Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/exit.c
49062 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* linux/kernel/exit.c
4
*
5
* Copyright (C) 1991, 1992 Linus Torvalds
6
*/
7
8
#include <linux/mm.h>
9
#include <linux/slab.h>
10
#include <linux/sched/autogroup.h>
11
#include <linux/sched/mm.h>
12
#include <linux/sched/stat.h>
13
#include <linux/sched/task.h>
14
#include <linux/sched/task_stack.h>
15
#include <linux/sched/cputime.h>
16
#include <linux/interrupt.h>
17
#include <linux/module.h>
18
#include <linux/capability.h>
19
#include <linux/completion.h>
20
#include <linux/personality.h>
21
#include <linux/tty.h>
22
#include <linux/iocontext.h>
23
#include <linux/key.h>
24
#include <linux/cpu.h>
25
#include <linux/acct.h>
26
#include <linux/tsacct_kern.h>
27
#include <linux/file.h>
28
#include <linux/freezer.h>
29
#include <linux/binfmts.h>
30
#include <linux/nsproxy.h>
31
#include <linux/pid_namespace.h>
32
#include <linux/ptrace.h>
33
#include <linux/profile.h>
34
#include <linux/mount.h>
35
#include <linux/proc_fs.h>
36
#include <linux/kthread.h>
37
#include <linux/mempolicy.h>
38
#include <linux/taskstats_kern.h>
39
#include <linux/delayacct.h>
40
#include <linux/cgroup.h>
41
#include <linux/syscalls.h>
42
#include <linux/signal.h>
43
#include <linux/posix-timers.h>
44
#include <linux/cn_proc.h>
45
#include <linux/mutex.h>
46
#include <linux/futex.h>
47
#include <linux/pipe_fs_i.h>
48
#include <linux/audit.h> /* for audit_free() */
49
#include <linux/resource.h>
50
#include <linux/task_io_accounting_ops.h>
51
#include <linux/blkdev.h>
52
#include <linux/task_work.h>
53
#include <linux/fs_struct.h>
54
#include <linux/init_task.h>
55
#include <linux/perf_event.h>
56
#include <trace/events/sched.h>
57
#include <linux/hw_breakpoint.h>
58
#include <linux/oom.h>
59
#include <linux/writeback.h>
60
#include <linux/shm.h>
61
#include <linux/kcov.h>
62
#include <linux/kmsan.h>
63
#include <linux/random.h>
64
#include <linux/rcuwait.h>
65
#include <linux/compat.h>
66
#include <linux/io_uring.h>
67
#include <linux/kprobes.h>
68
#include <linux/rethook.h>
69
#include <linux/sysfs.h>
70
#include <linux/user_events.h>
71
#include <linux/unwind_deferred.h>
72
#include <linux/uaccess.h>
73
#include <linux/pidfs.h>
74
75
#include <uapi/linux/wait.h>
76
77
#include <asm/unistd.h>
78
#include <asm/mmu_context.h>
79
80
#include "exit.h"
81
82
/*
83
* The default value should be high enough to not crash a system that randomly
84
* crashes its kernel from time to time, but low enough to at least not permit
85
* overflowing 32-bit refcounts or the ldsem writer count.
86
*/
87
static unsigned int oops_limit = 10000;
88
89
#ifdef CONFIG_SYSCTL
90
static const struct ctl_table kern_exit_table[] = {
91
{
92
.procname = "oops_limit",
93
.data = &oops_limit,
94
.maxlen = sizeof(oops_limit),
95
.mode = 0644,
96
.proc_handler = proc_douintvec,
97
},
98
};
99
100
static __init int kernel_exit_sysctls_init(void)
101
{
102
register_sysctl_init("kernel", kern_exit_table);
103
return 0;
104
}
105
late_initcall(kernel_exit_sysctls_init);
106
#endif
107
108
static atomic_t oops_count = ATOMIC_INIT(0);
109
110
#ifdef CONFIG_SYSFS
111
static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
112
char *page)
113
{
114
return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
115
}
116
117
static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
118
119
static __init int kernel_exit_sysfs_init(void)
120
{
121
sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
122
return 0;
123
}
124
late_initcall(kernel_exit_sysfs_init);
125
#endif
126
127
/*
128
* For things release_task() would like to do *after* tasklist_lock is released.
129
*/
130
struct release_task_post {
131
struct pid *pids[PIDTYPE_MAX];
132
};
133
134
static void __unhash_process(struct release_task_post *post, struct task_struct *p,
135
bool group_dead)
136
{
137
struct pid *pid = task_pid(p);
138
139
nr_threads--;
140
141
detach_pid(post->pids, p, PIDTYPE_PID);
142
wake_up_all(&pid->wait_pidfd);
143
144
if (group_dead) {
145
detach_pid(post->pids, p, PIDTYPE_TGID);
146
detach_pid(post->pids, p, PIDTYPE_PGID);
147
detach_pid(post->pids, p, PIDTYPE_SID);
148
149
list_del_rcu(&p->tasks);
150
list_del_init(&p->sibling);
151
__this_cpu_dec(process_counts);
152
}
153
list_del_rcu(&p->thread_node);
154
}
155
156
/*
157
* This function expects the tasklist_lock write-locked.
158
*/
159
static void __exit_signal(struct release_task_post *post, struct task_struct *tsk)
160
{
161
struct signal_struct *sig = tsk->signal;
162
bool group_dead = thread_group_leader(tsk);
163
struct sighand_struct *sighand;
164
struct tty_struct *tty;
165
u64 utime, stime;
166
167
sighand = rcu_dereference_check(tsk->sighand,
168
lockdep_tasklist_lock_is_held());
169
spin_lock(&sighand->siglock);
170
171
#ifdef CONFIG_POSIX_TIMERS
172
posix_cpu_timers_exit(tsk);
173
if (group_dead)
174
posix_cpu_timers_exit_group(tsk);
175
#endif
176
177
if (group_dead) {
178
tty = sig->tty;
179
sig->tty = NULL;
180
} else {
181
/*
182
* If there is any task waiting for the group exit
183
* then notify it:
184
*/
185
if (sig->notify_count > 0 && !--sig->notify_count)
186
wake_up_process(sig->group_exec_task);
187
188
if (tsk == sig->curr_target)
189
sig->curr_target = next_thread(tsk);
190
}
191
192
/*
193
* Accumulate here the counters for all threads as they die. We could
194
* skip the group leader because it is the last user of signal_struct,
195
* but we want to avoid the race with thread_group_cputime() which can
196
* see the empty ->thread_head list.
197
*/
198
task_cputime(tsk, &utime, &stime);
199
write_seqlock(&sig->stats_lock);
200
sig->utime += utime;
201
sig->stime += stime;
202
sig->gtime += task_gtime(tsk);
203
sig->min_flt += tsk->min_flt;
204
sig->maj_flt += tsk->maj_flt;
205
sig->nvcsw += tsk->nvcsw;
206
sig->nivcsw += tsk->nivcsw;
207
sig->inblock += task_io_get_inblock(tsk);
208
sig->oublock += task_io_get_oublock(tsk);
209
task_io_accounting_add(&sig->ioac, &tsk->ioac);
210
sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
211
sig->nr_threads--;
212
__unhash_process(post, tsk, group_dead);
213
write_sequnlock(&sig->stats_lock);
214
215
tsk->sighand = NULL;
216
spin_unlock(&sighand->siglock);
217
218
__cleanup_sighand(sighand);
219
if (group_dead)
220
tty_kref_put(tty);
221
}
222
223
static void delayed_put_task_struct(struct rcu_head *rhp)
224
{
225
struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
226
227
kprobe_flush_task(tsk);
228
rethook_flush_task(tsk);
229
perf_event_delayed_put(tsk);
230
trace_sched_process_free(tsk);
231
put_task_struct(tsk);
232
}
233
234
void put_task_struct_rcu_user(struct task_struct *task)
235
{
236
if (refcount_dec_and_test(&task->rcu_users))
237
call_rcu(&task->rcu, delayed_put_task_struct);
238
}
239
240
void __weak release_thread(struct task_struct *dead_task)
241
{
242
}
243
244
void release_task(struct task_struct *p)
245
{
246
struct release_task_post post;
247
struct task_struct *leader;
248
struct pid *thread_pid;
249
int zap_leader;
250
repeat:
251
memset(&post, 0, sizeof(post));
252
253
/* don't need to get the RCU readlock here - the process is dead and
254
* can't be modifying its own credentials. */
255
dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
256
257
pidfs_exit(p);
258
cgroup_task_release(p);
259
260
/* Retrieve @thread_pid before __unhash_process() may set it to NULL. */
261
thread_pid = task_pid(p);
262
263
write_lock_irq(&tasklist_lock);
264
ptrace_release_task(p);
265
__exit_signal(&post, p);
266
267
/*
268
* If we are the last non-leader member of the thread
269
* group, and the leader is zombie, then notify the
270
* group leader's parent process. (if it wants notification.)
271
*/
272
zap_leader = 0;
273
leader = p->group_leader;
274
if (leader != p && thread_group_empty(leader)
275
&& leader->exit_state == EXIT_ZOMBIE) {
276
/* for pidfs_exit() and do_notify_parent() */
277
if (leader->signal->flags & SIGNAL_GROUP_EXIT)
278
leader->exit_code = leader->signal->group_exit_code;
279
/*
280
* If we were the last child thread and the leader has
281
* exited already, and the leader's parent ignores SIGCHLD,
282
* then we are the one who should release the leader.
283
*/
284
zap_leader = do_notify_parent(leader, leader->exit_signal);
285
if (zap_leader)
286
leader->exit_state = EXIT_DEAD;
287
}
288
289
write_unlock_irq(&tasklist_lock);
290
/* @thread_pid can't go away until free_pids() below */
291
proc_flush_pid(thread_pid);
292
exit_cred_namespaces(p);
293
add_device_randomness(&p->se.sum_exec_runtime,
294
sizeof(p->se.sum_exec_runtime));
295
free_pids(post.pids);
296
release_thread(p);
297
/*
298
* This task was already removed from the process/thread/pid lists
299
* and lock_task_sighand(p) can't succeed. Nobody else can touch
300
* ->pending or, if group dead, signal->shared_pending. We can call
301
* flush_sigqueue() lockless.
302
*/
303
flush_sigqueue(&p->pending);
304
if (thread_group_leader(p))
305
flush_sigqueue(&p->signal->shared_pending);
306
307
put_task_struct_rcu_user(p);
308
309
p = leader;
310
if (unlikely(zap_leader))
311
goto repeat;
312
}
313
314
int rcuwait_wake_up(struct rcuwait *w)
315
{
316
int ret = 0;
317
struct task_struct *task;
318
319
rcu_read_lock();
320
321
/*
322
* Order condition vs @task, such that everything prior to the load
323
* of @task is visible. This is the condition as to why the user called
324
* rcuwait_wake() in the first place. Pairs with set_current_state()
325
* barrier (A) in rcuwait_wait_event().
326
*
327
* WAIT WAKE
328
* [S] tsk = current [S] cond = true
329
* MB (A) MB (B)
330
* [L] cond [L] tsk
331
*/
332
smp_mb(); /* (B) */
333
334
task = rcu_dereference(w->task);
335
if (task)
336
ret = wake_up_process(task);
337
rcu_read_unlock();
338
339
return ret;
340
}
341
EXPORT_SYMBOL_GPL(rcuwait_wake_up);
342
343
/*
344
* Determine if a process group is "orphaned", according to the POSIX
345
* definition in 2.2.2.52. Orphaned process groups are not to be affected
346
* by terminal-generated stop signals. Newly orphaned process groups are
347
* to receive a SIGHUP and a SIGCONT.
348
*
349
* "I ask you, have you ever known what it is to be an orphan?"
350
*/
351
static int will_become_orphaned_pgrp(struct pid *pgrp,
352
struct task_struct *ignored_task)
353
{
354
struct task_struct *p;
355
356
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
357
if ((p == ignored_task) ||
358
(p->exit_state && thread_group_empty(p)) ||
359
is_global_init(p->real_parent))
360
continue;
361
362
if (task_pgrp(p->real_parent) != pgrp &&
363
task_session(p->real_parent) == task_session(p))
364
return 0;
365
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
366
367
return 1;
368
}
369
370
int is_current_pgrp_orphaned(void)
371
{
372
int retval;
373
374
read_lock(&tasklist_lock);
375
retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
376
read_unlock(&tasklist_lock);
377
378
return retval;
379
}
380
381
static bool has_stopped_jobs(struct pid *pgrp)
382
{
383
struct task_struct *p;
384
385
do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
386
if (p->signal->flags & SIGNAL_STOP_STOPPED)
387
return true;
388
} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
389
390
return false;
391
}
392
393
/*
394
* Check to see if any process groups have become orphaned as
395
* a result of our exiting, and if they have any stopped jobs,
396
* send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
397
*/
398
static void
399
kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
400
{
401
struct pid *pgrp = task_pgrp(tsk);
402
struct task_struct *ignored_task = tsk;
403
404
if (!parent)
405
/* exit: our father is in a different pgrp than
406
* we are and we were the only connection outside.
407
*/
408
parent = tsk->real_parent;
409
else
410
/* reparent: our child is in a different pgrp than
411
* we are, and it was the only connection outside.
412
*/
413
ignored_task = NULL;
414
415
if (task_pgrp(parent) != pgrp &&
416
task_session(parent) == task_session(tsk) &&
417
will_become_orphaned_pgrp(pgrp, ignored_task) &&
418
has_stopped_jobs(pgrp)) {
419
__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
420
__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
421
}
422
}
423
424
static void coredump_task_exit(struct task_struct *tsk,
425
struct core_state *core_state)
426
{
427
struct core_thread self;
428
429
self.task = tsk;
430
if (self.task->flags & PF_SIGNALED)
431
self.next = xchg(&core_state->dumper.next, &self);
432
else
433
self.task = NULL;
434
/*
435
* Implies mb(), the result of xchg() must be visible
436
* to core_state->dumper.
437
*/
438
if (atomic_dec_and_test(&core_state->nr_threads))
439
complete(&core_state->startup);
440
441
for (;;) {
442
set_current_state(TASK_IDLE|TASK_FREEZABLE);
443
if (!self.task) /* see coredump_finish() */
444
break;
445
schedule();
446
}
447
__set_current_state(TASK_RUNNING);
448
}
449
450
#ifdef CONFIG_MEMCG
451
/* drops tasklist_lock if succeeds */
452
static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
453
{
454
bool ret = false;
455
456
task_lock(tsk);
457
if (likely(tsk->mm == mm)) {
458
/* tsk can't pass exit_mm/exec_mmap and exit */
459
read_unlock(&tasklist_lock);
460
WRITE_ONCE(mm->owner, tsk);
461
lru_gen_migrate_mm(mm);
462
ret = true;
463
}
464
task_unlock(tsk);
465
return ret;
466
}
467
468
static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
469
{
470
struct task_struct *t;
471
472
for_each_thread(g, t) {
473
struct mm_struct *t_mm = READ_ONCE(t->mm);
474
if (t_mm == mm) {
475
if (__try_to_set_owner(t, mm))
476
return true;
477
} else if (t_mm)
478
break;
479
}
480
481
return false;
482
}
483
484
/*
485
* A task is exiting. If it owned this mm, find a new owner for the mm.
486
*/
487
void mm_update_next_owner(struct mm_struct *mm)
488
{
489
struct task_struct *g, *p = current;
490
491
/*
492
* If the exiting or execing task is not the owner, it's
493
* someone else's problem.
494
*/
495
if (mm->owner != p)
496
return;
497
/*
498
* The current owner is exiting/execing and there are no other
499
* candidates. Do not leave the mm pointing to a possibly
500
* freed task structure.
501
*/
502
if (atomic_read(&mm->mm_users) <= 1) {
503
WRITE_ONCE(mm->owner, NULL);
504
return;
505
}
506
507
read_lock(&tasklist_lock);
508
/*
509
* Search in the children
510
*/
511
list_for_each_entry(g, &p->children, sibling) {
512
if (try_to_set_owner(g, mm))
513
goto ret;
514
}
515
/*
516
* Search in the siblings
517
*/
518
list_for_each_entry(g, &p->real_parent->children, sibling) {
519
if (try_to_set_owner(g, mm))
520
goto ret;
521
}
522
/*
523
* Search through everything else, we should not get here often.
524
*/
525
for_each_process(g) {
526
if (atomic_read(&mm->mm_users) <= 1)
527
break;
528
if (g->flags & PF_KTHREAD)
529
continue;
530
if (try_to_set_owner(g, mm))
531
goto ret;
532
}
533
read_unlock(&tasklist_lock);
534
/*
535
* We found no owner yet mm_users > 1: this implies that we are
536
* most likely racing with swapoff (try_to_unuse()) or /proc or
537
* ptrace or page migration (get_task_mm()). Mark owner as NULL.
538
*/
539
WRITE_ONCE(mm->owner, NULL);
540
ret:
541
return;
542
543
}
544
#endif /* CONFIG_MEMCG */
545
546
/*
547
* Turn us into a lazy TLB process if we
548
* aren't already..
549
*/
550
static void exit_mm(void)
551
{
552
struct mm_struct *mm = current->mm;
553
554
exit_mm_release(current, mm);
555
if (!mm)
556
return;
557
mmap_read_lock(mm);
558
mmgrab_lazy_tlb(mm);
559
BUG_ON(mm != current->active_mm);
560
/* more a memory barrier than a real lock */
561
task_lock(current);
562
/*
563
* When a thread stops operating on an address space, the loop
564
* in membarrier_private_expedited() may not observe that
565
* tsk->mm, and the loop in membarrier_global_expedited() may
566
* not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
567
* rq->membarrier_state, so those would not issue an IPI.
568
* Membarrier requires a memory barrier after accessing
569
* user-space memory, before clearing tsk->mm or the
570
* rq->membarrier_state.
571
*/
572
smp_mb__after_spinlock();
573
local_irq_disable();
574
current->mm = NULL;
575
membarrier_update_current_mm(NULL);
576
enter_lazy_tlb(mm, current);
577
local_irq_enable();
578
task_unlock(current);
579
mmap_read_unlock(mm);
580
mm_update_next_owner(mm);
581
mmput(mm);
582
if (test_thread_flag(TIF_MEMDIE))
583
exit_oom_victim();
584
}
585
586
static struct task_struct *find_alive_thread(struct task_struct *p)
587
{
588
struct task_struct *t;
589
590
for_each_thread(p, t) {
591
if (!(t->flags & PF_EXITING))
592
return t;
593
}
594
return NULL;
595
}
596
597
static struct task_struct *find_child_reaper(struct task_struct *father,
598
struct list_head *dead)
599
__releases(&tasklist_lock)
600
__acquires(&tasklist_lock)
601
{
602
struct pid_namespace *pid_ns = task_active_pid_ns(father);
603
struct task_struct *reaper = pid_ns->child_reaper;
604
struct task_struct *p, *n;
605
606
if (likely(reaper != father))
607
return reaper;
608
609
reaper = find_alive_thread(father);
610
if (reaper) {
611
pid_ns->child_reaper = reaper;
612
return reaper;
613
}
614
615
write_unlock_irq(&tasklist_lock);
616
617
list_for_each_entry_safe(p, n, dead, ptrace_entry) {
618
list_del_init(&p->ptrace_entry);
619
release_task(p);
620
}
621
622
zap_pid_ns_processes(pid_ns);
623
write_lock_irq(&tasklist_lock);
624
625
return father;
626
}
627
628
/*
629
* When we die, we re-parent all our children, and try to:
630
* 1. give them to another thread in our thread group, if such a member exists
631
* 2. give it to the first ancestor process which prctl'd itself as a
632
* child_subreaper for its children (like a service manager)
633
* 3. give it to the init process (PID 1) in our pid namespace
634
*/
635
static struct task_struct *find_new_reaper(struct task_struct *father,
636
struct task_struct *child_reaper)
637
{
638
struct task_struct *thread, *reaper;
639
640
thread = find_alive_thread(father);
641
if (thread)
642
return thread;
643
644
if (father->signal->has_child_subreaper) {
645
unsigned int ns_level = task_pid(father)->level;
646
/*
647
* Find the first ->is_child_subreaper ancestor in our pid_ns.
648
* We can't check reaper != child_reaper to ensure we do not
649
* cross the namespaces, the exiting parent could be injected
650
* by setns() + fork().
651
* We check pid->level, this is slightly more efficient than
652
* task_active_pid_ns(reaper) != task_active_pid_ns(father).
653
*/
654
for (reaper = father->real_parent;
655
task_pid(reaper)->level == ns_level;
656
reaper = reaper->real_parent) {
657
if (reaper == &init_task)
658
break;
659
if (!reaper->signal->is_child_subreaper)
660
continue;
661
thread = find_alive_thread(reaper);
662
if (thread)
663
return thread;
664
}
665
}
666
667
return child_reaper;
668
}
669
670
/*
671
* Any that need to be release_task'd are put on the @dead list.
672
*/
673
static void reparent_leader(struct task_struct *father, struct task_struct *p,
674
struct list_head *dead)
675
{
676
if (unlikely(p->exit_state == EXIT_DEAD))
677
return;
678
679
/* We don't want people slaying init. */
680
p->exit_signal = SIGCHLD;
681
682
/* If it has exited notify the new parent about this child's death. */
683
if (!p->ptrace &&
684
p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
685
if (do_notify_parent(p, p->exit_signal)) {
686
p->exit_state = EXIT_DEAD;
687
list_add(&p->ptrace_entry, dead);
688
}
689
}
690
691
kill_orphaned_pgrp(p, father);
692
}
693
694
/*
695
* Make init inherit all the child processes
696
*/
697
static void forget_original_parent(struct task_struct *father,
698
struct list_head *dead)
699
{
700
struct task_struct *p, *t, *reaper;
701
702
if (unlikely(!list_empty(&father->ptraced)))
703
exit_ptrace(father, dead);
704
705
/* Can drop and reacquire tasklist_lock */
706
reaper = find_child_reaper(father, dead);
707
if (list_empty(&father->children))
708
return;
709
710
reaper = find_new_reaper(father, reaper);
711
list_for_each_entry(p, &father->children, sibling) {
712
for_each_thread(p, t) {
713
RCU_INIT_POINTER(t->real_parent, reaper);
714
BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
715
if (likely(!t->ptrace))
716
t->parent = t->real_parent;
717
if (t->pdeath_signal)
718
group_send_sig_info(t->pdeath_signal,
719
SEND_SIG_NOINFO, t,
720
PIDTYPE_TGID);
721
}
722
/*
723
* If this is a threaded reparent there is no need to
724
* notify anyone anything has happened.
725
*/
726
if (!same_thread_group(reaper, father))
727
reparent_leader(father, p, dead);
728
}
729
list_splice_tail_init(&father->children, &reaper->children);
730
}
731
732
/*
733
* Send signals to all our closest relatives so that they know
734
* to properly mourn us..
735
*/
736
static void exit_notify(struct task_struct *tsk, int group_dead)
737
{
738
bool autoreap;
739
struct task_struct *p, *n;
740
LIST_HEAD(dead);
741
742
write_lock_irq(&tasklist_lock);
743
forget_original_parent(tsk, &dead);
744
745
if (group_dead)
746
kill_orphaned_pgrp(tsk->group_leader, NULL);
747
748
tsk->exit_state = EXIT_ZOMBIE;
749
750
if (unlikely(tsk->ptrace)) {
751
int sig = thread_group_leader(tsk) &&
752
thread_group_empty(tsk) &&
753
!ptrace_reparented(tsk) ?
754
tsk->exit_signal : SIGCHLD;
755
autoreap = do_notify_parent(tsk, sig);
756
} else if (thread_group_leader(tsk)) {
757
autoreap = thread_group_empty(tsk) &&
758
do_notify_parent(tsk, tsk->exit_signal);
759
} else {
760
autoreap = true;
761
/* untraced sub-thread */
762
do_notify_pidfd(tsk);
763
}
764
765
if (autoreap) {
766
tsk->exit_state = EXIT_DEAD;
767
list_add(&tsk->ptrace_entry, &dead);
768
}
769
770
/* mt-exec, de_thread() is waiting for group leader */
771
if (unlikely(tsk->signal->notify_count < 0))
772
wake_up_process(tsk->signal->group_exec_task);
773
write_unlock_irq(&tasklist_lock);
774
775
list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
776
list_del_init(&p->ptrace_entry);
777
release_task(p);
778
}
779
}
780
781
#ifdef CONFIG_DEBUG_STACK_USAGE
782
#ifdef CONFIG_STACK_GROWSUP
783
unsigned long stack_not_used(struct task_struct *p)
784
{
785
unsigned long *n = end_of_stack(p);
786
787
do { /* Skip over canary */
788
n--;
789
} while (!*n);
790
791
return (unsigned long)end_of_stack(p) - (unsigned long)n;
792
}
793
#else /* !CONFIG_STACK_GROWSUP */
794
unsigned long stack_not_used(struct task_struct *p)
795
{
796
unsigned long *n = end_of_stack(p);
797
798
do { /* Skip over canary */
799
n++;
800
} while (!*n);
801
802
return (unsigned long)n - (unsigned long)end_of_stack(p);
803
}
804
#endif /* CONFIG_STACK_GROWSUP */
805
806
/* Count the maximum pages reached in kernel stacks */
807
static inline void kstack_histogram(unsigned long used_stack)
808
{
809
#ifdef CONFIG_VM_EVENT_COUNTERS
810
if (used_stack <= 1024)
811
count_vm_event(KSTACK_1K);
812
#if THREAD_SIZE > 1024
813
else if (used_stack <= 2048)
814
count_vm_event(KSTACK_2K);
815
#endif
816
#if THREAD_SIZE > 2048
817
else if (used_stack <= 4096)
818
count_vm_event(KSTACK_4K);
819
#endif
820
#if THREAD_SIZE > 4096
821
else if (used_stack <= 8192)
822
count_vm_event(KSTACK_8K);
823
#endif
824
#if THREAD_SIZE > 8192
825
else if (used_stack <= 16384)
826
count_vm_event(KSTACK_16K);
827
#endif
828
#if THREAD_SIZE > 16384
829
else if (used_stack <= 32768)
830
count_vm_event(KSTACK_32K);
831
#endif
832
#if THREAD_SIZE > 32768
833
else if (used_stack <= 65536)
834
count_vm_event(KSTACK_64K);
835
#endif
836
#if THREAD_SIZE > 65536
837
else
838
count_vm_event(KSTACK_REST);
839
#endif
840
#endif /* CONFIG_VM_EVENT_COUNTERS */
841
}
842
843
static void check_stack_usage(void)
844
{
845
static DEFINE_SPINLOCK(low_water_lock);
846
static int lowest_to_date = THREAD_SIZE;
847
unsigned long free;
848
849
free = stack_not_used(current);
850
kstack_histogram(THREAD_SIZE - free);
851
852
if (free >= lowest_to_date)
853
return;
854
855
spin_lock(&low_water_lock);
856
if (free < lowest_to_date) {
857
pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
858
current->comm, task_pid_nr(current), free);
859
lowest_to_date = free;
860
}
861
spin_unlock(&low_water_lock);
862
}
863
#else /* !CONFIG_DEBUG_STACK_USAGE */
864
static inline void check_stack_usage(void) {}
865
#endif /* CONFIG_DEBUG_STACK_USAGE */
866
867
static void synchronize_group_exit(struct task_struct *tsk, long code)
868
{
869
struct sighand_struct *sighand = tsk->sighand;
870
struct signal_struct *signal = tsk->signal;
871
struct core_state *core_state;
872
873
spin_lock_irq(&sighand->siglock);
874
signal->quick_threads--;
875
if ((signal->quick_threads == 0) &&
876
!(signal->flags & SIGNAL_GROUP_EXIT)) {
877
signal->flags = SIGNAL_GROUP_EXIT;
878
signal->group_exit_code = code;
879
signal->group_stop_count = 0;
880
}
881
/*
882
* Serialize with any possible pending coredump.
883
* We must hold siglock around checking core_state
884
* and setting PF_POSTCOREDUMP. The core-inducing thread
885
* will increment ->nr_threads for each thread in the
886
* group without PF_POSTCOREDUMP set.
887
*/
888
tsk->flags |= PF_POSTCOREDUMP;
889
core_state = signal->core_state;
890
spin_unlock_irq(&sighand->siglock);
891
892
if (unlikely(core_state))
893
coredump_task_exit(tsk, core_state);
894
}
895
896
void __noreturn do_exit(long code)
897
{
898
struct task_struct *tsk = current;
899
int group_dead;
900
901
WARN_ON(irqs_disabled());
902
WARN_ON(tsk->plug);
903
904
kcov_task_exit(tsk);
905
kmsan_task_exit(tsk);
906
907
synchronize_group_exit(tsk, code);
908
ptrace_event(PTRACE_EVENT_EXIT, code);
909
user_events_exit(tsk);
910
911
io_uring_files_cancel();
912
sched_mm_cid_exit(tsk);
913
exit_signals(tsk); /* sets PF_EXITING */
914
915
seccomp_filter_release(tsk);
916
917
acct_update_integrals(tsk);
918
group_dead = atomic_dec_and_test(&tsk->signal->live);
919
if (group_dead) {
920
/*
921
* If the last thread of global init has exited, panic
922
* immediately to get a useable coredump.
923
*/
924
if (unlikely(is_global_init(tsk)))
925
panic("Attempted to kill init! exitcode=0x%08x\n",
926
tsk->signal->group_exit_code ?: (int)code);
927
928
#ifdef CONFIG_POSIX_TIMERS
929
hrtimer_cancel(&tsk->signal->real_timer);
930
exit_itimers(tsk);
931
#endif
932
if (tsk->mm)
933
setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
934
}
935
acct_collect(code, group_dead);
936
if (group_dead)
937
tty_audit_exit();
938
audit_free(tsk);
939
940
tsk->exit_code = code;
941
taskstats_exit(tsk, group_dead);
942
trace_sched_process_exit(tsk, group_dead);
943
944
/*
945
* Since sampling can touch ->mm, make sure to stop everything before we
946
* tear it down.
947
*
948
* Also flushes inherited counters to the parent - before the parent
949
* gets woken up by child-exit notifications.
950
*/
951
perf_event_exit_task(tsk);
952
/*
953
* PF_EXITING (above) ensures unwind_deferred_request() will no
954
* longer add new unwinds. While exit_mm() (below) will destroy the
955
* abaility to do unwinds. So flush any pending unwinds here.
956
*/
957
unwind_deferred_task_exit(tsk);
958
959
exit_mm();
960
961
if (group_dead)
962
acct_process();
963
964
exit_sem(tsk);
965
exit_shm(tsk);
966
exit_files(tsk);
967
exit_fs(tsk);
968
if (group_dead)
969
disassociate_ctty(1);
970
exit_nsproxy_namespaces(tsk);
971
exit_task_work(tsk);
972
exit_thread(tsk);
973
974
sched_autogroup_exit_task(tsk);
975
cgroup_task_exit(tsk);
976
977
/*
978
* FIXME: do that only when needed, using sched_exit tracepoint
979
*/
980
flush_ptrace_hw_breakpoint(tsk);
981
982
exit_tasks_rcu_start();
983
exit_notify(tsk, group_dead);
984
proc_exit_connector(tsk);
985
mpol_put_task_policy(tsk);
986
#ifdef CONFIG_FUTEX
987
if (unlikely(current->pi_state_cache))
988
kfree(current->pi_state_cache);
989
#endif
990
/*
991
* Make sure we are holding no locks:
992
*/
993
debug_check_no_locks_held();
994
995
if (tsk->io_context)
996
exit_io_context(tsk);
997
998
if (tsk->splice_pipe)
999
free_pipe_info(tsk->splice_pipe);
1000
1001
if (tsk->task_frag.page)
1002
put_page(tsk->task_frag.page);
1003
1004
exit_task_stack_account(tsk);
1005
1006
check_stack_usage();
1007
preempt_disable();
1008
if (tsk->nr_dirtied)
1009
__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1010
exit_rcu();
1011
exit_tasks_rcu_finish();
1012
1013
lockdep_free_task(tsk);
1014
do_task_dead();
1015
}
1016
1017
void __noreturn make_task_dead(int signr)
1018
{
1019
/*
1020
* Take the task off the cpu after something catastrophic has
1021
* happened.
1022
*
1023
* We can get here from a kernel oops, sometimes with preemption off.
1024
* Start by checking for critical errors.
1025
* Then fix up important state like USER_DS and preemption.
1026
* Then do everything else.
1027
*/
1028
struct task_struct *tsk = current;
1029
unsigned int limit;
1030
1031
if (unlikely(in_interrupt()))
1032
panic("Aiee, killing interrupt handler!");
1033
if (unlikely(!tsk->pid))
1034
panic("Attempted to kill the idle task!");
1035
1036
if (unlikely(irqs_disabled())) {
1037
pr_info("note: %s[%d] exited with irqs disabled\n",
1038
current->comm, task_pid_nr(current));
1039
local_irq_enable();
1040
}
1041
if (unlikely(in_atomic())) {
1042
pr_info("note: %s[%d] exited with preempt_count %d\n",
1043
current->comm, task_pid_nr(current),
1044
preempt_count());
1045
preempt_count_set(PREEMPT_ENABLED);
1046
}
1047
1048
/*
1049
* Every time the system oopses, if the oops happens while a reference
1050
* to an object was held, the reference leaks.
1051
* If the oops doesn't also leak memory, repeated oopsing can cause
1052
* reference counters to wrap around (if they're not using refcount_t).
1053
* This means that repeated oopsing can make unexploitable-looking bugs
1054
* exploitable through repeated oopsing.
1055
* To make sure this can't happen, place an upper bound on how often the
1056
* kernel may oops without panic().
1057
*/
1058
limit = READ_ONCE(oops_limit);
1059
if (atomic_inc_return(&oops_count) >= limit && limit)
1060
panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1061
1062
/*
1063
* We're taking recursive faults here in make_task_dead. Safest is to just
1064
* leave this task alone and wait for reboot.
1065
*/
1066
if (unlikely(tsk->flags & PF_EXITING)) {
1067
pr_alert("Fixing recursive fault but reboot is needed!\n");
1068
futex_exit_recursive(tsk);
1069
tsk->exit_state = EXIT_DEAD;
1070
refcount_inc(&tsk->rcu_users);
1071
do_task_dead();
1072
}
1073
1074
do_exit(signr);
1075
}
1076
1077
SYSCALL_DEFINE1(exit, int, error_code)
1078
{
1079
do_exit((error_code&0xff)<<8);
1080
}
1081
1082
/*
1083
* Take down every thread in the group. This is called by fatal signals
1084
* as well as by sys_exit_group (below).
1085
*/
1086
void __noreturn
1087
do_group_exit(int exit_code)
1088
{
1089
struct signal_struct *sig = current->signal;
1090
1091
if (sig->flags & SIGNAL_GROUP_EXIT)
1092
exit_code = sig->group_exit_code;
1093
else if (sig->group_exec_task)
1094
exit_code = 0;
1095
else {
1096
struct sighand_struct *const sighand = current->sighand;
1097
1098
spin_lock_irq(&sighand->siglock);
1099
if (sig->flags & SIGNAL_GROUP_EXIT)
1100
/* Another thread got here before we took the lock. */
1101
exit_code = sig->group_exit_code;
1102
else if (sig->group_exec_task)
1103
exit_code = 0;
1104
else {
1105
sig->group_exit_code = exit_code;
1106
sig->flags = SIGNAL_GROUP_EXIT;
1107
zap_other_threads(current);
1108
}
1109
spin_unlock_irq(&sighand->siglock);
1110
}
1111
1112
do_exit(exit_code);
1113
/* NOTREACHED */
1114
}
1115
1116
/*
1117
* this kills every thread in the thread group. Note that any externally
1118
* wait4()-ing process will get the correct exit code - even if this
1119
* thread is not the thread group leader.
1120
*/
1121
SYSCALL_DEFINE1(exit_group, int, error_code)
1122
{
1123
do_group_exit((error_code & 0xff) << 8);
1124
/* NOTREACHED */
1125
return 0;
1126
}
1127
1128
static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1129
{
1130
return wo->wo_type == PIDTYPE_MAX ||
1131
task_pid_type(p, wo->wo_type) == wo->wo_pid;
1132
}
1133
1134
static int
1135
eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1136
{
1137
if (!eligible_pid(wo, p))
1138
return 0;
1139
1140
/*
1141
* Wait for all children (clone and not) if __WALL is set or
1142
* if it is traced by us.
1143
*/
1144
if (ptrace || (wo->wo_flags & __WALL))
1145
return 1;
1146
1147
/*
1148
* Otherwise, wait for clone children *only* if __WCLONE is set;
1149
* otherwise, wait for non-clone children *only*.
1150
*
1151
* Note: a "clone" child here is one that reports to its parent
1152
* using a signal other than SIGCHLD, or a non-leader thread which
1153
* we can only see if it is traced by us.
1154
*/
1155
if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1156
return 0;
1157
1158
return 1;
1159
}
1160
1161
/*
1162
* Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1163
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1164
* the lock and this task is uninteresting. If we return nonzero, we have
1165
* released the lock and the system call should return.
1166
*/
1167
static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1168
{
1169
int state, status;
1170
pid_t pid = task_pid_vnr(p);
1171
uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1172
struct waitid_info *infop;
1173
1174
if (!likely(wo->wo_flags & WEXITED))
1175
return 0;
1176
1177
if (unlikely(wo->wo_flags & WNOWAIT)) {
1178
status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1179
? p->signal->group_exit_code : p->exit_code;
1180
get_task_struct(p);
1181
read_unlock(&tasklist_lock);
1182
sched_annotate_sleep();
1183
if (wo->wo_rusage)
1184
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1185
put_task_struct(p);
1186
goto out_info;
1187
}
1188
/*
1189
* Move the task's state to DEAD/TRACE, only one thread can do this.
1190
*/
1191
state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1192
EXIT_TRACE : EXIT_DEAD;
1193
if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1194
return 0;
1195
/*
1196
* We own this thread, nobody else can reap it.
1197
*/
1198
read_unlock(&tasklist_lock);
1199
sched_annotate_sleep();
1200
1201
/*
1202
* Check thread_group_leader() to exclude the traced sub-threads.
1203
*/
1204
if (state == EXIT_DEAD && thread_group_leader(p)) {
1205
struct signal_struct *sig = p->signal;
1206
struct signal_struct *psig = current->signal;
1207
unsigned long maxrss;
1208
u64 tgutime, tgstime;
1209
1210
/*
1211
* The resource counters for the group leader are in its
1212
* own task_struct. Those for dead threads in the group
1213
* are in its signal_struct, as are those for the child
1214
* processes it has previously reaped. All these
1215
* accumulate in the parent's signal_struct c* fields.
1216
*
1217
* We don't bother to take a lock here to protect these
1218
* p->signal fields because the whole thread group is dead
1219
* and nobody can change them.
1220
*
1221
* psig->stats_lock also protects us from our sub-threads
1222
* which can reap other children at the same time.
1223
*
1224
* We use thread_group_cputime_adjusted() to get times for
1225
* the thread group, which consolidates times for all threads
1226
* in the group including the group leader.
1227
*/
1228
thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1229
write_seqlock_irq(&psig->stats_lock);
1230
psig->cutime += tgutime + sig->cutime;
1231
psig->cstime += tgstime + sig->cstime;
1232
psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1233
psig->cmin_flt +=
1234
p->min_flt + sig->min_flt + sig->cmin_flt;
1235
psig->cmaj_flt +=
1236
p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1237
psig->cnvcsw +=
1238
p->nvcsw + sig->nvcsw + sig->cnvcsw;
1239
psig->cnivcsw +=
1240
p->nivcsw + sig->nivcsw + sig->cnivcsw;
1241
psig->cinblock +=
1242
task_io_get_inblock(p) +
1243
sig->inblock + sig->cinblock;
1244
psig->coublock +=
1245
task_io_get_oublock(p) +
1246
sig->oublock + sig->coublock;
1247
maxrss = max(sig->maxrss, sig->cmaxrss);
1248
if (psig->cmaxrss < maxrss)
1249
psig->cmaxrss = maxrss;
1250
task_io_accounting_add(&psig->ioac, &p->ioac);
1251
task_io_accounting_add(&psig->ioac, &sig->ioac);
1252
write_sequnlock_irq(&psig->stats_lock);
1253
}
1254
1255
if (wo->wo_rusage)
1256
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1257
status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1258
? p->signal->group_exit_code : p->exit_code;
1259
wo->wo_stat = status;
1260
1261
if (state == EXIT_TRACE) {
1262
write_lock_irq(&tasklist_lock);
1263
/* We dropped tasklist, ptracer could die and untrace */
1264
ptrace_unlink(p);
1265
1266
/* If parent wants a zombie, don't release it now */
1267
state = EXIT_ZOMBIE;
1268
if (do_notify_parent(p, p->exit_signal))
1269
state = EXIT_DEAD;
1270
p->exit_state = state;
1271
write_unlock_irq(&tasklist_lock);
1272
}
1273
if (state == EXIT_DEAD)
1274
release_task(p);
1275
1276
out_info:
1277
infop = wo->wo_info;
1278
if (infop) {
1279
if ((status & 0x7f) == 0) {
1280
infop->cause = CLD_EXITED;
1281
infop->status = status >> 8;
1282
} else {
1283
infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1284
infop->status = status & 0x7f;
1285
}
1286
infop->pid = pid;
1287
infop->uid = uid;
1288
}
1289
1290
return pid;
1291
}
1292
1293
static int *task_stopped_code(struct task_struct *p, bool ptrace)
1294
{
1295
if (ptrace) {
1296
if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1297
return &p->exit_code;
1298
} else {
1299
if (p->signal->flags & SIGNAL_STOP_STOPPED)
1300
return &p->signal->group_exit_code;
1301
}
1302
return NULL;
1303
}
1304
1305
/**
1306
* wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1307
* @wo: wait options
1308
* @ptrace: is the wait for ptrace
1309
* @p: task to wait for
1310
*
1311
* Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1312
*
1313
* CONTEXT:
1314
* read_lock(&tasklist_lock), which is released if return value is
1315
* non-zero. Also, grabs and releases @p->sighand->siglock.
1316
*
1317
* RETURNS:
1318
* 0 if wait condition didn't exist and search for other wait conditions
1319
* should continue. Non-zero return, -errno on failure and @p's pid on
1320
* success, implies that tasklist_lock is released and wait condition
1321
* search should terminate.
1322
*/
1323
static int wait_task_stopped(struct wait_opts *wo,
1324
int ptrace, struct task_struct *p)
1325
{
1326
struct waitid_info *infop;
1327
int exit_code, *p_code, why;
1328
uid_t uid = 0; /* unneeded, required by compiler */
1329
pid_t pid;
1330
1331
/*
1332
* Traditionally we see ptrace'd stopped tasks regardless of options.
1333
*/
1334
if (!ptrace && !(wo->wo_flags & WUNTRACED))
1335
return 0;
1336
1337
if (!task_stopped_code(p, ptrace))
1338
return 0;
1339
1340
exit_code = 0;
1341
spin_lock_irq(&p->sighand->siglock);
1342
1343
p_code = task_stopped_code(p, ptrace);
1344
if (unlikely(!p_code))
1345
goto unlock_sig;
1346
1347
exit_code = *p_code;
1348
if (!exit_code)
1349
goto unlock_sig;
1350
1351
if (!unlikely(wo->wo_flags & WNOWAIT))
1352
*p_code = 0;
1353
1354
uid = from_kuid_munged(current_user_ns(), task_uid(p));
1355
unlock_sig:
1356
spin_unlock_irq(&p->sighand->siglock);
1357
if (!exit_code)
1358
return 0;
1359
1360
/*
1361
* Now we are pretty sure this task is interesting.
1362
* Make sure it doesn't get reaped out from under us while we
1363
* give up the lock and then examine it below. We don't want to
1364
* keep holding onto the tasklist_lock while we call getrusage and
1365
* possibly take page faults for user memory.
1366
*/
1367
get_task_struct(p);
1368
pid = task_pid_vnr(p);
1369
why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1370
read_unlock(&tasklist_lock);
1371
sched_annotate_sleep();
1372
if (wo->wo_rusage)
1373
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1374
put_task_struct(p);
1375
1376
if (likely(!(wo->wo_flags & WNOWAIT)))
1377
wo->wo_stat = (exit_code << 8) | 0x7f;
1378
1379
infop = wo->wo_info;
1380
if (infop) {
1381
infop->cause = why;
1382
infop->status = exit_code;
1383
infop->pid = pid;
1384
infop->uid = uid;
1385
}
1386
return pid;
1387
}
1388
1389
/*
1390
* Handle do_wait work for one task in a live, non-stopped state.
1391
* read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1392
* the lock and this task is uninteresting. If we return nonzero, we have
1393
* released the lock and the system call should return.
1394
*/
1395
static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1396
{
1397
struct waitid_info *infop;
1398
pid_t pid;
1399
uid_t uid;
1400
1401
if (!unlikely(wo->wo_flags & WCONTINUED))
1402
return 0;
1403
1404
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1405
return 0;
1406
1407
spin_lock_irq(&p->sighand->siglock);
1408
/* Re-check with the lock held. */
1409
if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1410
spin_unlock_irq(&p->sighand->siglock);
1411
return 0;
1412
}
1413
if (!unlikely(wo->wo_flags & WNOWAIT))
1414
p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1415
uid = from_kuid_munged(current_user_ns(), task_uid(p));
1416
spin_unlock_irq(&p->sighand->siglock);
1417
1418
pid = task_pid_vnr(p);
1419
get_task_struct(p);
1420
read_unlock(&tasklist_lock);
1421
sched_annotate_sleep();
1422
if (wo->wo_rusage)
1423
getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1424
put_task_struct(p);
1425
1426
infop = wo->wo_info;
1427
if (!infop) {
1428
wo->wo_stat = 0xffff;
1429
} else {
1430
infop->cause = CLD_CONTINUED;
1431
infop->pid = pid;
1432
infop->uid = uid;
1433
infop->status = SIGCONT;
1434
}
1435
return pid;
1436
}
1437
1438
/*
1439
* Consider @p for a wait by @parent.
1440
*
1441
* -ECHILD should be in ->notask_error before the first call.
1442
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
1443
* Returns zero if the search for a child should continue;
1444
* then ->notask_error is 0 if @p is an eligible child,
1445
* or still -ECHILD.
1446
*/
1447
static int wait_consider_task(struct wait_opts *wo, int ptrace,
1448
struct task_struct *p)
1449
{
1450
/*
1451
* We can race with wait_task_zombie() from another thread.
1452
* Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1453
* can't confuse the checks below.
1454
*/
1455
int exit_state = READ_ONCE(p->exit_state);
1456
int ret;
1457
1458
if (unlikely(exit_state == EXIT_DEAD))
1459
return 0;
1460
1461
ret = eligible_child(wo, ptrace, p);
1462
if (!ret)
1463
return ret;
1464
1465
if (unlikely(exit_state == EXIT_TRACE)) {
1466
/*
1467
* ptrace == 0 means we are the natural parent. In this case
1468
* we should clear notask_error, debugger will notify us.
1469
*/
1470
if (likely(!ptrace))
1471
wo->notask_error = 0;
1472
return 0;
1473
}
1474
1475
if (likely(!ptrace) && unlikely(p->ptrace)) {
1476
/*
1477
* If it is traced by its real parent's group, just pretend
1478
* the caller is ptrace_do_wait() and reap this child if it
1479
* is zombie.
1480
*
1481
* This also hides group stop state from real parent; otherwise
1482
* a single stop can be reported twice as group and ptrace stop.
1483
* If a ptracer wants to distinguish these two events for its
1484
* own children it should create a separate process which takes
1485
* the role of real parent.
1486
*/
1487
if (!ptrace_reparented(p))
1488
ptrace = 1;
1489
}
1490
1491
/* slay zombie? */
1492
if (exit_state == EXIT_ZOMBIE) {
1493
/* we don't reap group leaders with subthreads */
1494
if (!delay_group_leader(p)) {
1495
/*
1496
* A zombie ptracee is only visible to its ptracer.
1497
* Notification and reaping will be cascaded to the
1498
* real parent when the ptracer detaches.
1499
*/
1500
if (unlikely(ptrace) || likely(!p->ptrace))
1501
return wait_task_zombie(wo, p);
1502
}
1503
1504
/*
1505
* Allow access to stopped/continued state via zombie by
1506
* falling through. Clearing of notask_error is complex.
1507
*
1508
* When !@ptrace:
1509
*
1510
* If WEXITED is set, notask_error should naturally be
1511
* cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1512
* so, if there are live subthreads, there are events to
1513
* wait for. If all subthreads are dead, it's still safe
1514
* to clear - this function will be called again in finite
1515
* amount time once all the subthreads are released and
1516
* will then return without clearing.
1517
*
1518
* When @ptrace:
1519
*
1520
* Stopped state is per-task and thus can't change once the
1521
* target task dies. Only continued and exited can happen.
1522
* Clear notask_error if WCONTINUED | WEXITED.
1523
*/
1524
if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1525
wo->notask_error = 0;
1526
} else {
1527
/*
1528
* @p is alive and it's gonna stop, continue or exit, so
1529
* there always is something to wait for.
1530
*/
1531
wo->notask_error = 0;
1532
}
1533
1534
/*
1535
* Wait for stopped. Depending on @ptrace, different stopped state
1536
* is used and the two don't interact with each other.
1537
*/
1538
ret = wait_task_stopped(wo, ptrace, p);
1539
if (ret)
1540
return ret;
1541
1542
/*
1543
* Wait for continued. There's only one continued state and the
1544
* ptracer can consume it which can confuse the real parent. Don't
1545
* use WCONTINUED from ptracer. You don't need or want it.
1546
*/
1547
return wait_task_continued(wo, p);
1548
}
1549
1550
/*
1551
* Do the work of do_wait() for one thread in the group, @tsk.
1552
*
1553
* -ECHILD should be in ->notask_error before the first call.
1554
* Returns nonzero for a final return, when we have unlocked tasklist_lock.
1555
* Returns zero if the search for a child should continue; then
1556
* ->notask_error is 0 if there were any eligible children,
1557
* or still -ECHILD.
1558
*/
1559
static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1560
{
1561
struct task_struct *p;
1562
1563
list_for_each_entry(p, &tsk->children, sibling) {
1564
int ret = wait_consider_task(wo, 0, p);
1565
1566
if (ret)
1567
return ret;
1568
}
1569
1570
return 0;
1571
}
1572
1573
static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1574
{
1575
struct task_struct *p;
1576
1577
list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1578
int ret = wait_consider_task(wo, 1, p);
1579
1580
if (ret)
1581
return ret;
1582
}
1583
1584
return 0;
1585
}
1586
1587
bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1588
{
1589
if (!eligible_pid(wo, p))
1590
return false;
1591
1592
if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1593
return false;
1594
1595
return true;
1596
}
1597
1598
static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1599
int sync, void *key)
1600
{
1601
struct wait_opts *wo = container_of(wait, struct wait_opts,
1602
child_wait);
1603
struct task_struct *p = key;
1604
1605
if (pid_child_should_wake(wo, p))
1606
return default_wake_function(wait, mode, sync, key);
1607
1608
return 0;
1609
}
1610
1611
void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1612
{
1613
__wake_up_sync_key(&parent->signal->wait_chldexit,
1614
TASK_INTERRUPTIBLE, p);
1615
}
1616
1617
static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1618
struct task_struct *target)
1619
{
1620
struct task_struct *parent =
1621
!ptrace ? target->real_parent : target->parent;
1622
1623
return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1624
same_thread_group(current, parent));
1625
}
1626
1627
/*
1628
* Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1629
* and tracee lists to find the target task.
1630
*/
1631
static int do_wait_pid(struct wait_opts *wo)
1632
{
1633
bool ptrace;
1634
struct task_struct *target;
1635
int retval;
1636
1637
ptrace = false;
1638
target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1639
if (target && is_effectively_child(wo, ptrace, target)) {
1640
retval = wait_consider_task(wo, ptrace, target);
1641
if (retval)
1642
return retval;
1643
}
1644
1645
ptrace = true;
1646
target = pid_task(wo->wo_pid, PIDTYPE_PID);
1647
if (target && target->ptrace &&
1648
is_effectively_child(wo, ptrace, target)) {
1649
retval = wait_consider_task(wo, ptrace, target);
1650
if (retval)
1651
return retval;
1652
}
1653
1654
return 0;
1655
}
1656
1657
long __do_wait(struct wait_opts *wo)
1658
{
1659
long retval;
1660
1661
/*
1662
* If there is nothing that can match our criteria, just get out.
1663
* We will clear ->notask_error to zero if we see any child that
1664
* might later match our criteria, even if we are not able to reap
1665
* it yet.
1666
*/
1667
wo->notask_error = -ECHILD;
1668
if ((wo->wo_type < PIDTYPE_MAX) &&
1669
(!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1670
goto notask;
1671
1672
read_lock(&tasklist_lock);
1673
1674
if (wo->wo_type == PIDTYPE_PID) {
1675
retval = do_wait_pid(wo);
1676
if (retval)
1677
return retval;
1678
} else {
1679
struct task_struct *tsk = current;
1680
1681
do {
1682
retval = do_wait_thread(wo, tsk);
1683
if (retval)
1684
return retval;
1685
1686
retval = ptrace_do_wait(wo, tsk);
1687
if (retval)
1688
return retval;
1689
1690
if (wo->wo_flags & __WNOTHREAD)
1691
break;
1692
} while_each_thread(current, tsk);
1693
}
1694
read_unlock(&tasklist_lock);
1695
1696
notask:
1697
retval = wo->notask_error;
1698
if (!retval && !(wo->wo_flags & WNOHANG))
1699
return -ERESTARTSYS;
1700
1701
return retval;
1702
}
1703
1704
static long do_wait(struct wait_opts *wo)
1705
{
1706
int retval;
1707
1708
trace_sched_process_wait(wo->wo_pid);
1709
1710
init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1711
wo->child_wait.private = current;
1712
add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1713
1714
do {
1715
set_current_state(TASK_INTERRUPTIBLE);
1716
retval = __do_wait(wo);
1717
if (retval != -ERESTARTSYS)
1718
break;
1719
if (signal_pending(current))
1720
break;
1721
schedule();
1722
} while (1);
1723
1724
__set_current_state(TASK_RUNNING);
1725
remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1726
return retval;
1727
}
1728
1729
int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1730
struct waitid_info *infop, int options,
1731
struct rusage *ru)
1732
{
1733
unsigned int f_flags = 0;
1734
struct pid *pid = NULL;
1735
enum pid_type type;
1736
1737
if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1738
__WNOTHREAD|__WCLONE|__WALL))
1739
return -EINVAL;
1740
if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1741
return -EINVAL;
1742
1743
switch (which) {
1744
case P_ALL:
1745
type = PIDTYPE_MAX;
1746
break;
1747
case P_PID:
1748
type = PIDTYPE_PID;
1749
if (upid <= 0)
1750
return -EINVAL;
1751
1752
pid = find_get_pid(upid);
1753
break;
1754
case P_PGID:
1755
type = PIDTYPE_PGID;
1756
if (upid < 0)
1757
return -EINVAL;
1758
1759
if (upid)
1760
pid = find_get_pid(upid);
1761
else
1762
pid = get_task_pid(current, PIDTYPE_PGID);
1763
break;
1764
case P_PIDFD:
1765
type = PIDTYPE_PID;
1766
if (upid < 0)
1767
return -EINVAL;
1768
1769
pid = pidfd_get_pid(upid, &f_flags);
1770
if (IS_ERR(pid))
1771
return PTR_ERR(pid);
1772
1773
break;
1774
default:
1775
return -EINVAL;
1776
}
1777
1778
wo->wo_type = type;
1779
wo->wo_pid = pid;
1780
wo->wo_flags = options;
1781
wo->wo_info = infop;
1782
wo->wo_rusage = ru;
1783
if (f_flags & O_NONBLOCK)
1784
wo->wo_flags |= WNOHANG;
1785
1786
return 0;
1787
}
1788
1789
static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1790
int options, struct rusage *ru)
1791
{
1792
struct wait_opts wo;
1793
long ret;
1794
1795
ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1796
if (ret)
1797
return ret;
1798
1799
ret = do_wait(&wo);
1800
if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1801
ret = -EAGAIN;
1802
1803
put_pid(wo.wo_pid);
1804
return ret;
1805
}
1806
1807
SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1808
infop, int, options, struct rusage __user *, ru)
1809
{
1810
struct rusage r;
1811
struct waitid_info info = {.status = 0};
1812
long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1813
int signo = 0;
1814
1815
if (err > 0) {
1816
signo = SIGCHLD;
1817
err = 0;
1818
if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1819
return -EFAULT;
1820
}
1821
if (!infop)
1822
return err;
1823
1824
if (!user_write_access_begin(infop, sizeof(*infop)))
1825
return -EFAULT;
1826
1827
unsafe_put_user(signo, &infop->si_signo, Efault);
1828
unsafe_put_user(0, &infop->si_errno, Efault);
1829
unsafe_put_user(info.cause, &infop->si_code, Efault);
1830
unsafe_put_user(info.pid, &infop->si_pid, Efault);
1831
unsafe_put_user(info.uid, &infop->si_uid, Efault);
1832
unsafe_put_user(info.status, &infop->si_status, Efault);
1833
user_write_access_end();
1834
return err;
1835
Efault:
1836
user_write_access_end();
1837
return -EFAULT;
1838
}
1839
1840
long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1841
struct rusage *ru)
1842
{
1843
struct wait_opts wo;
1844
struct pid *pid = NULL;
1845
enum pid_type type;
1846
long ret;
1847
1848
if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1849
__WNOTHREAD|__WCLONE|__WALL))
1850
return -EINVAL;
1851
1852
/* -INT_MIN is not defined */
1853
if (upid == INT_MIN)
1854
return -ESRCH;
1855
1856
if (upid == -1)
1857
type = PIDTYPE_MAX;
1858
else if (upid < 0) {
1859
type = PIDTYPE_PGID;
1860
pid = find_get_pid(-upid);
1861
} else if (upid == 0) {
1862
type = PIDTYPE_PGID;
1863
pid = get_task_pid(current, PIDTYPE_PGID);
1864
} else /* upid > 0 */ {
1865
type = PIDTYPE_PID;
1866
pid = find_get_pid(upid);
1867
}
1868
1869
wo.wo_type = type;
1870
wo.wo_pid = pid;
1871
wo.wo_flags = options | WEXITED;
1872
wo.wo_info = NULL;
1873
wo.wo_stat = 0;
1874
wo.wo_rusage = ru;
1875
ret = do_wait(&wo);
1876
put_pid(pid);
1877
if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1878
ret = -EFAULT;
1879
1880
return ret;
1881
}
1882
1883
int kernel_wait(pid_t pid, int *stat)
1884
{
1885
struct wait_opts wo = {
1886
.wo_type = PIDTYPE_PID,
1887
.wo_pid = find_get_pid(pid),
1888
.wo_flags = WEXITED,
1889
};
1890
int ret;
1891
1892
ret = do_wait(&wo);
1893
if (ret > 0 && wo.wo_stat)
1894
*stat = wo.wo_stat;
1895
put_pid(wo.wo_pid);
1896
return ret;
1897
}
1898
1899
SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1900
int, options, struct rusage __user *, ru)
1901
{
1902
struct rusage r;
1903
long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1904
1905
if (err > 0) {
1906
if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1907
return -EFAULT;
1908
}
1909
return err;
1910
}
1911
1912
#ifdef __ARCH_WANT_SYS_WAITPID
1913
1914
/*
1915
* sys_waitpid() remains for compatibility. waitpid() should be
1916
* implemented by calling sys_wait4() from libc.a.
1917
*/
1918
SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1919
{
1920
return kernel_wait4(pid, stat_addr, options, NULL);
1921
}
1922
1923
#endif
1924
1925
#ifdef CONFIG_COMPAT
1926
COMPAT_SYSCALL_DEFINE4(wait4,
1927
compat_pid_t, pid,
1928
compat_uint_t __user *, stat_addr,
1929
int, options,
1930
struct compat_rusage __user *, ru)
1931
{
1932
struct rusage r;
1933
long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1934
if (err > 0) {
1935
if (ru && put_compat_rusage(&r, ru))
1936
return -EFAULT;
1937
}
1938
return err;
1939
}
1940
1941
COMPAT_SYSCALL_DEFINE5(waitid,
1942
int, which, compat_pid_t, pid,
1943
struct compat_siginfo __user *, infop, int, options,
1944
struct compat_rusage __user *, uru)
1945
{
1946
struct rusage ru;
1947
struct waitid_info info = {.status = 0};
1948
long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1949
int signo = 0;
1950
if (err > 0) {
1951
signo = SIGCHLD;
1952
err = 0;
1953
if (uru) {
1954
/* kernel_waitid() overwrites everything in ru */
1955
if (COMPAT_USE_64BIT_TIME)
1956
err = copy_to_user(uru, &ru, sizeof(ru));
1957
else
1958
err = put_compat_rusage(&ru, uru);
1959
if (err)
1960
return -EFAULT;
1961
}
1962
}
1963
1964
if (!infop)
1965
return err;
1966
1967
if (!user_write_access_begin(infop, sizeof(*infop)))
1968
return -EFAULT;
1969
1970
unsafe_put_user(signo, &infop->si_signo, Efault);
1971
unsafe_put_user(0, &infop->si_errno, Efault);
1972
unsafe_put_user(info.cause, &infop->si_code, Efault);
1973
unsafe_put_user(info.pid, &infop->si_pid, Efault);
1974
unsafe_put_user(info.uid, &infop->si_uid, Efault);
1975
unsafe_put_user(info.status, &infop->si_status, Efault);
1976
user_write_access_end();
1977
return err;
1978
Efault:
1979
user_write_access_end();
1980
return -EFAULT;
1981
}
1982
#endif
1983
1984
/*
1985
* This needs to be __function_aligned as GCC implicitly makes any
1986
* implementation of abort() cold and drops alignment specified by
1987
* -falign-functions=N.
1988
*
1989
* See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1990
*/
1991
__weak __function_aligned void abort(void)
1992
{
1993
BUG();
1994
1995
/* if that doesn't kill us, halt */
1996
panic("Oops failed to kill thread");
1997
}
1998
EXPORT_SYMBOL(abort);
1999
2000