Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crc/arm64/crc-t10dif-core.S
26285 views
1
//
2
// Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions
3
//
4
// Copyright (C) 2016 Linaro Ltd
5
// Copyright (C) 2019-2024 Google LLC
6
//
7
// Authors: Ard Biesheuvel <ardb@google.com>
8
// Eric Biggers <ebiggers@google.com>
9
//
10
// This program is free software; you can redistribute it and/or modify
11
// it under the terms of the GNU General Public License version 2 as
12
// published by the Free Software Foundation.
13
//
14
15
// Derived from the x86 version:
16
//
17
// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
18
//
19
// Copyright (c) 2013, Intel Corporation
20
//
21
// Authors:
22
// Erdinc Ozturk <erdinc.ozturk@intel.com>
23
// Vinodh Gopal <vinodh.gopal@intel.com>
24
// James Guilford <james.guilford@intel.com>
25
// Tim Chen <tim.c.chen@linux.intel.com>
26
//
27
// This software is available to you under a choice of one of two
28
// licenses. You may choose to be licensed under the terms of the GNU
29
// General Public License (GPL) Version 2, available from the file
30
// COPYING in the main directory of this source tree, or the
31
// OpenIB.org BSD license below:
32
//
33
// Redistribution and use in source and binary forms, with or without
34
// modification, are permitted provided that the following conditions are
35
// met:
36
//
37
// * Redistributions of source code must retain the above copyright
38
// notice, this list of conditions and the following disclaimer.
39
//
40
// * Redistributions in binary form must reproduce the above copyright
41
// notice, this list of conditions and the following disclaimer in the
42
// documentation and/or other materials provided with the
43
// distribution.
44
//
45
// * Neither the name of the Intel Corporation nor the names of its
46
// contributors may be used to endorse or promote products derived from
47
// this software without specific prior written permission.
48
//
49
//
50
// THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
51
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
54
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
55
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
56
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
57
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
58
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
59
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
60
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61
//
62
// Reference paper titled "Fast CRC Computation for Generic
63
// Polynomials Using PCLMULQDQ Instruction"
64
// URL: http://www.intel.com/content/dam/www/public/us/en/documents
65
// /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
66
//
67
68
#include <linux/linkage.h>
69
#include <asm/assembler.h>
70
71
.text
72
.arch armv8-a+crypto
73
74
init_crc .req w0
75
buf .req x1
76
len .req x2
77
fold_consts_ptr .req x5
78
79
fold_consts .req v10
80
81
t3 .req v17
82
t4 .req v18
83
t5 .req v19
84
t6 .req v20
85
t7 .req v21
86
t8 .req v22
87
88
perm .req v27
89
90
.macro pmull16x64_p64, a16, b64, c64
91
pmull2 \c64\().1q, \a16\().2d, \b64\().2d
92
pmull \b64\().1q, \a16\().1d, \b64\().1d
93
.endm
94
95
/*
96
* Pairwise long polynomial multiplication of two 16-bit values
97
*
98
* { w0, w1 }, { y0, y1 }
99
*
100
* by two 64-bit values
101
*
102
* { x0, x1, x2, x3, x4, x5, x6, x7 }, { z0, z1, z2, z3, z4, z5, z6, z7 }
103
*
104
* where each vector element is a byte, ordered from least to most
105
* significant.
106
*
107
* This can be implemented using 8x8 long polynomial multiplication, by
108
* reorganizing the input so that each pairwise 8x8 multiplication
109
* produces one of the terms from the decomposition below, and
110
* combining the results of each rank and shifting them into place.
111
*
112
* Rank
113
* 0 w0*x0 ^ | y0*z0 ^
114
* 1 (w0*x1 ^ w1*x0) << 8 ^ | (y0*z1 ^ y1*z0) << 8 ^
115
* 2 (w0*x2 ^ w1*x1) << 16 ^ | (y0*z2 ^ y1*z1) << 16 ^
116
* 3 (w0*x3 ^ w1*x2) << 24 ^ | (y0*z3 ^ y1*z2) << 24 ^
117
* 4 (w0*x4 ^ w1*x3) << 32 ^ | (y0*z4 ^ y1*z3) << 32 ^
118
* 5 (w0*x5 ^ w1*x4) << 40 ^ | (y0*z5 ^ y1*z4) << 40 ^
119
* 6 (w0*x6 ^ w1*x5) << 48 ^ | (y0*z6 ^ y1*z5) << 48 ^
120
* 7 (w0*x7 ^ w1*x6) << 56 ^ | (y0*z7 ^ y1*z6) << 56 ^
121
* 8 w1*x7 << 64 | y1*z7 << 64
122
*
123
* The inputs can be reorganized into
124
*
125
* { w0, w0, w0, w0, y0, y0, y0, y0 }, { w1, w1, w1, w1, y1, y1, y1, y1 }
126
* { x0, x2, x4, x6, z0, z2, z4, z6 }, { x1, x3, x5, x7, z1, z3, z5, z7 }
127
*
128
* and after performing 8x8->16 bit long polynomial multiplication of
129
* each of the halves of the first vector with those of the second one,
130
* we obtain the following four vectors of 16-bit elements:
131
*
132
* a := { w0*x0, w0*x2, w0*x4, w0*x6 }, { y0*z0, y0*z2, y0*z4, y0*z6 }
133
* b := { w0*x1, w0*x3, w0*x5, w0*x7 }, { y0*z1, y0*z3, y0*z5, y0*z7 }
134
* c := { w1*x0, w1*x2, w1*x4, w1*x6 }, { y1*z0, y1*z2, y1*z4, y1*z6 }
135
* d := { w1*x1, w1*x3, w1*x5, w1*x7 }, { y1*z1, y1*z3, y1*z5, y1*z7 }
136
*
137
* Results b and c can be XORed together, as the vector elements have
138
* matching ranks. Then, the final XOR (*) can be pulled forward, and
139
* applied between the halves of each of the remaining three vectors,
140
* which are then shifted into place, and combined to produce two
141
* 80-bit results.
142
*
143
* (*) NOTE: the 16x64 bit polynomial multiply below is not equivalent
144
* to the 64x64 bit one above, but XOR'ing the outputs together will
145
* produce the expected result, and this is sufficient in the context of
146
* this algorithm.
147
*/
148
.macro pmull16x64_p8, a16, b64, c64
149
ext t7.16b, \b64\().16b, \b64\().16b, #1
150
tbl t5.16b, {\a16\().16b}, perm.16b
151
uzp1 t7.16b, \b64\().16b, t7.16b
152
bl __pmull_p8_16x64
153
ext \b64\().16b, t4.16b, t4.16b, #15
154
eor \c64\().16b, t8.16b, t5.16b
155
.endm
156
157
SYM_FUNC_START_LOCAL(__pmull_p8_16x64)
158
ext t6.16b, t5.16b, t5.16b, #8
159
160
pmull t3.8h, t7.8b, t5.8b
161
pmull t4.8h, t7.8b, t6.8b
162
pmull2 t5.8h, t7.16b, t5.16b
163
pmull2 t6.8h, t7.16b, t6.16b
164
165
ext t8.16b, t3.16b, t3.16b, #8
166
eor t4.16b, t4.16b, t6.16b
167
ext t7.16b, t5.16b, t5.16b, #8
168
ext t6.16b, t4.16b, t4.16b, #8
169
eor t8.8b, t8.8b, t3.8b
170
eor t5.8b, t5.8b, t7.8b
171
eor t4.8b, t4.8b, t6.8b
172
ext t5.16b, t5.16b, t5.16b, #14
173
ret
174
SYM_FUNC_END(__pmull_p8_16x64)
175
176
177
// Fold reg1, reg2 into the next 32 data bytes, storing the result back
178
// into reg1, reg2.
179
.macro fold_32_bytes, p, reg1, reg2
180
ldp q11, q12, [buf], #0x20
181
182
pmull16x64_\p fold_consts, \reg1, v8
183
184
CPU_LE( rev64 v11.16b, v11.16b )
185
CPU_LE( rev64 v12.16b, v12.16b )
186
187
pmull16x64_\p fold_consts, \reg2, v9
188
189
CPU_LE( ext v11.16b, v11.16b, v11.16b, #8 )
190
CPU_LE( ext v12.16b, v12.16b, v12.16b, #8 )
191
192
eor \reg1\().16b, \reg1\().16b, v8.16b
193
eor \reg2\().16b, \reg2\().16b, v9.16b
194
eor \reg1\().16b, \reg1\().16b, v11.16b
195
eor \reg2\().16b, \reg2\().16b, v12.16b
196
.endm
197
198
// Fold src_reg into dst_reg, optionally loading the next fold constants
199
.macro fold_16_bytes, p, src_reg, dst_reg, load_next_consts
200
pmull16x64_\p fold_consts, \src_reg, v8
201
.ifnb \load_next_consts
202
ld1 {fold_consts.2d}, [fold_consts_ptr], #16
203
.endif
204
eor \dst_reg\().16b, \dst_reg\().16b, v8.16b
205
eor \dst_reg\().16b, \dst_reg\().16b, \src_reg\().16b
206
.endm
207
208
.macro crc_t10dif_pmull, p
209
210
// For sizes less than 256 bytes, we can't fold 128 bytes at a time.
211
cmp len, #256
212
b.lt .Lless_than_256_bytes_\@
213
214
adr_l fold_consts_ptr, .Lfold_across_128_bytes_consts
215
216
// Load the first 128 data bytes. Byte swapping is necessary to make
217
// the bit order match the polynomial coefficient order.
218
ldp q0, q1, [buf]
219
ldp q2, q3, [buf, #0x20]
220
ldp q4, q5, [buf, #0x40]
221
ldp q6, q7, [buf, #0x60]
222
add buf, buf, #0x80
223
CPU_LE( rev64 v0.16b, v0.16b )
224
CPU_LE( rev64 v1.16b, v1.16b )
225
CPU_LE( rev64 v2.16b, v2.16b )
226
CPU_LE( rev64 v3.16b, v3.16b )
227
CPU_LE( rev64 v4.16b, v4.16b )
228
CPU_LE( rev64 v5.16b, v5.16b )
229
CPU_LE( rev64 v6.16b, v6.16b )
230
CPU_LE( rev64 v7.16b, v7.16b )
231
CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 )
232
CPU_LE( ext v1.16b, v1.16b, v1.16b, #8 )
233
CPU_LE( ext v2.16b, v2.16b, v2.16b, #8 )
234
CPU_LE( ext v3.16b, v3.16b, v3.16b, #8 )
235
CPU_LE( ext v4.16b, v4.16b, v4.16b, #8 )
236
CPU_LE( ext v5.16b, v5.16b, v5.16b, #8 )
237
CPU_LE( ext v6.16b, v6.16b, v6.16b, #8 )
238
CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
239
240
// XOR the first 16 data *bits* with the initial CRC value.
241
movi v8.16b, #0
242
mov v8.h[7], init_crc
243
eor v0.16b, v0.16b, v8.16b
244
245
// Load the constants for folding across 128 bytes.
246
ld1 {fold_consts.2d}, [fold_consts_ptr]
247
248
// Subtract 128 for the 128 data bytes just consumed. Subtract another
249
// 128 to simplify the termination condition of the following loop.
250
sub len, len, #256
251
252
// While >= 128 data bytes remain (not counting v0-v7), fold the 128
253
// bytes v0-v7 into them, storing the result back into v0-v7.
254
.Lfold_128_bytes_loop_\@:
255
fold_32_bytes \p, v0, v1
256
fold_32_bytes \p, v2, v3
257
fold_32_bytes \p, v4, v5
258
fold_32_bytes \p, v6, v7
259
260
subs len, len, #128
261
b.ge .Lfold_128_bytes_loop_\@
262
263
// Now fold the 112 bytes in v0-v6 into the 16 bytes in v7.
264
265
// Fold across 64 bytes.
266
add fold_consts_ptr, fold_consts_ptr, #16
267
ld1 {fold_consts.2d}, [fold_consts_ptr], #16
268
fold_16_bytes \p, v0, v4
269
fold_16_bytes \p, v1, v5
270
fold_16_bytes \p, v2, v6
271
fold_16_bytes \p, v3, v7, 1
272
// Fold across 32 bytes.
273
fold_16_bytes \p, v4, v6
274
fold_16_bytes \p, v5, v7, 1
275
// Fold across 16 bytes.
276
fold_16_bytes \p, v6, v7
277
278
// Add 128 to get the correct number of data bytes remaining in 0...127
279
// (not counting v7), following the previous extra subtraction by 128.
280
// Then subtract 16 to simplify the termination condition of the
281
// following loop.
282
adds len, len, #(128-16)
283
284
// While >= 16 data bytes remain (not counting v7), fold the 16 bytes v7
285
// into them, storing the result back into v7.
286
b.lt .Lfold_16_bytes_loop_done_\@
287
.Lfold_16_bytes_loop_\@:
288
pmull16x64_\p fold_consts, v7, v8
289
eor v7.16b, v7.16b, v8.16b
290
ldr q0, [buf], #16
291
CPU_LE( rev64 v0.16b, v0.16b )
292
CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 )
293
eor v7.16b, v7.16b, v0.16b
294
subs len, len, #16
295
b.ge .Lfold_16_bytes_loop_\@
296
297
.Lfold_16_bytes_loop_done_\@:
298
// Add 16 to get the correct number of data bytes remaining in 0...15
299
// (not counting v7), following the previous extra subtraction by 16.
300
adds len, len, #16
301
b.eq .Lreduce_final_16_bytes_\@
302
303
.Lhandle_partial_segment_\@:
304
// Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
305
// 16 bytes are in v7 and the rest are the remaining data in 'buf'. To
306
// do this without needing a fold constant for each possible 'len',
307
// redivide the bytes into a first chunk of 'len' bytes and a second
308
// chunk of 16 bytes, then fold the first chunk into the second.
309
310
// v0 = last 16 original data bytes
311
add buf, buf, len
312
ldr q0, [buf, #-16]
313
CPU_LE( rev64 v0.16b, v0.16b )
314
CPU_LE( ext v0.16b, v0.16b, v0.16b, #8 )
315
316
// v1 = high order part of second chunk: v7 left-shifted by 'len' bytes.
317
adr_l x4, .Lbyteshift_table + 16
318
sub x4, x4, len
319
ld1 {v2.16b}, [x4]
320
tbl v1.16b, {v7.16b}, v2.16b
321
322
// v3 = first chunk: v7 right-shifted by '16-len' bytes.
323
movi v3.16b, #0x80
324
eor v2.16b, v2.16b, v3.16b
325
tbl v3.16b, {v7.16b}, v2.16b
326
327
// Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
328
sshr v2.16b, v2.16b, #7
329
330
// v2 = second chunk: 'len' bytes from v0 (low-order bytes),
331
// then '16-len' bytes from v1 (high-order bytes).
332
bsl v2.16b, v1.16b, v0.16b
333
334
// Fold the first chunk into the second chunk, storing the result in v7.
335
pmull16x64_\p fold_consts, v3, v0
336
eor v7.16b, v3.16b, v0.16b
337
eor v7.16b, v7.16b, v2.16b
338
b .Lreduce_final_16_bytes_\@
339
340
.Lless_than_256_bytes_\@:
341
// Checksumming a buffer of length 16...255 bytes
342
343
adr_l fold_consts_ptr, .Lfold_across_16_bytes_consts
344
345
// Load the first 16 data bytes.
346
ldr q7, [buf], #0x10
347
CPU_LE( rev64 v7.16b, v7.16b )
348
CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
349
350
// XOR the first 16 data *bits* with the initial CRC value.
351
movi v0.16b, #0
352
mov v0.h[7], init_crc
353
eor v7.16b, v7.16b, v0.16b
354
355
// Load the fold-across-16-bytes constants.
356
ld1 {fold_consts.2d}, [fold_consts_ptr], #16
357
358
cmp len, #16
359
b.eq .Lreduce_final_16_bytes_\@ // len == 16
360
subs len, len, #32
361
b.ge .Lfold_16_bytes_loop_\@ // 32 <= len <= 255
362
add len, len, #16
363
b .Lhandle_partial_segment_\@ // 17 <= len <= 31
364
365
.Lreduce_final_16_bytes_\@:
366
.endm
367
368
//
369
// u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 *buf, size_t len);
370
//
371
// Assumes len >= 16.
372
//
373
SYM_FUNC_START(crc_t10dif_pmull_p8)
374
frame_push 1
375
376
// Compose { 0,0,0,0, 8,8,8,8, 1,1,1,1, 9,9,9,9 }
377
movi perm.4h, #8, lsl #8
378
orr perm.2s, #1, lsl #16
379
orr perm.2s, #1, lsl #24
380
zip1 perm.16b, perm.16b, perm.16b
381
zip1 perm.16b, perm.16b, perm.16b
382
383
crc_t10dif_pmull p8
384
385
CPU_LE( rev64 v7.16b, v7.16b )
386
CPU_LE( ext v7.16b, v7.16b, v7.16b, #8 )
387
str q7, [x3]
388
389
frame_pop
390
ret
391
SYM_FUNC_END(crc_t10dif_pmull_p8)
392
393
.align 5
394
//
395
// u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 *buf, size_t len);
396
//
397
// Assumes len >= 16.
398
//
399
SYM_FUNC_START(crc_t10dif_pmull_p64)
400
crc_t10dif_pmull p64
401
402
// Reduce the 128-bit value M(x), stored in v7, to the final 16-bit CRC.
403
404
movi v2.16b, #0 // init zero register
405
406
// Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
407
ld1 {fold_consts.2d}, [fold_consts_ptr], #16
408
409
// Fold the high 64 bits into the low 64 bits, while also multiplying by
410
// x^64. This produces a 128-bit value congruent to x^64 * M(x) and
411
// whose low 48 bits are 0.
412
ext v0.16b, v2.16b, v7.16b, #8
413
pmull2 v7.1q, v7.2d, fold_consts.2d // high bits * x^48 * (x^80 mod G(x))
414
eor v0.16b, v0.16b, v7.16b // + low bits * x^64
415
416
// Fold the high 32 bits into the low 96 bits. This produces a 96-bit
417
// value congruent to x^64 * M(x) and whose low 48 bits are 0.
418
ext v1.16b, v0.16b, v2.16b, #12 // extract high 32 bits
419
mov v0.s[3], v2.s[0] // zero high 32 bits
420
pmull v1.1q, v1.1d, fold_consts.1d // high 32 bits * x^48 * (x^48 mod G(x))
421
eor v0.16b, v0.16b, v1.16b // + low bits
422
423
// Load G(x) and floor(x^48 / G(x)).
424
ld1 {fold_consts.2d}, [fold_consts_ptr]
425
426
// Use Barrett reduction to compute the final CRC value.
427
pmull2 v1.1q, v0.2d, fold_consts.2d // high 32 bits * floor(x^48 / G(x))
428
ushr v1.2d, v1.2d, #32 // /= x^32
429
pmull v1.1q, v1.1d, fold_consts.1d // *= G(x)
430
ushr v0.2d, v0.2d, #48
431
eor v0.16b, v0.16b, v1.16b // + low 16 nonzero bits
432
// Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of v0.
433
434
umov w0, v0.h[0]
435
ret
436
SYM_FUNC_END(crc_t10dif_pmull_p64)
437
438
.section ".rodata", "a"
439
.align 4
440
441
// Fold constants precomputed from the polynomial 0x18bb7
442
// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
443
.Lfold_across_128_bytes_consts:
444
.quad 0x0000000000006123 // x^(8*128) mod G(x)
445
.quad 0x0000000000002295 // x^(8*128+64) mod G(x)
446
// .Lfold_across_64_bytes_consts:
447
.quad 0x0000000000001069 // x^(4*128) mod G(x)
448
.quad 0x000000000000dd31 // x^(4*128+64) mod G(x)
449
// .Lfold_across_32_bytes_consts:
450
.quad 0x000000000000857d // x^(2*128) mod G(x)
451
.quad 0x0000000000007acc // x^(2*128+64) mod G(x)
452
.Lfold_across_16_bytes_consts:
453
.quad 0x000000000000a010 // x^(1*128) mod G(x)
454
.quad 0x0000000000001faa // x^(1*128+64) mod G(x)
455
// .Lfinal_fold_consts:
456
.quad 0x1368000000000000 // x^48 * (x^48 mod G(x))
457
.quad 0x2d56000000000000 // x^48 * (x^80 mod G(x))
458
// .Lbarrett_reduction_consts:
459
.quad 0x0000000000018bb7 // G(x)
460
.quad 0x00000001f65a57f8 // floor(x^48 / G(x))
461
462
// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
463
// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
464
// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
465
.Lbyteshift_table:
466
.byte 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
467
.byte 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
468
.byte 0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7
469
.byte 0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe , 0x0
470
471