Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/bch.c
26131 views
1
/*
2
* Generic binary BCH encoding/decoding library
3
*
4
* This program is free software; you can redistribute it and/or modify it
5
* under the terms of the GNU General Public License version 2 as published by
6
* the Free Software Foundation.
7
*
8
* This program is distributed in the hope that it will be useful, but WITHOUT
9
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11
* more details.
12
*
13
* You should have received a copy of the GNU General Public License along with
14
* this program; if not, write to the Free Software Foundation, Inc., 51
15
* Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
16
*
17
* Copyright © 2011 Parrot S.A.
18
*
19
* Author: Ivan Djelic <[email protected]>
20
*
21
* Description:
22
*
23
* This library provides runtime configurable encoding/decoding of binary
24
* Bose-Chaudhuri-Hocquenghem (BCH) codes.
25
*
26
* Call bch_init to get a pointer to a newly allocated bch_control structure for
27
* the given m (Galois field order), t (error correction capability) and
28
* (optional) primitive polynomial parameters.
29
*
30
* Call bch_encode to compute and store ecc parity bytes to a given buffer.
31
* Call bch_decode to detect and locate errors in received data.
32
*
33
* On systems supporting hw BCH features, intermediate results may be provided
34
* to bch_decode in order to skip certain steps. See bch_decode() documentation
35
* for details.
36
*
37
* Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
38
* parameters m and t; thus allowing extra compiler optimizations and providing
39
* better (up to 2x) encoding performance. Using this option makes sense when
40
* (m,t) are fixed and known in advance, e.g. when using BCH error correction
41
* on a particular NAND flash device.
42
*
43
* Algorithmic details:
44
*
45
* Encoding is performed by processing 32 input bits in parallel, using 4
46
* remainder lookup tables.
47
*
48
* The final stage of decoding involves the following internal steps:
49
* a. Syndrome computation
50
* b. Error locator polynomial computation using Berlekamp-Massey algorithm
51
* c. Error locator root finding (by far the most expensive step)
52
*
53
* In this implementation, step c is not performed using the usual Chien search.
54
* Instead, an alternative approach described in [1] is used. It consists in
55
* factoring the error locator polynomial using the Berlekamp Trace algorithm
56
* (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
57
* solving techniques [2] are used. The resulting algorithm, called BTZ, yields
58
* much better performance than Chien search for usual (m,t) values (typically
59
* m >= 13, t < 32, see [1]).
60
*
61
* [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
62
* of characteristic 2, in: Western European Workshop on Research in Cryptology
63
* - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
64
* [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
65
* finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
66
*/
67
68
#include <linux/kernel.h>
69
#include <linux/errno.h>
70
#include <linux/init.h>
71
#include <linux/module.h>
72
#include <linux/slab.h>
73
#include <linux/bitops.h>
74
#include <linux/bitrev.h>
75
#include <asm/byteorder.h>
76
#include <linux/bch.h>
77
78
#if defined(CONFIG_BCH_CONST_PARAMS)
79
#define GF_M(_p) (CONFIG_BCH_CONST_M)
80
#define GF_T(_p) (CONFIG_BCH_CONST_T)
81
#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
82
#define BCH_MAX_M (CONFIG_BCH_CONST_M)
83
#define BCH_MAX_T (CONFIG_BCH_CONST_T)
84
#else
85
#define GF_M(_p) ((_p)->m)
86
#define GF_T(_p) ((_p)->t)
87
#define GF_N(_p) ((_p)->n)
88
#define BCH_MAX_M 15 /* 2KB */
89
#define BCH_MAX_T 64 /* 64 bit correction */
90
#endif
91
92
#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
93
#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
94
95
#define BCH_ECC_MAX_WORDS DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
96
97
#ifndef dbg
98
#define dbg(_fmt, args...) do {} while (0)
99
#endif
100
101
/*
102
* represent a polynomial over GF(2^m)
103
*/
104
struct gf_poly {
105
unsigned int deg; /* polynomial degree */
106
unsigned int c[]; /* polynomial terms */
107
};
108
109
/* given its degree, compute a polynomial size in bytes */
110
#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
111
112
/* polynomial of degree 1 */
113
struct gf_poly_deg1 {
114
struct gf_poly poly;
115
unsigned int c[2];
116
};
117
118
static u8 swap_bits(struct bch_control *bch, u8 in)
119
{
120
if (!bch->swap_bits)
121
return in;
122
123
return bitrev8(in);
124
}
125
126
/*
127
* same as bch_encode(), but process input data one byte at a time
128
*/
129
static void bch_encode_unaligned(struct bch_control *bch,
130
const unsigned char *data, unsigned int len,
131
uint32_t *ecc)
132
{
133
int i;
134
const uint32_t *p;
135
const int l = BCH_ECC_WORDS(bch)-1;
136
137
while (len--) {
138
u8 tmp = swap_bits(bch, *data++);
139
140
p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff);
141
142
for (i = 0; i < l; i++)
143
ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
144
145
ecc[l] = (ecc[l] << 8)^(*p);
146
}
147
}
148
149
/*
150
* convert ecc bytes to aligned, zero-padded 32-bit ecc words
151
*/
152
static void load_ecc8(struct bch_control *bch, uint32_t *dst,
153
const uint8_t *src)
154
{
155
uint8_t pad[4] = {0, 0, 0, 0};
156
unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
157
158
for (i = 0; i < nwords; i++, src += 4)
159
dst[i] = ((u32)swap_bits(bch, src[0]) << 24) |
160
((u32)swap_bits(bch, src[1]) << 16) |
161
((u32)swap_bits(bch, src[2]) << 8) |
162
swap_bits(bch, src[3]);
163
164
memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
165
dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) |
166
((u32)swap_bits(bch, pad[1]) << 16) |
167
((u32)swap_bits(bch, pad[2]) << 8) |
168
swap_bits(bch, pad[3]);
169
}
170
171
/*
172
* convert 32-bit ecc words to ecc bytes
173
*/
174
static void store_ecc8(struct bch_control *bch, uint8_t *dst,
175
const uint32_t *src)
176
{
177
uint8_t pad[4];
178
unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
179
180
for (i = 0; i < nwords; i++) {
181
*dst++ = swap_bits(bch, src[i] >> 24);
182
*dst++ = swap_bits(bch, src[i] >> 16);
183
*dst++ = swap_bits(bch, src[i] >> 8);
184
*dst++ = swap_bits(bch, src[i]);
185
}
186
pad[0] = swap_bits(bch, src[nwords] >> 24);
187
pad[1] = swap_bits(bch, src[nwords] >> 16);
188
pad[2] = swap_bits(bch, src[nwords] >> 8);
189
pad[3] = swap_bits(bch, src[nwords]);
190
memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
191
}
192
193
/**
194
* bch_encode - calculate BCH ecc parity of data
195
* @bch: BCH control structure
196
* @data: data to encode
197
* @len: data length in bytes
198
* @ecc: ecc parity data, must be initialized by caller
199
*
200
* The @ecc parity array is used both as input and output parameter, in order to
201
* allow incremental computations. It should be of the size indicated by member
202
* @ecc_bytes of @bch, and should be initialized to 0 before the first call.
203
*
204
* The exact number of computed ecc parity bits is given by member @ecc_bits of
205
* @bch; it may be less than m*t for large values of t.
206
*/
207
void bch_encode(struct bch_control *bch, const uint8_t *data,
208
unsigned int len, uint8_t *ecc)
209
{
210
const unsigned int l = BCH_ECC_WORDS(bch)-1;
211
unsigned int i, mlen;
212
unsigned long m;
213
uint32_t w, r[BCH_ECC_MAX_WORDS];
214
const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
215
const uint32_t * const tab0 = bch->mod8_tab;
216
const uint32_t * const tab1 = tab0 + 256*(l+1);
217
const uint32_t * const tab2 = tab1 + 256*(l+1);
218
const uint32_t * const tab3 = tab2 + 256*(l+1);
219
const uint32_t *pdata, *p0, *p1, *p2, *p3;
220
221
if (WARN_ON(r_bytes > sizeof(r)))
222
return;
223
224
if (ecc) {
225
/* load ecc parity bytes into internal 32-bit buffer */
226
load_ecc8(bch, bch->ecc_buf, ecc);
227
} else {
228
memset(bch->ecc_buf, 0, r_bytes);
229
}
230
231
/* process first unaligned data bytes */
232
m = ((unsigned long)data) & 3;
233
if (m) {
234
mlen = (len < (4-m)) ? len : 4-m;
235
bch_encode_unaligned(bch, data, mlen, bch->ecc_buf);
236
data += mlen;
237
len -= mlen;
238
}
239
240
/* process 32-bit aligned data words */
241
pdata = (uint32_t *)data;
242
mlen = len/4;
243
data += 4*mlen;
244
len -= 4*mlen;
245
memcpy(r, bch->ecc_buf, r_bytes);
246
247
/*
248
* split each 32-bit word into 4 polynomials of weight 8 as follows:
249
*
250
* 31 ...24 23 ...16 15 ... 8 7 ... 0
251
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
252
* tttttttt mod g = r0 (precomputed)
253
* zzzzzzzz 00000000 mod g = r1 (precomputed)
254
* yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
255
* xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
256
* xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
257
*/
258
while (mlen--) {
259
/* input data is read in big-endian format */
260
w = cpu_to_be32(*pdata++);
261
if (bch->swap_bits)
262
w = (u32)swap_bits(bch, w) |
263
((u32)swap_bits(bch, w >> 8) << 8) |
264
((u32)swap_bits(bch, w >> 16) << 16) |
265
((u32)swap_bits(bch, w >> 24) << 24);
266
w ^= r[0];
267
p0 = tab0 + (l+1)*((w >> 0) & 0xff);
268
p1 = tab1 + (l+1)*((w >> 8) & 0xff);
269
p2 = tab2 + (l+1)*((w >> 16) & 0xff);
270
p3 = tab3 + (l+1)*((w >> 24) & 0xff);
271
272
for (i = 0; i < l; i++)
273
r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
274
275
r[l] = p0[l]^p1[l]^p2[l]^p3[l];
276
}
277
memcpy(bch->ecc_buf, r, r_bytes);
278
279
/* process last unaligned bytes */
280
if (len)
281
bch_encode_unaligned(bch, data, len, bch->ecc_buf);
282
283
/* store ecc parity bytes into original parity buffer */
284
if (ecc)
285
store_ecc8(bch, ecc, bch->ecc_buf);
286
}
287
EXPORT_SYMBOL_GPL(bch_encode);
288
289
static inline int modulo(struct bch_control *bch, unsigned int v)
290
{
291
const unsigned int n = GF_N(bch);
292
while (v >= n) {
293
v -= n;
294
v = (v & n) + (v >> GF_M(bch));
295
}
296
return v;
297
}
298
299
/*
300
* shorter and faster modulo function, only works when v < 2N.
301
*/
302
static inline int mod_s(struct bch_control *bch, unsigned int v)
303
{
304
const unsigned int n = GF_N(bch);
305
return (v < n) ? v : v-n;
306
}
307
308
static inline int deg(unsigned int poly)
309
{
310
/* polynomial degree is the most-significant bit index */
311
return fls(poly)-1;
312
}
313
314
static inline int parity(unsigned int x)
315
{
316
/*
317
* public domain code snippet, lifted from
318
* http://www-graphics.stanford.edu/~seander/bithacks.html
319
*/
320
x ^= x >> 1;
321
x ^= x >> 2;
322
x = (x & 0x11111111U) * 0x11111111U;
323
return (x >> 28) & 1;
324
}
325
326
/* Galois field basic operations: multiply, divide, inverse, etc. */
327
328
static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
329
unsigned int b)
330
{
331
return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
332
bch->a_log_tab[b])] : 0;
333
}
334
335
static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
336
{
337
return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
338
}
339
340
static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
341
unsigned int b)
342
{
343
return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
344
GF_N(bch)-bch->a_log_tab[b])] : 0;
345
}
346
347
static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
348
{
349
return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
350
}
351
352
static inline unsigned int a_pow(struct bch_control *bch, int i)
353
{
354
return bch->a_pow_tab[modulo(bch, i)];
355
}
356
357
static inline int a_log(struct bch_control *bch, unsigned int x)
358
{
359
return bch->a_log_tab[x];
360
}
361
362
static inline int a_ilog(struct bch_control *bch, unsigned int x)
363
{
364
return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
365
}
366
367
/*
368
* compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
369
*/
370
static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
371
unsigned int *syn)
372
{
373
int i, j, s;
374
unsigned int m;
375
uint32_t poly;
376
const int t = GF_T(bch);
377
378
s = bch->ecc_bits;
379
380
/* make sure extra bits in last ecc word are cleared */
381
m = ((unsigned int)s) & 31;
382
if (m)
383
ecc[s/32] &= ~((1u << (32-m))-1);
384
memset(syn, 0, 2*t*sizeof(*syn));
385
386
/* compute v(a^j) for j=1 .. 2t-1 */
387
do {
388
poly = *ecc++;
389
s -= 32;
390
while (poly) {
391
i = deg(poly);
392
for (j = 0; j < 2*t; j += 2)
393
syn[j] ^= a_pow(bch, (j+1)*(i+s));
394
395
poly ^= (1 << i);
396
}
397
} while (s > 0);
398
399
/* v(a^(2j)) = v(a^j)^2 */
400
for (j = 0; j < t; j++)
401
syn[2*j+1] = gf_sqr(bch, syn[j]);
402
}
403
404
static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
405
{
406
memcpy(dst, src, GF_POLY_SZ(src->deg));
407
}
408
409
static int compute_error_locator_polynomial(struct bch_control *bch,
410
const unsigned int *syn)
411
{
412
const unsigned int t = GF_T(bch);
413
const unsigned int n = GF_N(bch);
414
unsigned int i, j, tmp, l, pd = 1, d = syn[0];
415
struct gf_poly *elp = bch->elp;
416
struct gf_poly *pelp = bch->poly_2t[0];
417
struct gf_poly *elp_copy = bch->poly_2t[1];
418
int k, pp = -1;
419
420
memset(pelp, 0, GF_POLY_SZ(2*t));
421
memset(elp, 0, GF_POLY_SZ(2*t));
422
423
pelp->deg = 0;
424
pelp->c[0] = 1;
425
elp->deg = 0;
426
elp->c[0] = 1;
427
428
/* use simplified binary Berlekamp-Massey algorithm */
429
for (i = 0; (i < t) && (elp->deg <= t); i++) {
430
if (d) {
431
k = 2*i-pp;
432
gf_poly_copy(elp_copy, elp);
433
/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
434
tmp = a_log(bch, d)+n-a_log(bch, pd);
435
for (j = 0; j <= pelp->deg; j++) {
436
if (pelp->c[j]) {
437
l = a_log(bch, pelp->c[j]);
438
elp->c[j+k] ^= a_pow(bch, tmp+l);
439
}
440
}
441
/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
442
tmp = pelp->deg+k;
443
if (tmp > elp->deg) {
444
elp->deg = tmp;
445
gf_poly_copy(pelp, elp_copy);
446
pd = d;
447
pp = 2*i;
448
}
449
}
450
/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
451
if (i < t-1) {
452
d = syn[2*i+2];
453
for (j = 1; j <= elp->deg; j++)
454
d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
455
}
456
}
457
dbg("elp=%s\n", gf_poly_str(elp));
458
return (elp->deg > t) ? -1 : (int)elp->deg;
459
}
460
461
/*
462
* solve a m x m linear system in GF(2) with an expected number of solutions,
463
* and return the number of found solutions
464
*/
465
static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
466
unsigned int *sol, int nsol)
467
{
468
const int m = GF_M(bch);
469
unsigned int tmp, mask;
470
int rem, c, r, p, k, param[BCH_MAX_M];
471
472
k = 0;
473
mask = 1 << m;
474
475
/* Gaussian elimination */
476
for (c = 0; c < m; c++) {
477
rem = 0;
478
p = c-k;
479
/* find suitable row for elimination */
480
for (r = p; r < m; r++) {
481
if (rows[r] & mask) {
482
if (r != p)
483
swap(rows[r], rows[p]);
484
rem = r+1;
485
break;
486
}
487
}
488
if (rem) {
489
/* perform elimination on remaining rows */
490
tmp = rows[p];
491
for (r = rem; r < m; r++) {
492
if (rows[r] & mask)
493
rows[r] ^= tmp;
494
}
495
} else {
496
/* elimination not needed, store defective row index */
497
param[k++] = c;
498
}
499
mask >>= 1;
500
}
501
/* rewrite system, inserting fake parameter rows */
502
if (k > 0) {
503
p = k;
504
for (r = m-1; r >= 0; r--) {
505
if ((r > m-1-k) && rows[r])
506
/* system has no solution */
507
return 0;
508
509
rows[r] = (p && (r == param[p-1])) ?
510
p--, 1u << (m-r) : rows[r-p];
511
}
512
}
513
514
if (nsol != (1 << k))
515
/* unexpected number of solutions */
516
return 0;
517
518
for (p = 0; p < nsol; p++) {
519
/* set parameters for p-th solution */
520
for (c = 0; c < k; c++)
521
rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
522
523
/* compute unique solution */
524
tmp = 0;
525
for (r = m-1; r >= 0; r--) {
526
mask = rows[r] & (tmp|1);
527
tmp |= parity(mask) << (m-r);
528
}
529
sol[p] = tmp >> 1;
530
}
531
return nsol;
532
}
533
534
/*
535
* this function builds and solves a linear system for finding roots of a degree
536
* 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
537
*/
538
static int find_affine4_roots(struct bch_control *bch, unsigned int a,
539
unsigned int b, unsigned int c,
540
unsigned int *roots)
541
{
542
int i, j, k;
543
const int m = GF_M(bch);
544
unsigned int mask = 0xff, t, rows[16] = {0,};
545
546
j = a_log(bch, b);
547
k = a_log(bch, a);
548
rows[0] = c;
549
550
/* build linear system to solve X^4+aX^2+bX+c = 0 */
551
for (i = 0; i < m; i++) {
552
rows[i+1] = bch->a_pow_tab[4*i]^
553
(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
554
(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
555
j++;
556
k += 2;
557
}
558
/*
559
* transpose 16x16 matrix before passing it to linear solver
560
* warning: this code assumes m < 16
561
*/
562
for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
563
for (k = 0; k < 16; k = (k+j+1) & ~j) {
564
t = ((rows[k] >> j)^rows[k+j]) & mask;
565
rows[k] ^= (t << j);
566
rows[k+j] ^= t;
567
}
568
}
569
return solve_linear_system(bch, rows, roots, 4);
570
}
571
572
/*
573
* compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
574
*/
575
static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
576
unsigned int *roots)
577
{
578
int n = 0;
579
580
if (poly->c[0])
581
/* poly[X] = bX+c with c!=0, root=c/b */
582
roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
583
bch->a_log_tab[poly->c[1]]);
584
return n;
585
}
586
587
/*
588
* compute roots of a degree 2 polynomial over GF(2^m)
589
*/
590
static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
591
unsigned int *roots)
592
{
593
int n = 0, i, l0, l1, l2;
594
unsigned int u, v, r;
595
596
if (poly->c[0] && poly->c[1]) {
597
598
l0 = bch->a_log_tab[poly->c[0]];
599
l1 = bch->a_log_tab[poly->c[1]];
600
l2 = bch->a_log_tab[poly->c[2]];
601
602
/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
603
u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
604
/*
605
* let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
606
* r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
607
* u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
608
* i.e. r and r+1 are roots iff Tr(u)=0
609
*/
610
r = 0;
611
v = u;
612
while (v) {
613
i = deg(v);
614
r ^= bch->xi_tab[i];
615
v ^= (1 << i);
616
}
617
/* verify root */
618
if ((gf_sqr(bch, r)^r) == u) {
619
/* reverse z=a/bX transformation and compute log(1/r) */
620
roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
621
bch->a_log_tab[r]+l2);
622
roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
623
bch->a_log_tab[r^1]+l2);
624
}
625
}
626
return n;
627
}
628
629
/*
630
* compute roots of a degree 3 polynomial over GF(2^m)
631
*/
632
static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
633
unsigned int *roots)
634
{
635
int i, n = 0;
636
unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
637
638
if (poly->c[0]) {
639
/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
640
e3 = poly->c[3];
641
c2 = gf_div(bch, poly->c[0], e3);
642
b2 = gf_div(bch, poly->c[1], e3);
643
a2 = gf_div(bch, poly->c[2], e3);
644
645
/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
646
c = gf_mul(bch, a2, c2); /* c = a2c2 */
647
b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */
648
a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */
649
650
/* find the 4 roots of this affine polynomial */
651
if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
652
/* remove a2 from final list of roots */
653
for (i = 0; i < 4; i++) {
654
if (tmp[i] != a2)
655
roots[n++] = a_ilog(bch, tmp[i]);
656
}
657
}
658
}
659
return n;
660
}
661
662
/*
663
* compute roots of a degree 4 polynomial over GF(2^m)
664
*/
665
static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
666
unsigned int *roots)
667
{
668
int i, l, n = 0;
669
unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
670
671
if (poly->c[0] == 0)
672
return 0;
673
674
/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
675
e4 = poly->c[4];
676
d = gf_div(bch, poly->c[0], e4);
677
c = gf_div(bch, poly->c[1], e4);
678
b = gf_div(bch, poly->c[2], e4);
679
a = gf_div(bch, poly->c[3], e4);
680
681
/* use Y=1/X transformation to get an affine polynomial */
682
if (a) {
683
/* first, eliminate cX by using z=X+e with ae^2+c=0 */
684
if (c) {
685
/* compute e such that e^2 = c/a */
686
f = gf_div(bch, c, a);
687
l = a_log(bch, f);
688
l += (l & 1) ? GF_N(bch) : 0;
689
e = a_pow(bch, l/2);
690
/*
691
* use transformation z=X+e:
692
* z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
693
* z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
694
* z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
695
* z^4 + az^3 + b'z^2 + d'
696
*/
697
d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
698
b = gf_mul(bch, a, e)^b;
699
}
700
/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
701
if (d == 0)
702
/* assume all roots have multiplicity 1 */
703
return 0;
704
705
c2 = gf_inv(bch, d);
706
b2 = gf_div(bch, a, d);
707
a2 = gf_div(bch, b, d);
708
} else {
709
/* polynomial is already affine */
710
c2 = d;
711
b2 = c;
712
a2 = b;
713
}
714
/* find the 4 roots of this affine polynomial */
715
if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
716
for (i = 0; i < 4; i++) {
717
/* post-process roots (reverse transformations) */
718
f = a ? gf_inv(bch, roots[i]) : roots[i];
719
roots[i] = a_ilog(bch, f^e);
720
}
721
n = 4;
722
}
723
return n;
724
}
725
726
/*
727
* build monic, log-based representation of a polynomial
728
*/
729
static void gf_poly_logrep(struct bch_control *bch,
730
const struct gf_poly *a, int *rep)
731
{
732
int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
733
734
/* represent 0 values with -1; warning, rep[d] is not set to 1 */
735
for (i = 0; i < d; i++)
736
rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
737
}
738
739
/*
740
* compute polynomial Euclidean division remainder in GF(2^m)[X]
741
*/
742
static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
743
const struct gf_poly *b, int *rep)
744
{
745
int la, p, m;
746
unsigned int i, j, *c = a->c;
747
const unsigned int d = b->deg;
748
749
if (a->deg < d)
750
return;
751
752
/* reuse or compute log representation of denominator */
753
if (!rep) {
754
rep = bch->cache;
755
gf_poly_logrep(bch, b, rep);
756
}
757
758
for (j = a->deg; j >= d; j--) {
759
if (c[j]) {
760
la = a_log(bch, c[j]);
761
p = j-d;
762
for (i = 0; i < d; i++, p++) {
763
m = rep[i];
764
if (m >= 0)
765
c[p] ^= bch->a_pow_tab[mod_s(bch,
766
m+la)];
767
}
768
}
769
}
770
a->deg = d-1;
771
while (!c[a->deg] && a->deg)
772
a->deg--;
773
}
774
775
/*
776
* compute polynomial Euclidean division quotient in GF(2^m)[X]
777
*/
778
static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
779
const struct gf_poly *b, struct gf_poly *q)
780
{
781
if (a->deg >= b->deg) {
782
q->deg = a->deg-b->deg;
783
/* compute a mod b (modifies a) */
784
gf_poly_mod(bch, a, b, NULL);
785
/* quotient is stored in upper part of polynomial a */
786
memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
787
} else {
788
q->deg = 0;
789
q->c[0] = 0;
790
}
791
}
792
793
/*
794
* compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
795
*/
796
static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
797
struct gf_poly *b)
798
{
799
dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
800
801
if (a->deg < b->deg)
802
swap(a, b);
803
804
while (b->deg > 0) {
805
gf_poly_mod(bch, a, b, NULL);
806
swap(a, b);
807
}
808
809
dbg("%s\n", gf_poly_str(a));
810
811
return a;
812
}
813
814
/*
815
* Given a polynomial f and an integer k, compute Tr(a^kX) mod f
816
* This is used in Berlekamp Trace algorithm for splitting polynomials
817
*/
818
static void compute_trace_bk_mod(struct bch_control *bch, int k,
819
const struct gf_poly *f, struct gf_poly *z,
820
struct gf_poly *out)
821
{
822
const int m = GF_M(bch);
823
int i, j;
824
825
/* z contains z^2j mod f */
826
z->deg = 1;
827
z->c[0] = 0;
828
z->c[1] = bch->a_pow_tab[k];
829
830
out->deg = 0;
831
memset(out, 0, GF_POLY_SZ(f->deg));
832
833
/* compute f log representation only once */
834
gf_poly_logrep(bch, f, bch->cache);
835
836
for (i = 0; i < m; i++) {
837
/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
838
for (j = z->deg; j >= 0; j--) {
839
out->c[j] ^= z->c[j];
840
z->c[2*j] = gf_sqr(bch, z->c[j]);
841
z->c[2*j+1] = 0;
842
}
843
if (z->deg > out->deg)
844
out->deg = z->deg;
845
846
if (i < m-1) {
847
z->deg *= 2;
848
/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
849
gf_poly_mod(bch, z, f, bch->cache);
850
}
851
}
852
while (!out->c[out->deg] && out->deg)
853
out->deg--;
854
855
dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
856
}
857
858
/*
859
* factor a polynomial using Berlekamp Trace algorithm (BTA)
860
*/
861
static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
862
struct gf_poly **g, struct gf_poly **h)
863
{
864
struct gf_poly *f2 = bch->poly_2t[0];
865
struct gf_poly *q = bch->poly_2t[1];
866
struct gf_poly *tk = bch->poly_2t[2];
867
struct gf_poly *z = bch->poly_2t[3];
868
struct gf_poly *gcd;
869
870
dbg("factoring %s...\n", gf_poly_str(f));
871
872
*g = f;
873
*h = NULL;
874
875
/* tk = Tr(a^k.X) mod f */
876
compute_trace_bk_mod(bch, k, f, z, tk);
877
878
if (tk->deg > 0) {
879
/* compute g = gcd(f, tk) (destructive operation) */
880
gf_poly_copy(f2, f);
881
gcd = gf_poly_gcd(bch, f2, tk);
882
if (gcd->deg < f->deg) {
883
/* compute h=f/gcd(f,tk); this will modify f and q */
884
gf_poly_div(bch, f, gcd, q);
885
/* store g and h in-place (clobbering f) */
886
*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
887
gf_poly_copy(*g, gcd);
888
gf_poly_copy(*h, q);
889
}
890
}
891
}
892
893
/*
894
* find roots of a polynomial, using BTZ algorithm; see the beginning of this
895
* file for details
896
*/
897
static int find_poly_roots(struct bch_control *bch, unsigned int k,
898
struct gf_poly *poly, unsigned int *roots)
899
{
900
int cnt;
901
struct gf_poly *f1, *f2;
902
903
switch (poly->deg) {
904
/* handle low degree polynomials with ad hoc techniques */
905
case 1:
906
cnt = find_poly_deg1_roots(bch, poly, roots);
907
break;
908
case 2:
909
cnt = find_poly_deg2_roots(bch, poly, roots);
910
break;
911
case 3:
912
cnt = find_poly_deg3_roots(bch, poly, roots);
913
break;
914
case 4:
915
cnt = find_poly_deg4_roots(bch, poly, roots);
916
break;
917
default:
918
/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
919
cnt = 0;
920
if (poly->deg && (k <= GF_M(bch))) {
921
factor_polynomial(bch, k, poly, &f1, &f2);
922
if (f1)
923
cnt += find_poly_roots(bch, k+1, f1, roots);
924
if (f2)
925
cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
926
}
927
break;
928
}
929
return cnt;
930
}
931
932
#if defined(USE_CHIEN_SEARCH)
933
/*
934
* exhaustive root search (Chien) implementation - not used, included only for
935
* reference/comparison tests
936
*/
937
static int chien_search(struct bch_control *bch, unsigned int len,
938
struct gf_poly *p, unsigned int *roots)
939
{
940
int m;
941
unsigned int i, j, syn, syn0, count = 0;
942
const unsigned int k = 8*len+bch->ecc_bits;
943
944
/* use a log-based representation of polynomial */
945
gf_poly_logrep(bch, p, bch->cache);
946
bch->cache[p->deg] = 0;
947
syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
948
949
for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
950
/* compute elp(a^i) */
951
for (j = 1, syn = syn0; j <= p->deg; j++) {
952
m = bch->cache[j];
953
if (m >= 0)
954
syn ^= a_pow(bch, m+j*i);
955
}
956
if (syn == 0) {
957
roots[count++] = GF_N(bch)-i;
958
if (count == p->deg)
959
break;
960
}
961
}
962
return (count == p->deg) ? count : 0;
963
}
964
#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
965
#endif /* USE_CHIEN_SEARCH */
966
967
/**
968
* bch_decode - decode received codeword and find bit error locations
969
* @bch: BCH control structure
970
* @data: received data, ignored if @calc_ecc is provided
971
* @len: data length in bytes, must always be provided
972
* @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
973
* @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
974
* @syn: hw computed syndrome data (if NULL, syndrome is calculated)
975
* @errloc: output array of error locations
976
*
977
* Returns:
978
* The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
979
* invalid parameters were provided
980
*
981
* Depending on the available hw BCH support and the need to compute @calc_ecc
982
* separately (using bch_encode()), this function should be called with one of
983
* the following parameter configurations -
984
*
985
* by providing @data and @recv_ecc only:
986
* bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
987
*
988
* by providing @recv_ecc and @calc_ecc:
989
* bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
990
*
991
* by providing ecc = recv_ecc XOR calc_ecc:
992
* bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
993
*
994
* by providing syndrome results @syn:
995
* bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
996
*
997
* Once bch_decode() has successfully returned with a positive value, error
998
* locations returned in array @errloc should be interpreted as follows -
999
*
1000
* if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
1001
* data correction)
1002
*
1003
* if (errloc[n] < 8*len), then n-th error is located in data and can be
1004
* corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
1005
*
1006
* Note that this function does not perform any data correction by itself, it
1007
* merely indicates error locations.
1008
*/
1009
int bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len,
1010
const uint8_t *recv_ecc, const uint8_t *calc_ecc,
1011
const unsigned int *syn, unsigned int *errloc)
1012
{
1013
const unsigned int ecc_words = BCH_ECC_WORDS(bch);
1014
unsigned int nbits;
1015
int i, err, nroots;
1016
uint32_t sum;
1017
1018
/* sanity check: make sure data length can be handled */
1019
if (8*len > (bch->n-bch->ecc_bits))
1020
return -EINVAL;
1021
1022
/* if caller does not provide syndromes, compute them */
1023
if (!syn) {
1024
if (!calc_ecc) {
1025
/* compute received data ecc into an internal buffer */
1026
if (!data || !recv_ecc)
1027
return -EINVAL;
1028
bch_encode(bch, data, len, NULL);
1029
} else {
1030
/* load provided calculated ecc */
1031
load_ecc8(bch, bch->ecc_buf, calc_ecc);
1032
}
1033
/* load received ecc or assume it was XORed in calc_ecc */
1034
if (recv_ecc) {
1035
load_ecc8(bch, bch->ecc_buf2, recv_ecc);
1036
/* XOR received and calculated ecc */
1037
for (i = 0, sum = 0; i < (int)ecc_words; i++) {
1038
bch->ecc_buf[i] ^= bch->ecc_buf2[i];
1039
sum |= bch->ecc_buf[i];
1040
}
1041
if (!sum)
1042
/* no error found */
1043
return 0;
1044
}
1045
compute_syndromes(bch, bch->ecc_buf, bch->syn);
1046
syn = bch->syn;
1047
}
1048
1049
err = compute_error_locator_polynomial(bch, syn);
1050
if (err > 0) {
1051
nroots = find_poly_roots(bch, 1, bch->elp, errloc);
1052
if (err != nroots)
1053
err = -1;
1054
}
1055
if (err > 0) {
1056
/* post-process raw error locations for easier correction */
1057
nbits = (len*8)+bch->ecc_bits;
1058
for (i = 0; i < err; i++) {
1059
if (errloc[i] >= nbits) {
1060
err = -1;
1061
break;
1062
}
1063
errloc[i] = nbits-1-errloc[i];
1064
if (!bch->swap_bits)
1065
errloc[i] = (errloc[i] & ~7) |
1066
(7-(errloc[i] & 7));
1067
}
1068
}
1069
return (err >= 0) ? err : -EBADMSG;
1070
}
1071
EXPORT_SYMBOL_GPL(bch_decode);
1072
1073
/*
1074
* generate Galois field lookup tables
1075
*/
1076
static int build_gf_tables(struct bch_control *bch, unsigned int poly)
1077
{
1078
unsigned int i, x = 1;
1079
const unsigned int k = 1 << deg(poly);
1080
1081
/* primitive polynomial must be of degree m */
1082
if (k != (1u << GF_M(bch)))
1083
return -1;
1084
1085
for (i = 0; i < GF_N(bch); i++) {
1086
bch->a_pow_tab[i] = x;
1087
bch->a_log_tab[x] = i;
1088
if (i && (x == 1))
1089
/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1090
return -1;
1091
x <<= 1;
1092
if (x & k)
1093
x ^= poly;
1094
}
1095
bch->a_pow_tab[GF_N(bch)] = 1;
1096
bch->a_log_tab[0] = 0;
1097
1098
return 0;
1099
}
1100
1101
/*
1102
* compute generator polynomial remainder tables for fast encoding
1103
*/
1104
static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
1105
{
1106
int i, j, b, d;
1107
uint32_t data, hi, lo, *tab;
1108
const int l = BCH_ECC_WORDS(bch);
1109
const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
1110
const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
1111
1112
memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
1113
1114
for (i = 0; i < 256; i++) {
1115
/* p(X)=i is a small polynomial of weight <= 8 */
1116
for (b = 0; b < 4; b++) {
1117
/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
1118
tab = bch->mod8_tab + (b*256+i)*l;
1119
data = i << (8*b);
1120
while (data) {
1121
d = deg(data);
1122
/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
1123
data ^= g[0] >> (31-d);
1124
for (j = 0; j < ecclen; j++) {
1125
hi = (d < 31) ? g[j] << (d+1) : 0;
1126
lo = (j+1 < plen) ?
1127
g[j+1] >> (31-d) : 0;
1128
tab[j] ^= hi|lo;
1129
}
1130
}
1131
}
1132
}
1133
}
1134
1135
/*
1136
* build a base for factoring degree 2 polynomials
1137
*/
1138
static int build_deg2_base(struct bch_control *bch)
1139
{
1140
const int m = GF_M(bch);
1141
int i, j, r;
1142
unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
1143
1144
/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
1145
for (i = 0; i < m; i++) {
1146
for (j = 0, sum = 0; j < m; j++)
1147
sum ^= a_pow(bch, i*(1 << j));
1148
1149
if (sum) {
1150
ak = bch->a_pow_tab[i];
1151
break;
1152
}
1153
}
1154
/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
1155
remaining = m;
1156
memset(xi, 0, sizeof(xi));
1157
1158
for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
1159
y = gf_sqr(bch, x)^x;
1160
for (i = 0; i < 2; i++) {
1161
r = a_log(bch, y);
1162
if (y && (r < m) && !xi[r]) {
1163
bch->xi_tab[r] = x;
1164
xi[r] = 1;
1165
remaining--;
1166
dbg("x%d = %x\n", r, x);
1167
break;
1168
}
1169
y ^= ak;
1170
}
1171
}
1172
/* should not happen but check anyway */
1173
return remaining ? -1 : 0;
1174
}
1175
1176
static void *bch_alloc(size_t size, int *err)
1177
{
1178
void *ptr;
1179
1180
ptr = kmalloc(size, GFP_KERNEL);
1181
if (ptr == NULL)
1182
*err = 1;
1183
return ptr;
1184
}
1185
1186
/*
1187
* compute generator polynomial for given (m,t) parameters.
1188
*/
1189
static uint32_t *compute_generator_polynomial(struct bch_control *bch)
1190
{
1191
const unsigned int m = GF_M(bch);
1192
const unsigned int t = GF_T(bch);
1193
int n, err = 0;
1194
unsigned int i, j, nbits, r, word, *roots;
1195
struct gf_poly *g;
1196
uint32_t *genpoly;
1197
1198
g = bch_alloc(GF_POLY_SZ(m*t), &err);
1199
roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
1200
genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
1201
1202
if (err) {
1203
kfree(genpoly);
1204
genpoly = NULL;
1205
goto finish;
1206
}
1207
1208
/* enumerate all roots of g(X) */
1209
memset(roots , 0, (bch->n+1)*sizeof(*roots));
1210
for (i = 0; i < t; i++) {
1211
for (j = 0, r = 2*i+1; j < m; j++) {
1212
roots[r] = 1;
1213
r = mod_s(bch, 2*r);
1214
}
1215
}
1216
/* build generator polynomial g(X) */
1217
g->deg = 0;
1218
g->c[0] = 1;
1219
for (i = 0; i < GF_N(bch); i++) {
1220
if (roots[i]) {
1221
/* multiply g(X) by (X+root) */
1222
r = bch->a_pow_tab[i];
1223
g->c[g->deg+1] = 1;
1224
for (j = g->deg; j > 0; j--)
1225
g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
1226
1227
g->c[0] = gf_mul(bch, g->c[0], r);
1228
g->deg++;
1229
}
1230
}
1231
/* store left-justified binary representation of g(X) */
1232
n = g->deg+1;
1233
i = 0;
1234
1235
while (n > 0) {
1236
nbits = (n > 32) ? 32 : n;
1237
for (j = 0, word = 0; j < nbits; j++) {
1238
if (g->c[n-1-j])
1239
word |= 1u << (31-j);
1240
}
1241
genpoly[i++] = word;
1242
n -= nbits;
1243
}
1244
bch->ecc_bits = g->deg;
1245
1246
finish:
1247
kfree(g);
1248
kfree(roots);
1249
1250
return genpoly;
1251
}
1252
1253
/**
1254
* bch_init - initialize a BCH encoder/decoder
1255
* @m: Galois field order, should be in the range 5-15
1256
* @t: maximum error correction capability, in bits
1257
* @prim_poly: user-provided primitive polynomial (or 0 to use default)
1258
* @swap_bits: swap bits within data and syndrome bytes
1259
*
1260
* Returns:
1261
* a newly allocated BCH control structure if successful, NULL otherwise
1262
*
1263
* This initialization can take some time, as lookup tables are built for fast
1264
* encoding/decoding; make sure not to call this function from a time critical
1265
* path. Usually, bch_init() should be called on module/driver init and
1266
* bch_free() should be called to release memory on exit.
1267
*
1268
* You may provide your own primitive polynomial of degree @m in argument
1269
* @prim_poly, or let bch_init() use its default polynomial.
1270
*
1271
* Once bch_init() has successfully returned a pointer to a newly allocated
1272
* BCH control structure, ecc length in bytes is given by member @ecc_bytes of
1273
* the structure.
1274
*/
1275
struct bch_control *bch_init(int m, int t, unsigned int prim_poly,
1276
bool swap_bits)
1277
{
1278
int err = 0;
1279
unsigned int i, words;
1280
uint32_t *genpoly;
1281
struct bch_control *bch = NULL;
1282
1283
const int min_m = 5;
1284
1285
/* default primitive polynomials */
1286
static const unsigned int prim_poly_tab[] = {
1287
0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
1288
0x402b, 0x8003,
1289
};
1290
1291
#if defined(CONFIG_BCH_CONST_PARAMS)
1292
if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
1293
printk(KERN_ERR "bch encoder/decoder was configured to support "
1294
"parameters m=%d, t=%d only!\n",
1295
CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
1296
goto fail;
1297
}
1298
#endif
1299
if ((m < min_m) || (m > BCH_MAX_M))
1300
/*
1301
* values of m greater than 15 are not currently supported;
1302
* supporting m > 15 would require changing table base type
1303
* (uint16_t) and a small patch in matrix transposition
1304
*/
1305
goto fail;
1306
1307
if (t > BCH_MAX_T)
1308
/*
1309
* we can support larger than 64 bits if necessary, at the
1310
* cost of higher stack usage.
1311
*/
1312
goto fail;
1313
1314
/* sanity checks */
1315
if ((t < 1) || (m*t >= ((1 << m)-1)))
1316
/* invalid t value */
1317
goto fail;
1318
1319
/* select a primitive polynomial for generating GF(2^m) */
1320
if (prim_poly == 0)
1321
prim_poly = prim_poly_tab[m-min_m];
1322
1323
bch = kzalloc(sizeof(*bch), GFP_KERNEL);
1324
if (bch == NULL)
1325
goto fail;
1326
1327
bch->m = m;
1328
bch->t = t;
1329
bch->n = (1 << m)-1;
1330
words = DIV_ROUND_UP(m*t, 32);
1331
bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
1332
bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
1333
bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
1334
bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
1335
bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
1336
bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
1337
bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
1338
bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
1339
bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
1340
bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
1341
bch->swap_bits = swap_bits;
1342
1343
for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1344
bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
1345
1346
if (err)
1347
goto fail;
1348
1349
err = build_gf_tables(bch, prim_poly);
1350
if (err)
1351
goto fail;
1352
1353
/* use generator polynomial for computing encoding tables */
1354
genpoly = compute_generator_polynomial(bch);
1355
if (genpoly == NULL)
1356
goto fail;
1357
1358
build_mod8_tables(bch, genpoly);
1359
kfree(genpoly);
1360
1361
err = build_deg2_base(bch);
1362
if (err)
1363
goto fail;
1364
1365
return bch;
1366
1367
fail:
1368
bch_free(bch);
1369
return NULL;
1370
}
1371
EXPORT_SYMBOL_GPL(bch_init);
1372
1373
/**
1374
* bch_free - free the BCH control structure
1375
* @bch: BCH control structure to release
1376
*/
1377
void bch_free(struct bch_control *bch)
1378
{
1379
unsigned int i;
1380
1381
if (bch) {
1382
kfree(bch->a_pow_tab);
1383
kfree(bch->a_log_tab);
1384
kfree(bch->mod8_tab);
1385
kfree(bch->ecc_buf);
1386
kfree(bch->ecc_buf2);
1387
kfree(bch->xi_tab);
1388
kfree(bch->syn);
1389
kfree(bch->cache);
1390
kfree(bch->elp);
1391
1392
for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
1393
kfree(bch->poly_2t[i]);
1394
1395
kfree(bch);
1396
}
1397
}
1398
EXPORT_SYMBOL_GPL(bch_free);
1399
1400
MODULE_LICENSE("GPL");
1401
MODULE_AUTHOR("Ivan Djelic <[email protected]>");
1402
MODULE_DESCRIPTION("Binary BCH encoder/decoder");
1403
1404