Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/locking/osq_lock.c
25923 views
1
// SPDX-License-Identifier: GPL-2.0
2
#include <linux/percpu.h>
3
#include <linux/sched.h>
4
#include <linux/osq_lock.h>
5
6
/*
7
* An MCS like lock especially tailored for optimistic spinning for sleeping
8
* lock implementations (mutex, rwsem, etc).
9
*
10
* Using a single mcs node per CPU is safe because sleeping locks should not be
11
* called from interrupt context and we have preemption disabled while
12
* spinning.
13
*/
14
15
struct optimistic_spin_node {
16
struct optimistic_spin_node *next, *prev;
17
int locked; /* 1 if lock acquired */
18
int cpu; /* encoded CPU # + 1 value */
19
};
20
21
static DEFINE_PER_CPU_SHARED_ALIGNED(struct optimistic_spin_node, osq_node);
22
23
/*
24
* We use the value 0 to represent "no CPU", thus the encoded value
25
* will be the CPU number incremented by 1.
26
*/
27
static inline int encode_cpu(int cpu_nr)
28
{
29
return cpu_nr + 1;
30
}
31
32
static inline int node_cpu(struct optimistic_spin_node *node)
33
{
34
return node->cpu - 1;
35
}
36
37
static inline struct optimistic_spin_node *decode_cpu(int encoded_cpu_val)
38
{
39
int cpu_nr = encoded_cpu_val - 1;
40
41
return per_cpu_ptr(&osq_node, cpu_nr);
42
}
43
44
/*
45
* Get a stable @node->next pointer, either for unlock() or unqueue() purposes.
46
* Can return NULL in case we were the last queued and we updated @lock instead.
47
*
48
* If osq_lock() is being cancelled there must be a previous node
49
* and 'old_cpu' is its CPU #.
50
* For osq_unlock() there is never a previous node and old_cpu is
51
* set to OSQ_UNLOCKED_VAL.
52
*/
53
static inline struct optimistic_spin_node *
54
osq_wait_next(struct optimistic_spin_queue *lock,
55
struct optimistic_spin_node *node,
56
int old_cpu)
57
{
58
int curr = encode_cpu(smp_processor_id());
59
60
for (;;) {
61
if (atomic_read(&lock->tail) == curr &&
62
atomic_cmpxchg_acquire(&lock->tail, curr, old_cpu) == curr) {
63
/*
64
* We were the last queued, we moved @lock back. @prev
65
* will now observe @lock and will complete its
66
* unlock()/unqueue().
67
*/
68
return NULL;
69
}
70
71
/*
72
* We must xchg() the @node->next value, because if we were to
73
* leave it in, a concurrent unlock()/unqueue() from
74
* @node->next might complete Step-A and think its @prev is
75
* still valid.
76
*
77
* If the concurrent unlock()/unqueue() wins the race, we'll
78
* wait for either @lock to point to us, through its Step-B, or
79
* wait for a new @node->next from its Step-C.
80
*/
81
if (node->next) {
82
struct optimistic_spin_node *next;
83
84
next = xchg(&node->next, NULL);
85
if (next)
86
return next;
87
}
88
89
cpu_relax();
90
}
91
}
92
93
bool osq_lock(struct optimistic_spin_queue *lock)
94
{
95
struct optimistic_spin_node *node = this_cpu_ptr(&osq_node);
96
struct optimistic_spin_node *prev, *next;
97
int curr = encode_cpu(smp_processor_id());
98
int old;
99
100
node->locked = 0;
101
node->next = NULL;
102
node->cpu = curr;
103
104
/*
105
* We need both ACQUIRE (pairs with corresponding RELEASE in
106
* unlock() uncontended, or fastpath) and RELEASE (to publish
107
* the node fields we just initialised) semantics when updating
108
* the lock tail.
109
*/
110
old = atomic_xchg(&lock->tail, curr);
111
if (old == OSQ_UNLOCKED_VAL)
112
return true;
113
114
prev = decode_cpu(old);
115
node->prev = prev;
116
117
/*
118
* osq_lock() unqueue
119
*
120
* node->prev = prev osq_wait_next()
121
* WMB MB
122
* prev->next = node next->prev = prev // unqueue-C
123
*
124
* Here 'node->prev' and 'next->prev' are the same variable and we need
125
* to ensure these stores happen in-order to avoid corrupting the list.
126
*/
127
smp_wmb();
128
129
WRITE_ONCE(prev->next, node);
130
131
/*
132
* Normally @prev is untouchable after the above store; because at that
133
* moment unlock can proceed and wipe the node element from stack.
134
*
135
* However, since our nodes are static per-cpu storage, we're
136
* guaranteed their existence -- this allows us to apply
137
* cmpxchg in an attempt to undo our queueing.
138
*/
139
140
/*
141
* Wait to acquire the lock or cancellation. Note that need_resched()
142
* will come with an IPI, which will wake smp_cond_load_relaxed() if it
143
* is implemented with a monitor-wait. vcpu_is_preempted() relies on
144
* polling, be careful.
145
*/
146
if (smp_cond_load_relaxed(&node->locked, VAL || need_resched() ||
147
vcpu_is_preempted(node_cpu(node->prev))))
148
return true;
149
150
/* unqueue */
151
/*
152
* Step - A -- stabilize @prev
153
*
154
* Undo our @prev->next assignment; this will make @prev's
155
* unlock()/unqueue() wait for a next pointer since @lock points to us
156
* (or later).
157
*/
158
159
for (;;) {
160
/*
161
* cpu_relax() below implies a compiler barrier which would
162
* prevent this comparison being optimized away.
163
*/
164
if (data_race(prev->next) == node &&
165
cmpxchg(&prev->next, node, NULL) == node)
166
break;
167
168
/*
169
* We can only fail the cmpxchg() racing against an unlock(),
170
* in which case we should observe @node->locked becoming
171
* true.
172
*/
173
if (smp_load_acquire(&node->locked))
174
return true;
175
176
cpu_relax();
177
178
/*
179
* Or we race against a concurrent unqueue()'s step-B, in which
180
* case its step-C will write us a new @node->prev pointer.
181
*/
182
prev = READ_ONCE(node->prev);
183
}
184
185
/*
186
* Step - B -- stabilize @next
187
*
188
* Similar to unlock(), wait for @node->next or move @lock from @node
189
* back to @prev.
190
*/
191
192
next = osq_wait_next(lock, node, prev->cpu);
193
if (!next)
194
return false;
195
196
/*
197
* Step - C -- unlink
198
*
199
* @prev is stable because its still waiting for a new @prev->next
200
* pointer, @next is stable because our @node->next pointer is NULL and
201
* it will wait in Step-A.
202
*/
203
204
WRITE_ONCE(next->prev, prev);
205
WRITE_ONCE(prev->next, next);
206
207
return false;
208
}
209
210
void osq_unlock(struct optimistic_spin_queue *lock)
211
{
212
struct optimistic_spin_node *node, *next;
213
int curr = encode_cpu(smp_processor_id());
214
215
/*
216
* Fast path for the uncontended case.
217
*/
218
if (atomic_try_cmpxchg_release(&lock->tail, &curr, OSQ_UNLOCKED_VAL))
219
return;
220
221
/*
222
* Second most likely case.
223
*/
224
node = this_cpu_ptr(&osq_node);
225
next = xchg(&node->next, NULL);
226
if (next) {
227
WRITE_ONCE(next->locked, 1);
228
return;
229
}
230
231
next = osq_wait_next(lock, node, OSQ_UNLOCKED_VAL);
232
if (next)
233
WRITE_ONCE(next->locked, 1);
234
}
235
236