, size_t size,
202
enum dma_data_direction dir, unsigned long attrs)
203
{
204
const struct dma_map_ops *ops = get_dma_ops(dev);
205
bool is_mmio = attrs & DMA_ATTR_MMIO;
206
207
BUG_ON(!valid_dma_direction(dir));
208
if (dma_map_direct(dev, ops) ||
209
(!is_mmio && arch_dma_unmap_phys_direct(dev, addr + size)))
210
dma_direct_unmap_phys(dev, addr, size, dir, attrs);
211
else if (use_dma_iommu(dev))
212
iommu_dma_unmap_phys(dev, addr, size, dir, attrs);
213
else if (ops->unmap_phys)
214
ops->unmap_phys(dev, addr, size, dir, attrs);
215
trace_dma_unmap_phys(dev, addr, size, dir, attrs);
216
debug_dma_unmap_phys(dev, addr, size, dir);
217
}
218
EXPORT_SYMBOL_GPL(dma_unmap_phys);
219
220
void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
221
enum dma_data_direction dir, unsigned long attrs)
222
{
223
if (unlikely(attrs & DMA_ATTR_MMIO))
224
return;
225
226
dma_unmap_phys(dev, addr, size, dir, attrs);
227
}
228
EXPORT_SYMBOL(dma_unmap_page_attrs);
229
230
static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
231
int nents, enum dma_data_direction dir, unsigned long attrs)
232
{
233
const struct dma_map_ops *ops = get_dma_ops(dev);
234
int ents;
235
236
BUG_ON(!valid_dma_direction(dir));
237
238
if (WARN_ON_ONCE(!dev->dma_mask))
239
return 0;
240
241
if (dma_map_direct(dev, ops) ||
242
arch_dma_map_sg_direct(dev, sg, nents))
243
ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
244
else if (use_dma_iommu(dev))
245
ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
246
else
247
ents = ops->map_sg(dev, sg, nents, dir, attrs);
248
249
if (ents > 0) {
250
kmsan_handle_dma_sg(sg, nents, dir);
251
trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
252
debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
253
} else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
254
ents != -EIO && ents != -EREMOTEIO)) {
255
trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
256
return -EIO;
257
}
258
259
return ents;
260
}
261
262
/**
263
* dma_map_sg_attrs - Map the given buffer for DMA
264
* @dev: The device for which to perform the DMA operation
265
* @sg: The sg_table object describing the buffer
266
* @nents: Number of entries to map
267
* @dir: DMA direction
268
* @attrs: Optional DMA attributes for the map operation
269
*
270
* Maps a buffer described by a scatterlist passed in the sg argument with
271
* nents segments for the @dir DMA operation by the @dev device.
272
*
273
* Returns the number of mapped entries (which can be less than nents)
274
* on success. Zero is returned for any error.
275
*
276
* dma_unmap_sg_attrs() should be used to unmap the buffer with the
277
* original sg and original nents (not the value returned by this funciton).
278
*/
279
unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
280
int nents, enum dma_data_direction dir, unsigned long attrs)
281
{
282
int ret;
283
284
ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
285
if (ret < 0)
286
return 0;
287
return ret;
288
}
289
EXPORT_SYMBOL(dma_map_sg_attrs);
290
291
/**
292
* dma_map_sgtable - Map the given buffer for DMA
293
* @dev: The device for which to perform the DMA operation
294
* @sgt: The sg_table object describing the buffer
295
* @dir: DMA direction
296
* @attrs: Optional DMA attributes for the map operation
297
*
298
* Maps a buffer described by a scatterlist stored in the given sg_table
299
* object for the @dir DMA operation by the @dev device. After success, the
300
* ownership for the buffer is transferred to the DMA domain. One has to
301
* call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
302
* ownership of the buffer back to the CPU domain before touching the
303
* buffer by the CPU.
304
*
305
* Returns 0 on success or a negative error code on error. The following
306
* error codes are supported with the given meaning:
307
*
308
* -EINVAL An invalid argument, unaligned access or other error
309
* in usage. Will not succeed if retried.
310
* -ENOMEM Insufficient resources (like memory or IOVA space) to
311
* complete the mapping. Should succeed if retried later.
312
* -EIO Legacy error code with an unknown meaning. eg. this is
313
* returned if a lower level call returned
314
* DMA_MAPPING_ERROR.
315
* -EREMOTEIO The DMA device cannot access P2PDMA memory specified
316
* in the sg_table. This will not succeed if retried.
317
*/
318
int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
319
enum dma_data_direction dir, unsigned long attrs)
320
{
321
int nents;
322
323
nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
324
if (nents < 0)
325
return nents;
326
sgt->nents = nents;
327
return 0;
328
}
329
EXPORT_SYMBOL_GPL(dma_map_sgtable);
330
331
void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
332
int nents, enum dma_data_direction dir,
333
unsigned long attrs)
334
{
335
const struct dma_map_ops *ops = get_dma_ops(dev);
336
337
BUG_ON(!valid_dma_direction(dir));
338
trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
339
debug_dma_unmap_sg(dev, sg, nents, dir);
340
if (dma_map_direct(dev, ops) ||
341
arch_dma_unmap_sg_direct(dev, sg, nents))
342
dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
343
else if (use_dma_iommu(dev))
344
iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
345
else if (ops->unmap_sg)
346
ops->unmap_sg(dev, sg, nents, dir, attrs);
347
}
348
EXPORT_SYMBOL(dma_unmap_sg_attrs);
349
350
dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
351
size_t size, enum dma_data_direction dir, unsigned long attrs)
352
{
353
if (IS_ENABLED(CONFIG_DMA_API_DEBUG) &&
354
WARN_ON_ONCE(pfn_valid(PHYS_PFN(phys_addr))))
355
return DMA_MAPPING_ERROR;
356
357
return dma_map_phys(dev, phys_addr, size, dir, attrs | DMA_ATTR_MMIO);
358
}
359
EXPORT_SYMBOL(dma_map_resource);
360
361
void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
362
enum dma_data_direction dir, unsigned long attrs)
363
{
364
dma_unmap_phys(dev, addr, size, dir, attrs | DMA_ATTR_MMIO);
365
}
366
EXPORT_SYMBOL(dma_unmap_resource);
367
368
#ifdef CONFIG_DMA_NEED_SYNC
369
void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
370
enum dma_data_direction dir)
371
{
372
const struct dma_map_ops *ops = get_dma_ops(dev);
373
374
BUG_ON(!valid_dma_direction(dir));
375
if (dma_map_direct(dev, ops))
376
dma_direct_sync_single_for_cpu(dev, addr, size, dir);
377
else if (use_dma_iommu(dev))
378
iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
379
else if (ops->sync_single_for_cpu)
380
ops->sync_single_for_cpu(dev, addr, size, dir);
381
trace_dma_sync_single_for_cpu(dev, addr, size, dir);
382
debug_dma_sync_single_for_cpu(dev, addr, size, dir);
383
}
384
EXPORT_SYMBOL(__dma_sync_single_for_cpu);
385
386
void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
387
size_t size, enum dma_data_direction dir)
388
{
389
const struct dma_map_ops *ops = get_dma_ops(dev);
390
391
BUG_ON(!valid_dma_direction(dir));
392
if (dma_map_direct(dev, ops))
393
dma_direct_sync_single_for_device(dev, addr, size, dir);
394
else if (use_dma_iommu(dev))
395
iommu_dma_sync_single_for_device(dev, addr, size, dir);
396
else if (ops->sync_single_for_device)
397
ops->sync_single_for_device(dev, addr, size, dir);
398
trace_dma_sync_single_for_device(dev, addr, size, dir);
399
debug_dma_sync_single_for_device(dev, addr, size, dir);
400
}
401
EXPORT_SYMBOL(__dma_sync_single_for_device);
402
403
void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
404
int nelems, enum dma_data_direction dir)
405
{
406
const struct dma_map_ops *ops = get_dma_ops(dev);
407
408
BUG_ON(!valid_dma_direction(dir));
409
if (dma_map_direct(dev, ops))
410
dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
411
else if (use_dma_iommu(dev))
412
iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
413
else if (ops->sync_sg_for_cpu)
414
ops->sync_sg_for_cpu(dev, sg, nelems, dir);
415
trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
416
debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
417
}
418
EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
419
420
void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
421
int nelems, enum dma_data_direction dir)
422
{
423
const struct dma_map_ops *ops = get_dma_ops(dev);
424
425
BUG_ON(!valid_dma_direction(dir));
426
if (dma_map_direct(dev, ops))
427
dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
428
else if (use_dma_iommu(dev))
429
iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
430
else if (ops->sync_sg_for_device)
431
ops->sync_sg_for_device(dev, sg, nelems, dir);
432
trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
433
debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
434
}
435
EXPORT_SYMBOL(__dma_sync_sg_for_device);
436
437
bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
438
{
439
const struct dma_map_ops *ops = get_dma_ops(dev);
440
441
if (dma_map_direct(dev, ops))
442
/*
443
* dma_skip_sync could've been reset on first SWIOTLB buffer
444
* mapping, but @dma_addr is not necessary an SWIOTLB buffer.
445
* In this case, fall back to more granular check.
446
*/
447
return dma_direct_need_sync(dev, dma_addr);
448
return true;
449
}
450
EXPORT_SYMBOL_GPL(__dma_need_sync);
451
452
/**
453
* dma_need_unmap - does this device need dma_unmap_* operations
454
* @dev: device to check
455
*
456
* If this function returns %false, drivers can skip calling dma_unmap_* after
457
* finishing an I/O. This function must be called after all mappings that might
458
* need to be unmapped have been performed.
459
*/
460
bool dma_need_unmap(struct device *dev)
461
{
462
if (!dma_map_direct(dev, get_dma_ops(dev)))
463
return true;
464
if (!dev->dma_skip_sync)
465
return true;
466
return IS_ENABLED(CONFIG_DMA_API_DEBUG);
467
}
468
EXPORT_SYMBOL_GPL(dma_need_unmap);
469
470
static void dma_setup_need_sync(struct device *dev)
471
{
472
const struct dma_map_ops *ops = get_dma_ops(dev);
473
474
if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
475
/*
476
* dma_skip_sync will be reset to %false on first SWIOTLB buffer
477
* mapping, if any. During the device initialization, it's
478
* enough to check only for the DMA coherence.
479
*/
480
dev->dma_skip_sync = dev_is_dma_coherent(dev);
481
else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
482
!ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
483
/*
484
* Synchronization is not possible when none of DMA sync ops
485
* is set.
486
*/
487
dev->dma_skip_sync = true;
488
else
489
dev->dma_skip_sync = false;
490
}
491
#else /* !CONFIG_DMA_NEED_SYNC */
492
static inline void dma_setup_need_sync(struct device *dev) { }
493
#endif /* !CONFIG_DMA_NEED_SYNC */
494
495
/*
496
* The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
497
* that the intention is to allow exporting memory allocated via the
498
* coherent DMA APIs through the dma_buf API, which only accepts a
499
* scattertable. This presents a couple of problems:
500
* 1. Not all memory allocated via the coherent DMA APIs is backed by
501
* a struct page
502
* 2. Passing coherent DMA memory into the streaming APIs is not allowed
503
* as we will try to flush the memory through a different alias to that
504
* actually being used (and the flushes are redundant.)
505
*/
506
int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
507
void *cpu_addr, dma_addr_t dma_addr, size_t size,
508
unsigned long attrs)
509
{
510
const struct dma_map_ops *ops = get_dma_ops(dev);
511
512
if (dma_alloc_direct(dev, ops))
513
return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
514
size, attrs);
515
if (use_dma_iommu(dev))
516
return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
517
size, attrs);
518
if (!ops->get_sgtable)
519
return -ENXIO;
520
return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
521
}
522
EXPORT_SYMBOL(dma_get_sgtable_attrs);
523
524
#ifdef CONFIG_MMU
525
/*
526
* Return the page attributes used for mapping dma_alloc_* memory, either in
527
* kernel space if remapping is needed, or to userspace through dma_mmap_*.
528
*/
529
pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
530
{
531
if (dev_is_dma_coherent(dev))
532
return prot;
533
#ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
534
if (attrs & DMA_ATTR_WRITE_COMBINE)
535
return pgprot_writecombine(prot);
536
#endif
537
return pgprot_dmacoherent(prot);
538
}
539
#endif /* CONFIG_MMU */
540
541
/**
542
* dma_can_mmap - check if a given device supports dma_mmap_*
543
* @dev: device to check
544
*
545
* Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
546
* map DMA allocations to userspace.
547
*/
548
bool dma_can_mmap(struct device *dev)
549
{
550
const struct dma_map_ops *ops = get_dma_ops(dev);
551
552
if (dma_alloc_direct(dev, ops))
553
return dma_direct_can_mmap(dev);
554
if (use_dma_iommu(dev))
555
return true;
556
return ops->mmap != NULL;
557
}
558
EXPORT_SYMBOL_GPL(dma_can_mmap);
559
560
/**
561
* dma_mmap_attrs - map a coherent DMA allocation into user space
562
* @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
563
* @vma: vm_area_struct describing requested user mapping
564
* @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
565
* @dma_addr: device-view address returned from dma_alloc_attrs
566
* @size: size of memory originally requested in dma_alloc_attrs
567
* @attrs: attributes of mapping properties requested in dma_alloc_attrs
568
*
569
* Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
570
* space. The coherent DMA buffer must not be freed by the driver until the
571
* user space mapping has been released.
572
*/
573
int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
574
void *cpu_addr, dma_addr_t dma_addr, size_t size,
575
unsigned long attrs)
576
{
577
const struct dma_map_ops *ops = get_dma_ops(dev);
578
579
if (dma_alloc_direct(dev, ops))
580
return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
581
attrs);
582
if (use_dma_iommu(dev))
583
return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
584
attrs);
585
if (!ops->mmap)
586
return -ENXIO;
587
return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
588
}
589
EXPORT_SYMBOL(dma_mmap_attrs);
590
591
u64 dma_get_required_mask(struct device *dev)
592
{
593
const struct dma_map_ops *ops = get_dma_ops(dev);
594
595
if (dma_alloc_direct(dev, ops))
596
return dma_direct_get_required_mask(dev);
597
598
if (use_dma_iommu(dev))
599
return DMA_BIT_MASK(32);
600
601
if (ops->get_required_mask)
602
return ops->get_required_mask(dev);
603
604
/*
605
* We require every DMA ops implementation to at least support a 32-bit
606
* DMA mask (and use bounce buffering if that isn't supported in
607
* hardware). As the direct mapping code has its own routine to
608
* actually report an optimal mask we default to 32-bit here as that
609
* is the right thing for most IOMMUs, and at least not actively
610
* harmful in general.
611
*/
612
return DMA_BIT_MASK(32);
613
}
614
EXPORT_SYMBOL_GPL(dma_get_required_mask);
615
616
void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
617
gfp_t flag, unsigned long attrs)
618
{
619
const struct dma_map_ops *ops = get_dma_ops(dev);
620
void *cpu_addr;
621
622
WARN_ON_ONCE(!dev->coherent_dma_mask);
623
624
/*
625
* DMA allocations can never be turned back into a page pointer, so
626
* requesting compound pages doesn't make sense (and can't even be
627
* supported at all by various backends).
628
*/
629
if (WARN_ON_ONCE(flag & __GFP_COMP))
630
return NULL;
631
632
if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
633
trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
634
DMA_BIDIRECTIONAL, flag, attrs);
635
return cpu_addr;
636
}
637
638
/* let the implementation decide on the zone to allocate from: */
639
flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
640
641
if (dma_alloc_direct(dev, ops)) {
642
cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
643
} else if (use_dma_iommu(dev)) {
644
cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
645
} else if (ops->alloc) {
646
cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
647
} else {
648
trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
649
attrs);
650
return NULL;
651
}
652
653
trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
654
flag, attrs);
655
debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
656
return cpu_addr;
657
}
658
EXPORT_SYMBOL(dma_alloc_attrs);
659
660
void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
661
dma_addr_t dma_handle, unsigned long attrs)
662
{
663
const struct dma_map_ops *ops = get_dma_ops(dev);
664
665
if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
666
return;
667
/*
668
* On non-coherent platforms which implement DMA-coherent buffers via
669
* non-cacheable remaps, ops->free() may call vunmap(). Thus getting
670
* this far in IRQ context is a) at risk of a BUG_ON() or trying to
671
* sleep on some machines, and b) an indication that the driver is
672
* probably misusing the coherent API anyway.
673
*/
674
WARN_ON(irqs_disabled());
675
676
trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
677
attrs);
678
if (!cpu_addr)
679
return;
680
681
debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
682
if (dma_alloc_direct(dev, ops))
683
dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
684
else if (use_dma_iommu(dev))
685
iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
686
else if (ops->free)
687
ops->free(dev, size, cpu_addr, dma_handle, attrs);
688
}
689
EXPORT_SYMBOL(dma_free_attrs);
690
691
static struct page *__dma_alloc_pages(struct device *dev, size_t size,
692
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
693
{
694
const struct dma_map_ops *ops = get_dma_ops(dev);
695
696
if (WARN_ON_ONCE(!dev->coherent_dma_mask))
697
return NULL;
698
if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
699
return NULL;
700
if (WARN_ON_ONCE(gfp & __GFP_COMP))
701
return NULL;
702
703
size = PAGE_ALIGN(size);
704
if (dma_alloc_direct(dev, ops))
705
return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
706
if (use_dma_iommu(dev))
707
return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
708
if (!ops->alloc_pages_op)
709
return NULL;
710
return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
711
}
712
713
struct page *dma_alloc_pages(struct device *dev, size_t size,
714
dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
715
{
716
struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
717
718
if (page) {
719
trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
720
size, dir, gfp, 0);
721
debug_dma_alloc_pages(dev, page, size, dir, *dma_handle, 0);
722
} else {
723
trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
724
}
725
return page;
726
}
727
EXPORT_SYMBOL_GPL(dma_alloc_pages);
728
729
static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
730
dma_addr_t dma_handle, enum dma_data_direction dir)
731
{
732
const struct dma_map_ops *ops = get_dma_ops(dev);
733
734
size = PAGE_ALIGN(size);
735
if (dma_alloc_direct(dev, ops))
736
dma_direct_free_pages(dev, size, page, dma_handle, dir);
737
else if (use_dma_iommu(dev))
738
dma_common_free_pages(dev, size, page, dma_handle, dir);
739
else if (ops->free_pages)
740
ops->free_pages(dev, size, page, dma_handle, dir);
741
}
742
743
void dma_free_pages(struct device *dev, size_t size, struct page *page,
744
dma_addr_t dma_handle, enum dma_data_direction dir)
745
{
746
trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
747
debug_dma_free_pages(dev, page, size, dir, dma_handle);
748
__dma_free_pages(dev, size, page, dma_handle, dir);
749
}
750
EXPORT_SYMBOL_GPL(dma_free_pages);
751
752
int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
753
size_t size, struct page *page)
754
{
755
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
756
757
if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
758
return -ENXIO;
759
return remap_pfn_range(vma, vma->vm_start,
760
page_to_pfn(page) + vma->vm_pgoff,
761
vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
762
}
763
EXPORT_SYMBOL_GPL(dma_mmap_pages);
764
765
static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
766
enum dma_data_direction dir, gfp_t gfp)
767
{
768
struct sg_table *sgt;
769
struct page *page;
770
771
sgt = kmalloc(sizeof(*sgt), gfp);
772
if (!sgt)
773
return NULL;
774
if (sg_alloc_table(sgt, 1, gfp))
775
goto out_free_sgt;
776
page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
777
if (!page)
778
goto out_free_table;
779
sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
780
sg_dma_len(sgt->sgl) = sgt->sgl->length;
781
return sgt;
782
out_free_table:
783
sg_free_table(sgt);
784
out_free_sgt:
785
kfree(sgt);
786
return NULL;
787
}
788
789
struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
790
enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
791
{
792
struct sg_table *sgt;
793
794
if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
795
return NULL;
796
if (WARN_ON_ONCE(gfp & __GFP_COMP))
797
return NULL;
798
799
if (use_dma_iommu(dev))
800
sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
801
else
802
sgt = alloc_single_sgt(dev, size, dir, gfp);
803
804
if (sgt) {
805
sgt->nents = 1;
806
trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
807
debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
808
} else {
809
trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
810
}
811
return sgt;
812
}
813
EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
814
815
static void free_single_sgt(struct device *dev, size_t size,
816
struct sg_table *sgt, enum dma_data_direction dir)
817
{
818
__dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
819
dir);
820
sg_free_table(sgt);
821
kfree(sgt);
822
}
823
824
void dma_free_noncontiguous(struct device *dev, size_t size,
825
struct sg_table *sgt, enum dma_data_direction dir)
826
{
827
trace_dma_free_sgt(dev, sgt, size, dir);
828
debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
829
830
if (use_dma_iommu(dev))
831
iommu_dma_free_noncontiguous(dev, size, sgt, dir);
832
else
833
free_single_sgt(dev, size, sgt, dir);
834
}
835
EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
836
837
void *dma_vmap_noncontiguous(struct device *dev, size_t size,
838
struct sg_table *sgt)
839
{
840
841
if (use_dma_iommu(dev))
842
return iommu_dma_vmap_noncontiguous(dev, size, sgt);
843
844
return page_address(sg_page(sgt->sgl));
845
}
846
EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
847
848
void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
849
{
850
if (use_dma_iommu(dev))
851
iommu_dma_vunmap_noncontiguous(dev, vaddr);
852
}
853
EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
854
855
int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
856
size_t size, struct sg_table *sgt)
857
{
858
if (use_dma_iommu(dev))
859
return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
860
return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
861
}
862
EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
863
864
static int dma_supported(struct device *dev, u64 mask)
865
{
866
const struct dma_map_ops *ops = get_dma_ops(dev);
867
868
if (use_dma_iommu(dev)) {
869
if (WARN_ON(ops))
870
return false;
871
return true;
872
}
873
874
/*
875
* ->dma_supported sets and clears the bypass flag, so ignore it here
876
* and always call into the method if there is one.
877
*/
878
if (ops) {
879
if (!ops->dma_supported)
880
return true;
881
return ops->dma_supported(dev, mask);
882
}
883
884
return dma_direct_supported(dev, mask);
885
}
886
887
bool dma_pci_p2pdma_supported(struct device *dev)
888
{
889
const struct dma_map_ops *ops = get_dma_ops(dev);
890
891
/*
892
* Note: dma_ops_bypass is not checked here because P2PDMA should
893
* not be used with dma mapping ops that do not have support even
894
* if the specific device is bypassing them.
895
*/
896
897
/* if ops is not set, dma direct and default IOMMU support P2PDMA */
898
return !ops;
899
}
900
EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
901
902
int dma_set_mask(struct device *dev, u64 mask)
903
{
904
/*
905
* Truncate the mask to the actually supported dma_addr_t width to
906
* avoid generating unsupportable addresses.
907
*/
908
mask = (dma_addr_t)mask;
909
910
if (!dev->dma_mask || !dma_supported(dev, mask))
911
return -EIO;
912
913
arch_dma_set_mask(dev, mask);
914
*dev->dma_mask = mask;
915
dma_setup_need_sync(dev);
916
917
return 0;
918
}
919
EXPORT_SYMBOL(dma_set_mask);
920
921
int dma_set_coherent_mask(struct device *dev, u64 mask)
922
{
923
/*
924
* Truncate the mask to the actually supported dma_addr_t width to
925
* avoid generating unsupportable addresses.
926
*/
927
mask = (dma_addr_t)mask;
928
929
if (!dma_supported(dev, mask))
930
return -EIO;
931
932
dev->coherent_dma_mask = mask;
933
return 0;
934
}
935
EXPORT_SYMBOL(dma_set_coherent_mask);
936
937
static bool __dma_addressing_limited(struct device *dev)
938
{
939
const struct dma_map_ops *ops = get_dma_ops(dev);
940
941
if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
942
dma_get_required_mask(dev))
943
return true;
944
945
if (unlikely(ops) || use_dma_iommu(dev))
946
return false;
947
return !dma_direct_all_ram_mapped(dev);
948
}
949
950
/**
951
* dma_addressing_limited - return if the device is addressing limited
952
* @dev: device to check
953
*
954
* Return %true if the devices DMA mask is too small to address all memory in
955
* the system, else %false. Lack of addressing bits is the prime reason for
956
* bounce buffering, but might not be the only one.
957
*/
958
bool dma_addressing_limited(struct device *dev)
959
{
960
if (!__dma_addressing_limited(dev))
961
return false;
962
963
dev_dbg(dev, "device is DMA addressing limited\n");
964
return true;
965
}
966
EXPORT_SYMBOL_GPL(dma_addressing_limited);
967
968
size_t dma_max_mapping_size(struct device *dev)
969
{
970
const struct dma_map_ops *ops = get_dma_ops(dev);
971
size_t size = SIZE_MAX;
972
973
if (dma_map_direct(dev, ops))
974
size = dma_direct_max_mapping_size(dev);
975
else if (use_dma_iommu(dev))
976
size = iommu_dma_max_mapping_size(dev);
977
else if (ops && ops->max_mapping_size)
978
size = ops->max_mapping_size(dev);
979
980
return size;
981
}
982
EXPORT_SYMBOL_GPL(dma_max_mapping_size);
983
984
size_t dma_opt_mapping_size(struct device *dev)
985
{
986
const struct dma_map_ops *ops = get_dma_ops(dev);
987
size_t size = SIZE_MAX;
988
989
if (use_dma_iommu(dev))
990
size = iommu_dma_opt_mapping_size();
991
else if (ops && ops->opt_mapping_size)
992
size = ops->opt_mapping_size();
993
994
return min(dma_max_mapping_size(dev), size);
995
}
996
EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
997
998
unsigned long dma_get_merge_boundary(struct device *dev)
999
{
1000
const struct dma_map_ops *ops = get_dma_ops(dev);
1001
1002
if (use_dma_iommu(dev))
1003
return iommu_dma_get_merge_boundary(dev);
1004
1005
if (!ops || !ops->get_merge_boundary)
1006
return 0; /* can't merge */
1007
1008
return ops->get_merge_boundary(dev);
1009
}
1010
EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
1011
1012