Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/assoc_array.c
26135 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/* Generic associative array implementation.
3
*
4
* See Documentation/core-api/assoc_array.rst for information.
5
*
6
* Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
7
* Written by David Howells ([email protected])
8
*/
9
//#define DEBUG
10
#include <linux/rcupdate.h>
11
#include <linux/slab.h>
12
#include <linux/err.h>
13
#include <linux/assoc_array_priv.h>
14
15
/*
16
* Iterate over an associative array. The caller must hold the RCU read lock
17
* or better.
18
*/
19
static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
20
const struct assoc_array_ptr *stop,
21
int (*iterator)(const void *leaf,
22
void *iterator_data),
23
void *iterator_data)
24
{
25
const struct assoc_array_shortcut *shortcut;
26
const struct assoc_array_node *node;
27
const struct assoc_array_ptr *cursor, *ptr, *parent;
28
unsigned long has_meta;
29
int slot, ret;
30
31
cursor = root;
32
33
begin_node:
34
if (assoc_array_ptr_is_shortcut(cursor)) {
35
/* Descend through a shortcut */
36
shortcut = assoc_array_ptr_to_shortcut(cursor);
37
cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
38
}
39
40
node = assoc_array_ptr_to_node(cursor);
41
slot = 0;
42
43
/* We perform two passes of each node.
44
*
45
* The first pass does all the leaves in this node. This means we
46
* don't miss any leaves if the node is split up by insertion whilst
47
* we're iterating over the branches rooted here (we may, however, see
48
* some leaves twice).
49
*/
50
has_meta = 0;
51
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
52
ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
53
has_meta |= (unsigned long)ptr;
54
if (ptr && assoc_array_ptr_is_leaf(ptr)) {
55
/* We need a barrier between the read of the pointer,
56
* which is supplied by the above READ_ONCE().
57
*/
58
/* Invoke the callback */
59
ret = iterator(assoc_array_ptr_to_leaf(ptr),
60
iterator_data);
61
if (ret)
62
return ret;
63
}
64
}
65
66
/* The second pass attends to all the metadata pointers. If we follow
67
* one of these we may find that we don't come back here, but rather go
68
* back to a replacement node with the leaves in a different layout.
69
*
70
* We are guaranteed to make progress, however, as the slot number for
71
* a particular portion of the key space cannot change - and we
72
* continue at the back pointer + 1.
73
*/
74
if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
75
goto finished_node;
76
slot = 0;
77
78
continue_node:
79
node = assoc_array_ptr_to_node(cursor);
80
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
81
ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
82
if (assoc_array_ptr_is_meta(ptr)) {
83
cursor = ptr;
84
goto begin_node;
85
}
86
}
87
88
finished_node:
89
/* Move up to the parent (may need to skip back over a shortcut) */
90
parent = READ_ONCE(node->back_pointer); /* Address dependency. */
91
slot = node->parent_slot;
92
if (parent == stop)
93
return 0;
94
95
if (assoc_array_ptr_is_shortcut(parent)) {
96
shortcut = assoc_array_ptr_to_shortcut(parent);
97
cursor = parent;
98
parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */
99
slot = shortcut->parent_slot;
100
if (parent == stop)
101
return 0;
102
}
103
104
/* Ascend to next slot in parent node */
105
cursor = parent;
106
slot++;
107
goto continue_node;
108
}
109
110
/**
111
* assoc_array_iterate - Pass all objects in the array to a callback
112
* @array: The array to iterate over.
113
* @iterator: The callback function.
114
* @iterator_data: Private data for the callback function.
115
*
116
* Iterate over all the objects in an associative array. Each one will be
117
* presented to the iterator function.
118
*
119
* If the array is being modified concurrently with the iteration then it is
120
* possible that some objects in the array will be passed to the iterator
121
* callback more than once - though every object should be passed at least
122
* once. If this is undesirable then the caller must lock against modification
123
* for the duration of this function.
124
*
125
* The function will return 0 if no objects were in the array or else it will
126
* return the result of the last iterator function called. Iteration stops
127
* immediately if any call to the iteration function results in a non-zero
128
* return.
129
*
130
* The caller should hold the RCU read lock or better if concurrent
131
* modification is possible.
132
*/
133
int assoc_array_iterate(const struct assoc_array *array,
134
int (*iterator)(const void *object,
135
void *iterator_data),
136
void *iterator_data)
137
{
138
struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */
139
140
if (!root)
141
return 0;
142
return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
143
}
144
145
enum assoc_array_walk_status {
146
assoc_array_walk_tree_empty,
147
assoc_array_walk_found_terminal_node,
148
assoc_array_walk_found_wrong_shortcut,
149
};
150
151
struct assoc_array_walk_result {
152
struct {
153
struct assoc_array_node *node; /* Node in which leaf might be found */
154
int level;
155
int slot;
156
} terminal_node;
157
struct {
158
struct assoc_array_shortcut *shortcut;
159
int level;
160
int sc_level;
161
unsigned long sc_segments;
162
unsigned long dissimilarity;
163
} wrong_shortcut;
164
};
165
166
/*
167
* Navigate through the internal tree looking for the closest node to the key.
168
*/
169
static enum assoc_array_walk_status
170
assoc_array_walk(const struct assoc_array *array,
171
const struct assoc_array_ops *ops,
172
const void *index_key,
173
struct assoc_array_walk_result *result)
174
{
175
struct assoc_array_shortcut *shortcut;
176
struct assoc_array_node *node;
177
struct assoc_array_ptr *cursor, *ptr;
178
unsigned long sc_segments, dissimilarity;
179
unsigned long segments;
180
int level, sc_level, next_sc_level;
181
int slot;
182
183
pr_devel("-->%s()\n", __func__);
184
185
cursor = READ_ONCE(array->root); /* Address dependency. */
186
if (!cursor)
187
return assoc_array_walk_tree_empty;
188
189
level = 0;
190
191
/* Use segments from the key for the new leaf to navigate through the
192
* internal tree, skipping through nodes and shortcuts that are on
193
* route to the destination. Eventually we'll come to a slot that is
194
* either empty or contains a leaf at which point we've found a node in
195
* which the leaf we're looking for might be found or into which it
196
* should be inserted.
197
*/
198
jumped:
199
segments = ops->get_key_chunk(index_key, level);
200
pr_devel("segments[%d]: %lx\n", level, segments);
201
202
if (assoc_array_ptr_is_shortcut(cursor))
203
goto follow_shortcut;
204
205
consider_node:
206
node = assoc_array_ptr_to_node(cursor);
207
slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
208
slot &= ASSOC_ARRAY_FAN_MASK;
209
ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
210
211
pr_devel("consider slot %x [ix=%d type=%lu]\n",
212
slot, level, (unsigned long)ptr & 3);
213
214
if (!assoc_array_ptr_is_meta(ptr)) {
215
/* The node doesn't have a node/shortcut pointer in the slot
216
* corresponding to the index key that we have to follow.
217
*/
218
result->terminal_node.node = node;
219
result->terminal_node.level = level;
220
result->terminal_node.slot = slot;
221
pr_devel("<--%s() = terminal_node\n", __func__);
222
return assoc_array_walk_found_terminal_node;
223
}
224
225
if (assoc_array_ptr_is_node(ptr)) {
226
/* There is a pointer to a node in the slot corresponding to
227
* this index key segment, so we need to follow it.
228
*/
229
cursor = ptr;
230
level += ASSOC_ARRAY_LEVEL_STEP;
231
if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
232
goto consider_node;
233
goto jumped;
234
}
235
236
/* There is a shortcut in the slot corresponding to the index key
237
* segment. We follow the shortcut if its partial index key matches
238
* this leaf's. Otherwise we need to split the shortcut.
239
*/
240
cursor = ptr;
241
follow_shortcut:
242
shortcut = assoc_array_ptr_to_shortcut(cursor);
243
pr_devel("shortcut to %d\n", shortcut->skip_to_level);
244
sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
245
BUG_ON(sc_level > shortcut->skip_to_level);
246
247
do {
248
/* Check the leaf against the shortcut's index key a word at a
249
* time, trimming the final word (the shortcut stores the index
250
* key completely from the root to the shortcut's target).
251
*/
252
if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
253
segments = ops->get_key_chunk(index_key, sc_level);
254
255
sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
256
dissimilarity = segments ^ sc_segments;
257
258
if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
259
/* Trim segments that are beyond the shortcut */
260
int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
261
dissimilarity &= ~(ULONG_MAX << shift);
262
next_sc_level = shortcut->skip_to_level;
263
} else {
264
next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
265
next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
266
}
267
268
if (dissimilarity != 0) {
269
/* This shortcut points elsewhere */
270
result->wrong_shortcut.shortcut = shortcut;
271
result->wrong_shortcut.level = level;
272
result->wrong_shortcut.sc_level = sc_level;
273
result->wrong_shortcut.sc_segments = sc_segments;
274
result->wrong_shortcut.dissimilarity = dissimilarity;
275
return assoc_array_walk_found_wrong_shortcut;
276
}
277
278
sc_level = next_sc_level;
279
} while (sc_level < shortcut->skip_to_level);
280
281
/* The shortcut matches the leaf's index to this point. */
282
cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */
283
if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
284
level = sc_level;
285
goto jumped;
286
} else {
287
level = sc_level;
288
goto consider_node;
289
}
290
}
291
292
/**
293
* assoc_array_find - Find an object by index key
294
* @array: The associative array to search.
295
* @ops: The operations to use.
296
* @index_key: The key to the object.
297
*
298
* Find an object in an associative array by walking through the internal tree
299
* to the node that should contain the object and then searching the leaves
300
* there. NULL is returned if the requested object was not found in the array.
301
*
302
* The caller must hold the RCU read lock or better.
303
*/
304
void *assoc_array_find(const struct assoc_array *array,
305
const struct assoc_array_ops *ops,
306
const void *index_key)
307
{
308
struct assoc_array_walk_result result;
309
const struct assoc_array_node *node;
310
const struct assoc_array_ptr *ptr;
311
const void *leaf;
312
int slot;
313
314
if (assoc_array_walk(array, ops, index_key, &result) !=
315
assoc_array_walk_found_terminal_node)
316
return NULL;
317
318
node = result.terminal_node.node;
319
320
/* If the target key is available to us, it's has to be pointed to by
321
* the terminal node.
322
*/
323
for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
324
ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */
325
if (ptr && assoc_array_ptr_is_leaf(ptr)) {
326
/* We need a barrier between the read of the pointer
327
* and dereferencing the pointer - but only if we are
328
* actually going to dereference it.
329
*/
330
leaf = assoc_array_ptr_to_leaf(ptr);
331
if (ops->compare_object(leaf, index_key))
332
return (void *)leaf;
333
}
334
}
335
336
return NULL;
337
}
338
339
/*
340
* Destructively iterate over an associative array. The caller must prevent
341
* other simultaneous accesses.
342
*/
343
static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
344
const struct assoc_array_ops *ops)
345
{
346
struct assoc_array_shortcut *shortcut;
347
struct assoc_array_node *node;
348
struct assoc_array_ptr *cursor, *parent = NULL;
349
int slot = -1;
350
351
pr_devel("-->%s()\n", __func__);
352
353
cursor = root;
354
if (!cursor) {
355
pr_devel("empty\n");
356
return;
357
}
358
359
move_to_meta:
360
if (assoc_array_ptr_is_shortcut(cursor)) {
361
/* Descend through a shortcut */
362
pr_devel("[%d] shortcut\n", slot);
363
BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
364
shortcut = assoc_array_ptr_to_shortcut(cursor);
365
BUG_ON(shortcut->back_pointer != parent);
366
BUG_ON(slot != -1 && shortcut->parent_slot != slot);
367
parent = cursor;
368
cursor = shortcut->next_node;
369
slot = -1;
370
BUG_ON(!assoc_array_ptr_is_node(cursor));
371
}
372
373
pr_devel("[%d] node\n", slot);
374
node = assoc_array_ptr_to_node(cursor);
375
BUG_ON(node->back_pointer != parent);
376
BUG_ON(slot != -1 && node->parent_slot != slot);
377
slot = 0;
378
379
continue_node:
380
pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
381
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
382
struct assoc_array_ptr *ptr = node->slots[slot];
383
if (!ptr)
384
continue;
385
if (assoc_array_ptr_is_meta(ptr)) {
386
parent = cursor;
387
cursor = ptr;
388
goto move_to_meta;
389
}
390
391
if (ops) {
392
pr_devel("[%d] free leaf\n", slot);
393
ops->free_object(assoc_array_ptr_to_leaf(ptr));
394
}
395
}
396
397
parent = node->back_pointer;
398
slot = node->parent_slot;
399
pr_devel("free node\n");
400
kfree(node);
401
if (!parent)
402
return; /* Done */
403
404
/* Move back up to the parent (may need to free a shortcut on
405
* the way up) */
406
if (assoc_array_ptr_is_shortcut(parent)) {
407
shortcut = assoc_array_ptr_to_shortcut(parent);
408
BUG_ON(shortcut->next_node != cursor);
409
cursor = parent;
410
parent = shortcut->back_pointer;
411
slot = shortcut->parent_slot;
412
pr_devel("free shortcut\n");
413
kfree(shortcut);
414
if (!parent)
415
return;
416
417
BUG_ON(!assoc_array_ptr_is_node(parent));
418
}
419
420
/* Ascend to next slot in parent node */
421
pr_devel("ascend to %p[%d]\n", parent, slot);
422
cursor = parent;
423
node = assoc_array_ptr_to_node(cursor);
424
slot++;
425
goto continue_node;
426
}
427
428
/**
429
* assoc_array_destroy - Destroy an associative array
430
* @array: The array to destroy.
431
* @ops: The operations to use.
432
*
433
* Discard all metadata and free all objects in an associative array. The
434
* array will be empty and ready to use again upon completion. This function
435
* cannot fail.
436
*
437
* The caller must prevent all other accesses whilst this takes place as no
438
* attempt is made to adjust pointers gracefully to permit RCU readlock-holding
439
* accesses to continue. On the other hand, no memory allocation is required.
440
*/
441
void assoc_array_destroy(struct assoc_array *array,
442
const struct assoc_array_ops *ops)
443
{
444
assoc_array_destroy_subtree(array->root, ops);
445
array->root = NULL;
446
}
447
448
/*
449
* Handle insertion into an empty tree.
450
*/
451
static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
452
{
453
struct assoc_array_node *new_n0;
454
455
pr_devel("-->%s()\n", __func__);
456
457
new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
458
if (!new_n0)
459
return false;
460
461
edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
462
edit->leaf_p = &new_n0->slots[0];
463
edit->adjust_count_on = new_n0;
464
edit->set[0].ptr = &edit->array->root;
465
edit->set[0].to = assoc_array_node_to_ptr(new_n0);
466
467
pr_devel("<--%s() = ok [no root]\n", __func__);
468
return true;
469
}
470
471
/*
472
* Handle insertion into a terminal node.
473
*/
474
static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
475
const struct assoc_array_ops *ops,
476
const void *index_key,
477
struct assoc_array_walk_result *result)
478
{
479
struct assoc_array_shortcut *shortcut, *new_s0;
480
struct assoc_array_node *node, *new_n0, *new_n1, *side;
481
struct assoc_array_ptr *ptr;
482
unsigned long dissimilarity, base_seg, blank;
483
size_t keylen;
484
bool have_meta;
485
int level, diff;
486
int slot, next_slot, free_slot, i, j;
487
488
node = result->terminal_node.node;
489
level = result->terminal_node.level;
490
edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
491
492
pr_devel("-->%s()\n", __func__);
493
494
/* We arrived at a node which doesn't have an onward node or shortcut
495
* pointer that we have to follow. This means that (a) the leaf we
496
* want must go here (either by insertion or replacement) or (b) we
497
* need to split this node and insert in one of the fragments.
498
*/
499
free_slot = -1;
500
501
/* Firstly, we have to check the leaves in this node to see if there's
502
* a matching one we should replace in place.
503
*/
504
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
505
ptr = node->slots[i];
506
if (!ptr) {
507
free_slot = i;
508
continue;
509
}
510
if (assoc_array_ptr_is_leaf(ptr) &&
511
ops->compare_object(assoc_array_ptr_to_leaf(ptr),
512
index_key)) {
513
pr_devel("replace in slot %d\n", i);
514
edit->leaf_p = &node->slots[i];
515
edit->dead_leaf = node->slots[i];
516
pr_devel("<--%s() = ok [replace]\n", __func__);
517
return true;
518
}
519
}
520
521
/* If there is a free slot in this node then we can just insert the
522
* leaf here.
523
*/
524
if (free_slot >= 0) {
525
pr_devel("insert in free slot %d\n", free_slot);
526
edit->leaf_p = &node->slots[free_slot];
527
edit->adjust_count_on = node;
528
pr_devel("<--%s() = ok [insert]\n", __func__);
529
return true;
530
}
531
532
/* The node has no spare slots - so we're either going to have to split
533
* it or insert another node before it.
534
*
535
* Whatever, we're going to need at least two new nodes - so allocate
536
* those now. We may also need a new shortcut, but we deal with that
537
* when we need it.
538
*/
539
new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
540
if (!new_n0)
541
return false;
542
edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
543
new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
544
if (!new_n1)
545
return false;
546
edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
547
548
/* We need to find out how similar the leaves are. */
549
pr_devel("no spare slots\n");
550
have_meta = false;
551
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
552
ptr = node->slots[i];
553
if (assoc_array_ptr_is_meta(ptr)) {
554
edit->segment_cache[i] = 0xff;
555
have_meta = true;
556
continue;
557
}
558
base_seg = ops->get_object_key_chunk(
559
assoc_array_ptr_to_leaf(ptr), level);
560
base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
561
edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
562
}
563
564
if (have_meta) {
565
pr_devel("have meta\n");
566
goto split_node;
567
}
568
569
/* The node contains only leaves */
570
dissimilarity = 0;
571
base_seg = edit->segment_cache[0];
572
for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
573
dissimilarity |= edit->segment_cache[i] ^ base_seg;
574
575
pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
576
577
if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
578
/* The old leaves all cluster in the same slot. We will need
579
* to insert a shortcut if the new node wants to cluster with them.
580
*/
581
if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
582
goto all_leaves_cluster_together;
583
584
/* Otherwise all the old leaves cluster in the same slot, but
585
* the new leaf wants to go into a different slot - so we
586
* create a new node (n0) to hold the new leaf and a pointer to
587
* a new node (n1) holding all the old leaves.
588
*
589
* This can be done by falling through to the node splitting
590
* path.
591
*/
592
pr_devel("present leaves cluster but not new leaf\n");
593
}
594
595
split_node:
596
pr_devel("split node\n");
597
598
/* We need to split the current node. The node must contain anything
599
* from a single leaf (in the one leaf case, this leaf will cluster
600
* with the new leaf) and the rest meta-pointers, to all leaves, some
601
* of which may cluster.
602
*
603
* It won't contain the case in which all the current leaves plus the
604
* new leaves want to cluster in the same slot.
605
*
606
* We need to expel at least two leaves out of a set consisting of the
607
* leaves in the node and the new leaf. The current meta pointers can
608
* just be copied as they shouldn't cluster with any of the leaves.
609
*
610
* We need a new node (n0) to replace the current one and a new node to
611
* take the expelled nodes (n1).
612
*/
613
edit->set[0].to = assoc_array_node_to_ptr(new_n0);
614
new_n0->back_pointer = node->back_pointer;
615
new_n0->parent_slot = node->parent_slot;
616
new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
617
new_n1->parent_slot = -1; /* Need to calculate this */
618
619
do_split_node:
620
pr_devel("do_split_node\n");
621
622
new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
623
new_n1->nr_leaves_on_branch = 0;
624
625
/* Begin by finding two matching leaves. There have to be at least two
626
* that match - even if there are meta pointers - because any leaf that
627
* would match a slot with a meta pointer in it must be somewhere
628
* behind that meta pointer and cannot be here. Further, given N
629
* remaining leaf slots, we now have N+1 leaves to go in them.
630
*/
631
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
632
slot = edit->segment_cache[i];
633
if (slot != 0xff)
634
for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
635
if (edit->segment_cache[j] == slot)
636
goto found_slot_for_multiple_occupancy;
637
}
638
found_slot_for_multiple_occupancy:
639
pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
640
BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
641
BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
642
BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
643
644
new_n1->parent_slot = slot;
645
646
/* Metadata pointers cannot change slot */
647
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
648
if (assoc_array_ptr_is_meta(node->slots[i]))
649
new_n0->slots[i] = node->slots[i];
650
else
651
new_n0->slots[i] = NULL;
652
BUG_ON(new_n0->slots[slot] != NULL);
653
new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
654
655
/* Filter the leaf pointers between the new nodes */
656
free_slot = -1;
657
next_slot = 0;
658
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
659
if (assoc_array_ptr_is_meta(node->slots[i]))
660
continue;
661
if (edit->segment_cache[i] == slot) {
662
new_n1->slots[next_slot++] = node->slots[i];
663
new_n1->nr_leaves_on_branch++;
664
} else {
665
do {
666
free_slot++;
667
} while (new_n0->slots[free_slot] != NULL);
668
new_n0->slots[free_slot] = node->slots[i];
669
}
670
}
671
672
pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
673
674
if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
675
do {
676
free_slot++;
677
} while (new_n0->slots[free_slot] != NULL);
678
edit->leaf_p = &new_n0->slots[free_slot];
679
edit->adjust_count_on = new_n0;
680
} else {
681
edit->leaf_p = &new_n1->slots[next_slot++];
682
edit->adjust_count_on = new_n1;
683
}
684
685
BUG_ON(next_slot <= 1);
686
687
edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
688
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
689
if (edit->segment_cache[i] == 0xff) {
690
ptr = node->slots[i];
691
BUG_ON(assoc_array_ptr_is_leaf(ptr));
692
if (assoc_array_ptr_is_node(ptr)) {
693
side = assoc_array_ptr_to_node(ptr);
694
edit->set_backpointers[i] = &side->back_pointer;
695
} else {
696
shortcut = assoc_array_ptr_to_shortcut(ptr);
697
edit->set_backpointers[i] = &shortcut->back_pointer;
698
}
699
}
700
}
701
702
ptr = node->back_pointer;
703
if (!ptr)
704
edit->set[0].ptr = &edit->array->root;
705
else if (assoc_array_ptr_is_node(ptr))
706
edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
707
else
708
edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
709
edit->excised_meta[0] = assoc_array_node_to_ptr(node);
710
pr_devel("<--%s() = ok [split node]\n", __func__);
711
return true;
712
713
all_leaves_cluster_together:
714
/* All the leaves, new and old, want to cluster together in this node
715
* in the same slot, so we have to replace this node with a shortcut to
716
* skip over the identical parts of the key and then place a pair of
717
* nodes, one inside the other, at the end of the shortcut and
718
* distribute the keys between them.
719
*
720
* Firstly we need to work out where the leaves start diverging as a
721
* bit position into their keys so that we know how big the shortcut
722
* needs to be.
723
*
724
* We only need to make a single pass of N of the N+1 leaves because if
725
* any keys differ between themselves at bit X then at least one of
726
* them must also differ with the base key at bit X or before.
727
*/
728
pr_devel("all leaves cluster together\n");
729
diff = INT_MAX;
730
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
731
int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
732
index_key);
733
if (x < diff) {
734
BUG_ON(x < 0);
735
diff = x;
736
}
737
}
738
BUG_ON(diff == INT_MAX);
739
BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
740
741
keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
742
keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
743
744
new_s0 = kzalloc(struct_size(new_s0, index_key, keylen), GFP_KERNEL);
745
if (!new_s0)
746
return false;
747
edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
748
749
edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
750
new_s0->back_pointer = node->back_pointer;
751
new_s0->parent_slot = node->parent_slot;
752
new_s0->next_node = assoc_array_node_to_ptr(new_n0);
753
new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
754
new_n0->parent_slot = 0;
755
new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
756
new_n1->parent_slot = -1; /* Need to calculate this */
757
758
new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
759
pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
760
BUG_ON(level <= 0);
761
762
for (i = 0; i < keylen; i++)
763
new_s0->index_key[i] =
764
ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
765
766
if (level & ASSOC_ARRAY_KEY_CHUNK_MASK) {
767
blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
768
pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
769
new_s0->index_key[keylen - 1] &= ~blank;
770
}
771
772
/* This now reduces to a node splitting exercise for which we'll need
773
* to regenerate the disparity table.
774
*/
775
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
776
ptr = node->slots[i];
777
base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
778
level);
779
base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
780
edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
781
}
782
783
base_seg = ops->get_key_chunk(index_key, level);
784
base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
785
edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
786
goto do_split_node;
787
}
788
789
/*
790
* Handle insertion into the middle of a shortcut.
791
*/
792
static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
793
const struct assoc_array_ops *ops,
794
struct assoc_array_walk_result *result)
795
{
796
struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
797
struct assoc_array_node *node, *new_n0, *side;
798
unsigned long sc_segments, dissimilarity, blank;
799
size_t keylen;
800
int level, sc_level, diff;
801
int sc_slot;
802
803
shortcut = result->wrong_shortcut.shortcut;
804
level = result->wrong_shortcut.level;
805
sc_level = result->wrong_shortcut.sc_level;
806
sc_segments = result->wrong_shortcut.sc_segments;
807
dissimilarity = result->wrong_shortcut.dissimilarity;
808
809
pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
810
__func__, level, dissimilarity, sc_level);
811
812
/* We need to split a shortcut and insert a node between the two
813
* pieces. Zero-length pieces will be dispensed with entirely.
814
*
815
* First of all, we need to find out in which level the first
816
* difference was.
817
*/
818
diff = __ffs(dissimilarity);
819
diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
820
diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
821
pr_devel("diff=%d\n", diff);
822
823
if (!shortcut->back_pointer) {
824
edit->set[0].ptr = &edit->array->root;
825
} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
826
node = assoc_array_ptr_to_node(shortcut->back_pointer);
827
edit->set[0].ptr = &node->slots[shortcut->parent_slot];
828
} else {
829
BUG();
830
}
831
832
edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
833
834
/* Create a new node now since we're going to need it anyway */
835
new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
836
if (!new_n0)
837
return false;
838
edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
839
edit->adjust_count_on = new_n0;
840
841
/* Insert a new shortcut before the new node if this segment isn't of
842
* zero length - otherwise we just connect the new node directly to the
843
* parent.
844
*/
845
level += ASSOC_ARRAY_LEVEL_STEP;
846
if (diff > level) {
847
pr_devel("pre-shortcut %d...%d\n", level, diff);
848
keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
849
keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
850
851
new_s0 = kzalloc(struct_size(new_s0, index_key, keylen),
852
GFP_KERNEL);
853
if (!new_s0)
854
return false;
855
edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
856
edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
857
new_s0->back_pointer = shortcut->back_pointer;
858
new_s0->parent_slot = shortcut->parent_slot;
859
new_s0->next_node = assoc_array_node_to_ptr(new_n0);
860
new_s0->skip_to_level = diff;
861
862
new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
863
new_n0->parent_slot = 0;
864
865
memcpy(new_s0->index_key, shortcut->index_key,
866
flex_array_size(new_s0, index_key, keylen));
867
868
blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
869
pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
870
new_s0->index_key[keylen - 1] &= ~blank;
871
} else {
872
pr_devel("no pre-shortcut\n");
873
edit->set[0].to = assoc_array_node_to_ptr(new_n0);
874
new_n0->back_pointer = shortcut->back_pointer;
875
new_n0->parent_slot = shortcut->parent_slot;
876
}
877
878
side = assoc_array_ptr_to_node(shortcut->next_node);
879
new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
880
881
/* We need to know which slot in the new node is going to take a
882
* metadata pointer.
883
*/
884
sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
885
sc_slot &= ASSOC_ARRAY_FAN_MASK;
886
887
pr_devel("new slot %lx >> %d -> %d\n",
888
sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
889
890
/* Determine whether we need to follow the new node with a replacement
891
* for the current shortcut. We could in theory reuse the current
892
* shortcut if its parent slot number doesn't change - but that's a
893
* 1-in-16 chance so not worth expending the code upon.
894
*/
895
level = diff + ASSOC_ARRAY_LEVEL_STEP;
896
if (level < shortcut->skip_to_level) {
897
pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
898
keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
899
keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
900
901
new_s1 = kzalloc(struct_size(new_s1, index_key, keylen),
902
GFP_KERNEL);
903
if (!new_s1)
904
return false;
905
edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
906
907
new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
908
new_s1->parent_slot = sc_slot;
909
new_s1->next_node = shortcut->next_node;
910
new_s1->skip_to_level = shortcut->skip_to_level;
911
912
new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
913
914
memcpy(new_s1->index_key, shortcut->index_key,
915
flex_array_size(new_s1, index_key, keylen));
916
917
edit->set[1].ptr = &side->back_pointer;
918
edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
919
} else {
920
pr_devel("no post-shortcut\n");
921
922
/* We don't have to replace the pointed-to node as long as we
923
* use memory barriers to make sure the parent slot number is
924
* changed before the back pointer (the parent slot number is
925
* irrelevant to the old parent shortcut).
926
*/
927
new_n0->slots[sc_slot] = shortcut->next_node;
928
edit->set_parent_slot[0].p = &side->parent_slot;
929
edit->set_parent_slot[0].to = sc_slot;
930
edit->set[1].ptr = &side->back_pointer;
931
edit->set[1].to = assoc_array_node_to_ptr(new_n0);
932
}
933
934
/* Install the new leaf in a spare slot in the new node. */
935
if (sc_slot == 0)
936
edit->leaf_p = &new_n0->slots[1];
937
else
938
edit->leaf_p = &new_n0->slots[0];
939
940
pr_devel("<--%s() = ok [split shortcut]\n", __func__);
941
return true;
942
}
943
944
/**
945
* assoc_array_insert - Script insertion of an object into an associative array
946
* @array: The array to insert into.
947
* @ops: The operations to use.
948
* @index_key: The key to insert at.
949
* @object: The object to insert.
950
*
951
* Precalculate and preallocate a script for the insertion or replacement of an
952
* object in an associative array. This results in an edit script that can
953
* either be applied or cancelled.
954
*
955
* The function returns a pointer to an edit script or -ENOMEM.
956
*
957
* The caller should lock against other modifications and must continue to hold
958
* the lock until assoc_array_apply_edit() has been called.
959
*
960
* Accesses to the tree may take place concurrently with this function,
961
* provided they hold the RCU read lock.
962
*/
963
struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
964
const struct assoc_array_ops *ops,
965
const void *index_key,
966
void *object)
967
{
968
struct assoc_array_walk_result result;
969
struct assoc_array_edit *edit;
970
971
pr_devel("-->%s()\n", __func__);
972
973
/* The leaf pointer we're given must not have the bottom bit set as we
974
* use those for type-marking the pointer. NULL pointers are also not
975
* allowed as they indicate an empty slot but we have to allow them
976
* here as they can be updated later.
977
*/
978
BUG_ON(assoc_array_ptr_is_meta(object));
979
980
edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
981
if (!edit)
982
return ERR_PTR(-ENOMEM);
983
edit->array = array;
984
edit->ops = ops;
985
edit->leaf = assoc_array_leaf_to_ptr(object);
986
edit->adjust_count_by = 1;
987
988
switch (assoc_array_walk(array, ops, index_key, &result)) {
989
case assoc_array_walk_tree_empty:
990
/* Allocate a root node if there isn't one yet */
991
if (!assoc_array_insert_in_empty_tree(edit))
992
goto enomem;
993
return edit;
994
995
case assoc_array_walk_found_terminal_node:
996
/* We found a node that doesn't have a node/shortcut pointer in
997
* the slot corresponding to the index key that we have to
998
* follow.
999
*/
1000
if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1001
&result))
1002
goto enomem;
1003
return edit;
1004
1005
case assoc_array_walk_found_wrong_shortcut:
1006
/* We found a shortcut that didn't match our key in a slot we
1007
* needed to follow.
1008
*/
1009
if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1010
goto enomem;
1011
return edit;
1012
}
1013
1014
enomem:
1015
/* Clean up after an out of memory error */
1016
pr_devel("enomem\n");
1017
assoc_array_cancel_edit(edit);
1018
return ERR_PTR(-ENOMEM);
1019
}
1020
1021
/**
1022
* assoc_array_insert_set_object - Set the new object pointer in an edit script
1023
* @edit: The edit script to modify.
1024
* @object: The object pointer to set.
1025
*
1026
* Change the object to be inserted in an edit script. The object pointed to
1027
* by the old object is not freed. This must be done prior to applying the
1028
* script.
1029
*/
1030
void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1031
{
1032
BUG_ON(!object);
1033
edit->leaf = assoc_array_leaf_to_ptr(object);
1034
}
1035
1036
struct assoc_array_delete_collapse_context {
1037
struct assoc_array_node *node;
1038
const void *skip_leaf;
1039
int slot;
1040
};
1041
1042
/*
1043
* Subtree collapse to node iterator.
1044
*/
1045
static int assoc_array_delete_collapse_iterator(const void *leaf,
1046
void *iterator_data)
1047
{
1048
struct assoc_array_delete_collapse_context *collapse = iterator_data;
1049
1050
if (leaf == collapse->skip_leaf)
1051
return 0;
1052
1053
BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1054
1055
collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1056
return 0;
1057
}
1058
1059
/**
1060
* assoc_array_delete - Script deletion of an object from an associative array
1061
* @array: The array to search.
1062
* @ops: The operations to use.
1063
* @index_key: The key to the object.
1064
*
1065
* Precalculate and preallocate a script for the deletion of an object from an
1066
* associative array. This results in an edit script that can either be
1067
* applied or cancelled.
1068
*
1069
* The function returns a pointer to an edit script if the object was found,
1070
* NULL if the object was not found or -ENOMEM.
1071
*
1072
* The caller should lock against other modifications and must continue to hold
1073
* the lock until assoc_array_apply_edit() has been called.
1074
*
1075
* Accesses to the tree may take place concurrently with this function,
1076
* provided they hold the RCU read lock.
1077
*/
1078
struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1079
const struct assoc_array_ops *ops,
1080
const void *index_key)
1081
{
1082
struct assoc_array_delete_collapse_context collapse;
1083
struct assoc_array_walk_result result;
1084
struct assoc_array_node *node, *new_n0;
1085
struct assoc_array_edit *edit;
1086
struct assoc_array_ptr *ptr;
1087
bool has_meta;
1088
int slot, i;
1089
1090
pr_devel("-->%s()\n", __func__);
1091
1092
edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1093
if (!edit)
1094
return ERR_PTR(-ENOMEM);
1095
edit->array = array;
1096
edit->ops = ops;
1097
edit->adjust_count_by = -1;
1098
1099
switch (assoc_array_walk(array, ops, index_key, &result)) {
1100
case assoc_array_walk_found_terminal_node:
1101
/* We found a node that should contain the leaf we've been
1102
* asked to remove - *if* it's in the tree.
1103
*/
1104
pr_devel("terminal_node\n");
1105
node = result.terminal_node.node;
1106
1107
for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1108
ptr = node->slots[slot];
1109
if (ptr &&
1110
assoc_array_ptr_is_leaf(ptr) &&
1111
ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1112
index_key))
1113
goto found_leaf;
1114
}
1115
fallthrough;
1116
case assoc_array_walk_tree_empty:
1117
case assoc_array_walk_found_wrong_shortcut:
1118
default:
1119
assoc_array_cancel_edit(edit);
1120
pr_devel("not found\n");
1121
return NULL;
1122
}
1123
1124
found_leaf:
1125
BUG_ON(array->nr_leaves_on_tree <= 0);
1126
1127
/* In the simplest form of deletion we just clear the slot and release
1128
* the leaf after a suitable interval.
1129
*/
1130
edit->dead_leaf = node->slots[slot];
1131
edit->set[0].ptr = &node->slots[slot];
1132
edit->set[0].to = NULL;
1133
edit->adjust_count_on = node;
1134
1135
/* If that concludes erasure of the last leaf, then delete the entire
1136
* internal array.
1137
*/
1138
if (array->nr_leaves_on_tree == 1) {
1139
edit->set[1].ptr = &array->root;
1140
edit->set[1].to = NULL;
1141
edit->adjust_count_on = NULL;
1142
edit->excised_subtree = array->root;
1143
pr_devel("all gone\n");
1144
return edit;
1145
}
1146
1147
/* However, we'd also like to clear up some metadata blocks if we
1148
* possibly can.
1149
*
1150
* We go for a simple algorithm of: if this node has FAN_OUT or fewer
1151
* leaves in it, then attempt to collapse it - and attempt to
1152
* recursively collapse up the tree.
1153
*
1154
* We could also try and collapse in partially filled subtrees to take
1155
* up space in this node.
1156
*/
1157
if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1158
struct assoc_array_node *parent, *grandparent;
1159
struct assoc_array_ptr *ptr;
1160
1161
/* First of all, we need to know if this node has metadata so
1162
* that we don't try collapsing if all the leaves are already
1163
* here.
1164
*/
1165
has_meta = false;
1166
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1167
ptr = node->slots[i];
1168
if (assoc_array_ptr_is_meta(ptr)) {
1169
has_meta = true;
1170
break;
1171
}
1172
}
1173
1174
pr_devel("leaves: %ld [m=%d]\n",
1175
node->nr_leaves_on_branch - 1, has_meta);
1176
1177
/* Look further up the tree to see if we can collapse this node
1178
* into a more proximal node too.
1179
*/
1180
parent = node;
1181
collapse_up:
1182
pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1183
1184
ptr = parent->back_pointer;
1185
if (!ptr)
1186
goto do_collapse;
1187
if (assoc_array_ptr_is_shortcut(ptr)) {
1188
struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1189
ptr = s->back_pointer;
1190
if (!ptr)
1191
goto do_collapse;
1192
}
1193
1194
grandparent = assoc_array_ptr_to_node(ptr);
1195
if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1196
parent = grandparent;
1197
goto collapse_up;
1198
}
1199
1200
do_collapse:
1201
/* There's no point collapsing if the original node has no meta
1202
* pointers to discard and if we didn't merge into one of that
1203
* node's ancestry.
1204
*/
1205
if (has_meta || parent != node) {
1206
node = parent;
1207
1208
/* Create a new node to collapse into */
1209
new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1210
if (!new_n0)
1211
goto enomem;
1212
edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1213
1214
new_n0->back_pointer = node->back_pointer;
1215
new_n0->parent_slot = node->parent_slot;
1216
new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1217
edit->adjust_count_on = new_n0;
1218
1219
collapse.node = new_n0;
1220
collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1221
collapse.slot = 0;
1222
assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1223
node->back_pointer,
1224
assoc_array_delete_collapse_iterator,
1225
&collapse);
1226
pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1227
BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1228
1229
if (!node->back_pointer) {
1230
edit->set[1].ptr = &array->root;
1231
} else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1232
BUG();
1233
} else if (assoc_array_ptr_is_node(node->back_pointer)) {
1234
struct assoc_array_node *p =
1235
assoc_array_ptr_to_node(node->back_pointer);
1236
edit->set[1].ptr = &p->slots[node->parent_slot];
1237
} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1238
struct assoc_array_shortcut *s =
1239
assoc_array_ptr_to_shortcut(node->back_pointer);
1240
edit->set[1].ptr = &s->next_node;
1241
}
1242
edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1243
edit->excised_subtree = assoc_array_node_to_ptr(node);
1244
}
1245
}
1246
1247
return edit;
1248
1249
enomem:
1250
/* Clean up after an out of memory error */
1251
pr_devel("enomem\n");
1252
assoc_array_cancel_edit(edit);
1253
return ERR_PTR(-ENOMEM);
1254
}
1255
1256
/**
1257
* assoc_array_clear - Script deletion of all objects from an associative array
1258
* @array: The array to clear.
1259
* @ops: The operations to use.
1260
*
1261
* Precalculate and preallocate a script for the deletion of all the objects
1262
* from an associative array. This results in an edit script that can either
1263
* be applied or cancelled.
1264
*
1265
* The function returns a pointer to an edit script if there are objects to be
1266
* deleted, NULL if there are no objects in the array or -ENOMEM.
1267
*
1268
* The caller should lock against other modifications and must continue to hold
1269
* the lock until assoc_array_apply_edit() has been called.
1270
*
1271
* Accesses to the tree may take place concurrently with this function,
1272
* provided they hold the RCU read lock.
1273
*/
1274
struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1275
const struct assoc_array_ops *ops)
1276
{
1277
struct assoc_array_edit *edit;
1278
1279
pr_devel("-->%s()\n", __func__);
1280
1281
if (!array->root)
1282
return NULL;
1283
1284
edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1285
if (!edit)
1286
return ERR_PTR(-ENOMEM);
1287
edit->array = array;
1288
edit->ops = ops;
1289
edit->set[1].ptr = &array->root;
1290
edit->set[1].to = NULL;
1291
edit->excised_subtree = array->root;
1292
edit->ops_for_excised_subtree = ops;
1293
pr_devel("all gone\n");
1294
return edit;
1295
}
1296
1297
/*
1298
* Handle the deferred destruction after an applied edit.
1299
*/
1300
static void assoc_array_rcu_cleanup(struct rcu_head *head)
1301
{
1302
struct assoc_array_edit *edit =
1303
container_of(head, struct assoc_array_edit, rcu);
1304
int i;
1305
1306
pr_devel("-->%s()\n", __func__);
1307
1308
if (edit->dead_leaf)
1309
edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1310
for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1311
if (edit->excised_meta[i])
1312
kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1313
1314
if (edit->excised_subtree) {
1315
BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1316
if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1317
struct assoc_array_node *n =
1318
assoc_array_ptr_to_node(edit->excised_subtree);
1319
n->back_pointer = NULL;
1320
} else {
1321
struct assoc_array_shortcut *s =
1322
assoc_array_ptr_to_shortcut(edit->excised_subtree);
1323
s->back_pointer = NULL;
1324
}
1325
assoc_array_destroy_subtree(edit->excised_subtree,
1326
edit->ops_for_excised_subtree);
1327
}
1328
1329
kfree(edit);
1330
}
1331
1332
/**
1333
* assoc_array_apply_edit - Apply an edit script to an associative array
1334
* @edit: The script to apply.
1335
*
1336
* Apply an edit script to an associative array to effect an insertion,
1337
* deletion or clearance. As the edit script includes preallocated memory,
1338
* this is guaranteed not to fail.
1339
*
1340
* The edit script, dead objects and dead metadata will be scheduled for
1341
* destruction after an RCU grace period to permit those doing read-only
1342
* accesses on the array to continue to do so under the RCU read lock whilst
1343
* the edit is taking place.
1344
*/
1345
void assoc_array_apply_edit(struct assoc_array_edit *edit)
1346
{
1347
struct assoc_array_shortcut *shortcut;
1348
struct assoc_array_node *node;
1349
struct assoc_array_ptr *ptr;
1350
int i;
1351
1352
pr_devel("-->%s()\n", __func__);
1353
1354
smp_wmb();
1355
if (edit->leaf_p)
1356
*edit->leaf_p = edit->leaf;
1357
1358
smp_wmb();
1359
for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1360
if (edit->set_parent_slot[i].p)
1361
*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1362
1363
smp_wmb();
1364
for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1365
if (edit->set_backpointers[i])
1366
*edit->set_backpointers[i] = edit->set_backpointers_to;
1367
1368
smp_wmb();
1369
for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1370
if (edit->set[i].ptr)
1371
*edit->set[i].ptr = edit->set[i].to;
1372
1373
if (edit->array->root == NULL) {
1374
edit->array->nr_leaves_on_tree = 0;
1375
} else if (edit->adjust_count_on) {
1376
node = edit->adjust_count_on;
1377
for (;;) {
1378
node->nr_leaves_on_branch += edit->adjust_count_by;
1379
1380
ptr = node->back_pointer;
1381
if (!ptr)
1382
break;
1383
if (assoc_array_ptr_is_shortcut(ptr)) {
1384
shortcut = assoc_array_ptr_to_shortcut(ptr);
1385
ptr = shortcut->back_pointer;
1386
if (!ptr)
1387
break;
1388
}
1389
BUG_ON(!assoc_array_ptr_is_node(ptr));
1390
node = assoc_array_ptr_to_node(ptr);
1391
}
1392
1393
edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1394
}
1395
1396
call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1397
}
1398
1399
/**
1400
* assoc_array_cancel_edit - Discard an edit script.
1401
* @edit: The script to discard.
1402
*
1403
* Free an edit script and all the preallocated data it holds without making
1404
* any changes to the associative array it was intended for.
1405
*
1406
* NOTE! In the case of an insertion script, this does _not_ release the leaf
1407
* that was to be inserted. That is left to the caller.
1408
*/
1409
void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1410
{
1411
struct assoc_array_ptr *ptr;
1412
int i;
1413
1414
pr_devel("-->%s()\n", __func__);
1415
1416
/* Clean up after an out of memory error */
1417
for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1418
ptr = edit->new_meta[i];
1419
if (ptr) {
1420
if (assoc_array_ptr_is_node(ptr))
1421
kfree(assoc_array_ptr_to_node(ptr));
1422
else
1423
kfree(assoc_array_ptr_to_shortcut(ptr));
1424
}
1425
}
1426
kfree(edit);
1427
}
1428
1429
/**
1430
* assoc_array_gc - Garbage collect an associative array.
1431
* @array: The array to clean.
1432
* @ops: The operations to use.
1433
* @iterator: A callback function to pass judgement on each object.
1434
* @iterator_data: Private data for the callback function.
1435
*
1436
* Collect garbage from an associative array and pack down the internal tree to
1437
* save memory.
1438
*
1439
* The iterator function is asked to pass judgement upon each object in the
1440
* array. If it returns false, the object is discard and if it returns true,
1441
* the object is kept. If it returns true, it must increment the object's
1442
* usage count (or whatever it needs to do to retain it) before returning.
1443
*
1444
* This function returns 0 if successful or -ENOMEM if out of memory. In the
1445
* latter case, the array is not changed.
1446
*
1447
* The caller should lock against other modifications and must continue to hold
1448
* the lock until assoc_array_apply_edit() has been called.
1449
*
1450
* Accesses to the tree may take place concurrently with this function,
1451
* provided they hold the RCU read lock.
1452
*/
1453
int assoc_array_gc(struct assoc_array *array,
1454
const struct assoc_array_ops *ops,
1455
bool (*iterator)(void *object, void *iterator_data),
1456
void *iterator_data)
1457
{
1458
struct assoc_array_shortcut *shortcut, *new_s;
1459
struct assoc_array_node *node, *new_n;
1460
struct assoc_array_edit *edit;
1461
struct assoc_array_ptr *cursor, *ptr;
1462
struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1463
unsigned long nr_leaves_on_tree;
1464
bool retained;
1465
int keylen, slot, nr_free, next_slot, i;
1466
1467
pr_devel("-->%s()\n", __func__);
1468
1469
if (!array->root)
1470
return 0;
1471
1472
edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1473
if (!edit)
1474
return -ENOMEM;
1475
edit->array = array;
1476
edit->ops = ops;
1477
edit->ops_for_excised_subtree = ops;
1478
edit->set[0].ptr = &array->root;
1479
edit->excised_subtree = array->root;
1480
1481
new_root = new_parent = NULL;
1482
new_ptr_pp = &new_root;
1483
cursor = array->root;
1484
1485
descend:
1486
/* If this point is a shortcut, then we need to duplicate it and
1487
* advance the target cursor.
1488
*/
1489
if (assoc_array_ptr_is_shortcut(cursor)) {
1490
shortcut = assoc_array_ptr_to_shortcut(cursor);
1491
keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1492
keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1493
new_s = kmalloc(struct_size(new_s, index_key, keylen),
1494
GFP_KERNEL);
1495
if (!new_s)
1496
goto enomem;
1497
pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1498
memcpy(new_s, shortcut, struct_size(new_s, index_key, keylen));
1499
new_s->back_pointer = new_parent;
1500
new_s->parent_slot = shortcut->parent_slot;
1501
*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1502
new_ptr_pp = &new_s->next_node;
1503
cursor = shortcut->next_node;
1504
}
1505
1506
/* Duplicate the node at this position */
1507
node = assoc_array_ptr_to_node(cursor);
1508
new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1509
if (!new_n)
1510
goto enomem;
1511
pr_devel("dup node %p -> %p\n", node, new_n);
1512
new_n->back_pointer = new_parent;
1513
new_n->parent_slot = node->parent_slot;
1514
*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1515
new_ptr_pp = NULL;
1516
slot = 0;
1517
1518
continue_node:
1519
/* Filter across any leaves and gc any subtrees */
1520
for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1521
ptr = node->slots[slot];
1522
if (!ptr)
1523
continue;
1524
1525
if (assoc_array_ptr_is_leaf(ptr)) {
1526
if (iterator(assoc_array_ptr_to_leaf(ptr),
1527
iterator_data))
1528
/* The iterator will have done any reference
1529
* counting on the object for us.
1530
*/
1531
new_n->slots[slot] = ptr;
1532
continue;
1533
}
1534
1535
new_ptr_pp = &new_n->slots[slot];
1536
cursor = ptr;
1537
goto descend;
1538
}
1539
1540
retry_compress:
1541
pr_devel("-- compress node %p --\n", new_n);
1542
1543
/* Count up the number of empty slots in this node and work out the
1544
* subtree leaf count.
1545
*/
1546
new_n->nr_leaves_on_branch = 0;
1547
nr_free = 0;
1548
for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1549
ptr = new_n->slots[slot];
1550
if (!ptr)
1551
nr_free++;
1552
else if (assoc_array_ptr_is_leaf(ptr))
1553
new_n->nr_leaves_on_branch++;
1554
}
1555
pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1556
1557
/* See what we can fold in */
1558
retained = false;
1559
next_slot = 0;
1560
for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1561
struct assoc_array_shortcut *s;
1562
struct assoc_array_node *child;
1563
1564
ptr = new_n->slots[slot];
1565
if (!ptr || assoc_array_ptr_is_leaf(ptr))
1566
continue;
1567
1568
s = NULL;
1569
if (assoc_array_ptr_is_shortcut(ptr)) {
1570
s = assoc_array_ptr_to_shortcut(ptr);
1571
ptr = s->next_node;
1572
}
1573
1574
child = assoc_array_ptr_to_node(ptr);
1575
new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1576
1577
if (child->nr_leaves_on_branch <= nr_free + 1) {
1578
/* Fold the child node into this one */
1579
pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1580
slot, child->nr_leaves_on_branch, nr_free + 1,
1581
next_slot);
1582
1583
/* We would already have reaped an intervening shortcut
1584
* on the way back up the tree.
1585
*/
1586
BUG_ON(s);
1587
1588
new_n->slots[slot] = NULL;
1589
nr_free++;
1590
if (slot < next_slot)
1591
next_slot = slot;
1592
for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1593
struct assoc_array_ptr *p = child->slots[i];
1594
if (!p)
1595
continue;
1596
BUG_ON(assoc_array_ptr_is_meta(p));
1597
while (new_n->slots[next_slot])
1598
next_slot++;
1599
BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1600
new_n->slots[next_slot++] = p;
1601
nr_free--;
1602
}
1603
kfree(child);
1604
} else {
1605
pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1606
slot, child->nr_leaves_on_branch, nr_free + 1,
1607
next_slot);
1608
retained = true;
1609
}
1610
}
1611
1612
if (retained && new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1613
pr_devel("internal nodes remain despite enough space, retrying\n");
1614
goto retry_compress;
1615
}
1616
pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1617
1618
nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1619
1620
/* Excise this node if it is singly occupied by a shortcut */
1621
if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1622
for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1623
if ((ptr = new_n->slots[slot]))
1624
break;
1625
1626
if (assoc_array_ptr_is_meta(ptr) &&
1627
assoc_array_ptr_is_shortcut(ptr)) {
1628
pr_devel("excise node %p with 1 shortcut\n", new_n);
1629
new_s = assoc_array_ptr_to_shortcut(ptr);
1630
new_parent = new_n->back_pointer;
1631
slot = new_n->parent_slot;
1632
kfree(new_n);
1633
if (!new_parent) {
1634
new_s->back_pointer = NULL;
1635
new_s->parent_slot = 0;
1636
new_root = ptr;
1637
goto gc_complete;
1638
}
1639
1640
if (assoc_array_ptr_is_shortcut(new_parent)) {
1641
/* We can discard any preceding shortcut also */
1642
struct assoc_array_shortcut *s =
1643
assoc_array_ptr_to_shortcut(new_parent);
1644
1645
pr_devel("excise preceding shortcut\n");
1646
1647
new_parent = new_s->back_pointer = s->back_pointer;
1648
slot = new_s->parent_slot = s->parent_slot;
1649
kfree(s);
1650
if (!new_parent) {
1651
new_s->back_pointer = NULL;
1652
new_s->parent_slot = 0;
1653
new_root = ptr;
1654
goto gc_complete;
1655
}
1656
}
1657
1658
new_s->back_pointer = new_parent;
1659
new_s->parent_slot = slot;
1660
new_n = assoc_array_ptr_to_node(new_parent);
1661
new_n->slots[slot] = ptr;
1662
goto ascend_old_tree;
1663
}
1664
}
1665
1666
/* Excise any shortcuts we might encounter that point to nodes that
1667
* only contain leaves.
1668
*/
1669
ptr = new_n->back_pointer;
1670
if (!ptr)
1671
goto gc_complete;
1672
1673
if (assoc_array_ptr_is_shortcut(ptr)) {
1674
new_s = assoc_array_ptr_to_shortcut(ptr);
1675
new_parent = new_s->back_pointer;
1676
slot = new_s->parent_slot;
1677
1678
if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1679
struct assoc_array_node *n;
1680
1681
pr_devel("excise shortcut\n");
1682
new_n->back_pointer = new_parent;
1683
new_n->parent_slot = slot;
1684
kfree(new_s);
1685
if (!new_parent) {
1686
new_root = assoc_array_node_to_ptr(new_n);
1687
goto gc_complete;
1688
}
1689
1690
n = assoc_array_ptr_to_node(new_parent);
1691
n->slots[slot] = assoc_array_node_to_ptr(new_n);
1692
}
1693
} else {
1694
new_parent = ptr;
1695
}
1696
new_n = assoc_array_ptr_to_node(new_parent);
1697
1698
ascend_old_tree:
1699
ptr = node->back_pointer;
1700
if (assoc_array_ptr_is_shortcut(ptr)) {
1701
shortcut = assoc_array_ptr_to_shortcut(ptr);
1702
slot = shortcut->parent_slot;
1703
cursor = shortcut->back_pointer;
1704
if (!cursor)
1705
goto gc_complete;
1706
} else {
1707
slot = node->parent_slot;
1708
cursor = ptr;
1709
}
1710
BUG_ON(!cursor);
1711
node = assoc_array_ptr_to_node(cursor);
1712
slot++;
1713
goto continue_node;
1714
1715
gc_complete:
1716
edit->set[0].to = new_root;
1717
assoc_array_apply_edit(edit);
1718
array->nr_leaves_on_tree = nr_leaves_on_tree;
1719
return 0;
1720
1721
enomem:
1722
pr_devel("enomem\n");
1723
assoc_array_destroy_subtree(new_root, edit->ops);
1724
kfree(edit);
1725
return -ENOMEM;
1726
}
1727
1728