Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/locking/mutex.c
25923 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* kernel/locking/mutex.c
4
*
5
* Mutexes: blocking mutual exclusion locks
6
*
7
* Started by Ingo Molnar:
8
*
9
* Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <[email protected]>
10
*
11
* Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12
* David Howells for suggestions and improvements.
13
*
14
* - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15
* from the -rt tree, where it was originally implemented for rtmutexes
16
* by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17
* and Sven Dietrich.
18
*
19
* Also see Documentation/locking/mutex-design.rst.
20
*/
21
#include <linux/mutex.h>
22
#include <linux/ww_mutex.h>
23
#include <linux/sched/signal.h>
24
#include <linux/sched/rt.h>
25
#include <linux/sched/wake_q.h>
26
#include <linux/sched/debug.h>
27
#include <linux/export.h>
28
#include <linux/spinlock.h>
29
#include <linux/interrupt.h>
30
#include <linux/debug_locks.h>
31
#include <linux/osq_lock.h>
32
#include <linux/hung_task.h>
33
34
#define CREATE_TRACE_POINTS
35
#include <trace/events/lock.h>
36
37
#ifndef CONFIG_PREEMPT_RT
38
#include "mutex.h"
39
40
#ifdef CONFIG_DEBUG_MUTEXES
41
# define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
42
#else
43
# define MUTEX_WARN_ON(cond)
44
#endif
45
46
void
47
__mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
48
{
49
atomic_long_set(&lock->owner, 0);
50
raw_spin_lock_init(&lock->wait_lock);
51
INIT_LIST_HEAD(&lock->wait_list);
52
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
53
osq_lock_init(&lock->osq);
54
#endif
55
56
debug_mutex_init(lock, name, key);
57
}
58
EXPORT_SYMBOL(__mutex_init);
59
60
static inline struct task_struct *__owner_task(unsigned long owner)
61
{
62
return (struct task_struct *)(owner & ~MUTEX_FLAGS);
63
}
64
65
bool mutex_is_locked(struct mutex *lock)
66
{
67
return __mutex_owner(lock) != NULL;
68
}
69
EXPORT_SYMBOL(mutex_is_locked);
70
71
static inline unsigned long __owner_flags(unsigned long owner)
72
{
73
return owner & MUTEX_FLAGS;
74
}
75
76
/* Do not use the return value as a pointer directly. */
77
unsigned long mutex_get_owner(struct mutex *lock)
78
{
79
unsigned long owner = atomic_long_read(&lock->owner);
80
81
return (unsigned long)__owner_task(owner);
82
}
83
84
/*
85
* Returns: __mutex_owner(lock) on failure or NULL on success.
86
*/
87
static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
88
{
89
unsigned long owner, curr = (unsigned long)current;
90
91
owner = atomic_long_read(&lock->owner);
92
for (;;) { /* must loop, can race against a flag */
93
unsigned long flags = __owner_flags(owner);
94
unsigned long task = owner & ~MUTEX_FLAGS;
95
96
if (task) {
97
if (flags & MUTEX_FLAG_PICKUP) {
98
if (task != curr)
99
break;
100
flags &= ~MUTEX_FLAG_PICKUP;
101
} else if (handoff) {
102
if (flags & MUTEX_FLAG_HANDOFF)
103
break;
104
flags |= MUTEX_FLAG_HANDOFF;
105
} else {
106
break;
107
}
108
} else {
109
MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
110
task = curr;
111
}
112
113
if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
114
if (task == curr)
115
return NULL;
116
break;
117
}
118
}
119
120
return __owner_task(owner);
121
}
122
123
/*
124
* Trylock or set HANDOFF
125
*/
126
static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
127
{
128
return !__mutex_trylock_common(lock, handoff);
129
}
130
131
/*
132
* Actual trylock that will work on any unlocked state.
133
*/
134
static inline bool __mutex_trylock(struct mutex *lock)
135
{
136
return !__mutex_trylock_common(lock, false);
137
}
138
139
#ifndef CONFIG_DEBUG_LOCK_ALLOC
140
/*
141
* Lockdep annotations are contained to the slow paths for simplicity.
142
* There is nothing that would stop spreading the lockdep annotations outwards
143
* except more code.
144
*/
145
146
/*
147
* Optimistic trylock that only works in the uncontended case. Make sure to
148
* follow with a __mutex_trylock() before failing.
149
*/
150
static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
151
{
152
unsigned long curr = (unsigned long)current;
153
unsigned long zero = 0UL;
154
155
MUTEX_WARN_ON(lock->magic != lock);
156
157
if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
158
return true;
159
160
return false;
161
}
162
163
static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
164
{
165
unsigned long curr = (unsigned long)current;
166
167
return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
168
}
169
#endif
170
171
static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
172
{
173
atomic_long_or(flag, &lock->owner);
174
}
175
176
static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
177
{
178
atomic_long_andnot(flag, &lock->owner);
179
}
180
181
static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
182
{
183
return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
184
}
185
186
/*
187
* Add @waiter to a given location in the lock wait_list and set the
188
* FLAG_WAITERS flag if it's the first waiter.
189
*/
190
static void
191
__mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
192
struct list_head *list)
193
{
194
hung_task_set_blocker(lock, BLOCKER_TYPE_MUTEX);
195
debug_mutex_add_waiter(lock, waiter, current);
196
197
list_add_tail(&waiter->list, list);
198
if (__mutex_waiter_is_first(lock, waiter))
199
__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
200
}
201
202
static void
203
__mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
204
{
205
list_del(&waiter->list);
206
if (likely(list_empty(&lock->wait_list)))
207
__mutex_clear_flag(lock, MUTEX_FLAGS);
208
209
debug_mutex_remove_waiter(lock, waiter, current);
210
hung_task_clear_blocker();
211
}
212
213
/*
214
* Give up ownership to a specific task, when @task = NULL, this is equivalent
215
* to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
216
* WAITERS. Provides RELEASE semantics like a regular unlock, the
217
* __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
218
*/
219
static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
220
{
221
unsigned long owner = atomic_long_read(&lock->owner);
222
223
for (;;) {
224
unsigned long new;
225
226
MUTEX_WARN_ON(__owner_task(owner) != current);
227
MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
228
229
new = (owner & MUTEX_FLAG_WAITERS);
230
new |= (unsigned long)task;
231
if (task)
232
new |= MUTEX_FLAG_PICKUP;
233
234
if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
235
break;
236
}
237
}
238
239
#ifndef CONFIG_DEBUG_LOCK_ALLOC
240
/*
241
* We split the mutex lock/unlock logic into separate fastpath and
242
* slowpath functions, to reduce the register pressure on the fastpath.
243
* We also put the fastpath first in the kernel image, to make sure the
244
* branch is predicted by the CPU as default-untaken.
245
*/
246
static void __sched __mutex_lock_slowpath(struct mutex *lock);
247
248
/**
249
* mutex_lock - acquire the mutex
250
* @lock: the mutex to be acquired
251
*
252
* Lock the mutex exclusively for this task. If the mutex is not
253
* available right now, it will sleep until it can get it.
254
*
255
* The mutex must later on be released by the same task that
256
* acquired it. Recursive locking is not allowed. The task
257
* may not exit without first unlocking the mutex. Also, kernel
258
* memory where the mutex resides must not be freed with
259
* the mutex still locked. The mutex must first be initialized
260
* (or statically defined) before it can be locked. memset()-ing
261
* the mutex to 0 is not allowed.
262
*
263
* (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
264
* checks that will enforce the restrictions and will also do
265
* deadlock debugging)
266
*
267
* This function is similar to (but not equivalent to) down().
268
*/
269
void __sched mutex_lock(struct mutex *lock)
270
{
271
might_sleep();
272
273
if (!__mutex_trylock_fast(lock))
274
__mutex_lock_slowpath(lock);
275
}
276
EXPORT_SYMBOL(mutex_lock);
277
#endif
278
279
#include "ww_mutex.h"
280
281
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
282
283
/*
284
* Trylock variant that returns the owning task on failure.
285
*/
286
static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
287
{
288
return __mutex_trylock_common(lock, false);
289
}
290
291
static inline
292
bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
293
struct mutex_waiter *waiter)
294
{
295
struct ww_mutex *ww;
296
297
ww = container_of(lock, struct ww_mutex, base);
298
299
/*
300
* If ww->ctx is set the contents are undefined, only
301
* by acquiring wait_lock there is a guarantee that
302
* they are not invalid when reading.
303
*
304
* As such, when deadlock detection needs to be
305
* performed the optimistic spinning cannot be done.
306
*
307
* Check this in every inner iteration because we may
308
* be racing against another thread's ww_mutex_lock.
309
*/
310
if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
311
return false;
312
313
/*
314
* If we aren't on the wait list yet, cancel the spin
315
* if there are waiters. We want to avoid stealing the
316
* lock from a waiter with an earlier stamp, since the
317
* other thread may already own a lock that we also
318
* need.
319
*/
320
if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
321
return false;
322
323
/*
324
* Similarly, stop spinning if we are no longer the
325
* first waiter.
326
*/
327
if (waiter && !__mutex_waiter_is_first(lock, waiter))
328
return false;
329
330
return true;
331
}
332
333
/*
334
* Look out! "owner" is an entirely speculative pointer access and not
335
* reliable.
336
*
337
* "noinline" so that this function shows up on perf profiles.
338
*/
339
static noinline
340
bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
341
struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
342
{
343
bool ret = true;
344
345
lockdep_assert_preemption_disabled();
346
347
while (__mutex_owner(lock) == owner) {
348
/*
349
* Ensure we emit the owner->on_cpu, dereference _after_
350
* checking lock->owner still matches owner. And we already
351
* disabled preemption which is equal to the RCU read-side
352
* crital section in optimistic spinning code. Thus the
353
* task_strcut structure won't go away during the spinning
354
* period
355
*/
356
barrier();
357
358
/*
359
* Use vcpu_is_preempted to detect lock holder preemption issue.
360
*/
361
if (!owner_on_cpu(owner) || need_resched()) {
362
ret = false;
363
break;
364
}
365
366
if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
367
ret = false;
368
break;
369
}
370
371
cpu_relax();
372
}
373
374
return ret;
375
}
376
377
/*
378
* Initial check for entering the mutex spinning loop
379
*/
380
static inline int mutex_can_spin_on_owner(struct mutex *lock)
381
{
382
struct task_struct *owner;
383
int retval = 1;
384
385
lockdep_assert_preemption_disabled();
386
387
if (need_resched())
388
return 0;
389
390
/*
391
* We already disabled preemption which is equal to the RCU read-side
392
* crital section in optimistic spinning code. Thus the task_strcut
393
* structure won't go away during the spinning period.
394
*/
395
owner = __mutex_owner(lock);
396
if (owner)
397
retval = owner_on_cpu(owner);
398
399
/*
400
* If lock->owner is not set, the mutex has been released. Return true
401
* such that we'll trylock in the spin path, which is a faster option
402
* than the blocking slow path.
403
*/
404
return retval;
405
}
406
407
/*
408
* Optimistic spinning.
409
*
410
* We try to spin for acquisition when we find that the lock owner
411
* is currently running on a (different) CPU and while we don't
412
* need to reschedule. The rationale is that if the lock owner is
413
* running, it is likely to release the lock soon.
414
*
415
* The mutex spinners are queued up using MCS lock so that only one
416
* spinner can compete for the mutex. However, if mutex spinning isn't
417
* going to happen, there is no point in going through the lock/unlock
418
* overhead.
419
*
420
* Returns true when the lock was taken, otherwise false, indicating
421
* that we need to jump to the slowpath and sleep.
422
*
423
* The waiter flag is set to true if the spinner is a waiter in the wait
424
* queue. The waiter-spinner will spin on the lock directly and concurrently
425
* with the spinner at the head of the OSQ, if present, until the owner is
426
* changed to itself.
427
*/
428
static __always_inline bool
429
mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
430
struct mutex_waiter *waiter)
431
{
432
if (!waiter) {
433
/*
434
* The purpose of the mutex_can_spin_on_owner() function is
435
* to eliminate the overhead of osq_lock() and osq_unlock()
436
* in case spinning isn't possible. As a waiter-spinner
437
* is not going to take OSQ lock anyway, there is no need
438
* to call mutex_can_spin_on_owner().
439
*/
440
if (!mutex_can_spin_on_owner(lock))
441
goto fail;
442
443
/*
444
* In order to avoid a stampede of mutex spinners trying to
445
* acquire the mutex all at once, the spinners need to take a
446
* MCS (queued) lock first before spinning on the owner field.
447
*/
448
if (!osq_lock(&lock->osq))
449
goto fail;
450
}
451
452
for (;;) {
453
struct task_struct *owner;
454
455
/* Try to acquire the mutex... */
456
owner = __mutex_trylock_or_owner(lock);
457
if (!owner)
458
break;
459
460
/*
461
* There's an owner, wait for it to either
462
* release the lock or go to sleep.
463
*/
464
if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
465
goto fail_unlock;
466
467
/*
468
* The cpu_relax() call is a compiler barrier which forces
469
* everything in this loop to be re-loaded. We don't need
470
* memory barriers as we'll eventually observe the right
471
* values at the cost of a few extra spins.
472
*/
473
cpu_relax();
474
}
475
476
if (!waiter)
477
osq_unlock(&lock->osq);
478
479
return true;
480
481
482
fail_unlock:
483
if (!waiter)
484
osq_unlock(&lock->osq);
485
486
fail:
487
/*
488
* If we fell out of the spin path because of need_resched(),
489
* reschedule now, before we try-lock the mutex. This avoids getting
490
* scheduled out right after we obtained the mutex.
491
*/
492
if (need_resched()) {
493
/*
494
* We _should_ have TASK_RUNNING here, but just in case
495
* we do not, make it so, otherwise we might get stuck.
496
*/
497
__set_current_state(TASK_RUNNING);
498
schedule_preempt_disabled();
499
}
500
501
return false;
502
}
503
#else
504
static __always_inline bool
505
mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
506
struct mutex_waiter *waiter)
507
{
508
return false;
509
}
510
#endif
511
512
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
513
514
/**
515
* mutex_unlock - release the mutex
516
* @lock: the mutex to be released
517
*
518
* Unlock a mutex that has been locked by this task previously.
519
*
520
* This function must not be used in interrupt context. Unlocking
521
* of a not locked mutex is not allowed.
522
*
523
* The caller must ensure that the mutex stays alive until this function has
524
* returned - mutex_unlock() can NOT directly be used to release an object such
525
* that another concurrent task can free it.
526
* Mutexes are different from spinlocks & refcounts in this aspect.
527
*
528
* This function is similar to (but not equivalent to) up().
529
*/
530
void __sched mutex_unlock(struct mutex *lock)
531
{
532
#ifndef CONFIG_DEBUG_LOCK_ALLOC
533
if (__mutex_unlock_fast(lock))
534
return;
535
#endif
536
__mutex_unlock_slowpath(lock, _RET_IP_);
537
}
538
EXPORT_SYMBOL(mutex_unlock);
539
540
/**
541
* ww_mutex_unlock - release the w/w mutex
542
* @lock: the mutex to be released
543
*
544
* Unlock a mutex that has been locked by this task previously with any of the
545
* ww_mutex_lock* functions (with or without an acquire context). It is
546
* forbidden to release the locks after releasing the acquire context.
547
*
548
* This function must not be used in interrupt context. Unlocking
549
* of a unlocked mutex is not allowed.
550
*/
551
void __sched ww_mutex_unlock(struct ww_mutex *lock)
552
{
553
__ww_mutex_unlock(lock);
554
mutex_unlock(&lock->base);
555
}
556
EXPORT_SYMBOL(ww_mutex_unlock);
557
558
/*
559
* Lock a mutex (possibly interruptible), slowpath:
560
*/
561
static __always_inline int __sched
562
__mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
563
struct lockdep_map *nest_lock, unsigned long ip,
564
struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
565
{
566
DEFINE_WAKE_Q(wake_q);
567
struct mutex_waiter waiter;
568
struct ww_mutex *ww;
569
unsigned long flags;
570
int ret;
571
572
if (!use_ww_ctx)
573
ww_ctx = NULL;
574
575
might_sleep();
576
577
MUTEX_WARN_ON(lock->magic != lock);
578
579
ww = container_of(lock, struct ww_mutex, base);
580
if (ww_ctx) {
581
if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
582
return -EALREADY;
583
584
/*
585
* Reset the wounded flag after a kill. No other process can
586
* race and wound us here since they can't have a valid owner
587
* pointer if we don't have any locks held.
588
*/
589
if (ww_ctx->acquired == 0)
590
ww_ctx->wounded = 0;
591
592
#ifdef CONFIG_DEBUG_LOCK_ALLOC
593
nest_lock = &ww_ctx->dep_map;
594
#endif
595
}
596
597
preempt_disable();
598
mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
599
600
trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
601
if (__mutex_trylock(lock) ||
602
mutex_optimistic_spin(lock, ww_ctx, NULL)) {
603
/* got the lock, yay! */
604
lock_acquired(&lock->dep_map, ip);
605
if (ww_ctx)
606
ww_mutex_set_context_fastpath(ww, ww_ctx);
607
trace_contention_end(lock, 0);
608
preempt_enable();
609
return 0;
610
}
611
612
raw_spin_lock_irqsave(&lock->wait_lock, flags);
613
/*
614
* After waiting to acquire the wait_lock, try again.
615
*/
616
if (__mutex_trylock(lock)) {
617
if (ww_ctx)
618
__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
619
620
goto skip_wait;
621
}
622
623
debug_mutex_lock_common(lock, &waiter);
624
waiter.task = current;
625
if (use_ww_ctx)
626
waiter.ww_ctx = ww_ctx;
627
628
lock_contended(&lock->dep_map, ip);
629
630
if (!use_ww_ctx) {
631
/* add waiting tasks to the end of the waitqueue (FIFO): */
632
__mutex_add_waiter(lock, &waiter, &lock->wait_list);
633
} else {
634
/*
635
* Add in stamp order, waking up waiters that must kill
636
* themselves.
637
*/
638
ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q);
639
if (ret)
640
goto err_early_kill;
641
}
642
643
__set_task_blocked_on(current, lock);
644
set_current_state(state);
645
trace_contention_begin(lock, LCB_F_MUTEX);
646
for (;;) {
647
bool first;
648
649
/*
650
* Once we hold wait_lock, we're serialized against
651
* mutex_unlock() handing the lock off to us, do a trylock
652
* before testing the error conditions to make sure we pick up
653
* the handoff.
654
*/
655
if (__mutex_trylock(lock))
656
goto acquired;
657
658
/*
659
* Check for signals and kill conditions while holding
660
* wait_lock. This ensures the lock cancellation is ordered
661
* against mutex_unlock() and wake-ups do not go missing.
662
*/
663
if (signal_pending_state(state, current)) {
664
ret = -EINTR;
665
goto err;
666
}
667
668
if (ww_ctx) {
669
ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
670
if (ret)
671
goto err;
672
}
673
674
raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
675
676
schedule_preempt_disabled();
677
678
first = __mutex_waiter_is_first(lock, &waiter);
679
680
/*
681
* As we likely have been woken up by task
682
* that has cleared our blocked_on state, re-set
683
* it to the lock we are trying to acquire.
684
*/
685
set_task_blocked_on(current, lock);
686
set_current_state(state);
687
/*
688
* Here we order against unlock; we must either see it change
689
* state back to RUNNING and fall through the next schedule(),
690
* or we must see its unlock and acquire.
691
*/
692
if (__mutex_trylock_or_handoff(lock, first))
693
break;
694
695
if (first) {
696
trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
697
/*
698
* mutex_optimistic_spin() can call schedule(), so
699
* clear blocked on so we don't become unselectable
700
* to run.
701
*/
702
clear_task_blocked_on(current, lock);
703
if (mutex_optimistic_spin(lock, ww_ctx, &waiter))
704
break;
705
set_task_blocked_on(current, lock);
706
trace_contention_begin(lock, LCB_F_MUTEX);
707
}
708
709
raw_spin_lock_irqsave(&lock->wait_lock, flags);
710
}
711
raw_spin_lock_irqsave(&lock->wait_lock, flags);
712
acquired:
713
__clear_task_blocked_on(current, lock);
714
__set_current_state(TASK_RUNNING);
715
716
if (ww_ctx) {
717
/*
718
* Wound-Wait; we stole the lock (!first_waiter), check the
719
* waiters as anyone might want to wound us.
720
*/
721
if (!ww_ctx->is_wait_die &&
722
!__mutex_waiter_is_first(lock, &waiter))
723
__ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
724
}
725
726
__mutex_remove_waiter(lock, &waiter);
727
728
debug_mutex_free_waiter(&waiter);
729
730
skip_wait:
731
/* got the lock - cleanup and rejoice! */
732
lock_acquired(&lock->dep_map, ip);
733
trace_contention_end(lock, 0);
734
735
if (ww_ctx)
736
ww_mutex_lock_acquired(ww, ww_ctx);
737
738
raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
739
preempt_enable();
740
return 0;
741
742
err:
743
__clear_task_blocked_on(current, lock);
744
__set_current_state(TASK_RUNNING);
745
__mutex_remove_waiter(lock, &waiter);
746
err_early_kill:
747
WARN_ON(__get_task_blocked_on(current));
748
trace_contention_end(lock, ret);
749
raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
750
debug_mutex_free_waiter(&waiter);
751
mutex_release(&lock->dep_map, ip);
752
preempt_enable();
753
return ret;
754
}
755
756
static int __sched
757
__mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
758
struct lockdep_map *nest_lock, unsigned long ip)
759
{
760
return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
761
}
762
763
static int __sched
764
__ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
765
unsigned long ip, struct ww_acquire_ctx *ww_ctx)
766
{
767
return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
768
}
769
770
/**
771
* ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
772
* @ww: mutex to lock
773
* @ww_ctx: optional w/w acquire context
774
*
775
* Trylocks a mutex with the optional acquire context; no deadlock detection is
776
* possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
777
*
778
* Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
779
* specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
780
*
781
* A mutex acquired with this function must be released with ww_mutex_unlock.
782
*/
783
int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
784
{
785
if (!ww_ctx)
786
return mutex_trylock(&ww->base);
787
788
MUTEX_WARN_ON(ww->base.magic != &ww->base);
789
790
/*
791
* Reset the wounded flag after a kill. No other process can
792
* race and wound us here, since they can't have a valid owner
793
* pointer if we don't have any locks held.
794
*/
795
if (ww_ctx->acquired == 0)
796
ww_ctx->wounded = 0;
797
798
if (__mutex_trylock(&ww->base)) {
799
ww_mutex_set_context_fastpath(ww, ww_ctx);
800
mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
801
return 1;
802
}
803
804
return 0;
805
}
806
EXPORT_SYMBOL(ww_mutex_trylock);
807
808
#ifdef CONFIG_DEBUG_LOCK_ALLOC
809
void __sched
810
mutex_lock_nested(struct mutex *lock, unsigned int subclass)
811
{
812
__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
813
}
814
815
EXPORT_SYMBOL_GPL(mutex_lock_nested);
816
817
void __sched
818
_mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
819
{
820
__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
821
}
822
EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
823
824
int __sched
825
_mutex_lock_killable(struct mutex *lock, unsigned int subclass,
826
struct lockdep_map *nest)
827
{
828
return __mutex_lock(lock, TASK_KILLABLE, subclass, nest, _RET_IP_);
829
}
830
EXPORT_SYMBOL_GPL(_mutex_lock_killable);
831
832
int __sched
833
mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
834
{
835
return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
836
}
837
EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
838
839
void __sched
840
mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
841
{
842
int token;
843
844
might_sleep();
845
846
token = io_schedule_prepare();
847
__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
848
subclass, NULL, _RET_IP_, NULL, 0);
849
io_schedule_finish(token);
850
}
851
EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
852
853
static inline int
854
ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
855
{
856
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
857
unsigned tmp;
858
859
if (ctx->deadlock_inject_countdown-- == 0) {
860
tmp = ctx->deadlock_inject_interval;
861
if (tmp > UINT_MAX/4)
862
tmp = UINT_MAX;
863
else
864
tmp = tmp*2 + tmp + tmp/2;
865
866
ctx->deadlock_inject_interval = tmp;
867
ctx->deadlock_inject_countdown = tmp;
868
ctx->contending_lock = lock;
869
870
ww_mutex_unlock(lock);
871
872
return -EDEADLK;
873
}
874
#endif
875
876
return 0;
877
}
878
879
int __sched
880
ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
881
{
882
int ret;
883
884
might_sleep();
885
ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
886
0, _RET_IP_, ctx);
887
if (!ret && ctx && ctx->acquired > 1)
888
return ww_mutex_deadlock_injection(lock, ctx);
889
890
return ret;
891
}
892
EXPORT_SYMBOL_GPL(ww_mutex_lock);
893
894
int __sched
895
ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
896
{
897
int ret;
898
899
might_sleep();
900
ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
901
0, _RET_IP_, ctx);
902
903
if (!ret && ctx && ctx->acquired > 1)
904
return ww_mutex_deadlock_injection(lock, ctx);
905
906
return ret;
907
}
908
EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
909
910
#endif
911
912
/*
913
* Release the lock, slowpath:
914
*/
915
static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
916
{
917
struct task_struct *next = NULL;
918
DEFINE_WAKE_Q(wake_q);
919
unsigned long owner;
920
unsigned long flags;
921
922
mutex_release(&lock->dep_map, ip);
923
924
/*
925
* Release the lock before (potentially) taking the spinlock such that
926
* other contenders can get on with things ASAP.
927
*
928
* Except when HANDOFF, in that case we must not clear the owner field,
929
* but instead set it to the top waiter.
930
*/
931
owner = atomic_long_read(&lock->owner);
932
for (;;) {
933
MUTEX_WARN_ON(__owner_task(owner) != current);
934
MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
935
936
if (owner & MUTEX_FLAG_HANDOFF)
937
break;
938
939
if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
940
if (owner & MUTEX_FLAG_WAITERS)
941
break;
942
943
return;
944
}
945
}
946
947
raw_spin_lock_irqsave(&lock->wait_lock, flags);
948
debug_mutex_unlock(lock);
949
if (!list_empty(&lock->wait_list)) {
950
/* get the first entry from the wait-list: */
951
struct mutex_waiter *waiter =
952
list_first_entry(&lock->wait_list,
953
struct mutex_waiter, list);
954
955
next = waiter->task;
956
957
debug_mutex_wake_waiter(lock, waiter);
958
__clear_task_blocked_on(next, lock);
959
wake_q_add(&wake_q, next);
960
}
961
962
if (owner & MUTEX_FLAG_HANDOFF)
963
__mutex_handoff(lock, next);
964
965
raw_spin_unlock_irqrestore_wake(&lock->wait_lock, flags, &wake_q);
966
}
967
968
#ifndef CONFIG_DEBUG_LOCK_ALLOC
969
/*
970
* Here come the less common (and hence less performance-critical) APIs:
971
* mutex_lock_interruptible() and mutex_trylock().
972
*/
973
static noinline int __sched
974
__mutex_lock_killable_slowpath(struct mutex *lock);
975
976
static noinline int __sched
977
__mutex_lock_interruptible_slowpath(struct mutex *lock);
978
979
/**
980
* mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
981
* @lock: The mutex to be acquired.
982
*
983
* Lock the mutex like mutex_lock(). If a signal is delivered while the
984
* process is sleeping, this function will return without acquiring the
985
* mutex.
986
*
987
* Context: Process context.
988
* Return: 0 if the lock was successfully acquired or %-EINTR if a
989
* signal arrived.
990
*/
991
int __sched mutex_lock_interruptible(struct mutex *lock)
992
{
993
might_sleep();
994
995
if (__mutex_trylock_fast(lock))
996
return 0;
997
998
return __mutex_lock_interruptible_slowpath(lock);
999
}
1000
1001
EXPORT_SYMBOL(mutex_lock_interruptible);
1002
1003
/**
1004
* mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1005
* @lock: The mutex to be acquired.
1006
*
1007
* Lock the mutex like mutex_lock(). If a signal which will be fatal to
1008
* the current process is delivered while the process is sleeping, this
1009
* function will return without acquiring the mutex.
1010
*
1011
* Context: Process context.
1012
* Return: 0 if the lock was successfully acquired or %-EINTR if a
1013
* fatal signal arrived.
1014
*/
1015
int __sched mutex_lock_killable(struct mutex *lock)
1016
{
1017
might_sleep();
1018
1019
if (__mutex_trylock_fast(lock))
1020
return 0;
1021
1022
return __mutex_lock_killable_slowpath(lock);
1023
}
1024
EXPORT_SYMBOL(mutex_lock_killable);
1025
1026
/**
1027
* mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1028
* @lock: The mutex to be acquired.
1029
*
1030
* Lock the mutex like mutex_lock(). While the task is waiting for this
1031
* mutex, it will be accounted as being in the IO wait state by the
1032
* scheduler.
1033
*
1034
* Context: Process context.
1035
*/
1036
void __sched mutex_lock_io(struct mutex *lock)
1037
{
1038
int token;
1039
1040
token = io_schedule_prepare();
1041
mutex_lock(lock);
1042
io_schedule_finish(token);
1043
}
1044
EXPORT_SYMBOL_GPL(mutex_lock_io);
1045
1046
static noinline void __sched
1047
__mutex_lock_slowpath(struct mutex *lock)
1048
{
1049
__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1050
}
1051
1052
static noinline int __sched
1053
__mutex_lock_killable_slowpath(struct mutex *lock)
1054
{
1055
return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1056
}
1057
1058
static noinline int __sched
1059
__mutex_lock_interruptible_slowpath(struct mutex *lock)
1060
{
1061
return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1062
}
1063
1064
static noinline int __sched
1065
__ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1066
{
1067
return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1068
_RET_IP_, ctx);
1069
}
1070
1071
static noinline int __sched
1072
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1073
struct ww_acquire_ctx *ctx)
1074
{
1075
return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1076
_RET_IP_, ctx);
1077
}
1078
1079
#endif
1080
1081
#ifndef CONFIG_DEBUG_LOCK_ALLOC
1082
/**
1083
* mutex_trylock - try to acquire the mutex, without waiting
1084
* @lock: the mutex to be acquired
1085
*
1086
* Try to acquire the mutex atomically. Returns 1 if the mutex
1087
* has been acquired successfully, and 0 on contention.
1088
*
1089
* NOTE: this function follows the spin_trylock() convention, so
1090
* it is negated from the down_trylock() return values! Be careful
1091
* about this when converting semaphore users to mutexes.
1092
*
1093
* This function must not be used in interrupt context. The
1094
* mutex must be released by the same task that acquired it.
1095
*/
1096
int __sched mutex_trylock(struct mutex *lock)
1097
{
1098
MUTEX_WARN_ON(lock->magic != lock);
1099
return __mutex_trylock(lock);
1100
}
1101
EXPORT_SYMBOL(mutex_trylock);
1102
#else
1103
int __sched _mutex_trylock_nest_lock(struct mutex *lock, struct lockdep_map *nest_lock)
1104
{
1105
bool locked;
1106
1107
MUTEX_WARN_ON(lock->magic != lock);
1108
locked = __mutex_trylock(lock);
1109
if (locked)
1110
mutex_acquire_nest(&lock->dep_map, 0, 1, nest_lock, _RET_IP_);
1111
1112
return locked;
1113
}
1114
EXPORT_SYMBOL(_mutex_trylock_nest_lock);
1115
#endif
1116
1117
#ifndef CONFIG_DEBUG_LOCK_ALLOC
1118
int __sched
1119
ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1120
{
1121
might_sleep();
1122
1123
if (__mutex_trylock_fast(&lock->base)) {
1124
if (ctx)
1125
ww_mutex_set_context_fastpath(lock, ctx);
1126
return 0;
1127
}
1128
1129
return __ww_mutex_lock_slowpath(lock, ctx);
1130
}
1131
EXPORT_SYMBOL(ww_mutex_lock);
1132
1133
int __sched
1134
ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1135
{
1136
might_sleep();
1137
1138
if (__mutex_trylock_fast(&lock->base)) {
1139
if (ctx)
1140
ww_mutex_set_context_fastpath(lock, ctx);
1141
return 0;
1142
}
1143
1144
return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1145
}
1146
EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1147
1148
#endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1149
#endif /* !CONFIG_PREEMPT_RT */
1150
1151
EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin);
1152
EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end);
1153
1154
/**
1155
* atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1156
* @cnt: the atomic which we are to dec
1157
* @lock: the mutex to return holding if we dec to 0
1158
*
1159
* return true and hold lock if we dec to 0, return false otherwise
1160
*/
1161
int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1162
{
1163
/* dec if we can't possibly hit 0 */
1164
if (atomic_add_unless(cnt, -1, 1))
1165
return 0;
1166
/* we might hit 0, so take the lock */
1167
mutex_lock(lock);
1168
if (!atomic_dec_and_test(cnt)) {
1169
/* when we actually did the dec, we didn't hit 0 */
1170
mutex_unlock(lock);
1171
return 0;
1172
}
1173
/* we hit 0, and we hold the lock */
1174
return 1;
1175
}
1176
EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1177
1178