Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crc/arm/crc-t10dif-core.S
26282 views
1
//
2
// Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
3
//
4
// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
5
// Copyright (C) 2019 Google LLC <ebiggers@google.com>
6
//
7
// This program is free software; you can redistribute it and/or modify
8
// it under the terms of the GNU General Public License version 2 as
9
// published by the Free Software Foundation.
10
//
11
12
// Derived from the x86 version:
13
//
14
// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
15
//
16
// Copyright (c) 2013, Intel Corporation
17
//
18
// Authors:
19
// Erdinc Ozturk <erdinc.ozturk@intel.com>
20
// Vinodh Gopal <vinodh.gopal@intel.com>
21
// James Guilford <james.guilford@intel.com>
22
// Tim Chen <tim.c.chen@linux.intel.com>
23
//
24
// This software is available to you under a choice of one of two
25
// licenses. You may choose to be licensed under the terms of the GNU
26
// General Public License (GPL) Version 2, available from the file
27
// COPYING in the main directory of this source tree, or the
28
// OpenIB.org BSD license below:
29
//
30
// Redistribution and use in source and binary forms, with or without
31
// modification, are permitted provided that the following conditions are
32
// met:
33
//
34
// * Redistributions of source code must retain the above copyright
35
// notice, this list of conditions and the following disclaimer.
36
//
37
// * Redistributions in binary form must reproduce the above copyright
38
// notice, this list of conditions and the following disclaimer in the
39
// documentation and/or other materials provided with the
40
// distribution.
41
//
42
// * Neither the name of the Intel Corporation nor the names of its
43
// contributors may be used to endorse or promote products derived from
44
// this software without specific prior written permission.
45
//
46
//
47
// THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
48
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
50
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
51
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
52
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
54
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
55
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
56
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
57
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58
//
59
// Reference paper titled "Fast CRC Computation for Generic
60
// Polynomials Using PCLMULQDQ Instruction"
61
// URL: http://www.intel.com/content/dam/www/public/us/en/documents
62
// /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
63
//
64
65
#include <linux/linkage.h>
66
#include <asm/assembler.h>
67
68
#ifdef CONFIG_CPU_ENDIAN_BE8
69
#define CPU_LE(code...)
70
#else
71
#define CPU_LE(code...) code
72
#endif
73
74
.text
75
.arch armv8-a
76
.fpu crypto-neon-fp-armv8
77
78
init_crc .req r0
79
buf .req r1
80
len .req r2
81
82
fold_consts_ptr .req ip
83
84
q0l .req d0
85
q0h .req d1
86
q1l .req d2
87
q1h .req d3
88
q2l .req d4
89
q2h .req d5
90
q3l .req d6
91
q3h .req d7
92
q4l .req d8
93
q4h .req d9
94
q5l .req d10
95
q5h .req d11
96
q6l .req d12
97
q6h .req d13
98
q7l .req d14
99
q7h .req d15
100
q8l .req d16
101
q8h .req d17
102
q9l .req d18
103
q9h .req d19
104
q10l .req d20
105
q10h .req d21
106
q11l .req d22
107
q11h .req d23
108
q12l .req d24
109
q12h .req d25
110
111
FOLD_CONSTS .req q10
112
FOLD_CONST_L .req q10l
113
FOLD_CONST_H .req q10h
114
115
/*
116
* Pairwise long polynomial multiplication of two 16-bit values
117
*
118
* { w0, w1 }, { y0, y1 }
119
*
120
* by two 64-bit values
121
*
122
* { x0, x1, x2, x3, x4, x5, x6, x7 }, { z0, z1, z2, z3, z4, z5, z6, z7 }
123
*
124
* where each vector element is a byte, ordered from least to most
125
* significant. The resulting 80-bit vectors are XOR'ed together.
126
*
127
* This can be implemented using 8x8 long polynomial multiplication, by
128
* reorganizing the input so that each pairwise 8x8 multiplication
129
* produces one of the terms from the decomposition below, and
130
* combining the results of each rank and shifting them into place.
131
*
132
* Rank
133
* 0 w0*x0 ^ | y0*z0 ^
134
* 1 (w0*x1 ^ w1*x0) << 8 ^ | (y0*z1 ^ y1*z0) << 8 ^
135
* 2 (w0*x2 ^ w1*x1) << 16 ^ | (y0*z2 ^ y1*z1) << 16 ^
136
* 3 (w0*x3 ^ w1*x2) << 24 ^ | (y0*z3 ^ y1*z2) << 24 ^
137
* 4 (w0*x4 ^ w1*x3) << 32 ^ | (y0*z4 ^ y1*z3) << 32 ^
138
* 5 (w0*x5 ^ w1*x4) << 40 ^ | (y0*z5 ^ y1*z4) << 40 ^
139
* 6 (w0*x6 ^ w1*x5) << 48 ^ | (y0*z6 ^ y1*z5) << 48 ^
140
* 7 (w0*x7 ^ w1*x6) << 56 ^ | (y0*z7 ^ y1*z6) << 56 ^
141
* 8 w1*x7 << 64 | y1*z7 << 64
142
*
143
* The inputs can be reorganized into
144
*
145
* { w0, w0, w0, w0, y0, y0, y0, y0 }, { w1, w1, w1, w1, y1, y1, y1, y1 }
146
* { x0, x2, x4, x6, z0, z2, z4, z6 }, { x1, x3, x5, x7, z1, z3, z5, z7 }
147
*
148
* and after performing 8x8->16 bit long polynomial multiplication of
149
* each of the halves of the first vector with those of the second one,
150
* we obtain the following four vectors of 16-bit elements:
151
*
152
* a := { w0*x0, w0*x2, w0*x4, w0*x6 }, { y0*z0, y0*z2, y0*z4, y0*z6 }
153
* b := { w0*x1, w0*x3, w0*x5, w0*x7 }, { y0*z1, y0*z3, y0*z5, y0*z7 }
154
* c := { w1*x0, w1*x2, w1*x4, w1*x6 }, { y1*z0, y1*z2, y1*z4, y1*z6 }
155
* d := { w1*x1, w1*x3, w1*x5, w1*x7 }, { y1*z1, y1*z3, y1*z5, y1*z7 }
156
*
157
* Results b and c can be XORed together, as the vector elements have
158
* matching ranks. Then, the final XOR can be pulled forward, and
159
* applied between the halves of each of the remaining three vectors,
160
* which are then shifted into place, and XORed together to produce the
161
* final 80-bit result.
162
*/
163
.macro pmull16x64_p8, v16, v64
164
vext.8 q11, \v64, \v64, #1
165
vld1.64 {q12}, [r4, :128]
166
vuzp.8 q11, \v64
167
vtbl.8 d24, {\v16\()_L-\v16\()_H}, d24
168
vtbl.8 d25, {\v16\()_L-\v16\()_H}, d25
169
bl __pmull16x64_p8
170
veor \v64, q12, q14
171
.endm
172
173
__pmull16x64_p8:
174
vmull.p8 q13, d23, d24
175
vmull.p8 q14, d23, d25
176
vmull.p8 q15, d22, d24
177
vmull.p8 q12, d22, d25
178
179
veor q14, q14, q15
180
veor d24, d24, d25
181
veor d26, d26, d27
182
veor d28, d28, d29
183
vmov.i32 d25, #0
184
vmov.i32 d29, #0
185
vext.8 q12, q12, q12, #14
186
vext.8 q14, q14, q14, #15
187
veor d24, d24, d26
188
bx lr
189
ENDPROC(__pmull16x64_p8)
190
191
.macro pmull16x64_p64, v16, v64
192
vmull.p64 q11, \v64\()l, \v16\()_L
193
vmull.p64 \v64, \v64\()h, \v16\()_H
194
veor \v64, \v64, q11
195
.endm
196
197
// Fold reg1, reg2 into the next 32 data bytes, storing the result back
198
// into reg1, reg2.
199
.macro fold_32_bytes, reg1, reg2, p
200
vld1.64 {q8-q9}, [buf]!
201
202
pmull16x64_\p FOLD_CONST, \reg1
203
pmull16x64_\p FOLD_CONST, \reg2
204
205
CPU_LE( vrev64.8 q8, q8 )
206
CPU_LE( vrev64.8 q9, q9 )
207
vswp q8l, q8h
208
vswp q9l, q9h
209
210
veor.8 \reg1, \reg1, q8
211
veor.8 \reg2, \reg2, q9
212
.endm
213
214
// Fold src_reg into dst_reg, optionally loading the next fold constants
215
.macro fold_16_bytes, src_reg, dst_reg, p, load_next_consts
216
pmull16x64_\p FOLD_CONST, \src_reg
217
.ifnb \load_next_consts
218
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
219
.endif
220
veor.8 \dst_reg, \dst_reg, \src_reg
221
.endm
222
223
.macro crct10dif, p
224
// For sizes less than 256 bytes, we can't fold 128 bytes at a time.
225
cmp len, #256
226
blt .Lless_than_256_bytes\@
227
228
mov_l fold_consts_ptr, .Lfold_across_128_bytes_consts
229
230
// Load the first 128 data bytes. Byte swapping is necessary to make
231
// the bit order match the polynomial coefficient order.
232
vld1.64 {q0-q1}, [buf]!
233
vld1.64 {q2-q3}, [buf]!
234
vld1.64 {q4-q5}, [buf]!
235
vld1.64 {q6-q7}, [buf]!
236
CPU_LE( vrev64.8 q0, q0 )
237
CPU_LE( vrev64.8 q1, q1 )
238
CPU_LE( vrev64.8 q2, q2 )
239
CPU_LE( vrev64.8 q3, q3 )
240
CPU_LE( vrev64.8 q4, q4 )
241
CPU_LE( vrev64.8 q5, q5 )
242
CPU_LE( vrev64.8 q6, q6 )
243
CPU_LE( vrev64.8 q7, q7 )
244
vswp q0l, q0h
245
vswp q1l, q1h
246
vswp q2l, q2h
247
vswp q3l, q3h
248
vswp q4l, q4h
249
vswp q5l, q5h
250
vswp q6l, q6h
251
vswp q7l, q7h
252
253
// XOR the first 16 data *bits* with the initial CRC value.
254
vmov.i8 q8h, #0
255
vmov.u16 q8h[3], init_crc
256
veor q0h, q0h, q8h
257
258
// Load the constants for folding across 128 bytes.
259
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
260
261
// Subtract 128 for the 128 data bytes just consumed. Subtract another
262
// 128 to simplify the termination condition of the following loop.
263
sub len, len, #256
264
265
// While >= 128 data bytes remain (not counting q0-q7), fold the 128
266
// bytes q0-q7 into them, storing the result back into q0-q7.
267
.Lfold_128_bytes_loop\@:
268
fold_32_bytes q0, q1, \p
269
fold_32_bytes q2, q3, \p
270
fold_32_bytes q4, q5, \p
271
fold_32_bytes q6, q7, \p
272
subs len, len, #128
273
bge .Lfold_128_bytes_loop\@
274
275
// Now fold the 112 bytes in q0-q6 into the 16 bytes in q7.
276
277
// Fold across 64 bytes.
278
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
279
fold_16_bytes q0, q4, \p
280
fold_16_bytes q1, q5, \p
281
fold_16_bytes q2, q6, \p
282
fold_16_bytes q3, q7, \p, 1
283
// Fold across 32 bytes.
284
fold_16_bytes q4, q6, \p
285
fold_16_bytes q5, q7, \p, 1
286
// Fold across 16 bytes.
287
fold_16_bytes q6, q7, \p
288
289
// Add 128 to get the correct number of data bytes remaining in 0...127
290
// (not counting q7), following the previous extra subtraction by 128.
291
// Then subtract 16 to simplify the termination condition of the
292
// following loop.
293
adds len, len, #(128-16)
294
295
// While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7
296
// into them, storing the result back into q7.
297
blt .Lfold_16_bytes_loop_done\@
298
.Lfold_16_bytes_loop\@:
299
pmull16x64_\p FOLD_CONST, q7
300
vld1.64 {q0}, [buf]!
301
CPU_LE( vrev64.8 q0, q0 )
302
vswp q0l, q0h
303
veor.8 q7, q7, q0
304
subs len, len, #16
305
bge .Lfold_16_bytes_loop\@
306
307
.Lfold_16_bytes_loop_done\@:
308
// Add 16 to get the correct number of data bytes remaining in 0...15
309
// (not counting q7), following the previous extra subtraction by 16.
310
adds len, len, #16
311
beq .Lreduce_final_16_bytes\@
312
313
.Lhandle_partial_segment\@:
314
// Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
315
// 16 bytes are in q7 and the rest are the remaining data in 'buf'. To
316
// do this without needing a fold constant for each possible 'len',
317
// redivide the bytes into a first chunk of 'len' bytes and a second
318
// chunk of 16 bytes, then fold the first chunk into the second.
319
320
// q0 = last 16 original data bytes
321
add buf, buf, len
322
sub buf, buf, #16
323
vld1.64 {q0}, [buf]
324
CPU_LE( vrev64.8 q0, q0 )
325
vswp q0l, q0h
326
327
// q1 = high order part of second chunk: q7 left-shifted by 'len' bytes.
328
mov_l r1, .Lbyteshift_table + 16
329
sub r1, r1, len
330
vld1.8 {q2}, [r1]
331
vtbl.8 q1l, {q7l-q7h}, q2l
332
vtbl.8 q1h, {q7l-q7h}, q2h
333
334
// q3 = first chunk: q7 right-shifted by '16-len' bytes.
335
vmov.i8 q3, #0x80
336
veor.8 q2, q2, q3
337
vtbl.8 q3l, {q7l-q7h}, q2l
338
vtbl.8 q3h, {q7l-q7h}, q2h
339
340
// Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
341
vshr.s8 q2, q2, #7
342
343
// q2 = second chunk: 'len' bytes from q0 (low-order bytes),
344
// then '16-len' bytes from q1 (high-order bytes).
345
vbsl.8 q2, q1, q0
346
347
// Fold the first chunk into the second chunk, storing the result in q7.
348
pmull16x64_\p FOLD_CONST, q3
349
veor.8 q7, q3, q2
350
b .Lreduce_final_16_bytes\@
351
352
.Lless_than_256_bytes\@:
353
// Checksumming a buffer of length 16...255 bytes
354
355
mov_l fold_consts_ptr, .Lfold_across_16_bytes_consts
356
357
// Load the first 16 data bytes.
358
vld1.64 {q7}, [buf]!
359
CPU_LE( vrev64.8 q7, q7 )
360
vswp q7l, q7h
361
362
// XOR the first 16 data *bits* with the initial CRC value.
363
vmov.i8 q0h, #0
364
vmov.u16 q0h[3], init_crc
365
veor.8 q7h, q7h, q0h
366
367
// Load the fold-across-16-bytes constants.
368
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
369
370
cmp len, #16
371
beq .Lreduce_final_16_bytes\@ // len == 16
372
subs len, len, #32
373
addlt len, len, #16
374
blt .Lhandle_partial_segment\@ // 17 <= len <= 31
375
b .Lfold_16_bytes_loop\@ // 32 <= len <= 255
376
377
.Lreduce_final_16_bytes\@:
378
.endm
379
380
//
381
// u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
382
//
383
// Assumes len >= 16.
384
//
385
ENTRY(crc_t10dif_pmull64)
386
crct10dif p64
387
388
// Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC.
389
390
// Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
391
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]!
392
393
// Fold the high 64 bits into the low 64 bits, while also multiplying by
394
// x^64. This produces a 128-bit value congruent to x^64 * M(x) and
395
// whose low 48 bits are 0.
396
vmull.p64 q0, q7h, FOLD_CONST_H // high bits * x^48 * (x^80 mod G(x))
397
veor.8 q0h, q0h, q7l // + low bits * x^64
398
399
// Fold the high 32 bits into the low 96 bits. This produces a 96-bit
400
// value congruent to x^64 * M(x) and whose low 48 bits are 0.
401
vmov.i8 q1, #0
402
vmov s4, s3 // extract high 32 bits
403
vmov s3, s5 // zero high 32 bits
404
vmull.p64 q1, q1l, FOLD_CONST_L // high 32 bits * x^48 * (x^48 mod G(x))
405
veor.8 q0, q0, q1 // + low bits
406
407
// Load G(x) and floor(x^48 / G(x)).
408
vld1.64 {FOLD_CONSTS}, [fold_consts_ptr, :128]
409
410
// Use Barrett reduction to compute the final CRC value.
411
vmull.p64 q1, q0h, FOLD_CONST_H // high 32 bits * floor(x^48 / G(x))
412
vshr.u64 q1l, q1l, #32 // /= x^32
413
vmull.p64 q1, q1l, FOLD_CONST_L // *= G(x)
414
vshr.u64 q0l, q0l, #48
415
veor.8 q0l, q0l, q1l // + low 16 nonzero bits
416
// Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0.
417
418
vmov.u16 r0, q0l[0]
419
bx lr
420
ENDPROC(crc_t10dif_pmull64)
421
422
ENTRY(crc_t10dif_pmull8)
423
push {r4, lr}
424
mov_l r4, .L16x64perm
425
426
crct10dif p8
427
428
CPU_LE( vrev64.8 q7, q7 )
429
vswp q7l, q7h
430
vst1.64 {q7}, [r3, :128]
431
pop {r4, pc}
432
ENDPROC(crc_t10dif_pmull8)
433
434
.section ".rodata", "a"
435
.align 4
436
437
// Fold constants precomputed from the polynomial 0x18bb7
438
// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
439
.Lfold_across_128_bytes_consts:
440
.quad 0x0000000000006123 // x^(8*128) mod G(x)
441
.quad 0x0000000000002295 // x^(8*128+64) mod G(x)
442
// .Lfold_across_64_bytes_consts:
443
.quad 0x0000000000001069 // x^(4*128) mod G(x)
444
.quad 0x000000000000dd31 // x^(4*128+64) mod G(x)
445
// .Lfold_across_32_bytes_consts:
446
.quad 0x000000000000857d // x^(2*128) mod G(x)
447
.quad 0x0000000000007acc // x^(2*128+64) mod G(x)
448
.Lfold_across_16_bytes_consts:
449
.quad 0x000000000000a010 // x^(1*128) mod G(x)
450
.quad 0x0000000000001faa // x^(1*128+64) mod G(x)
451
// .Lfinal_fold_consts:
452
.quad 0x1368000000000000 // x^48 * (x^48 mod G(x))
453
.quad 0x2d56000000000000 // x^48 * (x^80 mod G(x))
454
// .Lbarrett_reduction_consts:
455
.quad 0x0000000000018bb7 // G(x)
456
.quad 0x00000001f65a57f8 // floor(x^48 / G(x))
457
458
// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
459
// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
460
// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
461
.Lbyteshift_table:
462
.byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
463
.byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
464
.byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
465
.byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0
466
467
.L16x64perm:
468
.quad 0x808080800000000, 0x909090901010101
469
470