Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/locking/mutex.c
49154 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* kernel/locking/mutex.c
4
*
5
* Mutexes: blocking mutual exclusion locks
6
*
7
* Started by Ingo Molnar:
8
*
9
* Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <[email protected]>
10
*
11
* Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12
* David Howells for suggestions and improvements.
13
*
14
* - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15
* from the -rt tree, where it was originally implemented for rtmutexes
16
* by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17
* and Sven Dietrich.
18
*
19
* Also see Documentation/locking/mutex-design.rst.
20
*/
21
#include <linux/mutex.h>
22
#include <linux/ww_mutex.h>
23
#include <linux/sched/signal.h>
24
#include <linux/sched/rt.h>
25
#include <linux/sched/wake_q.h>
26
#include <linux/sched/debug.h>
27
#include <linux/export.h>
28
#include <linux/spinlock.h>
29
#include <linux/interrupt.h>
30
#include <linux/debug_locks.h>
31
#include <linux/osq_lock.h>
32
#include <linux/hung_task.h>
33
34
#define CREATE_TRACE_POINTS
35
#include <trace/events/lock.h>
36
37
#ifndef CONFIG_PREEMPT_RT
38
#include "mutex.h"
39
40
#ifdef CONFIG_DEBUG_MUTEXES
41
# define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
42
#else
43
# define MUTEX_WARN_ON(cond)
44
#endif
45
46
static void __mutex_init_generic(struct mutex *lock)
47
{
48
atomic_long_set(&lock->owner, 0);
49
raw_spin_lock_init(&lock->wait_lock);
50
INIT_LIST_HEAD(&lock->wait_list);
51
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
52
osq_lock_init(&lock->osq);
53
#endif
54
debug_mutex_init(lock);
55
}
56
57
static inline struct task_struct *__owner_task(unsigned long owner)
58
{
59
return (struct task_struct *)(owner & ~MUTEX_FLAGS);
60
}
61
62
bool mutex_is_locked(struct mutex *lock)
63
{
64
return __mutex_owner(lock) != NULL;
65
}
66
EXPORT_SYMBOL(mutex_is_locked);
67
68
static inline unsigned long __owner_flags(unsigned long owner)
69
{
70
return owner & MUTEX_FLAGS;
71
}
72
73
/* Do not use the return value as a pointer directly. */
74
unsigned long mutex_get_owner(struct mutex *lock)
75
{
76
unsigned long owner = atomic_long_read(&lock->owner);
77
78
return (unsigned long)__owner_task(owner);
79
}
80
81
/*
82
* Returns: __mutex_owner(lock) on failure or NULL on success.
83
*/
84
static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
85
{
86
unsigned long owner, curr = (unsigned long)current;
87
88
owner = atomic_long_read(&lock->owner);
89
for (;;) { /* must loop, can race against a flag */
90
unsigned long flags = __owner_flags(owner);
91
unsigned long task = owner & ~MUTEX_FLAGS;
92
93
if (task) {
94
if (flags & MUTEX_FLAG_PICKUP) {
95
if (task != curr)
96
break;
97
flags &= ~MUTEX_FLAG_PICKUP;
98
} else if (handoff) {
99
if (flags & MUTEX_FLAG_HANDOFF)
100
break;
101
flags |= MUTEX_FLAG_HANDOFF;
102
} else {
103
break;
104
}
105
} else {
106
MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
107
task = curr;
108
}
109
110
if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
111
if (task == curr)
112
return NULL;
113
break;
114
}
115
}
116
117
return __owner_task(owner);
118
}
119
120
/*
121
* Trylock or set HANDOFF
122
*/
123
static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
124
{
125
return !__mutex_trylock_common(lock, handoff);
126
}
127
128
/*
129
* Actual trylock that will work on any unlocked state.
130
*/
131
static inline bool __mutex_trylock(struct mutex *lock)
132
{
133
return !__mutex_trylock_common(lock, false);
134
}
135
136
#ifndef CONFIG_DEBUG_LOCK_ALLOC
137
/*
138
* Lockdep annotations are contained to the slow paths for simplicity.
139
* There is nothing that would stop spreading the lockdep annotations outwards
140
* except more code.
141
*/
142
void mutex_init_generic(struct mutex *lock)
143
{
144
__mutex_init_generic(lock);
145
}
146
EXPORT_SYMBOL(mutex_init_generic);
147
148
/*
149
* Optimistic trylock that only works in the uncontended case. Make sure to
150
* follow with a __mutex_trylock() before failing.
151
*/
152
static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
153
{
154
unsigned long curr = (unsigned long)current;
155
unsigned long zero = 0UL;
156
157
MUTEX_WARN_ON(lock->magic != lock);
158
159
if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
160
return true;
161
162
return false;
163
}
164
165
static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
166
{
167
unsigned long curr = (unsigned long)current;
168
169
return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
170
}
171
172
#else /* !CONFIG_DEBUG_LOCK_ALLOC */
173
174
void mutex_init_lockep(struct mutex *lock, const char *name, struct lock_class_key *key)
175
{
176
__mutex_init_generic(lock);
177
178
/*
179
* Make sure we are not reinitializing a held lock:
180
*/
181
debug_check_no_locks_freed((void *)lock, sizeof(*lock));
182
lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
183
}
184
EXPORT_SYMBOL(mutex_init_lockep);
185
#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
186
187
static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
188
{
189
atomic_long_or(flag, &lock->owner);
190
}
191
192
static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
193
{
194
atomic_long_andnot(flag, &lock->owner);
195
}
196
197
static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
198
{
199
return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
200
}
201
202
/*
203
* Add @waiter to a given location in the lock wait_list and set the
204
* FLAG_WAITERS flag if it's the first waiter.
205
*/
206
static void
207
__mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
208
struct list_head *list)
209
{
210
hung_task_set_blocker(lock, BLOCKER_TYPE_MUTEX);
211
debug_mutex_add_waiter(lock, waiter, current);
212
213
list_add_tail(&waiter->list, list);
214
if (__mutex_waiter_is_first(lock, waiter))
215
__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
216
}
217
218
static void
219
__mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
220
{
221
list_del(&waiter->list);
222
if (likely(list_empty(&lock->wait_list)))
223
__mutex_clear_flag(lock, MUTEX_FLAGS);
224
225
debug_mutex_remove_waiter(lock, waiter, current);
226
hung_task_clear_blocker();
227
}
228
229
/*
230
* Give up ownership to a specific task, when @task = NULL, this is equivalent
231
* to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
232
* WAITERS. Provides RELEASE semantics like a regular unlock, the
233
* __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
234
*/
235
static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
236
{
237
unsigned long owner = atomic_long_read(&lock->owner);
238
239
for (;;) {
240
unsigned long new;
241
242
MUTEX_WARN_ON(__owner_task(owner) != current);
243
MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
244
245
new = (owner & MUTEX_FLAG_WAITERS);
246
new |= (unsigned long)task;
247
if (task)
248
new |= MUTEX_FLAG_PICKUP;
249
250
if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
251
break;
252
}
253
}
254
255
#ifndef CONFIG_DEBUG_LOCK_ALLOC
256
/*
257
* We split the mutex lock/unlock logic into separate fastpath and
258
* slowpath functions, to reduce the register pressure on the fastpath.
259
* We also put the fastpath first in the kernel image, to make sure the
260
* branch is predicted by the CPU as default-untaken.
261
*/
262
static void __sched __mutex_lock_slowpath(struct mutex *lock);
263
264
/**
265
* mutex_lock - acquire the mutex
266
* @lock: the mutex to be acquired
267
*
268
* Lock the mutex exclusively for this task. If the mutex is not
269
* available right now, it will sleep until it can get it.
270
*
271
* The mutex must later on be released by the same task that
272
* acquired it. Recursive locking is not allowed. The task
273
* may not exit without first unlocking the mutex. Also, kernel
274
* memory where the mutex resides must not be freed with
275
* the mutex still locked. The mutex must first be initialized
276
* (or statically defined) before it can be locked. memset()-ing
277
* the mutex to 0 is not allowed.
278
*
279
* (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
280
* checks that will enforce the restrictions and will also do
281
* deadlock debugging)
282
*
283
* This function is similar to (but not equivalent to) down().
284
*/
285
void __sched mutex_lock(struct mutex *lock)
286
{
287
might_sleep();
288
289
if (!__mutex_trylock_fast(lock))
290
__mutex_lock_slowpath(lock);
291
}
292
EXPORT_SYMBOL(mutex_lock);
293
#endif
294
295
#include "ww_mutex.h"
296
297
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
298
299
/*
300
* Trylock variant that returns the owning task on failure.
301
*/
302
static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
303
{
304
return __mutex_trylock_common(lock, false);
305
}
306
307
static inline
308
bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
309
struct mutex_waiter *waiter)
310
{
311
struct ww_mutex *ww;
312
313
ww = container_of(lock, struct ww_mutex, base);
314
315
/*
316
* If ww->ctx is set the contents are undefined, only
317
* by acquiring wait_lock there is a guarantee that
318
* they are not invalid when reading.
319
*
320
* As such, when deadlock detection needs to be
321
* performed the optimistic spinning cannot be done.
322
*
323
* Check this in every inner iteration because we may
324
* be racing against another thread's ww_mutex_lock.
325
*/
326
if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
327
return false;
328
329
/*
330
* If we aren't on the wait list yet, cancel the spin
331
* if there are waiters. We want to avoid stealing the
332
* lock from a waiter with an earlier stamp, since the
333
* other thread may already own a lock that we also
334
* need.
335
*/
336
if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
337
return false;
338
339
/*
340
* Similarly, stop spinning if we are no longer the
341
* first waiter.
342
*/
343
if (waiter && !__mutex_waiter_is_first(lock, waiter))
344
return false;
345
346
return true;
347
}
348
349
/*
350
* Look out! "owner" is an entirely speculative pointer access and not
351
* reliable.
352
*
353
* "noinline" so that this function shows up on perf profiles.
354
*/
355
static noinline
356
bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
357
struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
358
{
359
bool ret = true;
360
361
lockdep_assert_preemption_disabled();
362
363
while (__mutex_owner(lock) == owner) {
364
/*
365
* Ensure we emit the owner->on_cpu, dereference _after_
366
* checking lock->owner still matches owner. And we already
367
* disabled preemption which is equal to the RCU read-side
368
* crital section in optimistic spinning code. Thus the
369
* task_strcut structure won't go away during the spinning
370
* period
371
*/
372
barrier();
373
374
/*
375
* Use vcpu_is_preempted to detect lock holder preemption issue.
376
*/
377
if (!owner_on_cpu(owner) || need_resched()) {
378
ret = false;
379
break;
380
}
381
382
if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
383
ret = false;
384
break;
385
}
386
387
cpu_relax();
388
}
389
390
return ret;
391
}
392
393
/*
394
* Initial check for entering the mutex spinning loop
395
*/
396
static inline int mutex_can_spin_on_owner(struct mutex *lock)
397
{
398
struct task_struct *owner;
399
int retval = 1;
400
401
lockdep_assert_preemption_disabled();
402
403
if (need_resched())
404
return 0;
405
406
/*
407
* We already disabled preemption which is equal to the RCU read-side
408
* crital section in optimistic spinning code. Thus the task_strcut
409
* structure won't go away during the spinning period.
410
*/
411
owner = __mutex_owner(lock);
412
if (owner)
413
retval = owner_on_cpu(owner);
414
415
/*
416
* If lock->owner is not set, the mutex has been released. Return true
417
* such that we'll trylock in the spin path, which is a faster option
418
* than the blocking slow path.
419
*/
420
return retval;
421
}
422
423
/*
424
* Optimistic spinning.
425
*
426
* We try to spin for acquisition when we find that the lock owner
427
* is currently running on a (different) CPU and while we don't
428
* need to reschedule. The rationale is that if the lock owner is
429
* running, it is likely to release the lock soon.
430
*
431
* The mutex spinners are queued up using MCS lock so that only one
432
* spinner can compete for the mutex. However, if mutex spinning isn't
433
* going to happen, there is no point in going through the lock/unlock
434
* overhead.
435
*
436
* Returns true when the lock was taken, otherwise false, indicating
437
* that we need to jump to the slowpath and sleep.
438
*
439
* The waiter flag is set to true if the spinner is a waiter in the wait
440
* queue. The waiter-spinner will spin on the lock directly and concurrently
441
* with the spinner at the head of the OSQ, if present, until the owner is
442
* changed to itself.
443
*/
444
static __always_inline bool
445
mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
446
struct mutex_waiter *waiter)
447
{
448
if (!waiter) {
449
/*
450
* The purpose of the mutex_can_spin_on_owner() function is
451
* to eliminate the overhead of osq_lock() and osq_unlock()
452
* in case spinning isn't possible. As a waiter-spinner
453
* is not going to take OSQ lock anyway, there is no need
454
* to call mutex_can_spin_on_owner().
455
*/
456
if (!mutex_can_spin_on_owner(lock))
457
goto fail;
458
459
/*
460
* In order to avoid a stampede of mutex spinners trying to
461
* acquire the mutex all at once, the spinners need to take a
462
* MCS (queued) lock first before spinning on the owner field.
463
*/
464
if (!osq_lock(&lock->osq))
465
goto fail;
466
}
467
468
for (;;) {
469
struct task_struct *owner;
470
471
/* Try to acquire the mutex... */
472
owner = __mutex_trylock_or_owner(lock);
473
if (!owner)
474
break;
475
476
/*
477
* There's an owner, wait for it to either
478
* release the lock or go to sleep.
479
*/
480
if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
481
goto fail_unlock;
482
483
/*
484
* The cpu_relax() call is a compiler barrier which forces
485
* everything in this loop to be re-loaded. We don't need
486
* memory barriers as we'll eventually observe the right
487
* values at the cost of a few extra spins.
488
*/
489
cpu_relax();
490
}
491
492
if (!waiter)
493
osq_unlock(&lock->osq);
494
495
return true;
496
497
498
fail_unlock:
499
if (!waiter)
500
osq_unlock(&lock->osq);
501
502
fail:
503
/*
504
* If we fell out of the spin path because of need_resched(),
505
* reschedule now, before we try-lock the mutex. This avoids getting
506
* scheduled out right after we obtained the mutex.
507
*/
508
if (need_resched()) {
509
/*
510
* We _should_ have TASK_RUNNING here, but just in case
511
* we do not, make it so, otherwise we might get stuck.
512
*/
513
__set_current_state(TASK_RUNNING);
514
schedule_preempt_disabled();
515
}
516
517
return false;
518
}
519
#else
520
static __always_inline bool
521
mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
522
struct mutex_waiter *waiter)
523
{
524
return false;
525
}
526
#endif
527
528
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
529
530
/**
531
* mutex_unlock - release the mutex
532
* @lock: the mutex to be released
533
*
534
* Unlock a mutex that has been locked by this task previously.
535
*
536
* This function must not be used in interrupt context. Unlocking
537
* of a not locked mutex is not allowed.
538
*
539
* The caller must ensure that the mutex stays alive until this function has
540
* returned - mutex_unlock() can NOT directly be used to release an object such
541
* that another concurrent task can free it.
542
* Mutexes are different from spinlocks & refcounts in this aspect.
543
*
544
* This function is similar to (but not equivalent to) up().
545
*/
546
void __sched mutex_unlock(struct mutex *lock)
547
{
548
#ifndef CONFIG_DEBUG_LOCK_ALLOC
549
if (__mutex_unlock_fast(lock))
550
return;
551
#endif
552
__mutex_unlock_slowpath(lock, _RET_IP_);
553
}
554
EXPORT_SYMBOL(mutex_unlock);
555
556
/**
557
* ww_mutex_unlock - release the w/w mutex
558
* @lock: the mutex to be released
559
*
560
* Unlock a mutex that has been locked by this task previously with any of the
561
* ww_mutex_lock* functions (with or without an acquire context). It is
562
* forbidden to release the locks after releasing the acquire context.
563
*
564
* This function must not be used in interrupt context. Unlocking
565
* of a unlocked mutex is not allowed.
566
*/
567
void __sched ww_mutex_unlock(struct ww_mutex *lock)
568
{
569
__ww_mutex_unlock(lock);
570
mutex_unlock(&lock->base);
571
}
572
EXPORT_SYMBOL(ww_mutex_unlock);
573
574
/*
575
* Lock a mutex (possibly interruptible), slowpath:
576
*/
577
static __always_inline int __sched
578
__mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
579
struct lockdep_map *nest_lock, unsigned long ip,
580
struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
581
{
582
DEFINE_WAKE_Q(wake_q);
583
struct mutex_waiter waiter;
584
struct ww_mutex *ww;
585
unsigned long flags;
586
int ret;
587
588
if (!use_ww_ctx)
589
ww_ctx = NULL;
590
591
might_sleep();
592
593
MUTEX_WARN_ON(lock->magic != lock);
594
595
ww = container_of(lock, struct ww_mutex, base);
596
if (ww_ctx) {
597
if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
598
return -EALREADY;
599
600
/*
601
* Reset the wounded flag after a kill. No other process can
602
* race and wound us here since they can't have a valid owner
603
* pointer if we don't have any locks held.
604
*/
605
if (ww_ctx->acquired == 0)
606
ww_ctx->wounded = 0;
607
608
#ifdef CONFIG_DEBUG_LOCK_ALLOC
609
nest_lock = &ww_ctx->dep_map;
610
#endif
611
}
612
613
preempt_disable();
614
mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
615
616
trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
617
if (__mutex_trylock(lock) ||
618
mutex_optimistic_spin(lock, ww_ctx, NULL)) {
619
/* got the lock, yay! */
620
lock_acquired(&lock->dep_map, ip);
621
if (ww_ctx)
622
ww_mutex_set_context_fastpath(ww, ww_ctx);
623
trace_contention_end(lock, 0);
624
preempt_enable();
625
return 0;
626
}
627
628
raw_spin_lock_irqsave(&lock->wait_lock, flags);
629
/*
630
* After waiting to acquire the wait_lock, try again.
631
*/
632
if (__mutex_trylock(lock)) {
633
if (ww_ctx)
634
__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
635
636
goto skip_wait;
637
}
638
639
debug_mutex_lock_common(lock, &waiter);
640
waiter.task = current;
641
if (use_ww_ctx)
642
waiter.ww_ctx = ww_ctx;
643
644
lock_contended(&lock->dep_map, ip);
645
646
if (!use_ww_ctx) {
647
/* add waiting tasks to the end of the waitqueue (FIFO): */
648
__mutex_add_waiter(lock, &waiter, &lock->wait_list);
649
} else {
650
/*
651
* Add in stamp order, waking up waiters that must kill
652
* themselves.
653
*/
654
ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q);
655
if (ret)
656
goto err_early_kill;
657
}
658
659
__set_task_blocked_on(current, lock);
660
set_current_state(state);
661
trace_contention_begin(lock, LCB_F_MUTEX);
662
for (;;) {
663
bool first;
664
665
/*
666
* Once we hold wait_lock, we're serialized against
667
* mutex_unlock() handing the lock off to us, do a trylock
668
* before testing the error conditions to make sure we pick up
669
* the handoff.
670
*/
671
if (__mutex_trylock(lock))
672
goto acquired;
673
674
/*
675
* Check for signals and kill conditions while holding
676
* wait_lock. This ensures the lock cancellation is ordered
677
* against mutex_unlock() and wake-ups do not go missing.
678
*/
679
if (signal_pending_state(state, current)) {
680
ret = -EINTR;
681
goto err;
682
}
683
684
if (ww_ctx) {
685
ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
686
if (ret)
687
goto err;
688
}
689
690
raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
691
692
schedule_preempt_disabled();
693
694
first = __mutex_waiter_is_first(lock, &waiter);
695
696
/*
697
* As we likely have been woken up by task
698
* that has cleared our blocked_on state, re-set
699
* it to the lock we are trying to acquire.
700
*/
701
set_task_blocked_on(current, lock);
702
set_current_state(state);
703
/*
704
* Here we order against unlock; we must either see it change
705
* state back to RUNNING and fall through the next schedule(),
706
* or we must see its unlock and acquire.
707
*/
708
if (__mutex_trylock_or_handoff(lock, first))
709
break;
710
711
if (first) {
712
trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
713
/*
714
* mutex_optimistic_spin() can call schedule(), so
715
* clear blocked on so we don't become unselectable
716
* to run.
717
*/
718
clear_task_blocked_on(current, lock);
719
if (mutex_optimistic_spin(lock, ww_ctx, &waiter))
720
break;
721
set_task_blocked_on(current, lock);
722
trace_contention_begin(lock, LCB_F_MUTEX);
723
}
724
725
raw_spin_lock_irqsave(&lock->wait_lock, flags);
726
}
727
raw_spin_lock_irqsave(&lock->wait_lock, flags);
728
acquired:
729
__clear_task_blocked_on(current, lock);
730
__set_current_state(TASK_RUNNING);
731
732
if (ww_ctx) {
733
/*
734
* Wound-Wait; we stole the lock (!first_waiter), check the
735
* waiters as anyone might want to wound us.
736
*/
737
if (!ww_ctx->is_wait_die &&
738
!__mutex_waiter_is_first(lock, &waiter))
739
__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
740
}
741
742
__mutex_remove_waiter(lock, &waiter);
743
744
debug_mutex_free_waiter(&waiter);
745
746
skip_wait:
747
/* got the lock - cleanup and rejoice! */
748
lock_acquired(&lock->dep_map, ip);
749
trace_contention_end(lock, 0);
750
751
if (ww_ctx)
752
ww_mutex_lock_acquired(ww, ww_ctx);
753
754
raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
755
preempt_enable();
756
return 0;
757
758
err:
759
__clear_task_blocked_on(current, lock);
760
__set_current_state(TASK_RUNNING);
761
__mutex_remove_waiter(lock, &waiter);
762
err_early_kill:
763
WARN_ON(__get_task_blocked_on(current));
764
trace_contention_end(lock, ret);
765
raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
766
debug_mutex_free_waiter(&waiter);
767
mutex_release(&lock->dep_map, ip);
768
preempt_enable();
769
return ret;
770
}
771
772
static int __sched
773
__mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
774
struct lockdep_map *nest_lock, unsigned long ip)
775
{
776
return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
777
}
778
779
static int __sched
780
__ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
781
unsigned long ip, struct ww_acquire_ctx *ww_ctx)
782
{
783
return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
784
}
785
786
/**
787
* ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
788
* @ww: mutex to lock
789
* @ww_ctx: optional w/w acquire context
790
*
791
* Trylocks a mutex with the optional acquire context; no deadlock detection is
792
* possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
793
*
794
* Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
795
* specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
796
*
797
* A mutex acquired with this function must be released with ww_mutex_unlock.
798
*/
799
int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
800
{
801
if (!ww_ctx)
802
return mutex_trylock(&ww->base);
803
804
MUTEX_WARN_ON(ww->base.magic != &ww->base);
805
806
/*
807
* Reset the wounded flag after a kill. No other process can
808
* race and wound us here, since they can't have a valid owner
809
* pointer if we don't have any locks held.
810
*/
811
if (ww_ctx->acquired == 0)
812
ww_ctx->wounded = 0;
813
814
if (__mutex_trylock(&ww->base)) {
815
ww_mutex_set_context_fastpath(ww, ww_ctx);
816
mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
817
return 1;
818
}
819
820
return 0;
821
}
822
EXPORT_SYMBOL(ww_mutex_trylock);
823
824
#ifdef CONFIG_DEBUG_LOCK_ALLOC
825
void __sched
826
mutex_lock_nested(struct mutex *lock, unsigned int subclass)
827
{
828
__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
829
}
830
831
EXPORT_SYMBOL_GPL(mutex_lock_nested);
832
833
void __sched
834
_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
835
{
836
__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
837
}
838
EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
839
840
int __sched
841
_mutex_lock_killable(struct mutex *lock, unsigned int subclass,
842
struct lockdep_map *nest)
843
{
844
return __mutex_lock(lock, TASK_KILLABLE, subclass, nest, _RET_IP_);
845
}
846
EXPORT_SYMBOL_GPL(_mutex_lock_killable);
847
848
int __sched
849
mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
850
{
851
return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
852
}
853
EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
854
855
void __sched
856
mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
857
{
858
int token;
859
860
might_sleep();
861
862
token = io_schedule_prepare();
863
__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
864
subclass, NULL, _RET_IP_, NULL, 0);
865
io_schedule_finish(token);
866
}
867
EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
868
869
static inline int
870
ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
871
{
872
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
873
unsigned tmp;
874
875
if (ctx->deadlock_inject_countdown-- == 0) {
876
tmp = ctx->deadlock_inject_interval;
877
if (tmp > UINT_MAX/4)
878
tmp = UINT_MAX;
879
else
880
tmp = tmp*2 + tmp + tmp/2;
881
882
ctx->deadlock_inject_interval = tmp;
883
ctx->deadlock_inject_countdown = tmp;
884
ctx->contending_lock = lock;
885
886
ww_mutex_unlock(lock);
887
888
return -EDEADLK;
889
}
890
#endif
891
892
return 0;
893
}
894
895
int __sched
896
ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
897
{
898
int ret;
899
900
might_sleep();
901
ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
902
0, _RET_IP_, ctx);
903
if (!ret && ctx && ctx->acquired > 1)
904
return ww_mutex_deadlock_injection(lock, ctx);
905
906
return ret;
907
}
908
EXPORT_SYMBOL_GPL(ww_mutex_lock);
909
910
int __sched
911
ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
912
{
913
int ret;
914
915
might_sleep();
916
ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
917
0, _RET_IP_, ctx);
918
919
if (!ret && ctx && ctx->acquired > 1)
920
return ww_mutex_deadlock_injection(lock, ctx);
921
922
return ret;
923
}
924
EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
925
926
#endif
927
928
/*
929
* Release the lock, slowpath:
930
*/
931
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
932
{
933
struct task_struct *next = NULL;
934
DEFINE_WAKE_Q(wake_q);
935
unsigned long owner;
936
unsigned long flags;
937
938
mutex_release(&lock->dep_map, ip);
939
940
/*
941
* Release the lock before (potentially) taking the spinlock such that
942
* other contenders can get on with things ASAP.
943
*
944
* Except when HANDOFF, in that case we must not clear the owner field,
945
* but instead set it to the top waiter.
946
*/
947
owner = atomic_long_read(&lock->owner);
948
for (;;) {
949
MUTEX_WARN_ON(__owner_task(owner) != current);
950
MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
951
952
if (owner & MUTEX_FLAG_HANDOFF)
953
break;
954
955
if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
956
if (owner & MUTEX_FLAG_WAITERS)
957
break;
958
959
return;
960
}
961
}
962
963
raw_spin_lock_irqsave(&lock->wait_lock, flags);
964
debug_mutex_unlock(lock);
965
if (!list_empty(&lock->wait_list)) {
966
/* get the first entry from the wait-list: */
967
struct mutex_waiter *waiter =
968
list_first_entry(&lock->wait_list,
969
struct mutex_waiter, list);
970
971
next = waiter->task;
972
973
debug_mutex_wake_waiter(lock, waiter);
974
__clear_task_blocked_on(next, lock);
975
wake_q_add(&wake_q, next);
976
}
977
978
if (owner & MUTEX_FLAG_HANDOFF)
979
__mutex_handoff(lock, next);
980
981
raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
982
}
983
984
#ifndef CONFIG_DEBUG_LOCK_ALLOC
985
/*
986
* Here come the less common (and hence less performance-critical) APIs:
987
* mutex_lock_interruptible() and mutex_trylock().
988
*/
989
static noinline int __sched
990
__mutex_lock_killable_slowpath(struct mutex *lock);
991
992
static noinline int __sched
993
__mutex_lock_interruptible_slowpath(struct mutex *lock);
994
995
/**
996
* mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
997
* @lock: The mutex to be acquired.
998
*
999
* Lock the mutex like mutex_lock(). If a signal is delivered while the
1000
* process is sleeping, this function will return without acquiring the
1001
* mutex.
1002
*
1003
* Context: Process context.
1004
* Return: 0 if the lock was successfully acquired or %-EINTR if a
1005
* signal arrived.
1006
*/
1007
int __sched mutex_lock_interruptible(struct mutex *lock)
1008
{
1009
might_sleep();
1010
1011
if (__mutex_trylock_fast(lock))
1012
return 0;
1013
1014
return __mutex_lock_interruptible_slowpath(lock);
1015
}
1016
1017
EXPORT_SYMBOL(mutex_lock_interruptible);
1018
1019
/**
1020
* mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1021
* @lock: The mutex to be acquired.
1022
*
1023
* Lock the mutex like mutex_lock(). If a signal which will be fatal to
1024
* the current process is delivered while the process is sleeping, this
1025
* function will return without acquiring the mutex.
1026
*
1027
* Context: Process context.
1028
* Return: 0 if the lock was successfully acquired or %-EINTR if a
1029
* fatal signal arrived.
1030
*/
1031
int __sched mutex_lock_killable(struct mutex *lock)
1032
{
1033
might_sleep();
1034
1035
if (__mutex_trylock_fast(lock))
1036
return 0;
1037
1038
return __mutex_lock_killable_slowpath(lock);
1039
}
1040
EXPORT_SYMBOL(mutex_lock_killable);
1041
1042
/**
1043
* mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1044
* @lock: The mutex to be acquired.
1045
*
1046
* Lock the mutex like mutex_lock(). While the task is waiting for this
1047
* mutex, it will be accounted as being in the IO wait state by the
1048
* scheduler.
1049
*
1050
* Context: Process context.
1051
*/
1052
void __sched mutex_lock_io(struct mutex *lock)
1053
{
1054
int token;
1055
1056
token = io_schedule_prepare();
1057
mutex_lock(lock);
1058
io_schedule_finish(token);
1059
}
1060
EXPORT_SYMBOL_GPL(mutex_lock_io);
1061
1062
static noinline void __sched
1063
__mutex_lock_slowpath(struct mutex *lock)
1064
{
1065
__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1066
}
1067
1068
static noinline int __sched
1069
__mutex_lock_killable_slowpath(struct mutex *lock)
1070
{
1071
return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1072
}
1073
1074
static noinline int __sched
1075
__mutex_lock_interruptible_slowpath(struct mutex *lock)
1076
{
1077
return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1078
}
1079
1080
static noinline int __sched
1081
__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1082
{
1083
return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1084
_RET_IP_, ctx);
1085
}
1086
1087
static noinline int __sched
1088
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1089
struct ww_acquire_ctx *ctx)
1090
{
1091
return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1092
_RET_IP_, ctx);
1093
}
1094
1095
#endif
1096
1097
#ifndef CONFIG_DEBUG_LOCK_ALLOC
1098
/**
1099
* mutex_trylock - try to acquire the mutex, without waiting
1100
* @lock: the mutex to be acquired
1101
*
1102
* Try to acquire the mutex atomically. Returns 1 if the mutex
1103
* has been acquired successfully, and 0 on contention.
1104
*
1105
* NOTE: this function follows the spin_trylock() convention, so
1106
* it is negated from the down_trylock() return values! Be careful
1107
* about this when converting semaphore users to mutexes.
1108
*
1109
* This function must not be used in interrupt context. The
1110
* mutex must be released by the same task that acquired it.
1111
*/
1112
int __sched mutex_trylock(struct mutex *lock)
1113
{
1114
MUTEX_WARN_ON(lock->magic != lock);
1115
return __mutex_trylock(lock);
1116
}
1117
EXPORT_SYMBOL(mutex_trylock);
1118
#else
1119
int __sched _mutex_trylock_nest_lock(struct mutex *lock, struct lockdep_map *nest_lock)
1120
{
1121
bool locked;
1122
1123
MUTEX_WARN_ON(lock->magic != lock);
1124
locked = __mutex_trylock(lock);
1125
if (locked)
1126
mutex_acquire_nest(&lock->dep_map, 0, 1, nest_lock, _RET_IP_);
1127
1128
return locked;
1129
}
1130
EXPORT_SYMBOL(_mutex_trylock_nest_lock);
1131
#endif
1132
1133
#ifndef CONFIG_DEBUG_LOCK_ALLOC
1134
int __sched
1135
ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1136
{
1137
might_sleep();
1138
1139
if (__mutex_trylock_fast(&lock->base)) {
1140
if (ctx)
1141
ww_mutex_set_context_fastpath(lock, ctx);
1142
return 0;
1143
}
1144
1145
return __ww_mutex_lock_slowpath(lock, ctx);
1146
}
1147
EXPORT_SYMBOL(ww_mutex_lock);
1148
1149
int __sched
1150
ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1151
{
1152
might_sleep();
1153
1154
if (__mutex_trylock_fast(&lock->base)) {
1155
if (ctx)
1156
ww_mutex_set_context_fastpath(lock, ctx);
1157
return 0;
1158
}
1159
1160
return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1161
}
1162
EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1163
1164
#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1165
#endif /* !CONFIG_PREEMPT_RT */
1166
1167
EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin);
1168
EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end);
1169
1170
/**
1171
* atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1172
* @cnt: the atomic which we are to dec
1173
* @lock: the mutex to return holding if we dec to 0
1174
*
1175
* return true and hold lock if we dec to 0, return false otherwise
1176
*/
1177
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1178
{
1179
/* dec if we can't possibly hit 0 */
1180
if (atomic_add_unless(cnt, -1, 1))
1181
return 0;
1182
/* we might hit 0, so take the lock */
1183
mutex_lock(lock);
1184
if (!atomic_dec_and_test(cnt)) {
1185
/* when we actually did the dec, we didn't hit 0 */
1186
mutex_unlock(lock);
1187
return 0;
1188
}
1189
/* we hit 0, and we hold the lock */
1190
return 1;
1191
}
1192
EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1193
1194