Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/kernel/locking/qspinlock_paravirt.h
25923 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
#ifndef _GEN_PV_LOCK_SLOWPATH
3
#error "do not include this file"
4
#endif
5
6
#include <linux/hash.h>
7
#include <linux/memblock.h>
8
#include <linux/debug_locks.h>
9
10
/*
11
* Implement paravirt qspinlocks; the general idea is to halt the vcpus instead
12
* of spinning them.
13
*
14
* This relies on the architecture to provide two paravirt hypercalls:
15
*
16
* pv_wait(u8 *ptr, u8 val) -- suspends the vcpu if *ptr == val
17
* pv_kick(cpu) -- wakes a suspended vcpu
18
*
19
* Using these we implement __pv_queued_spin_lock_slowpath() and
20
* __pv_queued_spin_unlock() to replace native_queued_spin_lock_slowpath() and
21
* native_queued_spin_unlock().
22
*/
23
24
#define _Q_SLOW_VAL (3U << _Q_LOCKED_OFFSET)
25
26
/*
27
* Queue Node Adaptive Spinning
28
*
29
* A queue node vCPU will stop spinning if the vCPU in the previous node is
30
* not running. The one lock stealing attempt allowed at slowpath entry
31
* mitigates the slight slowdown for non-overcommitted guest with this
32
* aggressive wait-early mechanism.
33
*
34
* The status of the previous node will be checked at fixed interval
35
* controlled by PV_PREV_CHECK_MASK. This is to ensure that we won't
36
* pound on the cacheline of the previous node too heavily.
37
*/
38
#define PV_PREV_CHECK_MASK 0xff
39
40
/*
41
* Queue node uses: VCPU_RUNNING & VCPU_HALTED.
42
* Queue head uses: VCPU_RUNNING & VCPU_HASHED.
43
*/
44
enum vcpu_state {
45
VCPU_RUNNING = 0,
46
VCPU_HALTED, /* Used only in pv_wait_node */
47
VCPU_HASHED, /* = pv_hash'ed + VCPU_HALTED */
48
};
49
50
struct pv_node {
51
struct mcs_spinlock mcs;
52
int cpu;
53
u8 state;
54
};
55
56
/*
57
* Hybrid PV queued/unfair lock
58
*
59
* By replacing the regular queued_spin_trylock() with the function below,
60
* it will be called once when a lock waiter enter the PV slowpath before
61
* being queued.
62
*
63
* The pending bit is set by the queue head vCPU of the MCS wait queue in
64
* pv_wait_head_or_lock() to signal that it is ready to spin on the lock.
65
* When that bit becomes visible to the incoming waiters, no lock stealing
66
* is allowed. The function will return immediately to make the waiters
67
* enter the MCS wait queue. So lock starvation shouldn't happen as long
68
* as the queued mode vCPUs are actively running to set the pending bit
69
* and hence disabling lock stealing.
70
*
71
* When the pending bit isn't set, the lock waiters will stay in the unfair
72
* mode spinning on the lock unless the MCS wait queue is empty. In this
73
* case, the lock waiters will enter the queued mode slowpath trying to
74
* become the queue head and set the pending bit.
75
*
76
* This hybrid PV queued/unfair lock combines the best attributes of a
77
* queued lock (no lock starvation) and an unfair lock (good performance
78
* on not heavily contended locks).
79
*/
80
#define queued_spin_trylock(l) pv_hybrid_queued_unfair_trylock(l)
81
static inline bool pv_hybrid_queued_unfair_trylock(struct qspinlock *lock)
82
{
83
/*
84
* Stay in unfair lock mode as long as queued mode waiters are
85
* present in the MCS wait queue but the pending bit isn't set.
86
*/
87
for (;;) {
88
int val = atomic_read(&lock->val);
89
u8 old = 0;
90
91
if (!(val & _Q_LOCKED_PENDING_MASK) &&
92
try_cmpxchg_acquire(&lock->locked, &old, _Q_LOCKED_VAL)) {
93
lockevent_inc(pv_lock_stealing);
94
return true;
95
}
96
if (!(val & _Q_TAIL_MASK) || (val & _Q_PENDING_MASK))
97
break;
98
99
cpu_relax();
100
}
101
102
return false;
103
}
104
105
/*
106
* The pending bit is used by the queue head vCPU to indicate that it
107
* is actively spinning on the lock and no lock stealing is allowed.
108
*/
109
#if _Q_PENDING_BITS == 8
110
static __always_inline void set_pending(struct qspinlock *lock)
111
{
112
WRITE_ONCE(lock->pending, 1);
113
}
114
115
/*
116
* The pending bit check in pv_queued_spin_steal_lock() isn't a memory
117
* barrier. Therefore, an atomic cmpxchg_acquire() is used to acquire the
118
* lock just to be sure that it will get it.
119
*/
120
static __always_inline bool trylock_clear_pending(struct qspinlock *lock)
121
{
122
u16 old = _Q_PENDING_VAL;
123
124
return !READ_ONCE(lock->locked) &&
125
try_cmpxchg_acquire(&lock->locked_pending, &old, _Q_LOCKED_VAL);
126
}
127
#else /* _Q_PENDING_BITS == 8 */
128
static __always_inline void set_pending(struct qspinlock *lock)
129
{
130
atomic_or(_Q_PENDING_VAL, &lock->val);
131
}
132
133
static __always_inline bool trylock_clear_pending(struct qspinlock *lock)
134
{
135
int old, new;
136
137
old = atomic_read(&lock->val);
138
do {
139
if (old & _Q_LOCKED_MASK)
140
return false;
141
/*
142
* Try to clear pending bit & set locked bit
143
*/
144
new = (old & ~_Q_PENDING_MASK) | _Q_LOCKED_VAL;
145
} while (!atomic_try_cmpxchg_acquire (&lock->val, &old, new));
146
147
return true;
148
}
149
#endif /* _Q_PENDING_BITS == 8 */
150
151
/*
152
* Lock and MCS node addresses hash table for fast lookup
153
*
154
* Hashing is done on a per-cacheline basis to minimize the need to access
155
* more than one cacheline.
156
*
157
* Dynamically allocate a hash table big enough to hold at least 4X the
158
* number of possible cpus in the system. Allocation is done on page
159
* granularity. So the minimum number of hash buckets should be at least
160
* 256 (64-bit) or 512 (32-bit) to fully utilize a 4k page.
161
*
162
* Since we should not be holding locks from NMI context (very rare indeed) the
163
* max load factor is 0.75, which is around the point where open addressing
164
* breaks down.
165
*
166
*/
167
struct pv_hash_entry {
168
struct qspinlock *lock;
169
struct pv_node *node;
170
};
171
172
#define PV_HE_PER_LINE (SMP_CACHE_BYTES / sizeof(struct pv_hash_entry))
173
#define PV_HE_MIN (PAGE_SIZE / sizeof(struct pv_hash_entry))
174
175
static struct pv_hash_entry *pv_lock_hash;
176
static unsigned int pv_lock_hash_bits __read_mostly;
177
178
/*
179
* Allocate memory for the PV qspinlock hash buckets
180
*
181
* This function should be called from the paravirt spinlock initialization
182
* routine.
183
*/
184
void __init __pv_init_lock_hash(void)
185
{
186
int pv_hash_size = ALIGN(4 * num_possible_cpus(), PV_HE_PER_LINE);
187
188
if (pv_hash_size < PV_HE_MIN)
189
pv_hash_size = PV_HE_MIN;
190
191
/*
192
* Allocate space from bootmem which should be page-size aligned
193
* and hence cacheline aligned.
194
*/
195
pv_lock_hash = alloc_large_system_hash("PV qspinlock",
196
sizeof(struct pv_hash_entry),
197
pv_hash_size, 0,
198
HASH_EARLY | HASH_ZERO,
199
&pv_lock_hash_bits, NULL,
200
pv_hash_size, pv_hash_size);
201
}
202
203
#define for_each_hash_entry(he, offset, hash) \
204
for (hash &= ~(PV_HE_PER_LINE - 1), he = &pv_lock_hash[hash], offset = 0; \
205
offset < (1 << pv_lock_hash_bits); \
206
offset++, he = &pv_lock_hash[(hash + offset) & ((1 << pv_lock_hash_bits) - 1)])
207
208
static struct qspinlock **pv_hash(struct qspinlock *lock, struct pv_node *node)
209
{
210
unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
211
struct pv_hash_entry *he;
212
int hopcnt = 0;
213
214
for_each_hash_entry(he, offset, hash) {
215
struct qspinlock *old = NULL;
216
hopcnt++;
217
if (try_cmpxchg(&he->lock, &old, lock)) {
218
WRITE_ONCE(he->node, node);
219
lockevent_pv_hop(hopcnt);
220
return &he->lock;
221
}
222
}
223
/*
224
* Hard assume there is a free entry for us.
225
*
226
* This is guaranteed by ensuring every blocked lock only ever consumes
227
* a single entry, and since we only have 4 nesting levels per CPU
228
* and allocated 4*nr_possible_cpus(), this must be so.
229
*
230
* The single entry is guaranteed by having the lock owner unhash
231
* before it releases.
232
*/
233
BUG();
234
}
235
236
static struct pv_node *pv_unhash(struct qspinlock *lock)
237
{
238
unsigned long offset, hash = hash_ptr(lock, pv_lock_hash_bits);
239
struct pv_hash_entry *he;
240
struct pv_node *node;
241
242
for_each_hash_entry(he, offset, hash) {
243
if (READ_ONCE(he->lock) == lock) {
244
node = READ_ONCE(he->node);
245
WRITE_ONCE(he->lock, NULL);
246
return node;
247
}
248
}
249
/*
250
* Hard assume we'll find an entry.
251
*
252
* This guarantees a limited lookup time and is itself guaranteed by
253
* having the lock owner do the unhash -- IFF the unlock sees the
254
* SLOW flag, there MUST be a hash entry.
255
*/
256
BUG();
257
}
258
259
/*
260
* Return true if when it is time to check the previous node which is not
261
* in a running state.
262
*/
263
static inline bool
264
pv_wait_early(struct pv_node *prev, int loop)
265
{
266
if ((loop & PV_PREV_CHECK_MASK) != 0)
267
return false;
268
269
return READ_ONCE(prev->state) != VCPU_RUNNING;
270
}
271
272
/*
273
* Initialize the PV part of the mcs_spinlock node.
274
*/
275
static void pv_init_node(struct mcs_spinlock *node)
276
{
277
struct pv_node *pn = (struct pv_node *)node;
278
279
BUILD_BUG_ON(sizeof(struct pv_node) > sizeof(struct qnode));
280
281
pn->cpu = smp_processor_id();
282
pn->state = VCPU_RUNNING;
283
}
284
285
/*
286
* Wait for node->locked to become true, halt the vcpu after a short spin.
287
* pv_kick_node() is used to set _Q_SLOW_VAL and fill in hash table on its
288
* behalf.
289
*/
290
static void pv_wait_node(struct mcs_spinlock *node, struct mcs_spinlock *prev)
291
{
292
struct pv_node *pn = (struct pv_node *)node;
293
struct pv_node *pp = (struct pv_node *)prev;
294
bool wait_early;
295
int loop;
296
297
for (;;) {
298
for (wait_early = false, loop = SPIN_THRESHOLD; loop; loop--) {
299
if (READ_ONCE(node->locked))
300
return;
301
if (pv_wait_early(pp, loop)) {
302
wait_early = true;
303
break;
304
}
305
cpu_relax();
306
}
307
308
/*
309
* Order pn->state vs pn->locked thusly:
310
*
311
* [S] pn->state = VCPU_HALTED [S] next->locked = 1
312
* MB MB
313
* [L] pn->locked [RmW] pn->state = VCPU_HASHED
314
*
315
* Matches the cmpxchg() from pv_kick_node().
316
*/
317
smp_store_mb(pn->state, VCPU_HALTED);
318
319
if (!READ_ONCE(node->locked)) {
320
lockevent_inc(pv_wait_node);
321
lockevent_cond_inc(pv_wait_early, wait_early);
322
pv_wait(&pn->state, VCPU_HALTED);
323
}
324
325
/*
326
* If pv_kick_node() changed us to VCPU_HASHED, retain that
327
* value so that pv_wait_head_or_lock() knows to not also try
328
* to hash this lock.
329
*/
330
cmpxchg(&pn->state, VCPU_HALTED, VCPU_RUNNING);
331
332
/*
333
* If the locked flag is still not set after wakeup, it is a
334
* spurious wakeup and the vCPU should wait again. However,
335
* there is a pretty high overhead for CPU halting and kicking.
336
* So it is better to spin for a while in the hope that the
337
* MCS lock will be released soon.
338
*/
339
lockevent_cond_inc(pv_spurious_wakeup,
340
!READ_ONCE(node->locked));
341
}
342
343
/*
344
* By now our node->locked should be 1 and our caller will not actually
345
* spin-wait for it. We do however rely on our caller to do a
346
* load-acquire for us.
347
*/
348
}
349
350
/*
351
* Called after setting next->locked = 1 when we're the lock owner.
352
*
353
* Instead of waking the waiters stuck in pv_wait_node() advance their state
354
* such that they're waiting in pv_wait_head_or_lock(), this avoids a
355
* wake/sleep cycle.
356
*/
357
static void pv_kick_node(struct qspinlock *lock, struct mcs_spinlock *node)
358
{
359
struct pv_node *pn = (struct pv_node *)node;
360
u8 old = VCPU_HALTED;
361
/*
362
* If the vCPU is indeed halted, advance its state to match that of
363
* pv_wait_node(). If OTOH this fails, the vCPU was running and will
364
* observe its next->locked value and advance itself.
365
*
366
* Matches with smp_store_mb() and cmpxchg() in pv_wait_node()
367
*
368
* The write to next->locked in arch_mcs_spin_unlock_contended()
369
* must be ordered before the read of pn->state in the cmpxchg()
370
* below for the code to work correctly. To guarantee full ordering
371
* irrespective of the success or failure of the cmpxchg(),
372
* a relaxed version with explicit barrier is used. The control
373
* dependency will order the reading of pn->state before any
374
* subsequent writes.
375
*/
376
smp_mb__before_atomic();
377
if (!try_cmpxchg_relaxed(&pn->state, &old, VCPU_HASHED))
378
return;
379
380
/*
381
* Put the lock into the hash table and set the _Q_SLOW_VAL.
382
*
383
* As this is the same vCPU that will check the _Q_SLOW_VAL value and
384
* the hash table later on at unlock time, no atomic instruction is
385
* needed.
386
*/
387
WRITE_ONCE(lock->locked, _Q_SLOW_VAL);
388
(void)pv_hash(lock, pn);
389
}
390
391
/*
392
* Wait for l->locked to become clear and acquire the lock;
393
* halt the vcpu after a short spin.
394
* __pv_queued_spin_unlock() will wake us.
395
*
396
* The current value of the lock will be returned for additional processing.
397
*/
398
static u32
399
pv_wait_head_or_lock(struct qspinlock *lock, struct mcs_spinlock *node)
400
{
401
struct pv_node *pn = (struct pv_node *)node;
402
struct qspinlock **lp = NULL;
403
int waitcnt = 0;
404
int loop;
405
406
/*
407
* If pv_kick_node() already advanced our state, we don't need to
408
* insert ourselves into the hash table anymore.
409
*/
410
if (READ_ONCE(pn->state) == VCPU_HASHED)
411
lp = (struct qspinlock **)1;
412
413
/*
414
* Tracking # of slowpath locking operations
415
*/
416
lockevent_inc(lock_slowpath);
417
418
for (;; waitcnt++) {
419
/*
420
* Set correct vCPU state to be used by queue node wait-early
421
* mechanism.
422
*/
423
WRITE_ONCE(pn->state, VCPU_RUNNING);
424
425
/*
426
* Set the pending bit in the active lock spinning loop to
427
* disable lock stealing before attempting to acquire the lock.
428
*/
429
set_pending(lock);
430
for (loop = SPIN_THRESHOLD; loop; loop--) {
431
if (trylock_clear_pending(lock))
432
goto gotlock;
433
cpu_relax();
434
}
435
clear_pending(lock);
436
437
438
if (!lp) { /* ONCE */
439
lp = pv_hash(lock, pn);
440
441
/*
442
* We must hash before setting _Q_SLOW_VAL, such that
443
* when we observe _Q_SLOW_VAL in __pv_queued_spin_unlock()
444
* we'll be sure to be able to observe our hash entry.
445
*
446
* [S] <hash> [Rmw] l->locked == _Q_SLOW_VAL
447
* MB RMB
448
* [RmW] l->locked = _Q_SLOW_VAL [L] <unhash>
449
*
450
* Matches the smp_rmb() in __pv_queued_spin_unlock().
451
*/
452
if (xchg(&lock->locked, _Q_SLOW_VAL) == 0) {
453
/*
454
* The lock was free and now we own the lock.
455
* Change the lock value back to _Q_LOCKED_VAL
456
* and unhash the table.
457
*/
458
WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
459
WRITE_ONCE(*lp, NULL);
460
goto gotlock;
461
}
462
}
463
WRITE_ONCE(pn->state, VCPU_HASHED);
464
lockevent_inc(pv_wait_head);
465
lockevent_cond_inc(pv_wait_again, waitcnt);
466
pv_wait(&lock->locked, _Q_SLOW_VAL);
467
468
/*
469
* Because of lock stealing, the queue head vCPU may not be
470
* able to acquire the lock before it has to wait again.
471
*/
472
}
473
474
/*
475
* The cmpxchg() or xchg() call before coming here provides the
476
* acquire semantics for locking. The dummy ORing of _Q_LOCKED_VAL
477
* here is to indicate to the compiler that the value will always
478
* be nozero to enable better code optimization.
479
*/
480
gotlock:
481
return (u32)(atomic_read(&lock->val) | _Q_LOCKED_VAL);
482
}
483
484
/*
485
* Include the architecture specific callee-save thunk of the
486
* __pv_queued_spin_unlock(). This thunk is put together with
487
* __pv_queued_spin_unlock() to make the callee-save thunk and the real unlock
488
* function close to each other sharing consecutive instruction cachelines.
489
* Alternatively, architecture specific version of __pv_queued_spin_unlock()
490
* can be defined.
491
*/
492
#include <asm/qspinlock_paravirt.h>
493
494
/*
495
* PV versions of the unlock fastpath and slowpath functions to be used
496
* instead of queued_spin_unlock().
497
*/
498
__visible __lockfunc void
499
__pv_queued_spin_unlock_slowpath(struct qspinlock *lock, u8 locked)
500
{
501
struct pv_node *node;
502
503
if (unlikely(locked != _Q_SLOW_VAL)) {
504
WARN(!debug_locks_silent,
505
"pvqspinlock: lock 0x%lx has corrupted value 0x%x!\n",
506
(unsigned long)lock, atomic_read(&lock->val));
507
return;
508
}
509
510
/*
511
* A failed cmpxchg doesn't provide any memory-ordering guarantees,
512
* so we need a barrier to order the read of the node data in
513
* pv_unhash *after* we've read the lock being _Q_SLOW_VAL.
514
*
515
* Matches the cmpxchg() in pv_wait_head_or_lock() setting _Q_SLOW_VAL.
516
*/
517
smp_rmb();
518
519
/*
520
* Since the above failed to release, this must be the SLOW path.
521
* Therefore start by looking up the blocked node and unhashing it.
522
*/
523
node = pv_unhash(lock);
524
525
/*
526
* Now that we have a reference to the (likely) blocked pv_node,
527
* release the lock.
528
*/
529
smp_store_release(&lock->locked, 0);
530
531
/*
532
* At this point the memory pointed at by lock can be freed/reused,
533
* however we can still use the pv_node to kick the CPU.
534
* The other vCPU may not really be halted, but kicking an active
535
* vCPU is harmless other than the additional latency in completing
536
* the unlock.
537
*/
538
lockevent_inc(pv_kick_unlock);
539
pv_kick(node->cpu);
540
}
541
542
#ifndef __pv_queued_spin_unlock
543
__visible __lockfunc void __pv_queued_spin_unlock(struct qspinlock *lock)
544
{
545
u8 locked = _Q_LOCKED_VAL;
546
547
/*
548
* We must not unlock if SLOW, because in that case we must first
549
* unhash. Otherwise it would be possible to have multiple @lock
550
* entries, which would be BAD.
551
*/
552
if (try_cmpxchg_release(&lock->locked, &locked, 0))
553
return;
554
555
__pv_queued_spin_unlock_slowpath(lock, locked);
556
}
557
#endif /* __pv_queued_spin_unlock */
558
559