Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/locking/lockdep.c
25923 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* kernel/lockdep.c
4
*
5
* Runtime locking correctness validator
6
*
7
* Started by Ingo Molnar:
8
*
9
* Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <[email protected]>
10
* Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11
*
12
* this code maps all the lock dependencies as they occur in a live kernel
13
* and will warn about the following classes of locking bugs:
14
*
15
* - lock inversion scenarios
16
* - circular lock dependencies
17
* - hardirq/softirq safe/unsafe locking bugs
18
*
19
* Bugs are reported even if the current locking scenario does not cause
20
* any deadlock at this point.
21
*
22
* I.e. if anytime in the past two locks were taken in a different order,
23
* even if it happened for another task, even if those were different
24
* locks (but of the same class as this lock), this code will detect it.
25
*
26
* Thanks to Arjan van de Ven for coming up with the initial idea of
27
* mapping lock dependencies runtime.
28
*/
29
#define DISABLE_BRANCH_PROFILING
30
#include <linux/mutex.h>
31
#include <linux/sched.h>
32
#include <linux/sched/clock.h>
33
#include <linux/sched/task.h>
34
#include <linux/sched/mm.h>
35
#include <linux/delay.h>
36
#include <linux/module.h>
37
#include <linux/proc_fs.h>
38
#include <linux/seq_file.h>
39
#include <linux/spinlock.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/stacktrace.h>
43
#include <linux/debug_locks.h>
44
#include <linux/irqflags.h>
45
#include <linux/utsname.h>
46
#include <linux/hash.h>
47
#include <linux/ftrace.h>
48
#include <linux/stringify.h>
49
#include <linux/bitmap.h>
50
#include <linux/bitops.h>
51
#include <linux/gfp.h>
52
#include <linux/random.h>
53
#include <linux/jhash.h>
54
#include <linux/nmi.h>
55
#include <linux/rcupdate.h>
56
#include <linux/kprobes.h>
57
#include <linux/lockdep.h>
58
#include <linux/context_tracking.h>
59
#include <linux/console.h>
60
#include <linux/kasan.h>
61
62
#include <asm/sections.h>
63
64
#include "lockdep_internals.h"
65
#include "lock_events.h"
66
67
#include <trace/events/lock.h>
68
69
#ifdef CONFIG_PROVE_LOCKING
70
static int prove_locking = 1;
71
module_param(prove_locking, int, 0644);
72
#else
73
#define prove_locking 0
74
#endif
75
76
#ifdef CONFIG_LOCK_STAT
77
static int lock_stat = 1;
78
module_param(lock_stat, int, 0644);
79
#else
80
#define lock_stat 0
81
#endif
82
83
#ifdef CONFIG_SYSCTL
84
static const struct ctl_table kern_lockdep_table[] = {
85
#ifdef CONFIG_PROVE_LOCKING
86
{
87
.procname = "prove_locking",
88
.data = &prove_locking,
89
.maxlen = sizeof(int),
90
.mode = 0644,
91
.proc_handler = proc_dointvec,
92
},
93
#endif /* CONFIG_PROVE_LOCKING */
94
#ifdef CONFIG_LOCK_STAT
95
{
96
.procname = "lock_stat",
97
.data = &lock_stat,
98
.maxlen = sizeof(int),
99
.mode = 0644,
100
.proc_handler = proc_dointvec,
101
},
102
#endif /* CONFIG_LOCK_STAT */
103
};
104
105
static __init int kernel_lockdep_sysctls_init(void)
106
{
107
register_sysctl_init("kernel", kern_lockdep_table);
108
return 0;
109
}
110
late_initcall(kernel_lockdep_sysctls_init);
111
#endif /* CONFIG_SYSCTL */
112
113
DEFINE_PER_CPU(unsigned int, lockdep_recursion);
114
EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
115
116
static __always_inline bool lockdep_enabled(void)
117
{
118
if (!debug_locks)
119
return false;
120
121
if (this_cpu_read(lockdep_recursion))
122
return false;
123
124
if (current->lockdep_recursion)
125
return false;
126
127
return true;
128
}
129
130
/*
131
* lockdep_lock: protects the lockdep graph, the hashes and the
132
* class/list/hash allocators.
133
*
134
* This is one of the rare exceptions where it's justified
135
* to use a raw spinlock - we really dont want the spinlock
136
* code to recurse back into the lockdep code...
137
*/
138
static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
139
static struct task_struct *__owner;
140
141
static inline void lockdep_lock(void)
142
{
143
DEBUG_LOCKS_WARN_ON(!irqs_disabled());
144
145
__this_cpu_inc(lockdep_recursion);
146
arch_spin_lock(&__lock);
147
__owner = current;
148
}
149
150
static inline void lockdep_unlock(void)
151
{
152
DEBUG_LOCKS_WARN_ON(!irqs_disabled());
153
154
if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
155
return;
156
157
__owner = NULL;
158
arch_spin_unlock(&__lock);
159
__this_cpu_dec(lockdep_recursion);
160
}
161
162
#ifdef CONFIG_PROVE_LOCKING
163
static inline bool lockdep_assert_locked(void)
164
{
165
return DEBUG_LOCKS_WARN_ON(__owner != current);
166
}
167
#endif
168
169
static struct task_struct *lockdep_selftest_task_struct;
170
171
172
static int graph_lock(void)
173
{
174
lockdep_lock();
175
lockevent_inc(lockdep_lock);
176
/*
177
* Make sure that if another CPU detected a bug while
178
* walking the graph we dont change it (while the other
179
* CPU is busy printing out stuff with the graph lock
180
* dropped already)
181
*/
182
if (!debug_locks) {
183
lockdep_unlock();
184
return 0;
185
}
186
return 1;
187
}
188
189
static inline void graph_unlock(void)
190
{
191
lockdep_unlock();
192
}
193
194
/*
195
* Turn lock debugging off and return with 0 if it was off already,
196
* and also release the graph lock:
197
*/
198
static inline int debug_locks_off_graph_unlock(void)
199
{
200
int ret = debug_locks_off();
201
202
lockdep_unlock();
203
204
return ret;
205
}
206
207
unsigned long nr_list_entries;
208
static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
209
static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
210
211
/*
212
* All data structures here are protected by the global debug_lock.
213
*
214
* nr_lock_classes is the number of elements of lock_classes[] that is
215
* in use.
216
*/
217
#define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
218
#define KEYHASH_SIZE (1UL << KEYHASH_BITS)
219
static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
220
unsigned long nr_lock_classes;
221
unsigned long nr_zapped_classes;
222
unsigned long nr_dynamic_keys;
223
unsigned long max_lock_class_idx;
224
struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
225
DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
226
227
static inline struct lock_class *hlock_class(struct held_lock *hlock)
228
{
229
unsigned int class_idx = hlock->class_idx;
230
231
/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
232
barrier();
233
234
if (!test_bit(class_idx, lock_classes_in_use)) {
235
/*
236
* Someone passed in garbage, we give up.
237
*/
238
DEBUG_LOCKS_WARN_ON(1);
239
return NULL;
240
}
241
242
/*
243
* At this point, if the passed hlock->class_idx is still garbage,
244
* we just have to live with it
245
*/
246
return lock_classes + class_idx;
247
}
248
249
#ifdef CONFIG_LOCK_STAT
250
static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
251
252
static inline u64 lockstat_clock(void)
253
{
254
return local_clock();
255
}
256
257
static int lock_point(unsigned long points[], unsigned long ip)
258
{
259
int i;
260
261
for (i = 0; i < LOCKSTAT_POINTS; i++) {
262
if (points[i] == 0) {
263
points[i] = ip;
264
break;
265
}
266
if (points[i] == ip)
267
break;
268
}
269
270
return i;
271
}
272
273
static void lock_time_inc(struct lock_time *lt, u64 time)
274
{
275
if (time > lt->max)
276
lt->max = time;
277
278
if (time < lt->min || !lt->nr)
279
lt->min = time;
280
281
lt->total += time;
282
lt->nr++;
283
}
284
285
static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
286
{
287
if (!src->nr)
288
return;
289
290
if (src->max > dst->max)
291
dst->max = src->max;
292
293
if (src->min < dst->min || !dst->nr)
294
dst->min = src->min;
295
296
dst->total += src->total;
297
dst->nr += src->nr;
298
}
299
300
void lock_stats(struct lock_class *class, struct lock_class_stats *stats)
301
{
302
int cpu, i;
303
304
memset(stats, 0, sizeof(struct lock_class_stats));
305
for_each_possible_cpu(cpu) {
306
struct lock_class_stats *pcs =
307
&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
308
309
for (i = 0; i < ARRAY_SIZE(stats->contention_point); i++)
310
stats->contention_point[i] += pcs->contention_point[i];
311
312
for (i = 0; i < ARRAY_SIZE(stats->contending_point); i++)
313
stats->contending_point[i] += pcs->contending_point[i];
314
315
lock_time_add(&pcs->read_waittime, &stats->read_waittime);
316
lock_time_add(&pcs->write_waittime, &stats->write_waittime);
317
318
lock_time_add(&pcs->read_holdtime, &stats->read_holdtime);
319
lock_time_add(&pcs->write_holdtime, &stats->write_holdtime);
320
321
for (i = 0; i < ARRAY_SIZE(stats->bounces); i++)
322
stats->bounces[i] += pcs->bounces[i];
323
}
324
}
325
326
void clear_lock_stats(struct lock_class *class)
327
{
328
int cpu;
329
330
for_each_possible_cpu(cpu) {
331
struct lock_class_stats *cpu_stats =
332
&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
333
334
memset(cpu_stats, 0, sizeof(struct lock_class_stats));
335
}
336
memset(class->contention_point, 0, sizeof(class->contention_point));
337
memset(class->contending_point, 0, sizeof(class->contending_point));
338
}
339
340
static struct lock_class_stats *get_lock_stats(struct lock_class *class)
341
{
342
return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
343
}
344
345
static void lock_release_holdtime(struct held_lock *hlock)
346
{
347
struct lock_class_stats *stats;
348
u64 holdtime;
349
350
if (!lock_stat)
351
return;
352
353
holdtime = lockstat_clock() - hlock->holdtime_stamp;
354
355
stats = get_lock_stats(hlock_class(hlock));
356
if (hlock->read)
357
lock_time_inc(&stats->read_holdtime, holdtime);
358
else
359
lock_time_inc(&stats->write_holdtime, holdtime);
360
}
361
#else
362
static inline void lock_release_holdtime(struct held_lock *hlock)
363
{
364
}
365
#endif
366
367
/*
368
* We keep a global list of all lock classes. The list is only accessed with
369
* the lockdep spinlock lock held. free_lock_classes is a list with free
370
* elements. These elements are linked together by the lock_entry member in
371
* struct lock_class.
372
*/
373
static LIST_HEAD(all_lock_classes);
374
static LIST_HEAD(free_lock_classes);
375
376
/**
377
* struct pending_free - information about data structures about to be freed
378
* @zapped: Head of a list with struct lock_class elements.
379
* @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
380
* are about to be freed.
381
*/
382
struct pending_free {
383
struct list_head zapped;
384
DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
385
};
386
387
/**
388
* struct delayed_free - data structures used for delayed freeing
389
*
390
* A data structure for delayed freeing of data structures that may be
391
* accessed by RCU readers at the time these were freed.
392
*
393
* @rcu_head: Used to schedule an RCU callback for freeing data structures.
394
* @index: Index of @pf to which freed data structures are added.
395
* @scheduled: Whether or not an RCU callback has been scheduled.
396
* @pf: Array with information about data structures about to be freed.
397
*/
398
static struct delayed_free {
399
struct rcu_head rcu_head;
400
int index;
401
int scheduled;
402
struct pending_free pf[2];
403
} delayed_free;
404
405
/*
406
* The lockdep classes are in a hash-table as well, for fast lookup:
407
*/
408
#define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
409
#define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
410
#define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
411
#define classhashentry(key) (classhash_table + __classhashfn((key)))
412
413
static struct hlist_head classhash_table[CLASSHASH_SIZE];
414
415
/*
416
* We put the lock dependency chains into a hash-table as well, to cache
417
* their existence:
418
*/
419
#define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
420
#define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
421
#define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
422
#define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
423
424
static struct hlist_head chainhash_table[CHAINHASH_SIZE];
425
426
/*
427
* the id of held_lock
428
*/
429
static inline u16 hlock_id(struct held_lock *hlock)
430
{
431
BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
432
433
return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
434
}
435
436
static inline __maybe_unused unsigned int chain_hlock_class_idx(u16 hlock_id)
437
{
438
return hlock_id & (MAX_LOCKDEP_KEYS - 1);
439
}
440
441
/*
442
* The hash key of the lock dependency chains is a hash itself too:
443
* it's a hash of all locks taken up to that lock, including that lock.
444
* It's a 64-bit hash, because it's important for the keys to be
445
* unique.
446
*/
447
static inline u64 iterate_chain_key(u64 key, u32 idx)
448
{
449
u32 k0 = key, k1 = key >> 32;
450
451
__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
452
453
return k0 | (u64)k1 << 32;
454
}
455
456
void lockdep_init_task(struct task_struct *task)
457
{
458
task->lockdep_depth = 0; /* no locks held yet */
459
task->curr_chain_key = INITIAL_CHAIN_KEY;
460
task->lockdep_recursion = 0;
461
}
462
463
static __always_inline void lockdep_recursion_inc(void)
464
{
465
__this_cpu_inc(lockdep_recursion);
466
}
467
468
static __always_inline void lockdep_recursion_finish(void)
469
{
470
if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
471
__this_cpu_write(lockdep_recursion, 0);
472
}
473
474
void lockdep_set_selftest_task(struct task_struct *task)
475
{
476
lockdep_selftest_task_struct = task;
477
}
478
479
/*
480
* Debugging switches:
481
*/
482
483
#define VERBOSE 0
484
#define VERY_VERBOSE 0
485
486
#if VERBOSE
487
# define HARDIRQ_VERBOSE 1
488
# define SOFTIRQ_VERBOSE 1
489
#else
490
# define HARDIRQ_VERBOSE 0
491
# define SOFTIRQ_VERBOSE 0
492
#endif
493
494
#if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
495
/*
496
* Quick filtering for interesting events:
497
*/
498
static int class_filter(struct lock_class *class)
499
{
500
#if 0
501
/* Example */
502
if (class->name_version == 1 &&
503
!strcmp(class->name, "lockname"))
504
return 1;
505
if (class->name_version == 1 &&
506
!strcmp(class->name, "&struct->lockfield"))
507
return 1;
508
#endif
509
/* Filter everything else. 1 would be to allow everything else */
510
return 0;
511
}
512
#endif
513
514
static int verbose(struct lock_class *class)
515
{
516
#if VERBOSE
517
return class_filter(class);
518
#endif
519
return 0;
520
}
521
522
static void print_lockdep_off(const char *bug_msg)
523
{
524
printk(KERN_DEBUG "%s\n", bug_msg);
525
printk(KERN_DEBUG "turning off the locking correctness validator.\n");
526
#ifdef CONFIG_LOCK_STAT
527
printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
528
#endif
529
}
530
531
unsigned long nr_stack_trace_entries;
532
533
#ifdef CONFIG_PROVE_LOCKING
534
/**
535
* struct lock_trace - single stack backtrace
536
* @hash_entry: Entry in a stack_trace_hash[] list.
537
* @hash: jhash() of @entries.
538
* @nr_entries: Number of entries in @entries.
539
* @entries: Actual stack backtrace.
540
*/
541
struct lock_trace {
542
struct hlist_node hash_entry;
543
u32 hash;
544
u32 nr_entries;
545
unsigned long entries[] __aligned(sizeof(unsigned long));
546
};
547
#define LOCK_TRACE_SIZE_IN_LONGS \
548
(sizeof(struct lock_trace) / sizeof(unsigned long))
549
/*
550
* Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
551
*/
552
static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
553
static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
554
555
static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
556
{
557
return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
558
memcmp(t1->entries, t2->entries,
559
t1->nr_entries * sizeof(t1->entries[0])) == 0;
560
}
561
562
static struct lock_trace *save_trace(void)
563
{
564
struct lock_trace *trace, *t2;
565
struct hlist_head *hash_head;
566
u32 hash;
567
int max_entries;
568
569
BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
570
BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
571
572
trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
573
max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
574
LOCK_TRACE_SIZE_IN_LONGS;
575
576
if (max_entries <= 0) {
577
if (!debug_locks_off_graph_unlock())
578
return NULL;
579
580
nbcon_cpu_emergency_enter();
581
print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
582
dump_stack();
583
nbcon_cpu_emergency_exit();
584
585
return NULL;
586
}
587
trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
588
589
hash = jhash(trace->entries, trace->nr_entries *
590
sizeof(trace->entries[0]), 0);
591
trace->hash = hash;
592
hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
593
hlist_for_each_entry(t2, hash_head, hash_entry) {
594
if (traces_identical(trace, t2))
595
return t2;
596
}
597
nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
598
hlist_add_head(&trace->hash_entry, hash_head);
599
600
return trace;
601
}
602
603
/* Return the number of stack traces in the stack_trace[] array. */
604
u64 lockdep_stack_trace_count(void)
605
{
606
struct lock_trace *trace;
607
u64 c = 0;
608
int i;
609
610
for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
611
hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
612
c++;
613
}
614
}
615
616
return c;
617
}
618
619
/* Return the number of stack hash chains that have at least one stack trace. */
620
u64 lockdep_stack_hash_count(void)
621
{
622
u64 c = 0;
623
int i;
624
625
for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
626
if (!hlist_empty(&stack_trace_hash[i]))
627
c++;
628
629
return c;
630
}
631
#endif
632
633
unsigned int nr_hardirq_chains;
634
unsigned int nr_softirq_chains;
635
unsigned int nr_process_chains;
636
unsigned int max_lockdep_depth;
637
638
#ifdef CONFIG_DEBUG_LOCKDEP
639
/*
640
* Various lockdep statistics:
641
*/
642
DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
643
#endif
644
645
#ifdef CONFIG_PROVE_LOCKING
646
/*
647
* Locking printouts:
648
*/
649
650
#define __USAGE(__STATE) \
651
[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
652
[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
653
[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
654
[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
655
656
static const char *usage_str[] =
657
{
658
#define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
659
#include "lockdep_states.h"
660
#undef LOCKDEP_STATE
661
[LOCK_USED] = "INITIAL USE",
662
[LOCK_USED_READ] = "INITIAL READ USE",
663
/* abused as string storage for verify_lock_unused() */
664
[LOCK_USAGE_STATES] = "IN-NMI",
665
};
666
#endif
667
668
const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
669
{
670
return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
671
}
672
673
static inline unsigned long lock_flag(enum lock_usage_bit bit)
674
{
675
return 1UL << bit;
676
}
677
678
static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
679
{
680
/*
681
* The usage character defaults to '.' (i.e., irqs disabled and not in
682
* irq context), which is the safest usage category.
683
*/
684
char c = '.';
685
686
/*
687
* The order of the following usage checks matters, which will
688
* result in the outcome character as follows:
689
*
690
* - '+': irq is enabled and not in irq context
691
* - '-': in irq context and irq is disabled
692
* - '?': in irq context and irq is enabled
693
*/
694
if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
695
c = '+';
696
if (class->usage_mask & lock_flag(bit))
697
c = '?';
698
} else if (class->usage_mask & lock_flag(bit))
699
c = '-';
700
701
return c;
702
}
703
704
void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
705
{
706
int i = 0;
707
708
#define LOCKDEP_STATE(__STATE) \
709
usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
710
usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
711
#include "lockdep_states.h"
712
#undef LOCKDEP_STATE
713
714
usage[i] = '\0';
715
}
716
717
static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
718
{
719
char str[KSYM_NAME_LEN];
720
const char *name;
721
722
name = class->name;
723
if (!name) {
724
name = __get_key_name(class->key, str);
725
printk(KERN_CONT "%s", name);
726
} else {
727
printk(KERN_CONT "%s", name);
728
if (class->name_version > 1)
729
printk(KERN_CONT "#%d", class->name_version);
730
if (class->subclass)
731
printk(KERN_CONT "/%d", class->subclass);
732
if (hlock && class->print_fn)
733
class->print_fn(hlock->instance);
734
}
735
}
736
737
static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
738
{
739
char usage[LOCK_USAGE_CHARS];
740
741
get_usage_chars(class, usage);
742
743
printk(KERN_CONT " (");
744
__print_lock_name(hlock, class);
745
printk(KERN_CONT "){%s}-{%d:%d}", usage,
746
class->wait_type_outer ?: class->wait_type_inner,
747
class->wait_type_inner);
748
}
749
750
static void print_lockdep_cache(struct lockdep_map *lock)
751
{
752
const char *name;
753
char str[KSYM_NAME_LEN];
754
755
name = lock->name;
756
if (!name)
757
name = __get_key_name(lock->key->subkeys, str);
758
759
printk(KERN_CONT "%s", name);
760
}
761
762
static void print_lock(struct held_lock *hlock)
763
{
764
/*
765
* We can be called locklessly through debug_show_all_locks() so be
766
* extra careful, the hlock might have been released and cleared.
767
*
768
* If this indeed happens, lets pretend it does not hurt to continue
769
* to print the lock unless the hlock class_idx does not point to a
770
* registered class. The rationale here is: since we don't attempt
771
* to distinguish whether we are in this situation, if it just
772
* happened we can't count on class_idx to tell either.
773
*/
774
struct lock_class *lock = hlock_class(hlock);
775
776
if (!lock) {
777
printk(KERN_CONT "<RELEASED>\n");
778
return;
779
}
780
781
printk(KERN_CONT "%px", hlock->instance);
782
print_lock_name(hlock, lock);
783
printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
784
}
785
786
static void lockdep_print_held_locks(struct task_struct *p)
787
{
788
int i, depth = READ_ONCE(p->lockdep_depth);
789
790
if (!depth)
791
printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
792
else
793
printk("%d lock%s held by %s/%d:\n", depth,
794
str_plural(depth), p->comm, task_pid_nr(p));
795
/*
796
* It's not reliable to print a task's held locks if it's not sleeping
797
* and it's not the current task.
798
*/
799
if (p != current && task_is_running(p))
800
return;
801
for (i = 0; i < depth; i++) {
802
printk(" #%d: ", i);
803
print_lock(p->held_locks + i);
804
}
805
}
806
807
static void print_kernel_ident(void)
808
{
809
printk("%s %.*s %s\n", init_utsname()->release,
810
(int)strcspn(init_utsname()->version, " "),
811
init_utsname()->version,
812
print_tainted());
813
}
814
815
static int very_verbose(struct lock_class *class)
816
{
817
#if VERY_VERBOSE
818
return class_filter(class);
819
#endif
820
return 0;
821
}
822
823
/*
824
* Is this the address of a static object:
825
*/
826
#ifdef __KERNEL__
827
static int static_obj(const void *obj)
828
{
829
unsigned long addr = (unsigned long) obj;
830
831
if (is_kernel_core_data(addr))
832
return 1;
833
834
/*
835
* keys are allowed in the __ro_after_init section.
836
*/
837
if (is_kernel_rodata(addr))
838
return 1;
839
840
/*
841
* in initdata section and used during bootup only?
842
* NOTE: On some platforms the initdata section is
843
* outside of the _stext ... _end range.
844
*/
845
if (system_state < SYSTEM_FREEING_INITMEM &&
846
init_section_contains((void *)addr, 1))
847
return 1;
848
849
/*
850
* in-kernel percpu var?
851
*/
852
if (is_kernel_percpu_address(addr))
853
return 1;
854
855
/*
856
* module static or percpu var?
857
*/
858
return is_module_address(addr) || is_module_percpu_address(addr);
859
}
860
#endif
861
862
/*
863
* To make lock name printouts unique, we calculate a unique
864
* class->name_version generation counter. The caller must hold the graph
865
* lock.
866
*/
867
static int count_matching_names(struct lock_class *new_class)
868
{
869
struct lock_class *class;
870
int count = 0;
871
872
if (!new_class->name)
873
return 0;
874
875
list_for_each_entry(class, &all_lock_classes, lock_entry) {
876
if (new_class->key - new_class->subclass == class->key)
877
return class->name_version;
878
if (class->name && !strcmp(class->name, new_class->name))
879
count = max(count, class->name_version);
880
}
881
882
return count + 1;
883
}
884
885
/* used from NMI context -- must be lockless */
886
static noinstr struct lock_class *
887
look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
888
{
889
struct lockdep_subclass_key *key;
890
struct hlist_head *hash_head;
891
struct lock_class *class;
892
893
if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
894
instrumentation_begin();
895
debug_locks_off();
896
nbcon_cpu_emergency_enter();
897
printk(KERN_ERR
898
"BUG: looking up invalid subclass: %u\n", subclass);
899
printk(KERN_ERR
900
"turning off the locking correctness validator.\n");
901
dump_stack();
902
nbcon_cpu_emergency_exit();
903
instrumentation_end();
904
return NULL;
905
}
906
907
/*
908
* If it is not initialised then it has never been locked,
909
* so it won't be present in the hash table.
910
*/
911
if (unlikely(!lock->key))
912
return NULL;
913
914
/*
915
* NOTE: the class-key must be unique. For dynamic locks, a static
916
* lock_class_key variable is passed in through the mutex_init()
917
* (or spin_lock_init()) call - which acts as the key. For static
918
* locks we use the lock object itself as the key.
919
*/
920
BUILD_BUG_ON(sizeof(struct lock_class_key) >
921
sizeof(struct lockdep_map));
922
923
key = lock->key->subkeys + subclass;
924
925
hash_head = classhashentry(key);
926
927
/*
928
* We do an RCU walk of the hash, see lockdep_free_key_range().
929
*/
930
if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
931
return NULL;
932
933
hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
934
if (class->key == key) {
935
/*
936
* Huh! same key, different name? Did someone trample
937
* on some memory? We're most confused.
938
*/
939
WARN_ONCE(class->name != lock->name &&
940
lock->key != &__lockdep_no_validate__,
941
"Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
942
lock->name, lock->key, class->name);
943
return class;
944
}
945
}
946
947
return NULL;
948
}
949
950
/*
951
* Static locks do not have their class-keys yet - for them the key is
952
* the lock object itself. If the lock is in the per cpu area, the
953
* canonical address of the lock (per cpu offset removed) is used.
954
*/
955
static bool assign_lock_key(struct lockdep_map *lock)
956
{
957
unsigned long can_addr, addr = (unsigned long)lock;
958
959
#ifdef __KERNEL__
960
/*
961
* lockdep_free_key_range() assumes that struct lock_class_key
962
* objects do not overlap. Since we use the address of lock
963
* objects as class key for static objects, check whether the
964
* size of lock_class_key objects does not exceed the size of
965
* the smallest lock object.
966
*/
967
BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
968
#endif
969
970
if (__is_kernel_percpu_address(addr, &can_addr))
971
lock->key = (void *)can_addr;
972
else if (__is_module_percpu_address(addr, &can_addr))
973
lock->key = (void *)can_addr;
974
else if (static_obj(lock))
975
lock->key = (void *)lock;
976
else {
977
/* Debug-check: all keys must be persistent! */
978
debug_locks_off();
979
nbcon_cpu_emergency_enter();
980
pr_err("INFO: trying to register non-static key.\n");
981
pr_err("The code is fine but needs lockdep annotation, or maybe\n");
982
pr_err("you didn't initialize this object before use?\n");
983
pr_err("turning off the locking correctness validator.\n");
984
dump_stack();
985
nbcon_cpu_emergency_exit();
986
return false;
987
}
988
989
return true;
990
}
991
992
#ifdef CONFIG_DEBUG_LOCKDEP
993
994
/* Check whether element @e occurs in list @h */
995
static bool in_list(struct list_head *e, struct list_head *h)
996
{
997
struct list_head *f;
998
999
list_for_each(f, h) {
1000
if (e == f)
1001
return true;
1002
}
1003
1004
return false;
1005
}
1006
1007
/*
1008
* Check whether entry @e occurs in any of the locks_after or locks_before
1009
* lists.
1010
*/
1011
static bool in_any_class_list(struct list_head *e)
1012
{
1013
struct lock_class *class;
1014
int i;
1015
1016
for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1017
class = &lock_classes[i];
1018
if (in_list(e, &class->locks_after) ||
1019
in_list(e, &class->locks_before))
1020
return true;
1021
}
1022
return false;
1023
}
1024
1025
static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1026
{
1027
struct lock_list *e;
1028
1029
list_for_each_entry(e, h, entry) {
1030
if (e->links_to != c) {
1031
printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1032
c->name ? : "(?)",
1033
(unsigned long)(e - list_entries),
1034
e->links_to && e->links_to->name ?
1035
e->links_to->name : "(?)",
1036
e->class && e->class->name ? e->class->name :
1037
"(?)");
1038
return false;
1039
}
1040
}
1041
return true;
1042
}
1043
1044
#ifdef CONFIG_PROVE_LOCKING
1045
static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1046
#endif
1047
1048
static bool check_lock_chain_key(struct lock_chain *chain)
1049
{
1050
#ifdef CONFIG_PROVE_LOCKING
1051
u64 chain_key = INITIAL_CHAIN_KEY;
1052
int i;
1053
1054
for (i = chain->base; i < chain->base + chain->depth; i++)
1055
chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1056
/*
1057
* The 'unsigned long long' casts avoid that a compiler warning
1058
* is reported when building tools/lib/lockdep.
1059
*/
1060
if (chain->chain_key != chain_key) {
1061
printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1062
(unsigned long long)(chain - lock_chains),
1063
(unsigned long long)chain->chain_key,
1064
(unsigned long long)chain_key);
1065
return false;
1066
}
1067
#endif
1068
return true;
1069
}
1070
1071
static bool in_any_zapped_class_list(struct lock_class *class)
1072
{
1073
struct pending_free *pf;
1074
int i;
1075
1076
for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1077
if (in_list(&class->lock_entry, &pf->zapped))
1078
return true;
1079
}
1080
1081
return false;
1082
}
1083
1084
static bool __check_data_structures(void)
1085
{
1086
struct lock_class *class;
1087
struct lock_chain *chain;
1088
struct hlist_head *head;
1089
struct lock_list *e;
1090
int i;
1091
1092
/* Check whether all classes occur in a lock list. */
1093
for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1094
class = &lock_classes[i];
1095
if (!in_list(&class->lock_entry, &all_lock_classes) &&
1096
!in_list(&class->lock_entry, &free_lock_classes) &&
1097
!in_any_zapped_class_list(class)) {
1098
printk(KERN_INFO "class %px/%s is not in any class list\n",
1099
class, class->name ? : "(?)");
1100
return false;
1101
}
1102
}
1103
1104
/* Check whether all classes have valid lock lists. */
1105
for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1106
class = &lock_classes[i];
1107
if (!class_lock_list_valid(class, &class->locks_before))
1108
return false;
1109
if (!class_lock_list_valid(class, &class->locks_after))
1110
return false;
1111
}
1112
1113
/* Check the chain_key of all lock chains. */
1114
for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1115
head = chainhash_table + i;
1116
hlist_for_each_entry_rcu(chain, head, entry) {
1117
if (!check_lock_chain_key(chain))
1118
return false;
1119
}
1120
}
1121
1122
/*
1123
* Check whether all list entries that are in use occur in a class
1124
* lock list.
1125
*/
1126
for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1127
e = list_entries + i;
1128
if (!in_any_class_list(&e->entry)) {
1129
printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1130
(unsigned int)(e - list_entries),
1131
e->class->name ? : "(?)",
1132
e->links_to->name ? : "(?)");
1133
return false;
1134
}
1135
}
1136
1137
/*
1138
* Check whether all list entries that are not in use do not occur in
1139
* a class lock list.
1140
*/
1141
for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1142
e = list_entries + i;
1143
if (in_any_class_list(&e->entry)) {
1144
printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1145
(unsigned int)(e - list_entries),
1146
e->class && e->class->name ? e->class->name :
1147
"(?)",
1148
e->links_to && e->links_to->name ?
1149
e->links_to->name : "(?)");
1150
return false;
1151
}
1152
}
1153
1154
return true;
1155
}
1156
1157
int check_consistency = 0;
1158
module_param(check_consistency, int, 0644);
1159
1160
static void check_data_structures(void)
1161
{
1162
static bool once = false;
1163
1164
if (check_consistency && !once) {
1165
if (!__check_data_structures()) {
1166
once = true;
1167
WARN_ON(once);
1168
}
1169
}
1170
}
1171
1172
#else /* CONFIG_DEBUG_LOCKDEP */
1173
1174
static inline void check_data_structures(void) { }
1175
1176
#endif /* CONFIG_DEBUG_LOCKDEP */
1177
1178
static void init_chain_block_buckets(void);
1179
1180
/*
1181
* Initialize the lock_classes[] array elements, the free_lock_classes list
1182
* and also the delayed_free structure.
1183
*/
1184
static void init_data_structures_once(void)
1185
{
1186
static bool __read_mostly ds_initialized, rcu_head_initialized;
1187
int i;
1188
1189
if (likely(rcu_head_initialized))
1190
return;
1191
1192
if (system_state >= SYSTEM_SCHEDULING) {
1193
init_rcu_head(&delayed_free.rcu_head);
1194
rcu_head_initialized = true;
1195
}
1196
1197
if (ds_initialized)
1198
return;
1199
1200
ds_initialized = true;
1201
1202
INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1203
INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1204
1205
for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1206
list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1207
INIT_LIST_HEAD(&lock_classes[i].locks_after);
1208
INIT_LIST_HEAD(&lock_classes[i].locks_before);
1209
}
1210
init_chain_block_buckets();
1211
}
1212
1213
static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1214
{
1215
unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1216
1217
return lock_keys_hash + hash;
1218
}
1219
1220
/* Register a dynamically allocated key. */
1221
void lockdep_register_key(struct lock_class_key *key)
1222
{
1223
struct hlist_head *hash_head;
1224
struct lock_class_key *k;
1225
unsigned long flags;
1226
1227
if (WARN_ON_ONCE(static_obj(key)))
1228
return;
1229
hash_head = keyhashentry(key);
1230
1231
raw_local_irq_save(flags);
1232
if (!graph_lock())
1233
goto restore_irqs;
1234
hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1235
if (WARN_ON_ONCE(k == key))
1236
goto out_unlock;
1237
}
1238
hlist_add_head_rcu(&key->hash_entry, hash_head);
1239
nr_dynamic_keys++;
1240
out_unlock:
1241
graph_unlock();
1242
restore_irqs:
1243
raw_local_irq_restore(flags);
1244
}
1245
EXPORT_SYMBOL_GPL(lockdep_register_key);
1246
1247
/* Check whether a key has been registered as a dynamic key. */
1248
static bool is_dynamic_key(const struct lock_class_key *key)
1249
{
1250
struct hlist_head *hash_head;
1251
struct lock_class_key *k;
1252
bool found = false;
1253
1254
if (WARN_ON_ONCE(static_obj(key)))
1255
return false;
1256
1257
/*
1258
* If lock debugging is disabled lock_keys_hash[] may contain
1259
* pointers to memory that has already been freed. Avoid triggering
1260
* a use-after-free in that case by returning early.
1261
*/
1262
if (!debug_locks)
1263
return true;
1264
1265
hash_head = keyhashentry(key);
1266
1267
rcu_read_lock();
1268
hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1269
if (k == key) {
1270
found = true;
1271
break;
1272
}
1273
}
1274
rcu_read_unlock();
1275
1276
return found;
1277
}
1278
1279
/*
1280
* Register a lock's class in the hash-table, if the class is not present
1281
* yet. Otherwise we look it up. We cache the result in the lock object
1282
* itself, so actual lookup of the hash should be once per lock object.
1283
*/
1284
static struct lock_class *
1285
register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1286
{
1287
struct lockdep_subclass_key *key;
1288
struct hlist_head *hash_head;
1289
struct lock_class *class;
1290
int idx;
1291
1292
DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1293
1294
class = look_up_lock_class(lock, subclass);
1295
if (likely(class))
1296
goto out_set_class_cache;
1297
1298
if (!lock->key) {
1299
if (!assign_lock_key(lock))
1300
return NULL;
1301
} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1302
return NULL;
1303
}
1304
1305
key = lock->key->subkeys + subclass;
1306
hash_head = classhashentry(key);
1307
1308
if (!graph_lock()) {
1309
return NULL;
1310
}
1311
/*
1312
* We have to do the hash-walk again, to avoid races
1313
* with another CPU:
1314
*/
1315
hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1316
if (class->key == key)
1317
goto out_unlock_set;
1318
}
1319
1320
init_data_structures_once();
1321
1322
/* Allocate a new lock class and add it to the hash. */
1323
class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1324
lock_entry);
1325
if (!class) {
1326
if (!debug_locks_off_graph_unlock()) {
1327
return NULL;
1328
}
1329
1330
nbcon_cpu_emergency_enter();
1331
print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1332
dump_stack();
1333
nbcon_cpu_emergency_exit();
1334
return NULL;
1335
}
1336
nr_lock_classes++;
1337
__set_bit(class - lock_classes, lock_classes_in_use);
1338
debug_atomic_inc(nr_unused_locks);
1339
class->key = key;
1340
class->name = lock->name;
1341
class->subclass = subclass;
1342
WARN_ON_ONCE(!list_empty(&class->locks_before));
1343
WARN_ON_ONCE(!list_empty(&class->locks_after));
1344
class->name_version = count_matching_names(class);
1345
class->wait_type_inner = lock->wait_type_inner;
1346
class->wait_type_outer = lock->wait_type_outer;
1347
class->lock_type = lock->lock_type;
1348
/*
1349
* We use RCU's safe list-add method to make
1350
* parallel walking of the hash-list safe:
1351
*/
1352
hlist_add_head_rcu(&class->hash_entry, hash_head);
1353
/*
1354
* Remove the class from the free list and add it to the global list
1355
* of classes.
1356
*/
1357
list_move_tail(&class->lock_entry, &all_lock_classes);
1358
idx = class - lock_classes;
1359
if (idx > max_lock_class_idx)
1360
max_lock_class_idx = idx;
1361
1362
if (verbose(class)) {
1363
graph_unlock();
1364
1365
nbcon_cpu_emergency_enter();
1366
printk("\nnew class %px: %s", class->key, class->name);
1367
if (class->name_version > 1)
1368
printk(KERN_CONT "#%d", class->name_version);
1369
printk(KERN_CONT "\n");
1370
dump_stack();
1371
nbcon_cpu_emergency_exit();
1372
1373
if (!graph_lock()) {
1374
return NULL;
1375
}
1376
}
1377
out_unlock_set:
1378
graph_unlock();
1379
1380
out_set_class_cache:
1381
if (!subclass || force)
1382
lock->class_cache[0] = class;
1383
else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1384
lock->class_cache[subclass] = class;
1385
1386
/*
1387
* Hash collision, did we smoke some? We found a class with a matching
1388
* hash but the subclass -- which is hashed in -- didn't match.
1389
*/
1390
if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1391
return NULL;
1392
1393
return class;
1394
}
1395
1396
#ifdef CONFIG_PROVE_LOCKING
1397
/*
1398
* Allocate a lockdep entry. (assumes the graph_lock held, returns
1399
* with NULL on failure)
1400
*/
1401
static struct lock_list *alloc_list_entry(void)
1402
{
1403
int idx = find_first_zero_bit(list_entries_in_use,
1404
ARRAY_SIZE(list_entries));
1405
1406
if (idx >= ARRAY_SIZE(list_entries)) {
1407
if (!debug_locks_off_graph_unlock())
1408
return NULL;
1409
1410
nbcon_cpu_emergency_enter();
1411
print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1412
dump_stack();
1413
nbcon_cpu_emergency_exit();
1414
return NULL;
1415
}
1416
nr_list_entries++;
1417
__set_bit(idx, list_entries_in_use);
1418
return list_entries + idx;
1419
}
1420
1421
/*
1422
* Add a new dependency to the head of the list:
1423
*/
1424
static int add_lock_to_list(struct lock_class *this,
1425
struct lock_class *links_to, struct list_head *head,
1426
u16 distance, u8 dep,
1427
const struct lock_trace *trace)
1428
{
1429
struct lock_list *entry;
1430
/*
1431
* Lock not present yet - get a new dependency struct and
1432
* add it to the list:
1433
*/
1434
entry = alloc_list_entry();
1435
if (!entry)
1436
return 0;
1437
1438
entry->class = this;
1439
entry->links_to = links_to;
1440
entry->dep = dep;
1441
entry->distance = distance;
1442
entry->trace = trace;
1443
/*
1444
* Both allocation and removal are done under the graph lock; but
1445
* iteration is under RCU-sched; see look_up_lock_class() and
1446
* lockdep_free_key_range().
1447
*/
1448
list_add_tail_rcu(&entry->entry, head);
1449
1450
return 1;
1451
}
1452
1453
/*
1454
* For good efficiency of modular, we use power of 2
1455
*/
1456
#define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1457
#define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
1458
1459
/*
1460
* The circular_queue and helpers are used to implement graph
1461
* breadth-first search (BFS) algorithm, by which we can determine
1462
* whether there is a path from a lock to another. In deadlock checks,
1463
* a path from the next lock to be acquired to a previous held lock
1464
* indicates that adding the <prev> -> <next> lock dependency will
1465
* produce a circle in the graph. Breadth-first search instead of
1466
* depth-first search is used in order to find the shortest (circular)
1467
* path.
1468
*/
1469
struct circular_queue {
1470
struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1471
unsigned int front, rear;
1472
};
1473
1474
static struct circular_queue lock_cq;
1475
1476
unsigned int max_bfs_queue_depth;
1477
1478
static unsigned int lockdep_dependency_gen_id;
1479
1480
static inline void __cq_init(struct circular_queue *cq)
1481
{
1482
cq->front = cq->rear = 0;
1483
lockdep_dependency_gen_id++;
1484
}
1485
1486
static inline int __cq_empty(struct circular_queue *cq)
1487
{
1488
return (cq->front == cq->rear);
1489
}
1490
1491
static inline int __cq_full(struct circular_queue *cq)
1492
{
1493
return ((cq->rear + 1) & CQ_MASK) == cq->front;
1494
}
1495
1496
static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1497
{
1498
if (__cq_full(cq))
1499
return -1;
1500
1501
cq->element[cq->rear] = elem;
1502
cq->rear = (cq->rear + 1) & CQ_MASK;
1503
return 0;
1504
}
1505
1506
/*
1507
* Dequeue an element from the circular_queue, return a lock_list if
1508
* the queue is not empty, or NULL if otherwise.
1509
*/
1510
static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1511
{
1512
struct lock_list * lock;
1513
1514
if (__cq_empty(cq))
1515
return NULL;
1516
1517
lock = cq->element[cq->front];
1518
cq->front = (cq->front + 1) & CQ_MASK;
1519
1520
return lock;
1521
}
1522
1523
static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
1524
{
1525
return (cq->rear - cq->front) & CQ_MASK;
1526
}
1527
1528
static inline void mark_lock_accessed(struct lock_list *lock)
1529
{
1530
lock->class->dep_gen_id = lockdep_dependency_gen_id;
1531
}
1532
1533
static inline void visit_lock_entry(struct lock_list *lock,
1534
struct lock_list *parent)
1535
{
1536
lock->parent = parent;
1537
}
1538
1539
static inline unsigned long lock_accessed(struct lock_list *lock)
1540
{
1541
return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1542
}
1543
1544
static inline struct lock_list *get_lock_parent(struct lock_list *child)
1545
{
1546
return child->parent;
1547
}
1548
1549
static inline int get_lock_depth(struct lock_list *child)
1550
{
1551
int depth = 0;
1552
struct lock_list *parent;
1553
1554
while ((parent = get_lock_parent(child))) {
1555
child = parent;
1556
depth++;
1557
}
1558
return depth;
1559
}
1560
1561
/*
1562
* Return the forward or backward dependency list.
1563
*
1564
* @lock: the lock_list to get its class's dependency list
1565
* @offset: the offset to struct lock_class to determine whether it is
1566
* locks_after or locks_before
1567
*/
1568
static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1569
{
1570
void *lock_class = lock->class;
1571
1572
return lock_class + offset;
1573
}
1574
/*
1575
* Return values of a bfs search:
1576
*
1577
* BFS_E* indicates an error
1578
* BFS_R* indicates a result (match or not)
1579
*
1580
* BFS_EINVALIDNODE: Find a invalid node in the graph.
1581
*
1582
* BFS_EQUEUEFULL: The queue is full while doing the bfs.
1583
*
1584
* BFS_RMATCH: Find the matched node in the graph, and put that node into
1585
* *@target_entry.
1586
*
1587
* BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1588
* _unchanged_.
1589
*/
1590
enum bfs_result {
1591
BFS_EINVALIDNODE = -2,
1592
BFS_EQUEUEFULL = -1,
1593
BFS_RMATCH = 0,
1594
BFS_RNOMATCH = 1,
1595
};
1596
1597
/*
1598
* bfs_result < 0 means error
1599
*/
1600
static inline bool bfs_error(enum bfs_result res)
1601
{
1602
return res < 0;
1603
}
1604
1605
/*
1606
* DEP_*_BIT in lock_list::dep
1607
*
1608
* For dependency @prev -> @next:
1609
*
1610
* SR: @prev is shared reader (->read != 0) and @next is recursive reader
1611
* (->read == 2)
1612
* ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1613
* SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1614
* EN: @prev is exclusive locker and @next is non-recursive locker
1615
*
1616
* Note that we define the value of DEP_*_BITs so that:
1617
* bit0 is prev->read == 0
1618
* bit1 is next->read != 2
1619
*/
1620
#define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1621
#define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1622
#define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1623
#define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1624
1625
#define DEP_SR_MASK (1U << (DEP_SR_BIT))
1626
#define DEP_ER_MASK (1U << (DEP_ER_BIT))
1627
#define DEP_SN_MASK (1U << (DEP_SN_BIT))
1628
#define DEP_EN_MASK (1U << (DEP_EN_BIT))
1629
1630
static inline unsigned int
1631
__calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1632
{
1633
return (prev->read == 0) + ((next->read != 2) << 1);
1634
}
1635
1636
static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1637
{
1638
return 1U << __calc_dep_bit(prev, next);
1639
}
1640
1641
/*
1642
* calculate the dep_bit for backwards edges. We care about whether @prev is
1643
* shared and whether @next is recursive.
1644
*/
1645
static inline unsigned int
1646
__calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1647
{
1648
return (next->read != 2) + ((prev->read == 0) << 1);
1649
}
1650
1651
static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1652
{
1653
return 1U << __calc_dep_bitb(prev, next);
1654
}
1655
1656
/*
1657
* Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1658
* search.
1659
*/
1660
static inline void __bfs_init_root(struct lock_list *lock,
1661
struct lock_class *class)
1662
{
1663
lock->class = class;
1664
lock->parent = NULL;
1665
lock->only_xr = 0;
1666
}
1667
1668
/*
1669
* Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1670
* root for a BFS search.
1671
*
1672
* ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1673
* that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1674
* and -(S*)->.
1675
*/
1676
static inline void bfs_init_root(struct lock_list *lock,
1677
struct held_lock *hlock)
1678
{
1679
__bfs_init_root(lock, hlock_class(hlock));
1680
lock->only_xr = (hlock->read == 2);
1681
}
1682
1683
/*
1684
* Similar to bfs_init_root() but initialize the root for backwards BFS.
1685
*
1686
* ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1687
* that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1688
* -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1689
*/
1690
static inline void bfs_init_rootb(struct lock_list *lock,
1691
struct held_lock *hlock)
1692
{
1693
__bfs_init_root(lock, hlock_class(hlock));
1694
lock->only_xr = (hlock->read != 0);
1695
}
1696
1697
static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1698
{
1699
if (!lock || !lock->parent)
1700
return NULL;
1701
1702
return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1703
&lock->entry, struct lock_list, entry);
1704
}
1705
1706
/*
1707
* Breadth-First Search to find a strong path in the dependency graph.
1708
*
1709
* @source_entry: the source of the path we are searching for.
1710
* @data: data used for the second parameter of @match function
1711
* @match: match function for the search
1712
* @target_entry: pointer to the target of a matched path
1713
* @offset: the offset to struct lock_class to determine whether it is
1714
* locks_after or locks_before
1715
*
1716
* We may have multiple edges (considering different kinds of dependencies,
1717
* e.g. ER and SN) between two nodes in the dependency graph. But
1718
* only the strong dependency path in the graph is relevant to deadlocks. A
1719
* strong dependency path is a dependency path that doesn't have two adjacent
1720
* dependencies as -(*R)-> -(S*)->, please see:
1721
*
1722
* Documentation/locking/lockdep-design.rst
1723
*
1724
* for more explanation of the definition of strong dependency paths
1725
*
1726
* In __bfs(), we only traverse in the strong dependency path:
1727
*
1728
* In lock_list::only_xr, we record whether the previous dependency only
1729
* has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1730
* filter out any -(S*)-> in the current dependency and after that, the
1731
* ->only_xr is set according to whether we only have -(*R)-> left.
1732
*/
1733
static enum bfs_result __bfs(struct lock_list *source_entry,
1734
void *data,
1735
bool (*match)(struct lock_list *entry, void *data),
1736
bool (*skip)(struct lock_list *entry, void *data),
1737
struct lock_list **target_entry,
1738
int offset)
1739
{
1740
struct circular_queue *cq = &lock_cq;
1741
struct lock_list *lock = NULL;
1742
struct lock_list *entry;
1743
struct list_head *head;
1744
unsigned int cq_depth;
1745
bool first;
1746
1747
lockdep_assert_locked();
1748
1749
__cq_init(cq);
1750
__cq_enqueue(cq, source_entry);
1751
1752
while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1753
if (!lock->class)
1754
return BFS_EINVALIDNODE;
1755
1756
/*
1757
* Step 1: check whether we already finish on this one.
1758
*
1759
* If we have visited all the dependencies from this @lock to
1760
* others (iow, if we have visited all lock_list entries in
1761
* @lock->class->locks_{after,before}) we skip, otherwise go
1762
* and visit all the dependencies in the list and mark this
1763
* list accessed.
1764
*/
1765
if (lock_accessed(lock))
1766
continue;
1767
else
1768
mark_lock_accessed(lock);
1769
1770
/*
1771
* Step 2: check whether prev dependency and this form a strong
1772
* dependency path.
1773
*/
1774
if (lock->parent) { /* Parent exists, check prev dependency */
1775
u8 dep = lock->dep;
1776
bool prev_only_xr = lock->parent->only_xr;
1777
1778
/*
1779
* Mask out all -(S*)-> if we only have *R in previous
1780
* step, because -(*R)-> -(S*)-> don't make up a strong
1781
* dependency.
1782
*/
1783
if (prev_only_xr)
1784
dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1785
1786
/* If nothing left, we skip */
1787
if (!dep)
1788
continue;
1789
1790
/* If there are only -(*R)-> left, set that for the next step */
1791
lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1792
}
1793
1794
/*
1795
* Step 3: we haven't visited this and there is a strong
1796
* dependency path to this, so check with @match.
1797
* If @skip is provide and returns true, we skip this
1798
* lock (and any path this lock is in).
1799
*/
1800
if (skip && skip(lock, data))
1801
continue;
1802
1803
if (match(lock, data)) {
1804
*target_entry = lock;
1805
return BFS_RMATCH;
1806
}
1807
1808
/*
1809
* Step 4: if not match, expand the path by adding the
1810
* forward or backwards dependencies in the search
1811
*
1812
*/
1813
first = true;
1814
head = get_dep_list(lock, offset);
1815
list_for_each_entry_rcu(entry, head, entry) {
1816
visit_lock_entry(entry, lock);
1817
1818
/*
1819
* Note we only enqueue the first of the list into the
1820
* queue, because we can always find a sibling
1821
* dependency from one (see __bfs_next()), as a result
1822
* the space of queue is saved.
1823
*/
1824
if (!first)
1825
continue;
1826
1827
first = false;
1828
1829
if (__cq_enqueue(cq, entry))
1830
return BFS_EQUEUEFULL;
1831
1832
cq_depth = __cq_get_elem_count(cq);
1833
if (max_bfs_queue_depth < cq_depth)
1834
max_bfs_queue_depth = cq_depth;
1835
}
1836
}
1837
1838
return BFS_RNOMATCH;
1839
}
1840
1841
static inline enum bfs_result
1842
__bfs_forwards(struct lock_list *src_entry,
1843
void *data,
1844
bool (*match)(struct lock_list *entry, void *data),
1845
bool (*skip)(struct lock_list *entry, void *data),
1846
struct lock_list **target_entry)
1847
{
1848
return __bfs(src_entry, data, match, skip, target_entry,
1849
offsetof(struct lock_class, locks_after));
1850
1851
}
1852
1853
static inline enum bfs_result
1854
__bfs_backwards(struct lock_list *src_entry,
1855
void *data,
1856
bool (*match)(struct lock_list *entry, void *data),
1857
bool (*skip)(struct lock_list *entry, void *data),
1858
struct lock_list **target_entry)
1859
{
1860
return __bfs(src_entry, data, match, skip, target_entry,
1861
offsetof(struct lock_class, locks_before));
1862
1863
}
1864
1865
static void print_lock_trace(const struct lock_trace *trace,
1866
unsigned int spaces)
1867
{
1868
stack_trace_print(trace->entries, trace->nr_entries, spaces);
1869
}
1870
1871
/*
1872
* Print a dependency chain entry (this is only done when a deadlock
1873
* has been detected):
1874
*/
1875
static noinline void
1876
print_circular_bug_entry(struct lock_list *target, int depth)
1877
{
1878
if (debug_locks_silent)
1879
return;
1880
printk("\n-> #%u", depth);
1881
print_lock_name(NULL, target->class);
1882
printk(KERN_CONT ":\n");
1883
print_lock_trace(target->trace, 6);
1884
}
1885
1886
static void
1887
print_circular_lock_scenario(struct held_lock *src,
1888
struct held_lock *tgt,
1889
struct lock_list *prt)
1890
{
1891
struct lock_class *source = hlock_class(src);
1892
struct lock_class *target = hlock_class(tgt);
1893
struct lock_class *parent = prt->class;
1894
int src_read = src->read;
1895
int tgt_read = tgt->read;
1896
1897
/*
1898
* A direct locking problem where unsafe_class lock is taken
1899
* directly by safe_class lock, then all we need to show
1900
* is the deadlock scenario, as it is obvious that the
1901
* unsafe lock is taken under the safe lock.
1902
*
1903
* But if there is a chain instead, where the safe lock takes
1904
* an intermediate lock (middle_class) where this lock is
1905
* not the same as the safe lock, then the lock chain is
1906
* used to describe the problem. Otherwise we would need
1907
* to show a different CPU case for each link in the chain
1908
* from the safe_class lock to the unsafe_class lock.
1909
*/
1910
if (parent != source) {
1911
printk("Chain exists of:\n ");
1912
__print_lock_name(src, source);
1913
printk(KERN_CONT " --> ");
1914
__print_lock_name(NULL, parent);
1915
printk(KERN_CONT " --> ");
1916
__print_lock_name(tgt, target);
1917
printk(KERN_CONT "\n\n");
1918
}
1919
1920
printk(" Possible unsafe locking scenario:\n\n");
1921
printk(" CPU0 CPU1\n");
1922
printk(" ---- ----\n");
1923
if (tgt_read != 0)
1924
printk(" rlock(");
1925
else
1926
printk(" lock(");
1927
__print_lock_name(tgt, target);
1928
printk(KERN_CONT ");\n");
1929
printk(" lock(");
1930
__print_lock_name(NULL, parent);
1931
printk(KERN_CONT ");\n");
1932
printk(" lock(");
1933
__print_lock_name(tgt, target);
1934
printk(KERN_CONT ");\n");
1935
if (src_read != 0)
1936
printk(" rlock(");
1937
else if (src->sync)
1938
printk(" sync(");
1939
else
1940
printk(" lock(");
1941
__print_lock_name(src, source);
1942
printk(KERN_CONT ");\n");
1943
printk("\n *** DEADLOCK ***\n\n");
1944
}
1945
1946
/*
1947
* When a circular dependency is detected, print the
1948
* header first:
1949
*/
1950
static noinline void
1951
print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1952
struct held_lock *check_src,
1953
struct held_lock *check_tgt)
1954
{
1955
struct task_struct *curr = current;
1956
1957
if (debug_locks_silent)
1958
return;
1959
1960
pr_warn("\n");
1961
pr_warn("======================================================\n");
1962
pr_warn("WARNING: possible circular locking dependency detected\n");
1963
print_kernel_ident();
1964
pr_warn("------------------------------------------------------\n");
1965
pr_warn("%s/%d is trying to acquire lock:\n",
1966
curr->comm, task_pid_nr(curr));
1967
print_lock(check_src);
1968
1969
pr_warn("\nbut task is already holding lock:\n");
1970
1971
print_lock(check_tgt);
1972
pr_warn("\nwhich lock already depends on the new lock.\n\n");
1973
pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1974
1975
print_circular_bug_entry(entry, depth);
1976
}
1977
1978
/*
1979
* We are about to add B -> A into the dependency graph, and in __bfs() a
1980
* strong dependency path A -> .. -> B is found: hlock_class equals
1981
* entry->class.
1982
*
1983
* We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1984
* dependency cycle, that means:
1985
*
1986
* Either
1987
*
1988
* a) B -> A is -(E*)->
1989
*
1990
* or
1991
*
1992
* b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1993
*
1994
* as then we don't have -(*R)-> -(S*)-> in the cycle.
1995
*/
1996
static inline bool hlock_conflict(struct lock_list *entry, void *data)
1997
{
1998
struct held_lock *hlock = (struct held_lock *)data;
1999
2000
return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2001
(hlock->read == 0 || /* B -> A is -(E*)-> */
2002
!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2003
}
2004
2005
static noinline void print_circular_bug(struct lock_list *this,
2006
struct lock_list *target,
2007
struct held_lock *check_src,
2008
struct held_lock *check_tgt)
2009
{
2010
struct task_struct *curr = current;
2011
struct lock_list *parent;
2012
struct lock_list *first_parent;
2013
int depth;
2014
2015
if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2016
return;
2017
2018
this->trace = save_trace();
2019
if (!this->trace)
2020
return;
2021
2022
depth = get_lock_depth(target);
2023
2024
nbcon_cpu_emergency_enter();
2025
2026
print_circular_bug_header(target, depth, check_src, check_tgt);
2027
2028
parent = get_lock_parent(target);
2029
first_parent = parent;
2030
2031
while (parent) {
2032
print_circular_bug_entry(parent, --depth);
2033
parent = get_lock_parent(parent);
2034
}
2035
2036
printk("\nother info that might help us debug this:\n\n");
2037
print_circular_lock_scenario(check_src, check_tgt,
2038
first_parent);
2039
2040
lockdep_print_held_locks(curr);
2041
2042
printk("\nstack backtrace:\n");
2043
dump_stack();
2044
2045
nbcon_cpu_emergency_exit();
2046
}
2047
2048
static noinline void print_bfs_bug(int ret)
2049
{
2050
if (!debug_locks_off_graph_unlock())
2051
return;
2052
2053
/*
2054
* Breadth-first-search failed, graph got corrupted?
2055
*/
2056
if (ret == BFS_EQUEUEFULL)
2057
pr_warn("Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:\n");
2058
2059
WARN(1, "lockdep bfs error:%d\n", ret);
2060
}
2061
2062
static bool noop_count(struct lock_list *entry, void *data)
2063
{
2064
(*(unsigned long *)data)++;
2065
return false;
2066
}
2067
2068
static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2069
{
2070
unsigned long count = 0;
2071
struct lock_list *target_entry;
2072
2073
__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2074
2075
return count;
2076
}
2077
unsigned long lockdep_count_forward_deps(struct lock_class *class)
2078
{
2079
unsigned long ret, flags;
2080
struct lock_list this;
2081
2082
__bfs_init_root(&this, class);
2083
2084
raw_local_irq_save(flags);
2085
lockdep_lock();
2086
ret = __lockdep_count_forward_deps(&this);
2087
lockdep_unlock();
2088
raw_local_irq_restore(flags);
2089
2090
return ret;
2091
}
2092
2093
static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2094
{
2095
unsigned long count = 0;
2096
struct lock_list *target_entry;
2097
2098
__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2099
2100
return count;
2101
}
2102
2103
unsigned long lockdep_count_backward_deps(struct lock_class *class)
2104
{
2105
unsigned long ret, flags;
2106
struct lock_list this;
2107
2108
__bfs_init_root(&this, class);
2109
2110
raw_local_irq_save(flags);
2111
lockdep_lock();
2112
ret = __lockdep_count_backward_deps(&this);
2113
lockdep_unlock();
2114
raw_local_irq_restore(flags);
2115
2116
return ret;
2117
}
2118
2119
/*
2120
* Check that the dependency graph starting at <src> can lead to
2121
* <target> or not.
2122
*/
2123
static noinline enum bfs_result
2124
check_path(struct held_lock *target, struct lock_list *src_entry,
2125
bool (*match)(struct lock_list *entry, void *data),
2126
bool (*skip)(struct lock_list *entry, void *data),
2127
struct lock_list **target_entry)
2128
{
2129
enum bfs_result ret;
2130
2131
ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2132
2133
if (unlikely(bfs_error(ret)))
2134
print_bfs_bug(ret);
2135
2136
return ret;
2137
}
2138
2139
static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2140
2141
/*
2142
* Prove that the dependency graph starting at <src> can not
2143
* lead to <target>. If it can, there is a circle when adding
2144
* <target> -> <src> dependency.
2145
*
2146
* Print an error and return BFS_RMATCH if it does.
2147
*/
2148
static noinline enum bfs_result
2149
check_noncircular(struct held_lock *src, struct held_lock *target,
2150
struct lock_trace **const trace)
2151
{
2152
enum bfs_result ret;
2153
struct lock_list *target_entry;
2154
struct lock_list src_entry;
2155
2156
bfs_init_root(&src_entry, src);
2157
2158
debug_atomic_inc(nr_cyclic_checks);
2159
2160
ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2161
2162
if (unlikely(ret == BFS_RMATCH)) {
2163
if (!*trace) {
2164
/*
2165
* If save_trace fails here, the printing might
2166
* trigger a WARN but because of the !nr_entries it
2167
* should not do bad things.
2168
*/
2169
*trace = save_trace();
2170
}
2171
2172
if (src->class_idx == target->class_idx)
2173
print_deadlock_bug(current, src, target);
2174
else
2175
print_circular_bug(&src_entry, target_entry, src, target);
2176
}
2177
2178
return ret;
2179
}
2180
2181
#ifdef CONFIG_TRACE_IRQFLAGS
2182
2183
/*
2184
* Forwards and backwards subgraph searching, for the purposes of
2185
* proving that two subgraphs can be connected by a new dependency
2186
* without creating any illegal irq-safe -> irq-unsafe lock dependency.
2187
*
2188
* A irq safe->unsafe deadlock happens with the following conditions:
2189
*
2190
* 1) We have a strong dependency path A -> ... -> B
2191
*
2192
* 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2193
* irq can create a new dependency B -> A (consider the case that a holder
2194
* of B gets interrupted by an irq whose handler will try to acquire A).
2195
*
2196
* 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2197
* strong circle:
2198
*
2199
* For the usage bits of B:
2200
* a) if A -> B is -(*N)->, then B -> A could be any type, so any
2201
* ENABLED_IRQ usage suffices.
2202
* b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2203
* ENABLED_IRQ_*_READ usage suffices.
2204
*
2205
* For the usage bits of A:
2206
* c) if A -> B is -(E*)->, then B -> A could be any type, so any
2207
* USED_IN_IRQ usage suffices.
2208
* d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2209
* USED_IN_IRQ_*_READ usage suffices.
2210
*/
2211
2212
/*
2213
* There is a strong dependency path in the dependency graph: A -> B, and now
2214
* we need to decide which usage bit of A should be accumulated to detect
2215
* safe->unsafe bugs.
2216
*
2217
* Note that usage_accumulate() is used in backwards search, so ->only_xr
2218
* stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2219
*
2220
* As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2221
* path, any usage of A should be considered. Otherwise, we should only
2222
* consider _READ usage.
2223
*/
2224
static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2225
{
2226
if (!entry->only_xr)
2227
*(unsigned long *)mask |= entry->class->usage_mask;
2228
else /* Mask out _READ usage bits */
2229
*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2230
2231
return false;
2232
}
2233
2234
/*
2235
* There is a strong dependency path in the dependency graph: A -> B, and now
2236
* we need to decide which usage bit of B conflicts with the usage bits of A,
2237
* i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2238
*
2239
* As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2240
* path, any usage of B should be considered. Otherwise, we should only
2241
* consider _READ usage.
2242
*/
2243
static inline bool usage_match(struct lock_list *entry, void *mask)
2244
{
2245
if (!entry->only_xr)
2246
return !!(entry->class->usage_mask & *(unsigned long *)mask);
2247
else /* Mask out _READ usage bits */
2248
return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2249
}
2250
2251
static inline bool usage_skip(struct lock_list *entry, void *mask)
2252
{
2253
if (entry->class->lock_type == LD_LOCK_NORMAL)
2254
return false;
2255
2256
/*
2257
* Skip local_lock() for irq inversion detection.
2258
*
2259
* For !RT, local_lock() is not a real lock, so it won't carry any
2260
* dependency.
2261
*
2262
* For RT, an irq inversion happens when we have lock A and B, and on
2263
* some CPU we can have:
2264
*
2265
* lock(A);
2266
* <interrupted>
2267
* lock(B);
2268
*
2269
* where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2270
*
2271
* Now we prove local_lock() cannot exist in that dependency. First we
2272
* have the observation for any lock chain L1 -> ... -> Ln, for any
2273
* 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2274
* wait context check will complain. And since B is not a sleep lock,
2275
* therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2276
* local_lock() is 3, which is greater than 2, therefore there is no
2277
* way the local_lock() exists in the dependency B -> ... -> A.
2278
*
2279
* As a result, we will skip local_lock(), when we search for irq
2280
* inversion bugs.
2281
*/
2282
if (entry->class->lock_type == LD_LOCK_PERCPU &&
2283
DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2284
return false;
2285
2286
/*
2287
* Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2288
* a lock and only used to override the wait_type.
2289
*/
2290
2291
return true;
2292
}
2293
2294
/*
2295
* Find a node in the forwards-direction dependency sub-graph starting
2296
* at @root->class that matches @bit.
2297
*
2298
* Return BFS_MATCH if such a node exists in the subgraph, and put that node
2299
* into *@target_entry.
2300
*/
2301
static enum bfs_result
2302
find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2303
struct lock_list **target_entry)
2304
{
2305
enum bfs_result result;
2306
2307
debug_atomic_inc(nr_find_usage_forwards_checks);
2308
2309
result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2310
2311
return result;
2312
}
2313
2314
/*
2315
* Find a node in the backwards-direction dependency sub-graph starting
2316
* at @root->class that matches @bit.
2317
*/
2318
static enum bfs_result
2319
find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2320
struct lock_list **target_entry)
2321
{
2322
enum bfs_result result;
2323
2324
debug_atomic_inc(nr_find_usage_backwards_checks);
2325
2326
result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2327
2328
return result;
2329
}
2330
2331
static void print_lock_class_header(struct lock_class *class, int depth)
2332
{
2333
int bit;
2334
2335
printk("%*s->", depth, "");
2336
print_lock_name(NULL, class);
2337
#ifdef CONFIG_DEBUG_LOCKDEP
2338
printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2339
#endif
2340
printk(KERN_CONT " {\n");
2341
2342
for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2343
if (class->usage_mask & (1 << bit)) {
2344
int len = depth;
2345
2346
len += printk("%*s %s", depth, "", usage_str[bit]);
2347
len += printk(KERN_CONT " at:\n");
2348
print_lock_trace(class->usage_traces[bit], len);
2349
}
2350
}
2351
printk("%*s }\n", depth, "");
2352
2353
printk("%*s ... key at: [<%px>] %pS\n",
2354
depth, "", class->key, class->key);
2355
}
2356
2357
/*
2358
* Dependency path printing:
2359
*
2360
* After BFS we get a lock dependency path (linked via ->parent of lock_list),
2361
* printing out each lock in the dependency path will help on understanding how
2362
* the deadlock could happen. Here are some details about dependency path
2363
* printing:
2364
*
2365
* 1) A lock_list can be either forwards or backwards for a lock dependency,
2366
* for a lock dependency A -> B, there are two lock_lists:
2367
*
2368
* a) lock_list in the ->locks_after list of A, whose ->class is B and
2369
* ->links_to is A. In this case, we can say the lock_list is
2370
* "A -> B" (forwards case).
2371
*
2372
* b) lock_list in the ->locks_before list of B, whose ->class is A
2373
* and ->links_to is B. In this case, we can say the lock_list is
2374
* "B <- A" (bacwards case).
2375
*
2376
* The ->trace of both a) and b) point to the call trace where B was
2377
* acquired with A held.
2378
*
2379
* 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't
2380
* represent a certain lock dependency, it only provides an initial entry
2381
* for BFS. For example, BFS may introduce a "helper" lock_list whose
2382
* ->class is A, as a result BFS will search all dependencies starting with
2383
* A, e.g. A -> B or A -> C.
2384
*
2385
* The notation of a forwards helper lock_list is like "-> A", which means
2386
* we should search the forwards dependencies starting with "A", e.g A -> B
2387
* or A -> C.
2388
*
2389
* The notation of a bacwards helper lock_list is like "<- B", which means
2390
* we should search the backwards dependencies ending with "B", e.g.
2391
* B <- A or B <- C.
2392
*/
2393
2394
/*
2395
* printk the shortest lock dependencies from @root to @leaf in reverse order.
2396
*
2397
* We have a lock dependency path as follow:
2398
*
2399
* @root @leaf
2400
* | |
2401
* V V
2402
* ->parent ->parent
2403
* | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list |
2404
* | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln|
2405
*
2406
* , so it's natural that we start from @leaf and print every ->class and
2407
* ->trace until we reach the @root.
2408
*/
2409
static void __used
2410
print_shortest_lock_dependencies(struct lock_list *leaf,
2411
struct lock_list *root)
2412
{
2413
struct lock_list *entry = leaf;
2414
int depth;
2415
2416
/*compute depth from generated tree by BFS*/
2417
depth = get_lock_depth(leaf);
2418
2419
do {
2420
print_lock_class_header(entry->class, depth);
2421
printk("%*s ... acquired at:\n", depth, "");
2422
print_lock_trace(entry->trace, 2);
2423
printk("\n");
2424
2425
if (depth == 0 && (entry != root)) {
2426
printk("lockdep:%s bad path found in chain graph\n", __func__);
2427
break;
2428
}
2429
2430
entry = get_lock_parent(entry);
2431
depth--;
2432
} while (entry && (depth >= 0));
2433
}
2434
2435
/*
2436
* printk the shortest lock dependencies from @leaf to @root.
2437
*
2438
* We have a lock dependency path (from a backwards search) as follow:
2439
*
2440
* @leaf @root
2441
* | |
2442
* V V
2443
* ->parent ->parent
2444
* | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list |
2445
* | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln |
2446
*
2447
* , so when we iterate from @leaf to @root, we actually print the lock
2448
* dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2449
*
2450
* Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2451
* ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2452
* trace of L1 in the dependency path, which is alright, because most of the
2453
* time we can figure out where L1 is held from the call trace of L2.
2454
*/
2455
static void __used
2456
print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2457
struct lock_list *root)
2458
{
2459
struct lock_list *entry = leaf;
2460
const struct lock_trace *trace = NULL;
2461
int depth;
2462
2463
/*compute depth from generated tree by BFS*/
2464
depth = get_lock_depth(leaf);
2465
2466
do {
2467
print_lock_class_header(entry->class, depth);
2468
if (trace) {
2469
printk("%*s ... acquired at:\n", depth, "");
2470
print_lock_trace(trace, 2);
2471
printk("\n");
2472
}
2473
2474
/*
2475
* Record the pointer to the trace for the next lock_list
2476
* entry, see the comments for the function.
2477
*/
2478
trace = entry->trace;
2479
2480
if (depth == 0 && (entry != root)) {
2481
printk("lockdep:%s bad path found in chain graph\n", __func__);
2482
break;
2483
}
2484
2485
entry = get_lock_parent(entry);
2486
depth--;
2487
} while (entry && (depth >= 0));
2488
}
2489
2490
static void
2491
print_irq_lock_scenario(struct lock_list *safe_entry,
2492
struct lock_list *unsafe_entry,
2493
struct lock_class *prev_class,
2494
struct lock_class *next_class)
2495
{
2496
struct lock_class *safe_class = safe_entry->class;
2497
struct lock_class *unsafe_class = unsafe_entry->class;
2498
struct lock_class *middle_class = prev_class;
2499
2500
if (middle_class == safe_class)
2501
middle_class = next_class;
2502
2503
/*
2504
* A direct locking problem where unsafe_class lock is taken
2505
* directly by safe_class lock, then all we need to show
2506
* is the deadlock scenario, as it is obvious that the
2507
* unsafe lock is taken under the safe lock.
2508
*
2509
* But if there is a chain instead, where the safe lock takes
2510
* an intermediate lock (middle_class) where this lock is
2511
* not the same as the safe lock, then the lock chain is
2512
* used to describe the problem. Otherwise we would need
2513
* to show a different CPU case for each link in the chain
2514
* from the safe_class lock to the unsafe_class lock.
2515
*/
2516
if (middle_class != unsafe_class) {
2517
printk("Chain exists of:\n ");
2518
__print_lock_name(NULL, safe_class);
2519
printk(KERN_CONT " --> ");
2520
__print_lock_name(NULL, middle_class);
2521
printk(KERN_CONT " --> ");
2522
__print_lock_name(NULL, unsafe_class);
2523
printk(KERN_CONT "\n\n");
2524
}
2525
2526
printk(" Possible interrupt unsafe locking scenario:\n\n");
2527
printk(" CPU0 CPU1\n");
2528
printk(" ---- ----\n");
2529
printk(" lock(");
2530
__print_lock_name(NULL, unsafe_class);
2531
printk(KERN_CONT ");\n");
2532
printk(" local_irq_disable();\n");
2533
printk(" lock(");
2534
__print_lock_name(NULL, safe_class);
2535
printk(KERN_CONT ");\n");
2536
printk(" lock(");
2537
__print_lock_name(NULL, middle_class);
2538
printk(KERN_CONT ");\n");
2539
printk(" <Interrupt>\n");
2540
printk(" lock(");
2541
__print_lock_name(NULL, safe_class);
2542
printk(KERN_CONT ");\n");
2543
printk("\n *** DEADLOCK ***\n\n");
2544
}
2545
2546
static void
2547
print_bad_irq_dependency(struct task_struct *curr,
2548
struct lock_list *prev_root,
2549
struct lock_list *next_root,
2550
struct lock_list *backwards_entry,
2551
struct lock_list *forwards_entry,
2552
struct held_lock *prev,
2553
struct held_lock *next,
2554
enum lock_usage_bit bit1,
2555
enum lock_usage_bit bit2,
2556
const char *irqclass)
2557
{
2558
if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2559
return;
2560
2561
nbcon_cpu_emergency_enter();
2562
2563
pr_warn("\n");
2564
pr_warn("=====================================================\n");
2565
pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2566
irqclass, irqclass);
2567
print_kernel_ident();
2568
pr_warn("-----------------------------------------------------\n");
2569
pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2570
curr->comm, task_pid_nr(curr),
2571
lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2572
curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2573
lockdep_hardirqs_enabled(),
2574
curr->softirqs_enabled);
2575
print_lock(next);
2576
2577
pr_warn("\nand this task is already holding:\n");
2578
print_lock(prev);
2579
pr_warn("which would create a new lock dependency:\n");
2580
print_lock_name(prev, hlock_class(prev));
2581
pr_cont(" ->");
2582
print_lock_name(next, hlock_class(next));
2583
pr_cont("\n");
2584
2585
pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2586
irqclass);
2587
print_lock_name(NULL, backwards_entry->class);
2588
pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2589
2590
print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2591
2592
pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2593
print_lock_name(NULL, forwards_entry->class);
2594
pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2595
pr_warn("...");
2596
2597
print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2598
2599
pr_warn("\nother info that might help us debug this:\n\n");
2600
print_irq_lock_scenario(backwards_entry, forwards_entry,
2601
hlock_class(prev), hlock_class(next));
2602
2603
lockdep_print_held_locks(curr);
2604
2605
pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2606
print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2607
2608
pr_warn("\nthe dependencies between the lock to be acquired");
2609
pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2610
next_root->trace = save_trace();
2611
if (!next_root->trace)
2612
goto out;
2613
print_shortest_lock_dependencies(forwards_entry, next_root);
2614
2615
pr_warn("\nstack backtrace:\n");
2616
dump_stack();
2617
out:
2618
nbcon_cpu_emergency_exit();
2619
}
2620
2621
static const char *state_names[] = {
2622
#define LOCKDEP_STATE(__STATE) \
2623
__stringify(__STATE),
2624
#include "lockdep_states.h"
2625
#undef LOCKDEP_STATE
2626
};
2627
2628
static const char *state_rnames[] = {
2629
#define LOCKDEP_STATE(__STATE) \
2630
__stringify(__STATE)"-READ",
2631
#include "lockdep_states.h"
2632
#undef LOCKDEP_STATE
2633
};
2634
2635
static inline const char *state_name(enum lock_usage_bit bit)
2636
{
2637
if (bit & LOCK_USAGE_READ_MASK)
2638
return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2639
else
2640
return state_names[bit >> LOCK_USAGE_DIR_MASK];
2641
}
2642
2643
/*
2644
* The bit number is encoded like:
2645
*
2646
* bit0: 0 exclusive, 1 read lock
2647
* bit1: 0 used in irq, 1 irq enabled
2648
* bit2-n: state
2649
*/
2650
static int exclusive_bit(int new_bit)
2651
{
2652
int state = new_bit & LOCK_USAGE_STATE_MASK;
2653
int dir = new_bit & LOCK_USAGE_DIR_MASK;
2654
2655
/*
2656
* keep state, bit flip the direction and strip read.
2657
*/
2658
return state | (dir ^ LOCK_USAGE_DIR_MASK);
2659
}
2660
2661
/*
2662
* Observe that when given a bitmask where each bitnr is encoded as above, a
2663
* right shift of the mask transforms the individual bitnrs as -1 and
2664
* conversely, a left shift transforms into +1 for the individual bitnrs.
2665
*
2666
* So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2667
* create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2668
* instead by subtracting the bit number by 2, or shifting the mask right by 2.
2669
*
2670
* Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2671
*
2672
* So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2673
* all bits set) and recompose with bitnr1 flipped.
2674
*/
2675
static unsigned long invert_dir_mask(unsigned long mask)
2676
{
2677
unsigned long excl = 0;
2678
2679
/* Invert dir */
2680
excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2681
excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2682
2683
return excl;
2684
}
2685
2686
/*
2687
* Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2688
* usage may cause deadlock too, for example:
2689
*
2690
* P1 P2
2691
* <irq disabled>
2692
* write_lock(l1); <irq enabled>
2693
* read_lock(l2);
2694
* write_lock(l2);
2695
* <in irq>
2696
* read_lock(l1);
2697
*
2698
* , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2699
* will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2700
* deadlock.
2701
*
2702
* In fact, all of the following cases may cause deadlocks:
2703
*
2704
* LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2705
* LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2706
* LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2707
* LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2708
*
2709
* As a result, to calculate the "exclusive mask", first we invert the
2710
* direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2711
* bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2712
* bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2713
*/
2714
static unsigned long exclusive_mask(unsigned long mask)
2715
{
2716
unsigned long excl = invert_dir_mask(mask);
2717
2718
excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2719
excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2720
2721
return excl;
2722
}
2723
2724
/*
2725
* Retrieve the _possible_ original mask to which @mask is
2726
* exclusive. Ie: this is the opposite of exclusive_mask().
2727
* Note that 2 possible original bits can match an exclusive
2728
* bit: one has LOCK_USAGE_READ_MASK set, the other has it
2729
* cleared. So both are returned for each exclusive bit.
2730
*/
2731
static unsigned long original_mask(unsigned long mask)
2732
{
2733
unsigned long excl = invert_dir_mask(mask);
2734
2735
/* Include read in existing usages */
2736
excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2737
excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2738
2739
return excl;
2740
}
2741
2742
/*
2743
* Find the first pair of bit match between an original
2744
* usage mask and an exclusive usage mask.
2745
*/
2746
static int find_exclusive_match(unsigned long mask,
2747
unsigned long excl_mask,
2748
enum lock_usage_bit *bitp,
2749
enum lock_usage_bit *excl_bitp)
2750
{
2751
int bit, excl, excl_read;
2752
2753
for_each_set_bit(bit, &mask, LOCK_USED) {
2754
/*
2755
* exclusive_bit() strips the read bit, however,
2756
* LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2757
* to search excl | LOCK_USAGE_READ_MASK as well.
2758
*/
2759
excl = exclusive_bit(bit);
2760
excl_read = excl | LOCK_USAGE_READ_MASK;
2761
if (excl_mask & lock_flag(excl)) {
2762
*bitp = bit;
2763
*excl_bitp = excl;
2764
return 0;
2765
} else if (excl_mask & lock_flag(excl_read)) {
2766
*bitp = bit;
2767
*excl_bitp = excl_read;
2768
return 0;
2769
}
2770
}
2771
return -1;
2772
}
2773
2774
/*
2775
* Prove that the new dependency does not connect a hardirq-safe(-read)
2776
* lock with a hardirq-unsafe lock - to achieve this we search
2777
* the backwards-subgraph starting at <prev>, and the
2778
* forwards-subgraph starting at <next>:
2779
*/
2780
static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2781
struct held_lock *next)
2782
{
2783
unsigned long usage_mask = 0, forward_mask, backward_mask;
2784
enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2785
struct lock_list *target_entry1;
2786
struct lock_list *target_entry;
2787
struct lock_list this, that;
2788
enum bfs_result ret;
2789
2790
/*
2791
* Step 1: gather all hard/soft IRQs usages backward in an
2792
* accumulated usage mask.
2793
*/
2794
bfs_init_rootb(&this, prev);
2795
2796
ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2797
if (bfs_error(ret)) {
2798
print_bfs_bug(ret);
2799
return 0;
2800
}
2801
2802
usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2803
if (!usage_mask)
2804
return 1;
2805
2806
/*
2807
* Step 2: find exclusive uses forward that match the previous
2808
* backward accumulated mask.
2809
*/
2810
forward_mask = exclusive_mask(usage_mask);
2811
2812
bfs_init_root(&that, next);
2813
2814
ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2815
if (bfs_error(ret)) {
2816
print_bfs_bug(ret);
2817
return 0;
2818
}
2819
if (ret == BFS_RNOMATCH)
2820
return 1;
2821
2822
/*
2823
* Step 3: we found a bad match! Now retrieve a lock from the backward
2824
* list whose usage mask matches the exclusive usage mask from the
2825
* lock found on the forward list.
2826
*
2827
* Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2828
* the follow case:
2829
*
2830
* When trying to add A -> B to the graph, we find that there is a
2831
* hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2832
* that B -> ... -> M. However M is **softirq-safe**, if we use exact
2833
* invert bits of M's usage_mask, we will find another lock N that is
2834
* **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2835
* cause a inversion deadlock.
2836
*/
2837
backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2838
2839
ret = find_usage_backwards(&this, backward_mask, &target_entry);
2840
if (bfs_error(ret)) {
2841
print_bfs_bug(ret);
2842
return 0;
2843
}
2844
if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2845
return 1;
2846
2847
/*
2848
* Step 4: narrow down to a pair of incompatible usage bits
2849
* and report it.
2850
*/
2851
ret = find_exclusive_match(target_entry->class->usage_mask,
2852
target_entry1->class->usage_mask,
2853
&backward_bit, &forward_bit);
2854
if (DEBUG_LOCKS_WARN_ON(ret == -1))
2855
return 1;
2856
2857
print_bad_irq_dependency(curr, &this, &that,
2858
target_entry, target_entry1,
2859
prev, next,
2860
backward_bit, forward_bit,
2861
state_name(backward_bit));
2862
2863
return 0;
2864
}
2865
2866
#else
2867
2868
static inline int check_irq_usage(struct task_struct *curr,
2869
struct held_lock *prev, struct held_lock *next)
2870
{
2871
return 1;
2872
}
2873
2874
static inline bool usage_skip(struct lock_list *entry, void *mask)
2875
{
2876
return false;
2877
}
2878
2879
#endif /* CONFIG_TRACE_IRQFLAGS */
2880
2881
#ifdef CONFIG_LOCKDEP_SMALL
2882
/*
2883
* We are about to add A -> B into the dependency graph, and in __bfs() a
2884
* strong dependency path A -> .. -> B is found: hlock_class equals
2885
* entry->class.
2886
*
2887
* If A -> .. -> B can replace A -> B in any __bfs() search (means the former
2888
* is _stronger_ than or equal to the latter), we consider A -> B as redundant.
2889
* For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
2890
* -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
2891
* dependency graph, as any strong path ..-> A -> B ->.. we can get with
2892
* having dependency A -> B, we could already get a equivalent path ..-> A ->
2893
* .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
2894
*
2895
* We need to make sure both the start and the end of A -> .. -> B is not
2896
* weaker than A -> B. For the start part, please see the comment in
2897
* check_redundant(). For the end part, we need:
2898
*
2899
* Either
2900
*
2901
* a) A -> B is -(*R)-> (everything is not weaker than that)
2902
*
2903
* or
2904
*
2905
* b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
2906
*
2907
*/
2908
static inline bool hlock_equal(struct lock_list *entry, void *data)
2909
{
2910
struct held_lock *hlock = (struct held_lock *)data;
2911
2912
return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2913
(hlock->read == 2 || /* A -> B is -(*R)-> */
2914
!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2915
}
2916
2917
/*
2918
* Check that the dependency graph starting at <src> can lead to
2919
* <target> or not. If it can, <src> -> <target> dependency is already
2920
* in the graph.
2921
*
2922
* Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2923
* any error appears in the bfs search.
2924
*/
2925
static noinline enum bfs_result
2926
check_redundant(struct held_lock *src, struct held_lock *target)
2927
{
2928
enum bfs_result ret;
2929
struct lock_list *target_entry;
2930
struct lock_list src_entry;
2931
2932
bfs_init_root(&src_entry, src);
2933
/*
2934
* Special setup for check_redundant().
2935
*
2936
* To report redundant, we need to find a strong dependency path that
2937
* is equal to or stronger than <src> -> <target>. So if <src> is E,
2938
* we need to let __bfs() only search for a path starting at a -(E*)->,
2939
* we achieve this by setting the initial node's ->only_xr to true in
2940
* that case. And if <prev> is S, we set initial ->only_xr to false
2941
* because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2942
*/
2943
src_entry.only_xr = src->read == 0;
2944
2945
debug_atomic_inc(nr_redundant_checks);
2946
2947
/*
2948
* Note: we skip local_lock() for redundant check, because as the
2949
* comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2950
* the same.
2951
*/
2952
ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2953
2954
if (ret == BFS_RMATCH)
2955
debug_atomic_inc(nr_redundant);
2956
2957
return ret;
2958
}
2959
2960
#else
2961
2962
static inline enum bfs_result
2963
check_redundant(struct held_lock *src, struct held_lock *target)
2964
{
2965
return BFS_RNOMATCH;
2966
}
2967
2968
#endif
2969
2970
static void inc_chains(int irq_context)
2971
{
2972
if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2973
nr_hardirq_chains++;
2974
else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2975
nr_softirq_chains++;
2976
else
2977
nr_process_chains++;
2978
}
2979
2980
static void dec_chains(int irq_context)
2981
{
2982
if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2983
nr_hardirq_chains--;
2984
else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2985
nr_softirq_chains--;
2986
else
2987
nr_process_chains--;
2988
}
2989
2990
static void
2991
print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2992
{
2993
struct lock_class *next = hlock_class(nxt);
2994
struct lock_class *prev = hlock_class(prv);
2995
2996
printk(" Possible unsafe locking scenario:\n\n");
2997
printk(" CPU0\n");
2998
printk(" ----\n");
2999
printk(" lock(");
3000
__print_lock_name(prv, prev);
3001
printk(KERN_CONT ");\n");
3002
printk(" lock(");
3003
__print_lock_name(nxt, next);
3004
printk(KERN_CONT ");\n");
3005
printk("\n *** DEADLOCK ***\n\n");
3006
printk(" May be due to missing lock nesting notation\n\n");
3007
}
3008
3009
static void
3010
print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
3011
struct held_lock *next)
3012
{
3013
struct lock_class *class = hlock_class(prev);
3014
3015
if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3016
return;
3017
3018
nbcon_cpu_emergency_enter();
3019
3020
pr_warn("\n");
3021
pr_warn("============================================\n");
3022
pr_warn("WARNING: possible recursive locking detected\n");
3023
print_kernel_ident();
3024
pr_warn("--------------------------------------------\n");
3025
pr_warn("%s/%d is trying to acquire lock:\n",
3026
curr->comm, task_pid_nr(curr));
3027
print_lock(next);
3028
pr_warn("\nbut task is already holding lock:\n");
3029
print_lock(prev);
3030
3031
if (class->cmp_fn) {
3032
pr_warn("and the lock comparison function returns %i:\n",
3033
class->cmp_fn(prev->instance, next->instance));
3034
}
3035
3036
pr_warn("\nother info that might help us debug this:\n");
3037
print_deadlock_scenario(next, prev);
3038
lockdep_print_held_locks(curr);
3039
3040
pr_warn("\nstack backtrace:\n");
3041
dump_stack();
3042
3043
nbcon_cpu_emergency_exit();
3044
}
3045
3046
/*
3047
* Check whether we are holding such a class already.
3048
*
3049
* (Note that this has to be done separately, because the graph cannot
3050
* detect such classes of deadlocks.)
3051
*
3052
* Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3053
* lock class is held but nest_lock is also held, i.e. we rely on the
3054
* nest_lock to avoid the deadlock.
3055
*/
3056
static int
3057
check_deadlock(struct task_struct *curr, struct held_lock *next)
3058
{
3059
struct lock_class *class;
3060
struct held_lock *prev;
3061
struct held_lock *nest = NULL;
3062
int i;
3063
3064
for (i = 0; i < curr->lockdep_depth; i++) {
3065
prev = curr->held_locks + i;
3066
3067
if (prev->instance == next->nest_lock)
3068
nest = prev;
3069
3070
if (hlock_class(prev) != hlock_class(next))
3071
continue;
3072
3073
/*
3074
* Allow read-after-read recursion of the same
3075
* lock class (i.e. read_lock(lock)+read_lock(lock)):
3076
*/
3077
if ((next->read == 2) && prev->read)
3078
continue;
3079
3080
class = hlock_class(prev);
3081
3082
if (class->cmp_fn &&
3083
class->cmp_fn(prev->instance, next->instance) < 0)
3084
continue;
3085
3086
/*
3087
* We're holding the nest_lock, which serializes this lock's
3088
* nesting behaviour.
3089
*/
3090
if (nest)
3091
return 2;
3092
3093
print_deadlock_bug(curr, prev, next);
3094
return 0;
3095
}
3096
return 1;
3097
}
3098
3099
/*
3100
* There was a chain-cache miss, and we are about to add a new dependency
3101
* to a previous lock. We validate the following rules:
3102
*
3103
* - would the adding of the <prev> -> <next> dependency create a
3104
* circular dependency in the graph? [== circular deadlock]
3105
*
3106
* - does the new prev->next dependency connect any hardirq-safe lock
3107
* (in the full backwards-subgraph starting at <prev>) with any
3108
* hardirq-unsafe lock (in the full forwards-subgraph starting at
3109
* <next>)? [== illegal lock inversion with hardirq contexts]
3110
*
3111
* - does the new prev->next dependency connect any softirq-safe lock
3112
* (in the full backwards-subgraph starting at <prev>) with any
3113
* softirq-unsafe lock (in the full forwards-subgraph starting at
3114
* <next>)? [== illegal lock inversion with softirq contexts]
3115
*
3116
* any of these scenarios could lead to a deadlock.
3117
*
3118
* Then if all the validations pass, we add the forwards and backwards
3119
* dependency.
3120
*/
3121
static int
3122
check_prev_add(struct task_struct *curr, struct held_lock *prev,
3123
struct held_lock *next, u16 distance,
3124
struct lock_trace **const trace)
3125
{
3126
struct lock_list *entry;
3127
enum bfs_result ret;
3128
3129
if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3130
/*
3131
* The warning statements below may trigger a use-after-free
3132
* of the class name. It is better to trigger a use-after free
3133
* and to have the class name most of the time instead of not
3134
* having the class name available.
3135
*/
3136
WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3137
"Detected use-after-free of lock class %px/%s\n",
3138
hlock_class(prev),
3139
hlock_class(prev)->name);
3140
WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3141
"Detected use-after-free of lock class %px/%s\n",
3142
hlock_class(next),
3143
hlock_class(next)->name);
3144
return 2;
3145
}
3146
3147
if (prev->class_idx == next->class_idx) {
3148
struct lock_class *class = hlock_class(prev);
3149
3150
if (class->cmp_fn &&
3151
class->cmp_fn(prev->instance, next->instance) < 0)
3152
return 2;
3153
}
3154
3155
/*
3156
* Prove that the new <prev> -> <next> dependency would not
3157
* create a circular dependency in the graph. (We do this by
3158
* a breadth-first search into the graph starting at <next>,
3159
* and check whether we can reach <prev>.)
3160
*
3161
* The search is limited by the size of the circular queue (i.e.,
3162
* MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3163
* in the graph whose neighbours are to be checked.
3164
*/
3165
ret = check_noncircular(next, prev, trace);
3166
if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3167
return 0;
3168
3169
if (!check_irq_usage(curr, prev, next))
3170
return 0;
3171
3172
/*
3173
* Is the <prev> -> <next> dependency already present?
3174
*
3175
* (this may occur even though this is a new chain: consider
3176
* e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3177
* chains - the second one will be new, but L1 already has
3178
* L2 added to its dependency list, due to the first chain.)
3179
*/
3180
list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3181
if (entry->class == hlock_class(next)) {
3182
if (distance == 1)
3183
entry->distance = 1;
3184
entry->dep |= calc_dep(prev, next);
3185
3186
/*
3187
* Also, update the reverse dependency in @next's
3188
* ->locks_before list.
3189
*
3190
* Here we reuse @entry as the cursor, which is fine
3191
* because we won't go to the next iteration of the
3192
* outer loop:
3193
*
3194
* For normal cases, we return in the inner loop.
3195
*
3196
* If we fail to return, we have inconsistency, i.e.
3197
* <prev>::locks_after contains <next> while
3198
* <next>::locks_before doesn't contain <prev>. In
3199
* that case, we return after the inner and indicate
3200
* something is wrong.
3201
*/
3202
list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3203
if (entry->class == hlock_class(prev)) {
3204
if (distance == 1)
3205
entry->distance = 1;
3206
entry->dep |= calc_depb(prev, next);
3207
return 1;
3208
}
3209
}
3210
3211
/* <prev> is not found in <next>::locks_before */
3212
return 0;
3213
}
3214
}
3215
3216
/*
3217
* Is the <prev> -> <next> link redundant?
3218
*/
3219
ret = check_redundant(prev, next);
3220
if (bfs_error(ret))
3221
return 0;
3222
else if (ret == BFS_RMATCH)
3223
return 2;
3224
3225
if (!*trace) {
3226
*trace = save_trace();
3227
if (!*trace)
3228
return 0;
3229
}
3230
3231
/*
3232
* Ok, all validations passed, add the new lock
3233
* to the previous lock's dependency list:
3234
*/
3235
ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3236
&hlock_class(prev)->locks_after, distance,
3237
calc_dep(prev, next), *trace);
3238
3239
if (!ret)
3240
return 0;
3241
3242
ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3243
&hlock_class(next)->locks_before, distance,
3244
calc_depb(prev, next), *trace);
3245
if (!ret)
3246
return 0;
3247
3248
return 2;
3249
}
3250
3251
/*
3252
* Add the dependency to all directly-previous locks that are 'relevant'.
3253
* The ones that are relevant are (in increasing distance from curr):
3254
* all consecutive trylock entries and the final non-trylock entry - or
3255
* the end of this context's lock-chain - whichever comes first.
3256
*/
3257
static int
3258
check_prevs_add(struct task_struct *curr, struct held_lock *next)
3259
{
3260
struct lock_trace *trace = NULL;
3261
int depth = curr->lockdep_depth;
3262
struct held_lock *hlock;
3263
3264
/*
3265
* Debugging checks.
3266
*
3267
* Depth must not be zero for a non-head lock:
3268
*/
3269
if (!depth)
3270
goto out_bug;
3271
/*
3272
* At least two relevant locks must exist for this
3273
* to be a head:
3274
*/
3275
if (curr->held_locks[depth].irq_context !=
3276
curr->held_locks[depth-1].irq_context)
3277
goto out_bug;
3278
3279
for (;;) {
3280
u16 distance = curr->lockdep_depth - depth + 1;
3281
hlock = curr->held_locks + depth - 1;
3282
3283
if (hlock->check) {
3284
int ret = check_prev_add(curr, hlock, next, distance, &trace);
3285
if (!ret)
3286
return 0;
3287
3288
/*
3289
* Stop after the first non-trylock entry,
3290
* as non-trylock entries have added their
3291
* own direct dependencies already, so this
3292
* lock is connected to them indirectly:
3293
*/
3294
if (!hlock->trylock)
3295
break;
3296
}
3297
3298
depth--;
3299
/*
3300
* End of lock-stack?
3301
*/
3302
if (!depth)
3303
break;
3304
/*
3305
* Stop the search if we cross into another context:
3306
*/
3307
if (curr->held_locks[depth].irq_context !=
3308
curr->held_locks[depth-1].irq_context)
3309
break;
3310
}
3311
return 1;
3312
out_bug:
3313
if (!debug_locks_off_graph_unlock())
3314
return 0;
3315
3316
/*
3317
* Clearly we all shouldn't be here, but since we made it we
3318
* can reliable say we messed up our state. See the above two
3319
* gotos for reasons why we could possibly end up here.
3320
*/
3321
WARN_ON(1);
3322
3323
return 0;
3324
}
3325
3326
struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3327
static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3328
static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3329
unsigned long nr_zapped_lock_chains;
3330
unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */
3331
unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */
3332
unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */
3333
3334
/*
3335
* The first 2 chain_hlocks entries in the chain block in the bucket
3336
* list contains the following meta data:
3337
*
3338
* entry[0]:
3339
* Bit 15 - always set to 1 (it is not a class index)
3340
* Bits 0-14 - upper 15 bits of the next block index
3341
* entry[1] - lower 16 bits of next block index
3342
*
3343
* A next block index of all 1 bits means it is the end of the list.
3344
*
3345
* On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3346
* the chain block size:
3347
*
3348
* entry[2] - upper 16 bits of the chain block size
3349
* entry[3] - lower 16 bits of the chain block size
3350
*/
3351
#define MAX_CHAIN_BUCKETS 16
3352
#define CHAIN_BLK_FLAG (1U << 15)
3353
#define CHAIN_BLK_LIST_END 0xFFFFU
3354
3355
static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3356
3357
static inline int size_to_bucket(int size)
3358
{
3359
if (size > MAX_CHAIN_BUCKETS)
3360
return 0;
3361
3362
return size - 1;
3363
}
3364
3365
/*
3366
* Iterate all the chain blocks in a bucket.
3367
*/
3368
#define for_each_chain_block(bucket, prev, curr) \
3369
for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3370
(curr) >= 0; \
3371
(prev) = (curr), (curr) = chain_block_next(curr))
3372
3373
/*
3374
* next block or -1
3375
*/
3376
static inline int chain_block_next(int offset)
3377
{
3378
int next = chain_hlocks[offset];
3379
3380
WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3381
3382
if (next == CHAIN_BLK_LIST_END)
3383
return -1;
3384
3385
next &= ~CHAIN_BLK_FLAG;
3386
next <<= 16;
3387
next |= chain_hlocks[offset + 1];
3388
3389
return next;
3390
}
3391
3392
/*
3393
* bucket-0 only
3394
*/
3395
static inline int chain_block_size(int offset)
3396
{
3397
return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3398
}
3399
3400
static inline void init_chain_block(int offset, int next, int bucket, int size)
3401
{
3402
chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3403
chain_hlocks[offset + 1] = (u16)next;
3404
3405
if (size && !bucket) {
3406
chain_hlocks[offset + 2] = size >> 16;
3407
chain_hlocks[offset + 3] = (u16)size;
3408
}
3409
}
3410
3411
static inline void add_chain_block(int offset, int size)
3412
{
3413
int bucket = size_to_bucket(size);
3414
int next = chain_block_buckets[bucket];
3415
int prev, curr;
3416
3417
if (unlikely(size < 2)) {
3418
/*
3419
* We can't store single entries on the freelist. Leak them.
3420
*
3421
* One possible way out would be to uniquely mark them, other
3422
* than with CHAIN_BLK_FLAG, such that we can recover them when
3423
* the block before it is re-added.
3424
*/
3425
if (size)
3426
nr_lost_chain_hlocks++;
3427
return;
3428
}
3429
3430
nr_free_chain_hlocks += size;
3431
if (!bucket) {
3432
nr_large_chain_blocks++;
3433
3434
/*
3435
* Variable sized, sort large to small.
3436
*/
3437
for_each_chain_block(0, prev, curr) {
3438
if (size >= chain_block_size(curr))
3439
break;
3440
}
3441
init_chain_block(offset, curr, 0, size);
3442
if (prev < 0)
3443
chain_block_buckets[0] = offset;
3444
else
3445
init_chain_block(prev, offset, 0, 0);
3446
return;
3447
}
3448
/*
3449
* Fixed size, add to head.
3450
*/
3451
init_chain_block(offset, next, bucket, size);
3452
chain_block_buckets[bucket] = offset;
3453
}
3454
3455
/*
3456
* Only the first block in the list can be deleted.
3457
*
3458
* For the variable size bucket[0], the first block (the largest one) is
3459
* returned, broken up and put back into the pool. So if a chain block of
3460
* length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3461
* queued up after the primordial chain block and never be used until the
3462
* hlock entries in the primordial chain block is almost used up. That
3463
* causes fragmentation and reduce allocation efficiency. That can be
3464
* monitored by looking at the "large chain blocks" number in lockdep_stats.
3465
*/
3466
static inline void del_chain_block(int bucket, int size, int next)
3467
{
3468
nr_free_chain_hlocks -= size;
3469
chain_block_buckets[bucket] = next;
3470
3471
if (!bucket)
3472
nr_large_chain_blocks--;
3473
}
3474
3475
static void init_chain_block_buckets(void)
3476
{
3477
int i;
3478
3479
for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3480
chain_block_buckets[i] = -1;
3481
3482
add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3483
}
3484
3485
/*
3486
* Return offset of a chain block of the right size or -1 if not found.
3487
*
3488
* Fairly simple worst-fit allocator with the addition of a number of size
3489
* specific free lists.
3490
*/
3491
static int alloc_chain_hlocks(int req)
3492
{
3493
int bucket, curr, size;
3494
3495
/*
3496
* We rely on the MSB to act as an escape bit to denote freelist
3497
* pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3498
*/
3499
BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3500
3501
init_data_structures_once();
3502
3503
if (nr_free_chain_hlocks < req)
3504
return -1;
3505
3506
/*
3507
* We require a minimum of 2 (u16) entries to encode a freelist
3508
* 'pointer'.
3509
*/
3510
req = max(req, 2);
3511
bucket = size_to_bucket(req);
3512
curr = chain_block_buckets[bucket];
3513
3514
if (bucket) {
3515
if (curr >= 0) {
3516
del_chain_block(bucket, req, chain_block_next(curr));
3517
return curr;
3518
}
3519
/* Try bucket 0 */
3520
curr = chain_block_buckets[0];
3521
}
3522
3523
/*
3524
* The variable sized freelist is sorted by size; the first entry is
3525
* the largest. Use it if it fits.
3526
*/
3527
if (curr >= 0) {
3528
size = chain_block_size(curr);
3529
if (likely(size >= req)) {
3530
del_chain_block(0, size, chain_block_next(curr));
3531
if (size > req)
3532
add_chain_block(curr + req, size - req);
3533
return curr;
3534
}
3535
}
3536
3537
/*
3538
* Last resort, split a block in a larger sized bucket.
3539
*/
3540
for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3541
bucket = size_to_bucket(size);
3542
curr = chain_block_buckets[bucket];
3543
if (curr < 0)
3544
continue;
3545
3546
del_chain_block(bucket, size, chain_block_next(curr));
3547
add_chain_block(curr + req, size - req);
3548
return curr;
3549
}
3550
3551
return -1;
3552
}
3553
3554
static inline void free_chain_hlocks(int base, int size)
3555
{
3556
add_chain_block(base, max(size, 2));
3557
}
3558
3559
struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3560
{
3561
u16 chain_hlock = chain_hlocks[chain->base + i];
3562
unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3563
3564
return lock_classes + class_idx;
3565
}
3566
3567
/*
3568
* Returns the index of the first held_lock of the current chain
3569
*/
3570
static inline int get_first_held_lock(struct task_struct *curr,
3571
struct held_lock *hlock)
3572
{
3573
int i;
3574
struct held_lock *hlock_curr;
3575
3576
for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3577
hlock_curr = curr->held_locks + i;
3578
if (hlock_curr->irq_context != hlock->irq_context)
3579
break;
3580
3581
}
3582
3583
return ++i;
3584
}
3585
3586
#ifdef CONFIG_DEBUG_LOCKDEP
3587
/*
3588
* Returns the next chain_key iteration
3589
*/
3590
static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3591
{
3592
u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3593
3594
printk(" hlock_id:%d -> chain_key:%016Lx",
3595
(unsigned int)hlock_id,
3596
(unsigned long long)new_chain_key);
3597
return new_chain_key;
3598
}
3599
3600
static void
3601
print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3602
{
3603
struct held_lock *hlock;
3604
u64 chain_key = INITIAL_CHAIN_KEY;
3605
int depth = curr->lockdep_depth;
3606
int i = get_first_held_lock(curr, hlock_next);
3607
3608
printk("depth: %u (irq_context %u)\n", depth - i + 1,
3609
hlock_next->irq_context);
3610
for (; i < depth; i++) {
3611
hlock = curr->held_locks + i;
3612
chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3613
3614
print_lock(hlock);
3615
}
3616
3617
print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3618
print_lock(hlock_next);
3619
}
3620
3621
static void print_chain_keys_chain(struct lock_chain *chain)
3622
{
3623
int i;
3624
u64 chain_key = INITIAL_CHAIN_KEY;
3625
u16 hlock_id;
3626
3627
printk("depth: %u\n", chain->depth);
3628
for (i = 0; i < chain->depth; i++) {
3629
hlock_id = chain_hlocks[chain->base + i];
3630
chain_key = print_chain_key_iteration(hlock_id, chain_key);
3631
3632
print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3633
printk("\n");
3634
}
3635
}
3636
3637
static void print_collision(struct task_struct *curr,
3638
struct held_lock *hlock_next,
3639
struct lock_chain *chain)
3640
{
3641
nbcon_cpu_emergency_enter();
3642
3643
pr_warn("\n");
3644
pr_warn("============================\n");
3645
pr_warn("WARNING: chain_key collision\n");
3646
print_kernel_ident();
3647
pr_warn("----------------------------\n");
3648
pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3649
pr_warn("Hash chain already cached but the contents don't match!\n");
3650
3651
pr_warn("Held locks:");
3652
print_chain_keys_held_locks(curr, hlock_next);
3653
3654
pr_warn("Locks in cached chain:");
3655
print_chain_keys_chain(chain);
3656
3657
pr_warn("\nstack backtrace:\n");
3658
dump_stack();
3659
3660
nbcon_cpu_emergency_exit();
3661
}
3662
#endif
3663
3664
/*
3665
* Checks whether the chain and the current held locks are consistent
3666
* in depth and also in content. If they are not it most likely means
3667
* that there was a collision during the calculation of the chain_key.
3668
* Returns: 0 not passed, 1 passed
3669
*/
3670
static int check_no_collision(struct task_struct *curr,
3671
struct held_lock *hlock,
3672
struct lock_chain *chain)
3673
{
3674
#ifdef CONFIG_DEBUG_LOCKDEP
3675
int i, j, id;
3676
3677
i = get_first_held_lock(curr, hlock);
3678
3679
if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3680
print_collision(curr, hlock, chain);
3681
return 0;
3682
}
3683
3684
for (j = 0; j < chain->depth - 1; j++, i++) {
3685
id = hlock_id(&curr->held_locks[i]);
3686
3687
if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3688
print_collision(curr, hlock, chain);
3689
return 0;
3690
}
3691
}
3692
#endif
3693
return 1;
3694
}
3695
3696
/*
3697
* Given an index that is >= -1, return the index of the next lock chain.
3698
* Return -2 if there is no next lock chain.
3699
*/
3700
long lockdep_next_lockchain(long i)
3701
{
3702
i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3703
return i < ARRAY_SIZE(lock_chains) ? i : -2;
3704
}
3705
3706
unsigned long lock_chain_count(void)
3707
{
3708
return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3709
}
3710
3711
/* Must be called with the graph lock held. */
3712
static struct lock_chain *alloc_lock_chain(void)
3713
{
3714
int idx = find_first_zero_bit(lock_chains_in_use,
3715
ARRAY_SIZE(lock_chains));
3716
3717
if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3718
return NULL;
3719
__set_bit(idx, lock_chains_in_use);
3720
return lock_chains + idx;
3721
}
3722
3723
/*
3724
* Adds a dependency chain into chain hashtable. And must be called with
3725
* graph_lock held.
3726
*
3727
* Return 0 if fail, and graph_lock is released.
3728
* Return 1 if succeed, with graph_lock held.
3729
*/
3730
static inline int add_chain_cache(struct task_struct *curr,
3731
struct held_lock *hlock,
3732
u64 chain_key)
3733
{
3734
struct hlist_head *hash_head = chainhashentry(chain_key);
3735
struct lock_chain *chain;
3736
int i, j;
3737
3738
/*
3739
* The caller must hold the graph lock, ensure we've got IRQs
3740
* disabled to make this an IRQ-safe lock.. for recursion reasons
3741
* lockdep won't complain about its own locking errors.
3742
*/
3743
if (lockdep_assert_locked())
3744
return 0;
3745
3746
chain = alloc_lock_chain();
3747
if (!chain) {
3748
if (!debug_locks_off_graph_unlock())
3749
return 0;
3750
3751
nbcon_cpu_emergency_enter();
3752
print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3753
dump_stack();
3754
nbcon_cpu_emergency_exit();
3755
return 0;
3756
}
3757
chain->chain_key = chain_key;
3758
chain->irq_context = hlock->irq_context;
3759
i = get_first_held_lock(curr, hlock);
3760
chain->depth = curr->lockdep_depth + 1 - i;
3761
3762
BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3763
BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks));
3764
BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3765
3766
j = alloc_chain_hlocks(chain->depth);
3767
if (j < 0) {
3768
if (!debug_locks_off_graph_unlock())
3769
return 0;
3770
3771
nbcon_cpu_emergency_enter();
3772
print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3773
dump_stack();
3774
nbcon_cpu_emergency_exit();
3775
return 0;
3776
}
3777
3778
chain->base = j;
3779
for (j = 0; j < chain->depth - 1; j++, i++) {
3780
int lock_id = hlock_id(curr->held_locks + i);
3781
3782
chain_hlocks[chain->base + j] = lock_id;
3783
}
3784
chain_hlocks[chain->base + j] = hlock_id(hlock);
3785
hlist_add_head_rcu(&chain->entry, hash_head);
3786
debug_atomic_inc(chain_lookup_misses);
3787
inc_chains(chain->irq_context);
3788
3789
return 1;
3790
}
3791
3792
/*
3793
* Look up a dependency chain. Must be called with either the graph lock or
3794
* the RCU read lock held.
3795
*/
3796
static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3797
{
3798
struct hlist_head *hash_head = chainhashentry(chain_key);
3799
struct lock_chain *chain;
3800
3801
hlist_for_each_entry_rcu(chain, hash_head, entry) {
3802
if (READ_ONCE(chain->chain_key) == chain_key) {
3803
debug_atomic_inc(chain_lookup_hits);
3804
return chain;
3805
}
3806
}
3807
return NULL;
3808
}
3809
3810
/*
3811
* If the key is not present yet in dependency chain cache then
3812
* add it and return 1 - in this case the new dependency chain is
3813
* validated. If the key is already hashed, return 0.
3814
* (On return with 1 graph_lock is held.)
3815
*/
3816
static inline int lookup_chain_cache_add(struct task_struct *curr,
3817
struct held_lock *hlock,
3818
u64 chain_key)
3819
{
3820
struct lock_class *class = hlock_class(hlock);
3821
struct lock_chain *chain = lookup_chain_cache(chain_key);
3822
3823
if (chain) {
3824
cache_hit:
3825
if (!check_no_collision(curr, hlock, chain))
3826
return 0;
3827
3828
if (very_verbose(class)) {
3829
printk("\nhash chain already cached, key: "
3830
"%016Lx tail class: [%px] %s\n",
3831
(unsigned long long)chain_key,
3832
class->key, class->name);
3833
}
3834
3835
return 0;
3836
}
3837
3838
if (very_verbose(class)) {
3839
printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3840
(unsigned long long)chain_key, class->key, class->name);
3841
}
3842
3843
if (!graph_lock())
3844
return 0;
3845
3846
/*
3847
* We have to walk the chain again locked - to avoid duplicates:
3848
*/
3849
chain = lookup_chain_cache(chain_key);
3850
if (chain) {
3851
graph_unlock();
3852
goto cache_hit;
3853
}
3854
3855
if (!add_chain_cache(curr, hlock, chain_key))
3856
return 0;
3857
3858
return 1;
3859
}
3860
3861
static int validate_chain(struct task_struct *curr,
3862
struct held_lock *hlock,
3863
int chain_head, u64 chain_key)
3864
{
3865
/*
3866
* Trylock needs to maintain the stack of held locks, but it
3867
* does not add new dependencies, because trylock can be done
3868
* in any order.
3869
*
3870
* We look up the chain_key and do the O(N^2) check and update of
3871
* the dependencies only if this is a new dependency chain.
3872
* (If lookup_chain_cache_add() return with 1 it acquires
3873
* graph_lock for us)
3874
*/
3875
if (!hlock->trylock && hlock->check &&
3876
lookup_chain_cache_add(curr, hlock, chain_key)) {
3877
/*
3878
* Check whether last held lock:
3879
*
3880
* - is irq-safe, if this lock is irq-unsafe
3881
* - is softirq-safe, if this lock is hardirq-unsafe
3882
*
3883
* And check whether the new lock's dependency graph
3884
* could lead back to the previous lock:
3885
*
3886
* - within the current held-lock stack
3887
* - across our accumulated lock dependency records
3888
*
3889
* any of these scenarios could lead to a deadlock.
3890
*/
3891
/*
3892
* The simple case: does the current hold the same lock
3893
* already?
3894
*/
3895
int ret = check_deadlock(curr, hlock);
3896
3897
if (!ret)
3898
return 0;
3899
/*
3900
* Add dependency only if this lock is not the head
3901
* of the chain, and if the new lock introduces no more
3902
* lock dependency (because we already hold a lock with the
3903
* same lock class) nor deadlock (because the nest_lock
3904
* serializes nesting locks), see the comments for
3905
* check_deadlock().
3906
*/
3907
if (!chain_head && ret != 2) {
3908
if (!check_prevs_add(curr, hlock))
3909
return 0;
3910
}
3911
3912
graph_unlock();
3913
} else {
3914
/* after lookup_chain_cache_add(): */
3915
if (unlikely(!debug_locks))
3916
return 0;
3917
}
3918
3919
return 1;
3920
}
3921
#else
3922
static inline int validate_chain(struct task_struct *curr,
3923
struct held_lock *hlock,
3924
int chain_head, u64 chain_key)
3925
{
3926
return 1;
3927
}
3928
3929
static void init_chain_block_buckets(void) { }
3930
#endif /* CONFIG_PROVE_LOCKING */
3931
3932
/*
3933
* We are building curr_chain_key incrementally, so double-check
3934
* it from scratch, to make sure that it's done correctly:
3935
*/
3936
static void check_chain_key(struct task_struct *curr)
3937
{
3938
#ifdef CONFIG_DEBUG_LOCKDEP
3939
struct held_lock *hlock, *prev_hlock = NULL;
3940
unsigned int i;
3941
u64 chain_key = INITIAL_CHAIN_KEY;
3942
3943
for (i = 0; i < curr->lockdep_depth; i++) {
3944
hlock = curr->held_locks + i;
3945
if (chain_key != hlock->prev_chain_key) {
3946
debug_locks_off();
3947
/*
3948
* We got mighty confused, our chain keys don't match
3949
* with what we expect, someone trample on our task state?
3950
*/
3951
WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3952
curr->lockdep_depth, i,
3953
(unsigned long long)chain_key,
3954
(unsigned long long)hlock->prev_chain_key);
3955
return;
3956
}
3957
3958
/*
3959
* hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3960
* it registered lock class index?
3961
*/
3962
if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3963
return;
3964
3965
if (prev_hlock && (prev_hlock->irq_context !=
3966
hlock->irq_context))
3967
chain_key = INITIAL_CHAIN_KEY;
3968
chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3969
prev_hlock = hlock;
3970
}
3971
if (chain_key != curr->curr_chain_key) {
3972
debug_locks_off();
3973
/*
3974
* More smoking hash instead of calculating it, damn see these
3975
* numbers float.. I bet that a pink elephant stepped on my memory.
3976
*/
3977
WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3978
curr->lockdep_depth, i,
3979
(unsigned long long)chain_key,
3980
(unsigned long long)curr->curr_chain_key);
3981
}
3982
#endif
3983
}
3984
3985
#ifdef CONFIG_PROVE_LOCKING
3986
static int mark_lock(struct task_struct *curr, struct held_lock *this,
3987
enum lock_usage_bit new_bit);
3988
3989
static void print_usage_bug_scenario(struct held_lock *lock)
3990
{
3991
struct lock_class *class = hlock_class(lock);
3992
3993
printk(" Possible unsafe locking scenario:\n\n");
3994
printk(" CPU0\n");
3995
printk(" ----\n");
3996
printk(" lock(");
3997
__print_lock_name(lock, class);
3998
printk(KERN_CONT ");\n");
3999
printk(" <Interrupt>\n");
4000
printk(" lock(");
4001
__print_lock_name(lock, class);
4002
printk(KERN_CONT ");\n");
4003
printk("\n *** DEADLOCK ***\n\n");
4004
}
4005
4006
static void
4007
print_usage_bug(struct task_struct *curr, struct held_lock *this,
4008
enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
4009
{
4010
if (!debug_locks_off() || debug_locks_silent)
4011
return;
4012
4013
nbcon_cpu_emergency_enter();
4014
4015
pr_warn("\n");
4016
pr_warn("================================\n");
4017
pr_warn("WARNING: inconsistent lock state\n");
4018
print_kernel_ident();
4019
pr_warn("--------------------------------\n");
4020
4021
pr_warn("inconsistent {%s} -> {%s} usage.\n",
4022
usage_str[prev_bit], usage_str[new_bit]);
4023
4024
pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
4025
curr->comm, task_pid_nr(curr),
4026
lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
4027
lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
4028
lockdep_hardirqs_enabled(),
4029
lockdep_softirqs_enabled(curr));
4030
print_lock(this);
4031
4032
pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
4033
print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
4034
4035
print_irqtrace_events(curr);
4036
pr_warn("\nother info that might help us debug this:\n");
4037
print_usage_bug_scenario(this);
4038
4039
lockdep_print_held_locks(curr);
4040
4041
pr_warn("\nstack backtrace:\n");
4042
dump_stack();
4043
4044
nbcon_cpu_emergency_exit();
4045
}
4046
4047
/*
4048
* Print out an error if an invalid bit is set:
4049
*/
4050
static inline int
4051
valid_state(struct task_struct *curr, struct held_lock *this,
4052
enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4053
{
4054
if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4055
graph_unlock();
4056
print_usage_bug(curr, this, bad_bit, new_bit);
4057
return 0;
4058
}
4059
return 1;
4060
}
4061
4062
4063
/*
4064
* print irq inversion bug:
4065
*/
4066
static void
4067
print_irq_inversion_bug(struct task_struct *curr,
4068
struct lock_list *root, struct lock_list *other,
4069
struct held_lock *this, int forwards,
4070
const char *irqclass)
4071
{
4072
struct lock_list *entry = other;
4073
struct lock_list *middle = NULL;
4074
int depth;
4075
4076
if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4077
return;
4078
4079
nbcon_cpu_emergency_enter();
4080
4081
pr_warn("\n");
4082
pr_warn("========================================================\n");
4083
pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4084
print_kernel_ident();
4085
pr_warn("--------------------------------------------------------\n");
4086
pr_warn("%s/%d just changed the state of lock:\n",
4087
curr->comm, task_pid_nr(curr));
4088
print_lock(this);
4089
if (forwards)
4090
pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4091
else
4092
pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4093
print_lock_name(NULL, other->class);
4094
pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4095
4096
pr_warn("\nother info that might help us debug this:\n");
4097
4098
/* Find a middle lock (if one exists) */
4099
depth = get_lock_depth(other);
4100
do {
4101
if (depth == 0 && (entry != root)) {
4102
pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4103
break;
4104
}
4105
middle = entry;
4106
entry = get_lock_parent(entry);
4107
depth--;
4108
} while (entry && entry != root && (depth >= 0));
4109
if (forwards)
4110
print_irq_lock_scenario(root, other,
4111
middle ? middle->class : root->class, other->class);
4112
else
4113
print_irq_lock_scenario(other, root,
4114
middle ? middle->class : other->class, root->class);
4115
4116
lockdep_print_held_locks(curr);
4117
4118
pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4119
root->trace = save_trace();
4120
if (!root->trace)
4121
goto out;
4122
print_shortest_lock_dependencies(other, root);
4123
4124
pr_warn("\nstack backtrace:\n");
4125
dump_stack();
4126
out:
4127
nbcon_cpu_emergency_exit();
4128
}
4129
4130
/*
4131
* Prove that in the forwards-direction subgraph starting at <this>
4132
* there is no lock matching <mask>:
4133
*/
4134
static int
4135
check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4136
enum lock_usage_bit bit)
4137
{
4138
enum bfs_result ret;
4139
struct lock_list root;
4140
struct lock_list *target_entry;
4141
enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4142
unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4143
4144
bfs_init_root(&root, this);
4145
ret = find_usage_forwards(&root, usage_mask, &target_entry);
4146
if (bfs_error(ret)) {
4147
print_bfs_bug(ret);
4148
return 0;
4149
}
4150
if (ret == BFS_RNOMATCH)
4151
return 1;
4152
4153
/* Check whether write or read usage is the match */
4154
if (target_entry->class->usage_mask & lock_flag(bit)) {
4155
print_irq_inversion_bug(curr, &root, target_entry,
4156
this, 1, state_name(bit));
4157
} else {
4158
print_irq_inversion_bug(curr, &root, target_entry,
4159
this, 1, state_name(read_bit));
4160
}
4161
4162
return 0;
4163
}
4164
4165
/*
4166
* Prove that in the backwards-direction subgraph starting at <this>
4167
* there is no lock matching <mask>:
4168
*/
4169
static int
4170
check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4171
enum lock_usage_bit bit)
4172
{
4173
enum bfs_result ret;
4174
struct lock_list root;
4175
struct lock_list *target_entry;
4176
enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4177
unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4178
4179
bfs_init_rootb(&root, this);
4180
ret = find_usage_backwards(&root, usage_mask, &target_entry);
4181
if (bfs_error(ret)) {
4182
print_bfs_bug(ret);
4183
return 0;
4184
}
4185
if (ret == BFS_RNOMATCH)
4186
return 1;
4187
4188
/* Check whether write or read usage is the match */
4189
if (target_entry->class->usage_mask & lock_flag(bit)) {
4190
print_irq_inversion_bug(curr, &root, target_entry,
4191
this, 0, state_name(bit));
4192
} else {
4193
print_irq_inversion_bug(curr, &root, target_entry,
4194
this, 0, state_name(read_bit));
4195
}
4196
4197
return 0;
4198
}
4199
4200
void print_irqtrace_events(struct task_struct *curr)
4201
{
4202
const struct irqtrace_events *trace = &curr->irqtrace;
4203
4204
nbcon_cpu_emergency_enter();
4205
4206
printk("irq event stamp: %u\n", trace->irq_events);
4207
printk("hardirqs last enabled at (%u): [<%px>] %pS\n",
4208
trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4209
(void *)trace->hardirq_enable_ip);
4210
printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4211
trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4212
(void *)trace->hardirq_disable_ip);
4213
printk("softirqs last enabled at (%u): [<%px>] %pS\n",
4214
trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4215
(void *)trace->softirq_enable_ip);
4216
printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4217
trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4218
(void *)trace->softirq_disable_ip);
4219
4220
nbcon_cpu_emergency_exit();
4221
}
4222
4223
static int HARDIRQ_verbose(struct lock_class *class)
4224
{
4225
#if HARDIRQ_VERBOSE
4226
return class_filter(class);
4227
#endif
4228
return 0;
4229
}
4230
4231
static int SOFTIRQ_verbose(struct lock_class *class)
4232
{
4233
#if SOFTIRQ_VERBOSE
4234
return class_filter(class);
4235
#endif
4236
return 0;
4237
}
4238
4239
static int (*state_verbose_f[])(struct lock_class *class) = {
4240
#define LOCKDEP_STATE(__STATE) \
4241
__STATE##_verbose,
4242
#include "lockdep_states.h"
4243
#undef LOCKDEP_STATE
4244
};
4245
4246
static inline int state_verbose(enum lock_usage_bit bit,
4247
struct lock_class *class)
4248
{
4249
return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4250
}
4251
4252
typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4253
enum lock_usage_bit bit, const char *name);
4254
4255
static int
4256
mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4257
enum lock_usage_bit new_bit)
4258
{
4259
int excl_bit = exclusive_bit(new_bit);
4260
int read = new_bit & LOCK_USAGE_READ_MASK;
4261
int dir = new_bit & LOCK_USAGE_DIR_MASK;
4262
4263
/*
4264
* Validate that this particular lock does not have conflicting
4265
* usage states.
4266
*/
4267
if (!valid_state(curr, this, new_bit, excl_bit))
4268
return 0;
4269
4270
/*
4271
* Check for read in write conflicts
4272
*/
4273
if (!read && !valid_state(curr, this, new_bit,
4274
excl_bit + LOCK_USAGE_READ_MASK))
4275
return 0;
4276
4277
4278
/*
4279
* Validate that the lock dependencies don't have conflicting usage
4280
* states.
4281
*/
4282
if (dir) {
4283
/*
4284
* mark ENABLED has to look backwards -- to ensure no dependee
4285
* has USED_IN state, which, again, would allow recursion deadlocks.
4286
*/
4287
if (!check_usage_backwards(curr, this, excl_bit))
4288
return 0;
4289
} else {
4290
/*
4291
* mark USED_IN has to look forwards -- to ensure no dependency
4292
* has ENABLED state, which would allow recursion deadlocks.
4293
*/
4294
if (!check_usage_forwards(curr, this, excl_bit))
4295
return 0;
4296
}
4297
4298
if (state_verbose(new_bit, hlock_class(this)))
4299
return 2;
4300
4301
return 1;
4302
}
4303
4304
/*
4305
* Mark all held locks with a usage bit:
4306
*/
4307
static int
4308
mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4309
{
4310
struct held_lock *hlock;
4311
int i;
4312
4313
for (i = 0; i < curr->lockdep_depth; i++) {
4314
enum lock_usage_bit hlock_bit = base_bit;
4315
hlock = curr->held_locks + i;
4316
4317
if (hlock->read)
4318
hlock_bit += LOCK_USAGE_READ_MASK;
4319
4320
BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4321
4322
if (!hlock->check)
4323
continue;
4324
4325
if (!mark_lock(curr, hlock, hlock_bit))
4326
return 0;
4327
}
4328
4329
return 1;
4330
}
4331
4332
/*
4333
* Hardirqs will be enabled:
4334
*/
4335
static void __trace_hardirqs_on_caller(void)
4336
{
4337
struct task_struct *curr = current;
4338
4339
/*
4340
* We are going to turn hardirqs on, so set the
4341
* usage bit for all held locks:
4342
*/
4343
if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4344
return;
4345
/*
4346
* If we have softirqs enabled, then set the usage
4347
* bit for all held locks. (disabled hardirqs prevented
4348
* this bit from being set before)
4349
*/
4350
if (curr->softirqs_enabled)
4351
mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4352
}
4353
4354
/**
4355
* lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4356
*
4357
* Invoked before a possible transition to RCU idle from exit to user or
4358
* guest mode. This ensures that all RCU operations are done before RCU
4359
* stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4360
* invoked to set the final state.
4361
*/
4362
void lockdep_hardirqs_on_prepare(void)
4363
{
4364
if (unlikely(!debug_locks))
4365
return;
4366
4367
/*
4368
* NMIs do not (and cannot) track lock dependencies, nothing to do.
4369
*/
4370
if (unlikely(in_nmi()))
4371
return;
4372
4373
if (unlikely(this_cpu_read(lockdep_recursion)))
4374
return;
4375
4376
if (unlikely(lockdep_hardirqs_enabled())) {
4377
/*
4378
* Neither irq nor preemption are disabled here
4379
* so this is racy by nature but losing one hit
4380
* in a stat is not a big deal.
4381
*/
4382
__debug_atomic_inc(redundant_hardirqs_on);
4383
return;
4384
}
4385
4386
/*
4387
* We're enabling irqs and according to our state above irqs weren't
4388
* already enabled, yet we find the hardware thinks they are in fact
4389
* enabled.. someone messed up their IRQ state tracing.
4390
*/
4391
if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4392
return;
4393
4394
/*
4395
* See the fine text that goes along with this variable definition.
4396
*/
4397
if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4398
return;
4399
4400
/*
4401
* Can't allow enabling interrupts while in an interrupt handler,
4402
* that's general bad form and such. Recursion, limited stack etc..
4403
*/
4404
if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4405
return;
4406
4407
current->hardirq_chain_key = current->curr_chain_key;
4408
4409
lockdep_recursion_inc();
4410
__trace_hardirqs_on_caller();
4411
lockdep_recursion_finish();
4412
}
4413
EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4414
4415
void noinstr lockdep_hardirqs_on(unsigned long ip)
4416
{
4417
struct irqtrace_events *trace = &current->irqtrace;
4418
4419
if (unlikely(!debug_locks))
4420
return;
4421
4422
/*
4423
* NMIs can happen in the middle of local_irq_{en,dis}able() where the
4424
* tracking state and hardware state are out of sync.
4425
*
4426
* NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4427
* and not rely on hardware state like normal interrupts.
4428
*/
4429
if (unlikely(in_nmi())) {
4430
if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4431
return;
4432
4433
/*
4434
* Skip:
4435
* - recursion check, because NMI can hit lockdep;
4436
* - hardware state check, because above;
4437
* - chain_key check, see lockdep_hardirqs_on_prepare().
4438
*/
4439
goto skip_checks;
4440
}
4441
4442
if (unlikely(this_cpu_read(lockdep_recursion)))
4443
return;
4444
4445
if (lockdep_hardirqs_enabled()) {
4446
/*
4447
* Neither irq nor preemption are disabled here
4448
* so this is racy by nature but losing one hit
4449
* in a stat is not a big deal.
4450
*/
4451
__debug_atomic_inc(redundant_hardirqs_on);
4452
return;
4453
}
4454
4455
/*
4456
* We're enabling irqs and according to our state above irqs weren't
4457
* already enabled, yet we find the hardware thinks they are in fact
4458
* enabled.. someone messed up their IRQ state tracing.
4459
*/
4460
if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4461
return;
4462
4463
/*
4464
* Ensure the lock stack remained unchanged between
4465
* lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4466
*/
4467
DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4468
current->curr_chain_key);
4469
4470
skip_checks:
4471
/* we'll do an OFF -> ON transition: */
4472
__this_cpu_write(hardirqs_enabled, 1);
4473
trace->hardirq_enable_ip = ip;
4474
trace->hardirq_enable_event = ++trace->irq_events;
4475
debug_atomic_inc(hardirqs_on_events);
4476
}
4477
EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4478
4479
/*
4480
* Hardirqs were disabled:
4481
*/
4482
void noinstr lockdep_hardirqs_off(unsigned long ip)
4483
{
4484
if (unlikely(!debug_locks))
4485
return;
4486
4487
/*
4488
* Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4489
* they will restore the software state. This ensures the software
4490
* state is consistent inside NMIs as well.
4491
*/
4492
if (in_nmi()) {
4493
if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4494
return;
4495
} else if (__this_cpu_read(lockdep_recursion))
4496
return;
4497
4498
/*
4499
* So we're supposed to get called after you mask local IRQs, but for
4500
* some reason the hardware doesn't quite think you did a proper job.
4501
*/
4502
if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4503
return;
4504
4505
if (lockdep_hardirqs_enabled()) {
4506
struct irqtrace_events *trace = &current->irqtrace;
4507
4508
/*
4509
* We have done an ON -> OFF transition:
4510
*/
4511
__this_cpu_write(hardirqs_enabled, 0);
4512
trace->hardirq_disable_ip = ip;
4513
trace->hardirq_disable_event = ++trace->irq_events;
4514
debug_atomic_inc(hardirqs_off_events);
4515
} else {
4516
debug_atomic_inc(redundant_hardirqs_off);
4517
}
4518
}
4519
EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4520
4521
/*
4522
* Softirqs will be enabled:
4523
*/
4524
void lockdep_softirqs_on(unsigned long ip)
4525
{
4526
struct irqtrace_events *trace = &current->irqtrace;
4527
4528
if (unlikely(!lockdep_enabled()))
4529
return;
4530
4531
/*
4532
* We fancy IRQs being disabled here, see softirq.c, avoids
4533
* funny state and nesting things.
4534
*/
4535
if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4536
return;
4537
4538
if (current->softirqs_enabled) {
4539
debug_atomic_inc(redundant_softirqs_on);
4540
return;
4541
}
4542
4543
lockdep_recursion_inc();
4544
/*
4545
* We'll do an OFF -> ON transition:
4546
*/
4547
current->softirqs_enabled = 1;
4548
trace->softirq_enable_ip = ip;
4549
trace->softirq_enable_event = ++trace->irq_events;
4550
debug_atomic_inc(softirqs_on_events);
4551
/*
4552
* We are going to turn softirqs on, so set the
4553
* usage bit for all held locks, if hardirqs are
4554
* enabled too:
4555
*/
4556
if (lockdep_hardirqs_enabled())
4557
mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4558
lockdep_recursion_finish();
4559
}
4560
4561
/*
4562
* Softirqs were disabled:
4563
*/
4564
void lockdep_softirqs_off(unsigned long ip)
4565
{
4566
if (unlikely(!lockdep_enabled()))
4567
return;
4568
4569
/*
4570
* We fancy IRQs being disabled here, see softirq.c
4571
*/
4572
if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4573
return;
4574
4575
if (current->softirqs_enabled) {
4576
struct irqtrace_events *trace = &current->irqtrace;
4577
4578
/*
4579
* We have done an ON -> OFF transition:
4580
*/
4581
current->softirqs_enabled = 0;
4582
trace->softirq_disable_ip = ip;
4583
trace->softirq_disable_event = ++trace->irq_events;
4584
debug_atomic_inc(softirqs_off_events);
4585
/*
4586
* Whoops, we wanted softirqs off, so why aren't they?
4587
*/
4588
DEBUG_LOCKS_WARN_ON(!softirq_count());
4589
} else
4590
debug_atomic_inc(redundant_softirqs_off);
4591
}
4592
4593
/**
4594
* lockdep_cleanup_dead_cpu - Ensure CPU lockdep state is cleanly stopped
4595
*
4596
* @cpu: index of offlined CPU
4597
* @idle: task pointer for offlined CPU's idle thread
4598
*
4599
* Invoked after the CPU is dead. Ensures that the tracing infrastructure
4600
* is left in a suitable state for the CPU to be subsequently brought
4601
* online again.
4602
*/
4603
void lockdep_cleanup_dead_cpu(unsigned int cpu, struct task_struct *idle)
4604
{
4605
if (unlikely(!debug_locks))
4606
return;
4607
4608
if (unlikely(per_cpu(hardirqs_enabled, cpu))) {
4609
pr_warn("CPU %u left hardirqs enabled!", cpu);
4610
if (idle)
4611
print_irqtrace_events(idle);
4612
/* Clean it up for when the CPU comes online again. */
4613
per_cpu(hardirqs_enabled, cpu) = 0;
4614
}
4615
}
4616
4617
static int
4618
mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4619
{
4620
if (!check)
4621
goto lock_used;
4622
4623
/*
4624
* If non-trylock use in a hardirq or softirq context, then
4625
* mark the lock as used in these contexts:
4626
*/
4627
if (!hlock->trylock) {
4628
if (hlock->read) {
4629
if (lockdep_hardirq_context())
4630
if (!mark_lock(curr, hlock,
4631
LOCK_USED_IN_HARDIRQ_READ))
4632
return 0;
4633
if (curr->softirq_context)
4634
if (!mark_lock(curr, hlock,
4635
LOCK_USED_IN_SOFTIRQ_READ))
4636
return 0;
4637
} else {
4638
if (lockdep_hardirq_context())
4639
if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4640
return 0;
4641
if (curr->softirq_context)
4642
if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4643
return 0;
4644
}
4645
}
4646
4647
/*
4648
* For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4649
* creates no critical section and no extra dependency can be introduced
4650
* by interrupts
4651
*/
4652
if (!hlock->hardirqs_off && !hlock->sync) {
4653
if (hlock->read) {
4654
if (!mark_lock(curr, hlock,
4655
LOCK_ENABLED_HARDIRQ_READ))
4656
return 0;
4657
if (curr->softirqs_enabled)
4658
if (!mark_lock(curr, hlock,
4659
LOCK_ENABLED_SOFTIRQ_READ))
4660
return 0;
4661
} else {
4662
if (!mark_lock(curr, hlock,
4663
LOCK_ENABLED_HARDIRQ))
4664
return 0;
4665
if (curr->softirqs_enabled)
4666
if (!mark_lock(curr, hlock,
4667
LOCK_ENABLED_SOFTIRQ))
4668
return 0;
4669
}
4670
}
4671
4672
lock_used:
4673
/* mark it as used: */
4674
if (!mark_lock(curr, hlock, LOCK_USED))
4675
return 0;
4676
4677
return 1;
4678
}
4679
4680
static inline unsigned int task_irq_context(struct task_struct *task)
4681
{
4682
return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4683
LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4684
}
4685
4686
static int separate_irq_context(struct task_struct *curr,
4687
struct held_lock *hlock)
4688
{
4689
unsigned int depth = curr->lockdep_depth;
4690
4691
/*
4692
* Keep track of points where we cross into an interrupt context:
4693
*/
4694
if (depth) {
4695
struct held_lock *prev_hlock;
4696
4697
prev_hlock = curr->held_locks + depth-1;
4698
/*
4699
* If we cross into another context, reset the
4700
* hash key (this also prevents the checking and the
4701
* adding of the dependency to 'prev'):
4702
*/
4703
if (prev_hlock->irq_context != hlock->irq_context)
4704
return 1;
4705
}
4706
return 0;
4707
}
4708
4709
/*
4710
* Mark a lock with a usage bit, and validate the state transition:
4711
*/
4712
static int mark_lock(struct task_struct *curr, struct held_lock *this,
4713
enum lock_usage_bit new_bit)
4714
{
4715
unsigned int new_mask, ret = 1;
4716
4717
if (new_bit >= LOCK_USAGE_STATES) {
4718
DEBUG_LOCKS_WARN_ON(1);
4719
return 0;
4720
}
4721
4722
if (new_bit == LOCK_USED && this->read)
4723
new_bit = LOCK_USED_READ;
4724
4725
new_mask = 1 << new_bit;
4726
4727
/*
4728
* If already set then do not dirty the cacheline,
4729
* nor do any checks:
4730
*/
4731
if (likely(hlock_class(this)->usage_mask & new_mask))
4732
return 1;
4733
4734
if (!graph_lock())
4735
return 0;
4736
/*
4737
* Make sure we didn't race:
4738
*/
4739
if (unlikely(hlock_class(this)->usage_mask & new_mask))
4740
goto unlock;
4741
4742
if (!hlock_class(this)->usage_mask)
4743
debug_atomic_dec(nr_unused_locks);
4744
4745
hlock_class(this)->usage_mask |= new_mask;
4746
4747
if (new_bit < LOCK_TRACE_STATES) {
4748
if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4749
return 0;
4750
}
4751
4752
if (new_bit < LOCK_USED) {
4753
ret = mark_lock_irq(curr, this, new_bit);
4754
if (!ret)
4755
return 0;
4756
}
4757
4758
unlock:
4759
graph_unlock();
4760
4761
/*
4762
* We must printk outside of the graph_lock:
4763
*/
4764
if (ret == 2) {
4765
nbcon_cpu_emergency_enter();
4766
printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4767
print_lock(this);
4768
print_irqtrace_events(curr);
4769
dump_stack();
4770
nbcon_cpu_emergency_exit();
4771
}
4772
4773
return ret;
4774
}
4775
4776
static inline short task_wait_context(struct task_struct *curr)
4777
{
4778
/*
4779
* Set appropriate wait type for the context; for IRQs we have to take
4780
* into account force_irqthread as that is implied by PREEMPT_RT.
4781
*/
4782
if (lockdep_hardirq_context()) {
4783
/*
4784
* Check if force_irqthreads will run us threaded.
4785
*/
4786
if (curr->hardirq_threaded || curr->irq_config)
4787
return LD_WAIT_CONFIG;
4788
4789
return LD_WAIT_SPIN;
4790
} else if (curr->softirq_context) {
4791
/*
4792
* Softirqs are always threaded.
4793
*/
4794
return LD_WAIT_CONFIG;
4795
}
4796
4797
return LD_WAIT_MAX;
4798
}
4799
4800
static int
4801
print_lock_invalid_wait_context(struct task_struct *curr,
4802
struct held_lock *hlock)
4803
{
4804
short curr_inner;
4805
4806
if (!debug_locks_off())
4807
return 0;
4808
if (debug_locks_silent)
4809
return 0;
4810
4811
nbcon_cpu_emergency_enter();
4812
4813
pr_warn("\n");
4814
pr_warn("=============================\n");
4815
pr_warn("[ BUG: Invalid wait context ]\n");
4816
print_kernel_ident();
4817
pr_warn("-----------------------------\n");
4818
4819
pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4820
print_lock(hlock);
4821
4822
pr_warn("other info that might help us debug this:\n");
4823
4824
curr_inner = task_wait_context(curr);
4825
pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4826
4827
lockdep_print_held_locks(curr);
4828
4829
pr_warn("stack backtrace:\n");
4830
dump_stack();
4831
4832
nbcon_cpu_emergency_exit();
4833
4834
return 0;
4835
}
4836
4837
/*
4838
* Verify the wait_type context.
4839
*
4840
* This check validates we take locks in the right wait-type order; that is it
4841
* ensures that we do not take mutexes inside spinlocks and do not attempt to
4842
* acquire spinlocks inside raw_spinlocks and the sort.
4843
*
4844
* The entire thing is slightly more complex because of RCU, RCU is a lock that
4845
* can be taken from (pretty much) any context but also has constraints.
4846
* However when taken in a stricter environment the RCU lock does not loosen
4847
* the constraints.
4848
*
4849
* Therefore we must look for the strictest environment in the lock stack and
4850
* compare that to the lock we're trying to acquire.
4851
*/
4852
static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4853
{
4854
u8 next_inner = hlock_class(next)->wait_type_inner;
4855
u8 next_outer = hlock_class(next)->wait_type_outer;
4856
u8 curr_inner;
4857
int depth;
4858
4859
if (!next_inner || next->trylock)
4860
return 0;
4861
4862
if (!next_outer)
4863
next_outer = next_inner;
4864
4865
/*
4866
* Find start of current irq_context..
4867
*/
4868
for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4869
struct held_lock *prev = curr->held_locks + depth;
4870
if (prev->irq_context != next->irq_context)
4871
break;
4872
}
4873
depth++;
4874
4875
curr_inner = task_wait_context(curr);
4876
4877
for (; depth < curr->lockdep_depth; depth++) {
4878
struct held_lock *prev = curr->held_locks + depth;
4879
struct lock_class *class = hlock_class(prev);
4880
u8 prev_inner = class->wait_type_inner;
4881
4882
if (prev_inner) {
4883
/*
4884
* We can have a bigger inner than a previous one
4885
* when outer is smaller than inner, as with RCU.
4886
*
4887
* Also due to trylocks.
4888
*/
4889
curr_inner = min(curr_inner, prev_inner);
4890
4891
/*
4892
* Allow override for annotations -- this is typically
4893
* only valid/needed for code that only exists when
4894
* CONFIG_PREEMPT_RT=n.
4895
*/
4896
if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4897
curr_inner = prev_inner;
4898
}
4899
}
4900
4901
if (next_outer > curr_inner)
4902
return print_lock_invalid_wait_context(curr, next);
4903
4904
return 0;
4905
}
4906
4907
#else /* CONFIG_PROVE_LOCKING */
4908
4909
static inline int
4910
mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4911
{
4912
return 1;
4913
}
4914
4915
static inline unsigned int task_irq_context(struct task_struct *task)
4916
{
4917
return 0;
4918
}
4919
4920
static inline int separate_irq_context(struct task_struct *curr,
4921
struct held_lock *hlock)
4922
{
4923
return 0;
4924
}
4925
4926
static inline int check_wait_context(struct task_struct *curr,
4927
struct held_lock *next)
4928
{
4929
return 0;
4930
}
4931
4932
#endif /* CONFIG_PROVE_LOCKING */
4933
4934
/*
4935
* Initialize a lock instance's lock-class mapping info:
4936
*/
4937
void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4938
struct lock_class_key *key, int subclass,
4939
u8 inner, u8 outer, u8 lock_type)
4940
{
4941
int i;
4942
4943
for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4944
lock->class_cache[i] = NULL;
4945
4946
#ifdef CONFIG_LOCK_STAT
4947
lock->cpu = raw_smp_processor_id();
4948
#endif
4949
4950
/*
4951
* Can't be having no nameless bastards around this place!
4952
*/
4953
if (DEBUG_LOCKS_WARN_ON(!name)) {
4954
lock->name = "NULL";
4955
return;
4956
}
4957
4958
lock->name = name;
4959
4960
lock->wait_type_outer = outer;
4961
lock->wait_type_inner = inner;
4962
lock->lock_type = lock_type;
4963
4964
/*
4965
* No key, no joy, we need to hash something.
4966
*/
4967
if (DEBUG_LOCKS_WARN_ON(!key))
4968
return;
4969
/*
4970
* Sanity check, the lock-class key must either have been allocated
4971
* statically or must have been registered as a dynamic key.
4972
*/
4973
if (!static_obj(key) && !is_dynamic_key(key)) {
4974
if (debug_locks)
4975
printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4976
DEBUG_LOCKS_WARN_ON(1);
4977
return;
4978
}
4979
lock->key = key;
4980
4981
if (unlikely(!debug_locks))
4982
return;
4983
4984
if (subclass) {
4985
unsigned long flags;
4986
4987
if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4988
return;
4989
4990
raw_local_irq_save(flags);
4991
lockdep_recursion_inc();
4992
register_lock_class(lock, subclass, 1);
4993
lockdep_recursion_finish();
4994
raw_local_irq_restore(flags);
4995
}
4996
}
4997
EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4998
4999
struct lock_class_key __lockdep_no_validate__;
5000
EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
5001
5002
struct lock_class_key __lockdep_no_track__;
5003
EXPORT_SYMBOL_GPL(__lockdep_no_track__);
5004
5005
#ifdef CONFIG_PROVE_LOCKING
5006
void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
5007
lock_print_fn print_fn)
5008
{
5009
struct lock_class *class = lock->class_cache[0];
5010
unsigned long flags;
5011
5012
raw_local_irq_save(flags);
5013
lockdep_recursion_inc();
5014
5015
if (!class)
5016
class = register_lock_class(lock, 0, 0);
5017
5018
if (class) {
5019
WARN_ON(class->cmp_fn && class->cmp_fn != cmp_fn);
5020
WARN_ON(class->print_fn && class->print_fn != print_fn);
5021
5022
class->cmp_fn = cmp_fn;
5023
class->print_fn = print_fn;
5024
}
5025
5026
lockdep_recursion_finish();
5027
raw_local_irq_restore(flags);
5028
}
5029
EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
5030
#endif
5031
5032
static void
5033
print_lock_nested_lock_not_held(struct task_struct *curr,
5034
struct held_lock *hlock)
5035
{
5036
if (!debug_locks_off())
5037
return;
5038
if (debug_locks_silent)
5039
return;
5040
5041
nbcon_cpu_emergency_enter();
5042
5043
pr_warn("\n");
5044
pr_warn("==================================\n");
5045
pr_warn("WARNING: Nested lock was not taken\n");
5046
print_kernel_ident();
5047
pr_warn("----------------------------------\n");
5048
5049
pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
5050
print_lock(hlock);
5051
5052
pr_warn("\nbut this task is not holding:\n");
5053
pr_warn("%s\n", hlock->nest_lock->name);
5054
5055
pr_warn("\nstack backtrace:\n");
5056
dump_stack();
5057
5058
pr_warn("\nother info that might help us debug this:\n");
5059
lockdep_print_held_locks(curr);
5060
5061
pr_warn("\nstack backtrace:\n");
5062
dump_stack();
5063
5064
nbcon_cpu_emergency_exit();
5065
}
5066
5067
static int __lock_is_held(const struct lockdep_map *lock, int read);
5068
5069
/*
5070
* This gets called for every mutex_lock*()/spin_lock*() operation.
5071
* We maintain the dependency maps and validate the locking attempt:
5072
*
5073
* The callers must make sure that IRQs are disabled before calling it,
5074
* otherwise we could get an interrupt which would want to take locks,
5075
* which would end up in lockdep again.
5076
*/
5077
static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5078
int trylock, int read, int check, int hardirqs_off,
5079
struct lockdep_map *nest_lock, unsigned long ip,
5080
int references, int pin_count, int sync)
5081
{
5082
struct task_struct *curr = current;
5083
struct lock_class *class = NULL;
5084
struct held_lock *hlock;
5085
unsigned int depth;
5086
int chain_head = 0;
5087
int class_idx;
5088
u64 chain_key;
5089
5090
if (unlikely(!debug_locks))
5091
return 0;
5092
5093
if (unlikely(lock->key == &__lockdep_no_track__))
5094
return 0;
5095
5096
lockevent_inc(lockdep_acquire);
5097
5098
if (!prove_locking || lock->key == &__lockdep_no_validate__) {
5099
check = 0;
5100
lockevent_inc(lockdep_nocheck);
5101
}
5102
5103
if (DEBUG_LOCKS_WARN_ON(subclass >= MAX_LOCKDEP_SUBCLASSES))
5104
return 0;
5105
5106
if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5107
class = lock->class_cache[subclass];
5108
/*
5109
* Not cached?
5110
*/
5111
if (unlikely(!class)) {
5112
class = register_lock_class(lock, subclass, 0);
5113
if (!class)
5114
return 0;
5115
}
5116
5117
debug_class_ops_inc(class);
5118
5119
if (very_verbose(class)) {
5120
nbcon_cpu_emergency_enter();
5121
printk("\nacquire class [%px] %s", class->key, class->name);
5122
if (class->name_version > 1)
5123
printk(KERN_CONT "#%d", class->name_version);
5124
printk(KERN_CONT "\n");
5125
dump_stack();
5126
nbcon_cpu_emergency_exit();
5127
}
5128
5129
/*
5130
* Add the lock to the list of currently held locks.
5131
* (we dont increase the depth just yet, up until the
5132
* dependency checks are done)
5133
*/
5134
depth = curr->lockdep_depth;
5135
/*
5136
* Ran out of static storage for our per-task lock stack again have we?
5137
*/
5138
if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5139
return 0;
5140
5141
class_idx = class - lock_classes;
5142
5143
if (depth && !sync) {
5144
/* we're holding locks and the new held lock is not a sync */
5145
hlock = curr->held_locks + depth - 1;
5146
if (hlock->class_idx == class_idx && nest_lock) {
5147
if (!references)
5148
references++;
5149
5150
if (!hlock->references)
5151
hlock->references++;
5152
5153
hlock->references += references;
5154
5155
/* Overflow */
5156
if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5157
return 0;
5158
5159
return 2;
5160
}
5161
}
5162
5163
hlock = curr->held_locks + depth;
5164
/*
5165
* Plain impossible, we just registered it and checked it weren't no
5166
* NULL like.. I bet this mushroom I ate was good!
5167
*/
5168
if (DEBUG_LOCKS_WARN_ON(!class))
5169
return 0;
5170
hlock->class_idx = class_idx;
5171
hlock->acquire_ip = ip;
5172
hlock->instance = lock;
5173
hlock->nest_lock = nest_lock;
5174
hlock->irq_context = task_irq_context(curr);
5175
hlock->trylock = trylock;
5176
hlock->read = read;
5177
hlock->check = check;
5178
hlock->sync = !!sync;
5179
hlock->hardirqs_off = !!hardirqs_off;
5180
hlock->references = references;
5181
#ifdef CONFIG_LOCK_STAT
5182
hlock->waittime_stamp = 0;
5183
hlock->holdtime_stamp = lockstat_clock();
5184
#endif
5185
hlock->pin_count = pin_count;
5186
5187
if (check_wait_context(curr, hlock))
5188
return 0;
5189
5190
/* Initialize the lock usage bit */
5191
if (!mark_usage(curr, hlock, check))
5192
return 0;
5193
5194
/*
5195
* Calculate the chain hash: it's the combined hash of all the
5196
* lock keys along the dependency chain. We save the hash value
5197
* at every step so that we can get the current hash easily
5198
* after unlock. The chain hash is then used to cache dependency
5199
* results.
5200
*
5201
* The 'key ID' is what is the most compact key value to drive
5202
* the hash, not class->key.
5203
*/
5204
/*
5205
* Whoops, we did it again.. class_idx is invalid.
5206
*/
5207
if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5208
return 0;
5209
5210
chain_key = curr->curr_chain_key;
5211
if (!depth) {
5212
/*
5213
* How can we have a chain hash when we ain't got no keys?!
5214
*/
5215
if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5216
return 0;
5217
chain_head = 1;
5218
}
5219
5220
hlock->prev_chain_key = chain_key;
5221
if (separate_irq_context(curr, hlock)) {
5222
chain_key = INITIAL_CHAIN_KEY;
5223
chain_head = 1;
5224
}
5225
chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5226
5227
if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5228
print_lock_nested_lock_not_held(curr, hlock);
5229
return 0;
5230
}
5231
5232
if (!debug_locks_silent) {
5233
WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5234
WARN_ON_ONCE(!hlock_class(hlock)->key);
5235
}
5236
5237
if (!validate_chain(curr, hlock, chain_head, chain_key))
5238
return 0;
5239
5240
/* For lock_sync(), we are done here since no actual critical section */
5241
if (hlock->sync)
5242
return 1;
5243
5244
curr->curr_chain_key = chain_key;
5245
curr->lockdep_depth++;
5246
check_chain_key(curr);
5247
#ifdef CONFIG_DEBUG_LOCKDEP
5248
if (unlikely(!debug_locks))
5249
return 0;
5250
#endif
5251
if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5252
debug_locks_off();
5253
nbcon_cpu_emergency_enter();
5254
print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5255
printk(KERN_DEBUG "depth: %i max: %lu!\n",
5256
curr->lockdep_depth, MAX_LOCK_DEPTH);
5257
5258
lockdep_print_held_locks(current);
5259
debug_show_all_locks();
5260
dump_stack();
5261
nbcon_cpu_emergency_exit();
5262
5263
return 0;
5264
}
5265
5266
if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5267
max_lockdep_depth = curr->lockdep_depth;
5268
5269
return 1;
5270
}
5271
5272
static void print_unlock_imbalance_bug(struct task_struct *curr,
5273
struct lockdep_map *lock,
5274
unsigned long ip)
5275
{
5276
if (!debug_locks_off())
5277
return;
5278
if (debug_locks_silent)
5279
return;
5280
5281
nbcon_cpu_emergency_enter();
5282
5283
pr_warn("\n");
5284
pr_warn("=====================================\n");
5285
pr_warn("WARNING: bad unlock balance detected!\n");
5286
print_kernel_ident();
5287
pr_warn("-------------------------------------\n");
5288
pr_warn("%s/%d is trying to release lock (",
5289
curr->comm, task_pid_nr(curr));
5290
print_lockdep_cache(lock);
5291
pr_cont(") at:\n");
5292
print_ip_sym(KERN_WARNING, ip);
5293
pr_warn("but there are no more locks to release!\n");
5294
pr_warn("\nother info that might help us debug this:\n");
5295
lockdep_print_held_locks(curr);
5296
5297
pr_warn("\nstack backtrace:\n");
5298
dump_stack();
5299
5300
nbcon_cpu_emergency_exit();
5301
}
5302
5303
static noinstr int match_held_lock(const struct held_lock *hlock,
5304
const struct lockdep_map *lock)
5305
{
5306
if (hlock->instance == lock)
5307
return 1;
5308
5309
if (hlock->references) {
5310
const struct lock_class *class = lock->class_cache[0];
5311
5312
if (!class)
5313
class = look_up_lock_class(lock, 0);
5314
5315
/*
5316
* If look_up_lock_class() failed to find a class, we're trying
5317
* to test if we hold a lock that has never yet been acquired.
5318
* Clearly if the lock hasn't been acquired _ever_, we're not
5319
* holding it either, so report failure.
5320
*/
5321
if (!class)
5322
return 0;
5323
5324
/*
5325
* References, but not a lock we're actually ref-counting?
5326
* State got messed up, follow the sites that change ->references
5327
* and try to make sense of it.
5328
*/
5329
if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5330
return 0;
5331
5332
if (hlock->class_idx == class - lock_classes)
5333
return 1;
5334
}
5335
5336
return 0;
5337
}
5338
5339
/* @depth must not be zero */
5340
static struct held_lock *find_held_lock(struct task_struct *curr,
5341
struct lockdep_map *lock,
5342
unsigned int depth, int *idx)
5343
{
5344
struct held_lock *ret, *hlock, *prev_hlock;
5345
int i;
5346
5347
i = depth - 1;
5348
hlock = curr->held_locks + i;
5349
ret = hlock;
5350
if (match_held_lock(hlock, lock))
5351
goto out;
5352
5353
ret = NULL;
5354
for (i--, prev_hlock = hlock--;
5355
i >= 0;
5356
i--, prev_hlock = hlock--) {
5357
/*
5358
* We must not cross into another context:
5359
*/
5360
if (prev_hlock->irq_context != hlock->irq_context) {
5361
ret = NULL;
5362
break;
5363
}
5364
if (match_held_lock(hlock, lock)) {
5365
ret = hlock;
5366
break;
5367
}
5368
}
5369
5370
out:
5371
*idx = i;
5372
return ret;
5373
}
5374
5375
static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5376
int idx, unsigned int *merged)
5377
{
5378
struct held_lock *hlock;
5379
int first_idx = idx;
5380
5381
if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5382
return 0;
5383
5384
for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5385
switch (__lock_acquire(hlock->instance,
5386
hlock_class(hlock)->subclass,
5387
hlock->trylock,
5388
hlock->read, hlock->check,
5389
hlock->hardirqs_off,
5390
hlock->nest_lock, hlock->acquire_ip,
5391
hlock->references, hlock->pin_count, 0)) {
5392
case 0:
5393
return 1;
5394
case 1:
5395
break;
5396
case 2:
5397
*merged += (idx == first_idx);
5398
break;
5399
default:
5400
WARN_ON(1);
5401
return 0;
5402
}
5403
}
5404
return 0;
5405
}
5406
5407
static int
5408
__lock_set_class(struct lockdep_map *lock, const char *name,
5409
struct lock_class_key *key, unsigned int subclass,
5410
unsigned long ip)
5411
{
5412
struct task_struct *curr = current;
5413
unsigned int depth, merged = 0;
5414
struct held_lock *hlock;
5415
struct lock_class *class;
5416
int i;
5417
5418
if (unlikely(!debug_locks))
5419
return 0;
5420
5421
depth = curr->lockdep_depth;
5422
/*
5423
* This function is about (re)setting the class of a held lock,
5424
* yet we're not actually holding any locks. Naughty user!
5425
*/
5426
if (DEBUG_LOCKS_WARN_ON(!depth))
5427
return 0;
5428
5429
hlock = find_held_lock(curr, lock, depth, &i);
5430
if (!hlock) {
5431
print_unlock_imbalance_bug(curr, lock, ip);
5432
return 0;
5433
}
5434
5435
lockdep_init_map_type(lock, name, key, 0,
5436
lock->wait_type_inner,
5437
lock->wait_type_outer,
5438
lock->lock_type);
5439
class = register_lock_class(lock, subclass, 0);
5440
hlock->class_idx = class - lock_classes;
5441
5442
curr->lockdep_depth = i;
5443
curr->curr_chain_key = hlock->prev_chain_key;
5444
5445
if (reacquire_held_locks(curr, depth, i, &merged))
5446
return 0;
5447
5448
/*
5449
* I took it apart and put it back together again, except now I have
5450
* these 'spare' parts.. where shall I put them.
5451
*/
5452
if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5453
return 0;
5454
return 1;
5455
}
5456
5457
static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5458
{
5459
struct task_struct *curr = current;
5460
unsigned int depth, merged = 0;
5461
struct held_lock *hlock;
5462
int i;
5463
5464
if (unlikely(!debug_locks))
5465
return 0;
5466
5467
depth = curr->lockdep_depth;
5468
/*
5469
* This function is about (re)setting the class of a held lock,
5470
* yet we're not actually holding any locks. Naughty user!
5471
*/
5472
if (DEBUG_LOCKS_WARN_ON(!depth))
5473
return 0;
5474
5475
hlock = find_held_lock(curr, lock, depth, &i);
5476
if (!hlock) {
5477
print_unlock_imbalance_bug(curr, lock, ip);
5478
return 0;
5479
}
5480
5481
curr->lockdep_depth = i;
5482
curr->curr_chain_key = hlock->prev_chain_key;
5483
5484
WARN(hlock->read, "downgrading a read lock");
5485
hlock->read = 1;
5486
hlock->acquire_ip = ip;
5487
5488
if (reacquire_held_locks(curr, depth, i, &merged))
5489
return 0;
5490
5491
/* Merging can't happen with unchanged classes.. */
5492
if (DEBUG_LOCKS_WARN_ON(merged))
5493
return 0;
5494
5495
/*
5496
* I took it apart and put it back together again, except now I have
5497
* these 'spare' parts.. where shall I put them.
5498
*/
5499
if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5500
return 0;
5501
5502
return 1;
5503
}
5504
5505
/*
5506
* Remove the lock from the list of currently held locks - this gets
5507
* called on mutex_unlock()/spin_unlock*() (or on a failed
5508
* mutex_lock_interruptible()).
5509
*/
5510
static int
5511
__lock_release(struct lockdep_map *lock, unsigned long ip)
5512
{
5513
struct task_struct *curr = current;
5514
unsigned int depth, merged = 1;
5515
struct held_lock *hlock;
5516
int i;
5517
5518
if (unlikely(!debug_locks))
5519
return 0;
5520
5521
depth = curr->lockdep_depth;
5522
/*
5523
* So we're all set to release this lock.. wait what lock? We don't
5524
* own any locks, you've been drinking again?
5525
*/
5526
if (depth <= 0) {
5527
print_unlock_imbalance_bug(curr, lock, ip);
5528
return 0;
5529
}
5530
5531
/*
5532
* Check whether the lock exists in the current stack
5533
* of held locks:
5534
*/
5535
hlock = find_held_lock(curr, lock, depth, &i);
5536
if (!hlock) {
5537
print_unlock_imbalance_bug(curr, lock, ip);
5538
return 0;
5539
}
5540
5541
if (hlock->instance == lock)
5542
lock_release_holdtime(hlock);
5543
5544
WARN(hlock->pin_count, "releasing a pinned lock\n");
5545
5546
if (hlock->references) {
5547
hlock->references--;
5548
if (hlock->references) {
5549
/*
5550
* We had, and after removing one, still have
5551
* references, the current lock stack is still
5552
* valid. We're done!
5553
*/
5554
return 1;
5555
}
5556
}
5557
5558
/*
5559
* We have the right lock to unlock, 'hlock' points to it.
5560
* Now we remove it from the stack, and add back the other
5561
* entries (if any), recalculating the hash along the way:
5562
*/
5563
5564
curr->lockdep_depth = i;
5565
curr->curr_chain_key = hlock->prev_chain_key;
5566
5567
/*
5568
* The most likely case is when the unlock is on the innermost
5569
* lock. In this case, we are done!
5570
*/
5571
if (i == depth-1)
5572
return 1;
5573
5574
if (reacquire_held_locks(curr, depth, i + 1, &merged))
5575
return 0;
5576
5577
/*
5578
* We had N bottles of beer on the wall, we drank one, but now
5579
* there's not N-1 bottles of beer left on the wall...
5580
* Pouring two of the bottles together is acceptable.
5581
*/
5582
DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5583
5584
/*
5585
* Since reacquire_held_locks() would have called check_chain_key()
5586
* indirectly via __lock_acquire(), we don't need to do it again
5587
* on return.
5588
*/
5589
return 0;
5590
}
5591
5592
static __always_inline
5593
int __lock_is_held(const struct lockdep_map *lock, int read)
5594
{
5595
struct task_struct *curr = current;
5596
int i;
5597
5598
for (i = 0; i < curr->lockdep_depth; i++) {
5599
struct held_lock *hlock = curr->held_locks + i;
5600
5601
if (match_held_lock(hlock, lock)) {
5602
if (read == -1 || !!hlock->read == read)
5603
return LOCK_STATE_HELD;
5604
5605
return LOCK_STATE_NOT_HELD;
5606
}
5607
}
5608
5609
return LOCK_STATE_NOT_HELD;
5610
}
5611
5612
static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5613
{
5614
struct pin_cookie cookie = NIL_COOKIE;
5615
struct task_struct *curr = current;
5616
int i;
5617
5618
if (unlikely(!debug_locks))
5619
return cookie;
5620
5621
for (i = 0; i < curr->lockdep_depth; i++) {
5622
struct held_lock *hlock = curr->held_locks + i;
5623
5624
if (match_held_lock(hlock, lock)) {
5625
/*
5626
* Grab 16bits of randomness; this is sufficient to not
5627
* be guessable and still allows some pin nesting in
5628
* our u32 pin_count.
5629
*/
5630
cookie.val = 1 + (sched_clock() & 0xffff);
5631
hlock->pin_count += cookie.val;
5632
return cookie;
5633
}
5634
}
5635
5636
WARN(1, "pinning an unheld lock\n");
5637
return cookie;
5638
}
5639
5640
static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5641
{
5642
struct task_struct *curr = current;
5643
int i;
5644
5645
if (unlikely(!debug_locks))
5646
return;
5647
5648
for (i = 0; i < curr->lockdep_depth; i++) {
5649
struct held_lock *hlock = curr->held_locks + i;
5650
5651
if (match_held_lock(hlock, lock)) {
5652
hlock->pin_count += cookie.val;
5653
return;
5654
}
5655
}
5656
5657
WARN(1, "pinning an unheld lock\n");
5658
}
5659
5660
static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5661
{
5662
struct task_struct *curr = current;
5663
int i;
5664
5665
if (unlikely(!debug_locks))
5666
return;
5667
5668
for (i = 0; i < curr->lockdep_depth; i++) {
5669
struct held_lock *hlock = curr->held_locks + i;
5670
5671
if (match_held_lock(hlock, lock)) {
5672
if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5673
return;
5674
5675
hlock->pin_count -= cookie.val;
5676
5677
if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5678
hlock->pin_count = 0;
5679
5680
return;
5681
}
5682
}
5683
5684
WARN(1, "unpinning an unheld lock\n");
5685
}
5686
5687
/*
5688
* Check whether we follow the irq-flags state precisely:
5689
*/
5690
static noinstr void check_flags(unsigned long flags)
5691
{
5692
#if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5693
if (!debug_locks)
5694
return;
5695
5696
/* Get the warning out.. */
5697
instrumentation_begin();
5698
5699
if (irqs_disabled_flags(flags)) {
5700
if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5701
printk("possible reason: unannotated irqs-off.\n");
5702
}
5703
} else {
5704
if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5705
printk("possible reason: unannotated irqs-on.\n");
5706
}
5707
}
5708
5709
#ifndef CONFIG_PREEMPT_RT
5710
/*
5711
* We dont accurately track softirq state in e.g.
5712
* hardirq contexts (such as on 4KSTACKS), so only
5713
* check if not in hardirq contexts:
5714
*/
5715
if (!hardirq_count()) {
5716
if (softirq_count()) {
5717
/* like the above, but with softirqs */
5718
DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5719
} else {
5720
/* lick the above, does it taste good? */
5721
DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5722
}
5723
}
5724
#endif
5725
5726
if (!debug_locks)
5727
print_irqtrace_events(current);
5728
5729
instrumentation_end();
5730
#endif
5731
}
5732
5733
void lock_set_class(struct lockdep_map *lock, const char *name,
5734
struct lock_class_key *key, unsigned int subclass,
5735
unsigned long ip)
5736
{
5737
unsigned long flags;
5738
5739
if (unlikely(!lockdep_enabled()))
5740
return;
5741
5742
raw_local_irq_save(flags);
5743
lockdep_recursion_inc();
5744
check_flags(flags);
5745
if (__lock_set_class(lock, name, key, subclass, ip))
5746
check_chain_key(current);
5747
lockdep_recursion_finish();
5748
raw_local_irq_restore(flags);
5749
}
5750
EXPORT_SYMBOL_GPL(lock_set_class);
5751
5752
void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5753
{
5754
unsigned long flags;
5755
5756
if (unlikely(!lockdep_enabled()))
5757
return;
5758
5759
raw_local_irq_save(flags);
5760
lockdep_recursion_inc();
5761
check_flags(flags);
5762
if (__lock_downgrade(lock, ip))
5763
check_chain_key(current);
5764
lockdep_recursion_finish();
5765
raw_local_irq_restore(flags);
5766
}
5767
EXPORT_SYMBOL_GPL(lock_downgrade);
5768
5769
/* NMI context !!! */
5770
static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5771
{
5772
#ifdef CONFIG_PROVE_LOCKING
5773
struct lock_class *class = look_up_lock_class(lock, subclass);
5774
unsigned long mask = LOCKF_USED;
5775
5776
/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5777
if (!class)
5778
return;
5779
5780
/*
5781
* READ locks only conflict with USED, such that if we only ever use
5782
* READ locks, there is no deadlock possible -- RCU.
5783
*/
5784
if (!hlock->read)
5785
mask |= LOCKF_USED_READ;
5786
5787
if (!(class->usage_mask & mask))
5788
return;
5789
5790
hlock->class_idx = class - lock_classes;
5791
5792
print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5793
#endif
5794
}
5795
5796
static bool lockdep_nmi(void)
5797
{
5798
if (raw_cpu_read(lockdep_recursion))
5799
return false;
5800
5801
if (!in_nmi())
5802
return false;
5803
5804
return true;
5805
}
5806
5807
/*
5808
* read_lock() is recursive if:
5809
* 1. We force lockdep think this way in selftests or
5810
* 2. The implementation is not queued read/write lock or
5811
* 3. The locker is at an in_interrupt() context.
5812
*/
5813
bool read_lock_is_recursive(void)
5814
{
5815
return force_read_lock_recursive ||
5816
!IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5817
in_interrupt();
5818
}
5819
EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5820
5821
/*
5822
* We are not always called with irqs disabled - do that here,
5823
* and also avoid lockdep recursion:
5824
*/
5825
void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5826
int trylock, int read, int check,
5827
struct lockdep_map *nest_lock, unsigned long ip)
5828
{
5829
unsigned long flags;
5830
5831
trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5832
5833
if (!debug_locks)
5834
return;
5835
5836
/*
5837
* As KASAN instrumentation is disabled and lock_acquire() is usually
5838
* the first lockdep call when a task tries to acquire a lock, add
5839
* kasan_check_byte() here to check for use-after-free and other
5840
* memory errors.
5841
*/
5842
kasan_check_byte(lock);
5843
5844
if (unlikely(!lockdep_enabled())) {
5845
/* XXX allow trylock from NMI ?!? */
5846
if (lockdep_nmi() && !trylock) {
5847
struct held_lock hlock;
5848
5849
hlock.acquire_ip = ip;
5850
hlock.instance = lock;
5851
hlock.nest_lock = nest_lock;
5852
hlock.irq_context = 2; // XXX
5853
hlock.trylock = trylock;
5854
hlock.read = read;
5855
hlock.check = check;
5856
hlock.hardirqs_off = true;
5857
hlock.references = 0;
5858
5859
verify_lock_unused(lock, &hlock, subclass);
5860
}
5861
return;
5862
}
5863
5864
raw_local_irq_save(flags);
5865
check_flags(flags);
5866
5867
lockdep_recursion_inc();
5868
__lock_acquire(lock, subclass, trylock, read, check,
5869
irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5870
lockdep_recursion_finish();
5871
raw_local_irq_restore(flags);
5872
}
5873
EXPORT_SYMBOL_GPL(lock_acquire);
5874
5875
void lock_release(struct lockdep_map *lock, unsigned long ip)
5876
{
5877
unsigned long flags;
5878
5879
trace_lock_release(lock, ip);
5880
5881
if (unlikely(!lockdep_enabled() ||
5882
lock->key == &__lockdep_no_track__))
5883
return;
5884
5885
raw_local_irq_save(flags);
5886
check_flags(flags);
5887
5888
lockdep_recursion_inc();
5889
if (__lock_release(lock, ip))
5890
check_chain_key(current);
5891
lockdep_recursion_finish();
5892
raw_local_irq_restore(flags);
5893
}
5894
EXPORT_SYMBOL_GPL(lock_release);
5895
5896
/*
5897
* lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5898
*
5899
* No actual critical section is created by the APIs annotated with this: these
5900
* APIs are used to wait for one or multiple critical sections (on other CPUs
5901
* or threads), and it means that calling these APIs inside these critical
5902
* sections is potential deadlock.
5903
*/
5904
void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5905
int check, struct lockdep_map *nest_lock, unsigned long ip)
5906
{
5907
unsigned long flags;
5908
5909
if (unlikely(!lockdep_enabled()))
5910
return;
5911
5912
raw_local_irq_save(flags);
5913
check_flags(flags);
5914
5915
lockdep_recursion_inc();
5916
__lock_acquire(lock, subclass, 0, read, check,
5917
irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5918
check_chain_key(current);
5919
lockdep_recursion_finish();
5920
raw_local_irq_restore(flags);
5921
}
5922
EXPORT_SYMBOL_GPL(lock_sync);
5923
5924
noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5925
{
5926
unsigned long flags;
5927
int ret = LOCK_STATE_NOT_HELD;
5928
5929
/*
5930
* Avoid false negative lockdep_assert_held() and
5931
* lockdep_assert_not_held().
5932
*/
5933
if (unlikely(!lockdep_enabled()))
5934
return LOCK_STATE_UNKNOWN;
5935
5936
raw_local_irq_save(flags);
5937
check_flags(flags);
5938
5939
lockdep_recursion_inc();
5940
ret = __lock_is_held(lock, read);
5941
lockdep_recursion_finish();
5942
raw_local_irq_restore(flags);
5943
5944
return ret;
5945
}
5946
EXPORT_SYMBOL_GPL(lock_is_held_type);
5947
NOKPROBE_SYMBOL(lock_is_held_type);
5948
5949
struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5950
{
5951
struct pin_cookie cookie = NIL_COOKIE;
5952
unsigned long flags;
5953
5954
if (unlikely(!lockdep_enabled()))
5955
return cookie;
5956
5957
raw_local_irq_save(flags);
5958
check_flags(flags);
5959
5960
lockdep_recursion_inc();
5961
cookie = __lock_pin_lock(lock);
5962
lockdep_recursion_finish();
5963
raw_local_irq_restore(flags);
5964
5965
return cookie;
5966
}
5967
EXPORT_SYMBOL_GPL(lock_pin_lock);
5968
5969
void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5970
{
5971
unsigned long flags;
5972
5973
if (unlikely(!lockdep_enabled()))
5974
return;
5975
5976
raw_local_irq_save(flags);
5977
check_flags(flags);
5978
5979
lockdep_recursion_inc();
5980
__lock_repin_lock(lock, cookie);
5981
lockdep_recursion_finish();
5982
raw_local_irq_restore(flags);
5983
}
5984
EXPORT_SYMBOL_GPL(lock_repin_lock);
5985
5986
void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5987
{
5988
unsigned long flags;
5989
5990
if (unlikely(!lockdep_enabled()))
5991
return;
5992
5993
raw_local_irq_save(flags);
5994
check_flags(flags);
5995
5996
lockdep_recursion_inc();
5997
__lock_unpin_lock(lock, cookie);
5998
lockdep_recursion_finish();
5999
raw_local_irq_restore(flags);
6000
}
6001
EXPORT_SYMBOL_GPL(lock_unpin_lock);
6002
6003
#ifdef CONFIG_LOCK_STAT
6004
static void print_lock_contention_bug(struct task_struct *curr,
6005
struct lockdep_map *lock,
6006
unsigned long ip)
6007
{
6008
if (!debug_locks_off())
6009
return;
6010
if (debug_locks_silent)
6011
return;
6012
6013
nbcon_cpu_emergency_enter();
6014
6015
pr_warn("\n");
6016
pr_warn("=================================\n");
6017
pr_warn("WARNING: bad contention detected!\n");
6018
print_kernel_ident();
6019
pr_warn("---------------------------------\n");
6020
pr_warn("%s/%d is trying to contend lock (",
6021
curr->comm, task_pid_nr(curr));
6022
print_lockdep_cache(lock);
6023
pr_cont(") at:\n");
6024
print_ip_sym(KERN_WARNING, ip);
6025
pr_warn("but there are no locks held!\n");
6026
pr_warn("\nother info that might help us debug this:\n");
6027
lockdep_print_held_locks(curr);
6028
6029
pr_warn("\nstack backtrace:\n");
6030
dump_stack();
6031
6032
nbcon_cpu_emergency_exit();
6033
}
6034
6035
static void
6036
__lock_contended(struct lockdep_map *lock, unsigned long ip)
6037
{
6038
struct task_struct *curr = current;
6039
struct held_lock *hlock;
6040
struct lock_class_stats *stats;
6041
unsigned int depth;
6042
int i, contention_point, contending_point;
6043
6044
depth = curr->lockdep_depth;
6045
/*
6046
* Whee, we contended on this lock, except it seems we're not
6047
* actually trying to acquire anything much at all..
6048
*/
6049
if (DEBUG_LOCKS_WARN_ON(!depth))
6050
return;
6051
6052
if (unlikely(lock->key == &__lockdep_no_track__))
6053
return;
6054
6055
hlock = find_held_lock(curr, lock, depth, &i);
6056
if (!hlock) {
6057
print_lock_contention_bug(curr, lock, ip);
6058
return;
6059
}
6060
6061
if (hlock->instance != lock)
6062
return;
6063
6064
hlock->waittime_stamp = lockstat_clock();
6065
6066
contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
6067
contending_point = lock_point(hlock_class(hlock)->contending_point,
6068
lock->ip);
6069
6070
stats = get_lock_stats(hlock_class(hlock));
6071
if (contention_point < LOCKSTAT_POINTS)
6072
stats->contention_point[contention_point]++;
6073
if (contending_point < LOCKSTAT_POINTS)
6074
stats->contending_point[contending_point]++;
6075
if (lock->cpu != smp_processor_id())
6076
stats->bounces[bounce_contended + !!hlock->read]++;
6077
}
6078
6079
static void
6080
__lock_acquired(struct lockdep_map *lock, unsigned long ip)
6081
{
6082
struct task_struct *curr = current;
6083
struct held_lock *hlock;
6084
struct lock_class_stats *stats;
6085
unsigned int depth;
6086
u64 now, waittime = 0;
6087
int i, cpu;
6088
6089
depth = curr->lockdep_depth;
6090
/*
6091
* Yay, we acquired ownership of this lock we didn't try to
6092
* acquire, how the heck did that happen?
6093
*/
6094
if (DEBUG_LOCKS_WARN_ON(!depth))
6095
return;
6096
6097
if (unlikely(lock->key == &__lockdep_no_track__))
6098
return;
6099
6100
hlock = find_held_lock(curr, lock, depth, &i);
6101
if (!hlock) {
6102
print_lock_contention_bug(curr, lock, _RET_IP_);
6103
return;
6104
}
6105
6106
if (hlock->instance != lock)
6107
return;
6108
6109
cpu = smp_processor_id();
6110
if (hlock->waittime_stamp) {
6111
now = lockstat_clock();
6112
waittime = now - hlock->waittime_stamp;
6113
hlock->holdtime_stamp = now;
6114
}
6115
6116
stats = get_lock_stats(hlock_class(hlock));
6117
if (waittime) {
6118
if (hlock->read)
6119
lock_time_inc(&stats->read_waittime, waittime);
6120
else
6121
lock_time_inc(&stats->write_waittime, waittime);
6122
}
6123
if (lock->cpu != cpu)
6124
stats->bounces[bounce_acquired + !!hlock->read]++;
6125
6126
lock->cpu = cpu;
6127
lock->ip = ip;
6128
}
6129
6130
void lock_contended(struct lockdep_map *lock, unsigned long ip)
6131
{
6132
unsigned long flags;
6133
6134
trace_lock_contended(lock, ip);
6135
6136
if (unlikely(!lock_stat || !lockdep_enabled()))
6137
return;
6138
6139
raw_local_irq_save(flags);
6140
check_flags(flags);
6141
lockdep_recursion_inc();
6142
__lock_contended(lock, ip);
6143
lockdep_recursion_finish();
6144
raw_local_irq_restore(flags);
6145
}
6146
EXPORT_SYMBOL_GPL(lock_contended);
6147
6148
void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6149
{
6150
unsigned long flags;
6151
6152
trace_lock_acquired(lock, ip);
6153
6154
if (unlikely(!lock_stat || !lockdep_enabled()))
6155
return;
6156
6157
raw_local_irq_save(flags);
6158
check_flags(flags);
6159
lockdep_recursion_inc();
6160
__lock_acquired(lock, ip);
6161
lockdep_recursion_finish();
6162
raw_local_irq_restore(flags);
6163
}
6164
EXPORT_SYMBOL_GPL(lock_acquired);
6165
#endif
6166
6167
/*
6168
* Used by the testsuite, sanitize the validator state
6169
* after a simulated failure:
6170
*/
6171
6172
void lockdep_reset(void)
6173
{
6174
unsigned long flags;
6175
int i;
6176
6177
raw_local_irq_save(flags);
6178
lockdep_init_task(current);
6179
memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6180
nr_hardirq_chains = 0;
6181
nr_softirq_chains = 0;
6182
nr_process_chains = 0;
6183
debug_locks = 1;
6184
for (i = 0; i < CHAINHASH_SIZE; i++)
6185
INIT_HLIST_HEAD(chainhash_table + i);
6186
raw_local_irq_restore(flags);
6187
}
6188
6189
/* Remove a class from a lock chain. Must be called with the graph lock held. */
6190
static void remove_class_from_lock_chain(struct pending_free *pf,
6191
struct lock_chain *chain,
6192
struct lock_class *class)
6193
{
6194
#ifdef CONFIG_PROVE_LOCKING
6195
int i;
6196
6197
for (i = chain->base; i < chain->base + chain->depth; i++) {
6198
if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6199
continue;
6200
/*
6201
* Each lock class occurs at most once in a lock chain so once
6202
* we found a match we can break out of this loop.
6203
*/
6204
goto free_lock_chain;
6205
}
6206
/* Since the chain has not been modified, return. */
6207
return;
6208
6209
free_lock_chain:
6210
free_chain_hlocks(chain->base, chain->depth);
6211
/* Overwrite the chain key for concurrent RCU readers. */
6212
WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6213
dec_chains(chain->irq_context);
6214
6215
/*
6216
* Note: calling hlist_del_rcu() from inside a
6217
* hlist_for_each_entry_rcu() loop is safe.
6218
*/
6219
hlist_del_rcu(&chain->entry);
6220
__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6221
nr_zapped_lock_chains++;
6222
#endif
6223
}
6224
6225
/* Must be called with the graph lock held. */
6226
static void remove_class_from_lock_chains(struct pending_free *pf,
6227
struct lock_class *class)
6228
{
6229
struct lock_chain *chain;
6230
struct hlist_head *head;
6231
int i;
6232
6233
for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6234
head = chainhash_table + i;
6235
hlist_for_each_entry_rcu(chain, head, entry) {
6236
remove_class_from_lock_chain(pf, chain, class);
6237
}
6238
}
6239
}
6240
6241
/*
6242
* Remove all references to a lock class. The caller must hold the graph lock.
6243
*/
6244
static void zap_class(struct pending_free *pf, struct lock_class *class)
6245
{
6246
struct lock_list *entry;
6247
int i;
6248
6249
WARN_ON_ONCE(!class->key);
6250
6251
/*
6252
* Remove all dependencies this lock is
6253
* involved in:
6254
*/
6255
for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6256
entry = list_entries + i;
6257
if (entry->class != class && entry->links_to != class)
6258
continue;
6259
__clear_bit(i, list_entries_in_use);
6260
nr_list_entries--;
6261
list_del_rcu(&entry->entry);
6262
}
6263
if (list_empty(&class->locks_after) &&
6264
list_empty(&class->locks_before)) {
6265
list_move_tail(&class->lock_entry, &pf->zapped);
6266
hlist_del_rcu(&class->hash_entry);
6267
WRITE_ONCE(class->key, NULL);
6268
WRITE_ONCE(class->name, NULL);
6269
/* Class allocated but not used, -1 in nr_unused_locks */
6270
if (class->usage_mask == 0)
6271
debug_atomic_dec(nr_unused_locks);
6272
nr_lock_classes--;
6273
__clear_bit(class - lock_classes, lock_classes_in_use);
6274
if (class - lock_classes == max_lock_class_idx)
6275
max_lock_class_idx--;
6276
} else {
6277
WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6278
class->name);
6279
}
6280
6281
remove_class_from_lock_chains(pf, class);
6282
nr_zapped_classes++;
6283
}
6284
6285
static void reinit_class(struct lock_class *class)
6286
{
6287
WARN_ON_ONCE(!class->lock_entry.next);
6288
WARN_ON_ONCE(!list_empty(&class->locks_after));
6289
WARN_ON_ONCE(!list_empty(&class->locks_before));
6290
memset_startat(class, 0, key);
6291
WARN_ON_ONCE(!class->lock_entry.next);
6292
WARN_ON_ONCE(!list_empty(&class->locks_after));
6293
WARN_ON_ONCE(!list_empty(&class->locks_before));
6294
}
6295
6296
static inline int within(const void *addr, void *start, unsigned long size)
6297
{
6298
return addr >= start && addr < start + size;
6299
}
6300
6301
static bool inside_selftest(void)
6302
{
6303
return current == lockdep_selftest_task_struct;
6304
}
6305
6306
/* The caller must hold the graph lock. */
6307
static struct pending_free *get_pending_free(void)
6308
{
6309
return delayed_free.pf + delayed_free.index;
6310
}
6311
6312
static void free_zapped_rcu(struct rcu_head *cb);
6313
6314
/*
6315
* See if we need to queue an RCU callback, must called with
6316
* the lockdep lock held, returns false if either we don't have
6317
* any pending free or the callback is already scheduled.
6318
* Otherwise, a call_rcu() must follow this function call.
6319
*/
6320
static bool prepare_call_rcu_zapped(struct pending_free *pf)
6321
{
6322
WARN_ON_ONCE(inside_selftest());
6323
6324
if (list_empty(&pf->zapped))
6325
return false;
6326
6327
if (delayed_free.scheduled)
6328
return false;
6329
6330
delayed_free.scheduled = true;
6331
6332
WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6333
delayed_free.index ^= 1;
6334
6335
return true;
6336
}
6337
6338
/* The caller must hold the graph lock. May be called from RCU context. */
6339
static void __free_zapped_classes(struct pending_free *pf)
6340
{
6341
struct lock_class *class;
6342
6343
check_data_structures();
6344
6345
list_for_each_entry(class, &pf->zapped, lock_entry)
6346
reinit_class(class);
6347
6348
list_splice_init(&pf->zapped, &free_lock_classes);
6349
6350
#ifdef CONFIG_PROVE_LOCKING
6351
bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6352
pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6353
bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6354
#endif
6355
}
6356
6357
static void free_zapped_rcu(struct rcu_head *ch)
6358
{
6359
struct pending_free *pf;
6360
unsigned long flags;
6361
bool need_callback;
6362
6363
if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6364
return;
6365
6366
raw_local_irq_save(flags);
6367
lockdep_lock();
6368
6369
/* closed head */
6370
pf = delayed_free.pf + (delayed_free.index ^ 1);
6371
__free_zapped_classes(pf);
6372
delayed_free.scheduled = false;
6373
need_callback =
6374
prepare_call_rcu_zapped(delayed_free.pf + delayed_free.index);
6375
lockdep_unlock();
6376
raw_local_irq_restore(flags);
6377
6378
/*
6379
* If there's pending free and its callback has not been scheduled,
6380
* queue an RCU callback.
6381
*/
6382
if (need_callback)
6383
call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6384
6385
}
6386
6387
/*
6388
* Remove all lock classes from the class hash table and from the
6389
* all_lock_classes list whose key or name is in the address range [start,
6390
* start + size). Move these lock classes to the zapped_classes list. Must
6391
* be called with the graph lock held.
6392
*/
6393
static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6394
unsigned long size)
6395
{
6396
struct lock_class *class;
6397
struct hlist_head *head;
6398
int i;
6399
6400
/* Unhash all classes that were created by a module. */
6401
for (i = 0; i < CLASSHASH_SIZE; i++) {
6402
head = classhash_table + i;
6403
hlist_for_each_entry_rcu(class, head, hash_entry) {
6404
if (!within(class->key, start, size) &&
6405
!within(class->name, start, size))
6406
continue;
6407
zap_class(pf, class);
6408
}
6409
}
6410
}
6411
6412
/*
6413
* Used in module.c to remove lock classes from memory that is going to be
6414
* freed; and possibly re-used by other modules.
6415
*
6416
* We will have had one synchronize_rcu() before getting here, so we're
6417
* guaranteed nobody will look up these exact classes -- they're properly dead
6418
* but still allocated.
6419
*/
6420
static void lockdep_free_key_range_reg(void *start, unsigned long size)
6421
{
6422
struct pending_free *pf;
6423
unsigned long flags;
6424
bool need_callback;
6425
6426
init_data_structures_once();
6427
6428
raw_local_irq_save(flags);
6429
lockdep_lock();
6430
pf = get_pending_free();
6431
__lockdep_free_key_range(pf, start, size);
6432
need_callback = prepare_call_rcu_zapped(pf);
6433
lockdep_unlock();
6434
raw_local_irq_restore(flags);
6435
if (need_callback)
6436
call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6437
/*
6438
* Wait for any possible iterators from look_up_lock_class() to pass
6439
* before continuing to free the memory they refer to.
6440
*/
6441
synchronize_rcu();
6442
}
6443
6444
/*
6445
* Free all lockdep keys in the range [start, start+size). Does not sleep.
6446
* Ignores debug_locks. Must only be used by the lockdep selftests.
6447
*/
6448
static void lockdep_free_key_range_imm(void *start, unsigned long size)
6449
{
6450
struct pending_free *pf = delayed_free.pf;
6451
unsigned long flags;
6452
6453
init_data_structures_once();
6454
6455
raw_local_irq_save(flags);
6456
lockdep_lock();
6457
__lockdep_free_key_range(pf, start, size);
6458
__free_zapped_classes(pf);
6459
lockdep_unlock();
6460
raw_local_irq_restore(flags);
6461
}
6462
6463
void lockdep_free_key_range(void *start, unsigned long size)
6464
{
6465
init_data_structures_once();
6466
6467
if (inside_selftest())
6468
lockdep_free_key_range_imm(start, size);
6469
else
6470
lockdep_free_key_range_reg(start, size);
6471
}
6472
6473
/*
6474
* Check whether any element of the @lock->class_cache[] array refers to a
6475
* registered lock class. The caller must hold either the graph lock or the
6476
* RCU read lock.
6477
*/
6478
static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6479
{
6480
struct lock_class *class;
6481
struct hlist_head *head;
6482
int i, j;
6483
6484
for (i = 0; i < CLASSHASH_SIZE; i++) {
6485
head = classhash_table + i;
6486
hlist_for_each_entry_rcu(class, head, hash_entry) {
6487
for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6488
if (lock->class_cache[j] == class)
6489
return true;
6490
}
6491
}
6492
return false;
6493
}
6494
6495
/* The caller must hold the graph lock. Does not sleep. */
6496
static void __lockdep_reset_lock(struct pending_free *pf,
6497
struct lockdep_map *lock)
6498
{
6499
struct lock_class *class;
6500
int j;
6501
6502
/*
6503
* Remove all classes this lock might have:
6504
*/
6505
for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6506
/*
6507
* If the class exists we look it up and zap it:
6508
*/
6509
class = look_up_lock_class(lock, j);
6510
if (class)
6511
zap_class(pf, class);
6512
}
6513
/*
6514
* Debug check: in the end all mapped classes should
6515
* be gone.
6516
*/
6517
if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6518
debug_locks_off();
6519
}
6520
6521
/*
6522
* Remove all information lockdep has about a lock if debug_locks == 1. Free
6523
* released data structures from RCU context.
6524
*/
6525
static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6526
{
6527
struct pending_free *pf;
6528
unsigned long flags;
6529
int locked;
6530
bool need_callback = false;
6531
6532
raw_local_irq_save(flags);
6533
locked = graph_lock();
6534
if (!locked)
6535
goto out_irq;
6536
6537
pf = get_pending_free();
6538
__lockdep_reset_lock(pf, lock);
6539
need_callback = prepare_call_rcu_zapped(pf);
6540
6541
graph_unlock();
6542
out_irq:
6543
raw_local_irq_restore(flags);
6544
if (need_callback)
6545
call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6546
}
6547
6548
/*
6549
* Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6550
* lockdep selftests.
6551
*/
6552
static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6553
{
6554
struct pending_free *pf = delayed_free.pf;
6555
unsigned long flags;
6556
6557
raw_local_irq_save(flags);
6558
lockdep_lock();
6559
__lockdep_reset_lock(pf, lock);
6560
__free_zapped_classes(pf);
6561
lockdep_unlock();
6562
raw_local_irq_restore(flags);
6563
}
6564
6565
void lockdep_reset_lock(struct lockdep_map *lock)
6566
{
6567
init_data_structures_once();
6568
6569
if (inside_selftest())
6570
lockdep_reset_lock_imm(lock);
6571
else
6572
lockdep_reset_lock_reg(lock);
6573
}
6574
6575
/*
6576
* Unregister a dynamically allocated key.
6577
*
6578
* Unlike lockdep_register_key(), a search is always done to find a matching
6579
* key irrespective of debug_locks to avoid potential invalid access to freed
6580
* memory in lock_class entry.
6581
*/
6582
void lockdep_unregister_key(struct lock_class_key *key)
6583
{
6584
struct hlist_head *hash_head = keyhashentry(key);
6585
struct lock_class_key *k;
6586
struct pending_free *pf;
6587
unsigned long flags;
6588
bool found = false;
6589
bool need_callback = false;
6590
6591
might_sleep();
6592
6593
if (WARN_ON_ONCE(static_obj(key)))
6594
return;
6595
6596
raw_local_irq_save(flags);
6597
lockdep_lock();
6598
6599
hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6600
if (k == key) {
6601
hlist_del_rcu(&k->hash_entry);
6602
found = true;
6603
break;
6604
}
6605
}
6606
WARN_ON_ONCE(!found && debug_locks);
6607
if (found) {
6608
pf = get_pending_free();
6609
__lockdep_free_key_range(pf, key, 1);
6610
need_callback = prepare_call_rcu_zapped(pf);
6611
nr_dynamic_keys--;
6612
}
6613
lockdep_unlock();
6614
raw_local_irq_restore(flags);
6615
6616
if (need_callback)
6617
call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6618
6619
/*
6620
* Wait until is_dynamic_key() has finished accessing k->hash_entry.
6621
*
6622
* Some operations like __qdisc_destroy() will call this in a debug
6623
* kernel, and the network traffic is disabled while waiting, hence
6624
* the delay of the wait matters in debugging cases. Currently use a
6625
* synchronize_rcu_expedited() to speed up the wait at the cost of
6626
* system IPIs. TODO: Replace RCU with hazptr for this.
6627
*/
6628
synchronize_rcu_expedited();
6629
}
6630
EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6631
6632
void __init lockdep_init(void)
6633
{
6634
pr_info("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6635
6636
pr_info("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
6637
pr_info("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
6638
pr_info("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
6639
pr_info("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
6640
pr_info("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
6641
pr_info("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
6642
pr_info("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
6643
6644
pr_info(" memory used by lock dependency info: %zu kB\n",
6645
(sizeof(lock_classes) +
6646
sizeof(lock_classes_in_use) +
6647
sizeof(classhash_table) +
6648
sizeof(list_entries) +
6649
sizeof(list_entries_in_use) +
6650
sizeof(chainhash_table) +
6651
sizeof(delayed_free)
6652
#ifdef CONFIG_PROVE_LOCKING
6653
+ sizeof(lock_cq)
6654
+ sizeof(lock_chains)
6655
+ sizeof(lock_chains_in_use)
6656
+ sizeof(chain_hlocks)
6657
#endif
6658
) / 1024
6659
);
6660
6661
#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6662
pr_info(" memory used for stack traces: %zu kB\n",
6663
(sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6664
);
6665
#endif
6666
6667
pr_info(" per task-struct memory footprint: %zu bytes\n",
6668
sizeof(((struct task_struct *)NULL)->held_locks));
6669
}
6670
6671
static void
6672
print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6673
const void *mem_to, struct held_lock *hlock)
6674
{
6675
if (!debug_locks_off())
6676
return;
6677
if (debug_locks_silent)
6678
return;
6679
6680
nbcon_cpu_emergency_enter();
6681
6682
pr_warn("\n");
6683
pr_warn("=========================\n");
6684
pr_warn("WARNING: held lock freed!\n");
6685
print_kernel_ident();
6686
pr_warn("-------------------------\n");
6687
pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6688
curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6689
print_lock(hlock);
6690
lockdep_print_held_locks(curr);
6691
6692
pr_warn("\nstack backtrace:\n");
6693
dump_stack();
6694
6695
nbcon_cpu_emergency_exit();
6696
}
6697
6698
static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6699
const void* lock_from, unsigned long lock_len)
6700
{
6701
return lock_from + lock_len <= mem_from ||
6702
mem_from + mem_len <= lock_from;
6703
}
6704
6705
/*
6706
* Called when kernel memory is freed (or unmapped), or if a lock
6707
* is destroyed or reinitialized - this code checks whether there is
6708
* any held lock in the memory range of <from> to <to>:
6709
*/
6710
void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6711
{
6712
struct task_struct *curr = current;
6713
struct held_lock *hlock;
6714
unsigned long flags;
6715
int i;
6716
6717
if (unlikely(!debug_locks))
6718
return;
6719
6720
raw_local_irq_save(flags);
6721
for (i = 0; i < curr->lockdep_depth; i++) {
6722
hlock = curr->held_locks + i;
6723
6724
if (not_in_range(mem_from, mem_len, hlock->instance,
6725
sizeof(*hlock->instance)))
6726
continue;
6727
6728
print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6729
break;
6730
}
6731
raw_local_irq_restore(flags);
6732
}
6733
EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6734
6735
static void print_held_locks_bug(void)
6736
{
6737
if (!debug_locks_off())
6738
return;
6739
if (debug_locks_silent)
6740
return;
6741
6742
nbcon_cpu_emergency_enter();
6743
6744
pr_warn("\n");
6745
pr_warn("====================================\n");
6746
pr_warn("WARNING: %s/%d still has locks held!\n",
6747
current->comm, task_pid_nr(current));
6748
print_kernel_ident();
6749
pr_warn("------------------------------------\n");
6750
lockdep_print_held_locks(current);
6751
pr_warn("\nstack backtrace:\n");
6752
dump_stack();
6753
6754
nbcon_cpu_emergency_exit();
6755
}
6756
6757
void debug_check_no_locks_held(void)
6758
{
6759
if (unlikely(current->lockdep_depth > 0))
6760
print_held_locks_bug();
6761
}
6762
EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6763
6764
#ifdef __KERNEL__
6765
void debug_show_all_locks(void)
6766
{
6767
struct task_struct *g, *p;
6768
6769
if (unlikely(!debug_locks)) {
6770
pr_warn("INFO: lockdep is turned off.\n");
6771
return;
6772
}
6773
pr_warn("\nShowing all locks held in the system:\n");
6774
6775
rcu_read_lock();
6776
for_each_process_thread(g, p) {
6777
if (!p->lockdep_depth)
6778
continue;
6779
lockdep_print_held_locks(p);
6780
touch_nmi_watchdog();
6781
touch_all_softlockup_watchdogs();
6782
}
6783
rcu_read_unlock();
6784
6785
pr_warn("\n");
6786
pr_warn("=============================================\n\n");
6787
}
6788
EXPORT_SYMBOL_GPL(debug_show_all_locks);
6789
#endif
6790
6791
/*
6792
* Careful: only use this function if you are sure that
6793
* the task cannot run in parallel!
6794
*/
6795
void debug_show_held_locks(struct task_struct *task)
6796
{
6797
if (unlikely(!debug_locks)) {
6798
printk("INFO: lockdep is turned off.\n");
6799
return;
6800
}
6801
lockdep_print_held_locks(task);
6802
}
6803
EXPORT_SYMBOL_GPL(debug_show_held_locks);
6804
6805
asmlinkage __visible void lockdep_sys_exit(void)
6806
{
6807
struct task_struct *curr = current;
6808
6809
if (unlikely(curr->lockdep_depth)) {
6810
if (!debug_locks_off())
6811
return;
6812
nbcon_cpu_emergency_enter();
6813
pr_warn("\n");
6814
pr_warn("================================================\n");
6815
pr_warn("WARNING: lock held when returning to user space!\n");
6816
print_kernel_ident();
6817
pr_warn("------------------------------------------------\n");
6818
pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6819
curr->comm, curr->pid);
6820
lockdep_print_held_locks(curr);
6821
nbcon_cpu_emergency_exit();
6822
}
6823
6824
/*
6825
* The lock history for each syscall should be independent. So wipe the
6826
* slate clean on return to userspace.
6827
*/
6828
lockdep_invariant_state(false);
6829
}
6830
6831
void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6832
{
6833
struct task_struct *curr = current;
6834
int dl = READ_ONCE(debug_locks);
6835
bool rcu = warn_rcu_enter();
6836
6837
/* Note: the following can be executed concurrently, so be careful. */
6838
nbcon_cpu_emergency_enter();
6839
pr_warn("\n");
6840
pr_warn("=============================\n");
6841
pr_warn("WARNING: suspicious RCU usage\n");
6842
print_kernel_ident();
6843
pr_warn("-----------------------------\n");
6844
pr_warn("%s:%d %s!\n", file, line, s);
6845
pr_warn("\nother info that might help us debug this:\n\n");
6846
pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6847
!rcu_lockdep_current_cpu_online()
6848
? "RCU used illegally from offline CPU!\n"
6849
: "",
6850
rcu_scheduler_active, dl,
6851
dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6852
6853
/*
6854
* If a CPU is in the RCU-free window in idle (ie: in the section
6855
* between ct_idle_enter() and ct_idle_exit(), then RCU
6856
* considers that CPU to be in an "extended quiescent state",
6857
* which means that RCU will be completely ignoring that CPU.
6858
* Therefore, rcu_read_lock() and friends have absolutely no
6859
* effect on a CPU running in that state. In other words, even if
6860
* such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6861
* delete data structures out from under it. RCU really has no
6862
* choice here: we need to keep an RCU-free window in idle where
6863
* the CPU may possibly enter into low power mode. This way we can
6864
* notice an extended quiescent state to other CPUs that started a grace
6865
* period. Otherwise we would delay any grace period as long as we run
6866
* in the idle task.
6867
*
6868
* So complain bitterly if someone does call rcu_read_lock(),
6869
* rcu_read_lock_bh() and so on from extended quiescent states.
6870
*/
6871
if (!rcu_is_watching())
6872
pr_warn("RCU used illegally from extended quiescent state!\n");
6873
6874
lockdep_print_held_locks(curr);
6875
pr_warn("\nstack backtrace:\n");
6876
dump_stack();
6877
nbcon_cpu_emergency_exit();
6878
warn_rcu_exit(rcu);
6879
}
6880
EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6881
6882