Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crc/s390/crc32be-vx.c
26285 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* Hardware-accelerated CRC-32 variants for Linux on z Systems
4
*
5
* Use the z/Architecture Vector Extension Facility to accelerate the
6
* computing of CRC-32 checksums.
7
*
8
* This CRC-32 implementation algorithm processes the most-significant
9
* bit first (BE).
10
*
11
* Copyright IBM Corp. 2015
12
* Author(s): Hendrik Brueckner <[email protected]>
13
*/
14
15
#include <linux/types.h>
16
#include <asm/fpu.h>
17
#include "crc32-vx.h"
18
19
/* Vector register range containing CRC-32 constants */
20
#define CONST_R1R2 9
21
#define CONST_R3R4 10
22
#define CONST_R5 11
23
#define CONST_R6 12
24
#define CONST_RU_POLY 13
25
#define CONST_CRC_POLY 14
26
27
/*
28
* The CRC-32 constant block contains reduction constants to fold and
29
* process particular chunks of the input data stream in parallel.
30
*
31
* For the CRC-32 variants, the constants are precomputed according to
32
* these definitions:
33
*
34
* R1 = x4*128+64 mod P(x)
35
* R2 = x4*128 mod P(x)
36
* R3 = x128+64 mod P(x)
37
* R4 = x128 mod P(x)
38
* R5 = x96 mod P(x)
39
* R6 = x64 mod P(x)
40
*
41
* Barret reduction constant, u, is defined as floor(x**64 / P(x)).
42
*
43
* where P(x) is the polynomial in the normal domain and the P'(x) is the
44
* polynomial in the reversed (bitreflected) domain.
45
*
46
* Note that the constant definitions below are extended in order to compute
47
* intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
48
* The rightmost doubleword can be 0 to prevent contribution to the result or
49
* can be multiplied by 1 to perform an XOR without the need for a separate
50
* VECTOR EXCLUSIVE OR instruction.
51
*
52
* CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
53
*
54
* P(x) = 0x04C11DB7
55
* P'(x) = 0xEDB88320
56
*/
57
58
static unsigned long constants_CRC_32_BE[] = {
59
0x08833794c, 0x0e6228b11, /* R1, R2 */
60
0x0c5b9cd4c, 0x0e8a45605, /* R3, R4 */
61
0x0f200aa66, 1UL << 32, /* R5, x32 */
62
0x0490d678d, 1, /* R6, 1 */
63
0x104d101df, 0, /* u */
64
0x104C11DB7, 0, /* P(x) */
65
};
66
67
/**
68
* crc32_be_vgfm_16 - Compute CRC-32 (BE variant) with vector registers
69
* @crc: Initial CRC value, typically ~0.
70
* @buf: Input buffer pointer, performance might be improved if the
71
* buffer is on a doubleword boundary.
72
* @size: Size of the buffer, must be 64 bytes or greater.
73
*
74
* Register usage:
75
* V0: Initial CRC value and intermediate constants and results.
76
* V1..V4: Data for CRC computation.
77
* V5..V8: Next data chunks that are fetched from the input buffer.
78
* V9..V14: CRC-32 constants.
79
*/
80
u32 crc32_be_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
81
{
82
/* Load CRC-32 constants */
83
fpu_vlm(CONST_R1R2, CONST_CRC_POLY, &constants_CRC_32_BE);
84
fpu_vzero(0);
85
86
/* Load the initial CRC value into the leftmost word of V0. */
87
fpu_vlvgf(0, crc, 0);
88
89
/* Load a 64-byte data chunk and XOR with CRC */
90
fpu_vlm(1, 4, buf);
91
fpu_vx(1, 0, 1);
92
buf += 64;
93
size -= 64;
94
95
while (size >= 64) {
96
/* Load the next 64-byte data chunk into V5 to V8 */
97
fpu_vlm(5, 8, buf);
98
99
/*
100
* Perform a GF(2) multiplication of the doublewords in V1 with
101
* the reduction constants in V0. The intermediate result is
102
* then folded (accumulated) with the next data chunk in V5 and
103
* stored in V1. Repeat this step for the register contents
104
* in V2, V3, and V4 respectively.
105
*/
106
fpu_vgfmag(1, CONST_R1R2, 1, 5);
107
fpu_vgfmag(2, CONST_R1R2, 2, 6);
108
fpu_vgfmag(3, CONST_R1R2, 3, 7);
109
fpu_vgfmag(4, CONST_R1R2, 4, 8);
110
buf += 64;
111
size -= 64;
112
}
113
114
/* Fold V1 to V4 into a single 128-bit value in V1 */
115
fpu_vgfmag(1, CONST_R3R4, 1, 2);
116
fpu_vgfmag(1, CONST_R3R4, 1, 3);
117
fpu_vgfmag(1, CONST_R3R4, 1, 4);
118
119
while (size >= 16) {
120
fpu_vl(2, buf);
121
fpu_vgfmag(1, CONST_R3R4, 1, 2);
122
buf += 16;
123
size -= 16;
124
}
125
126
/*
127
* The R5 constant is used to fold a 128-bit value into an 96-bit value
128
* that is XORed with the next 96-bit input data chunk. To use a single
129
* VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to
130
* form an intermediate 96-bit value (with appended zeros) which is then
131
* XORed with the intermediate reduction result.
132
*/
133
fpu_vgfmg(1, CONST_R5, 1);
134
135
/*
136
* Further reduce the remaining 96-bit value to a 64-bit value using a
137
* single VGFMG, the rightmost doubleword is multiplied with 0x1. The
138
* intermediate result is then XORed with the product of the leftmost
139
* doubleword with R6. The result is a 64-bit value and is subject to
140
* the Barret reduction.
141
*/
142
fpu_vgfmg(1, CONST_R6, 1);
143
144
/*
145
* The input values to the Barret reduction are the degree-63 polynomial
146
* in V1 (R(x)), degree-32 generator polynomial, and the reduction
147
* constant u. The Barret reduction result is the CRC value of R(x) mod
148
* P(x).
149
*
150
* The Barret reduction algorithm is defined as:
151
*
152
* 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
153
* 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
154
* 3. C(x) = R(x) XOR T2(x) mod x^32
155
*
156
* Note: To compensate the division by x^32, use the vector unpack
157
* instruction to move the leftmost word into the leftmost doubleword
158
* of the vector register. The rightmost doubleword is multiplied
159
* with zero to not contribute to the intermediate results.
160
*/
161
162
/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
163
fpu_vupllf(2, 1);
164
fpu_vgfmg(2, CONST_RU_POLY, 2);
165
166
/*
167
* Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
168
* V2 and XOR the intermediate result, T2(x), with the value in V1.
169
* The final result is in the rightmost word of V2.
170
*/
171
fpu_vupllf(2, 2);
172
fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
173
return fpu_vlgvf(2, 3);
174
}
175
176