Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crc/s390/crc32le-vx.c
26285 views
1
/* SPDX-License-Identifier: GPL-2.0 */
2
/*
3
* Hardware-accelerated CRC-32 variants for Linux on z Systems
4
*
5
* Use the z/Architecture Vector Extension Facility to accelerate the
6
* computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
7
* and Castagnoli.
8
*
9
* This CRC-32 implementation algorithm is bitreflected and processes
10
* the least-significant bit first (Little-Endian).
11
*
12
* Copyright IBM Corp. 2015
13
* Author(s): Hendrik Brueckner <[email protected]>
14
*/
15
16
#include <linux/types.h>
17
#include <asm/fpu.h>
18
#include "crc32-vx.h"
19
20
/* Vector register range containing CRC-32 constants */
21
#define CONST_PERM_LE2BE 9
22
#define CONST_R2R1 10
23
#define CONST_R4R3 11
24
#define CONST_R5 12
25
#define CONST_RU_POLY 13
26
#define CONST_CRC_POLY 14
27
28
/*
29
* The CRC-32 constant block contains reduction constants to fold and
30
* process particular chunks of the input data stream in parallel.
31
*
32
* For the CRC-32 variants, the constants are precomputed according to
33
* these definitions:
34
*
35
* R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
36
* R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
37
* R3 = [(x128+32 mod P'(x) << 32)]' << 1
38
* R4 = [(x128-32 mod P'(x) << 32)]' << 1
39
* R5 = [(x64 mod P'(x) << 32)]' << 1
40
* R6 = [(x32 mod P'(x) << 32)]' << 1
41
*
42
* The bitreflected Barret reduction constant, u', is defined as
43
* the bit reversal of floor(x**64 / P(x)).
44
*
45
* where P(x) is the polynomial in the normal domain and the P'(x) is the
46
* polynomial in the reversed (bitreflected) domain.
47
*
48
* CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
49
*
50
* P(x) = 0x04C11DB7
51
* P'(x) = 0xEDB88320
52
*
53
* CRC-32C (Castagnoli) polynomials:
54
*
55
* P(x) = 0x1EDC6F41
56
* P'(x) = 0x82F63B78
57
*/
58
59
static unsigned long constants_CRC_32_LE[] = {
60
0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */
61
0x1c6e41596, 0x154442bd4, /* R2, R1 */
62
0x0ccaa009e, 0x1751997d0, /* R4, R3 */
63
0x0, 0x163cd6124, /* R5 */
64
0x0, 0x1f7011641, /* u' */
65
0x0, 0x1db710641 /* P'(x) << 1 */
66
};
67
68
static unsigned long constants_CRC_32C_LE[] = {
69
0x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */
70
0x09e4addf8, 0x740eef02, /* R2, R1 */
71
0x14cd00bd6, 0xf20c0dfe, /* R4, R3 */
72
0x0, 0x0dd45aab8, /* R5 */
73
0x0, 0x0dea713f1, /* u' */
74
0x0, 0x105ec76f0 /* P'(x) << 1 */
75
};
76
77
/**
78
* crc32_le_vgfm_generic - Compute CRC-32 (LE variant) with vector registers
79
* @crc: Initial CRC value, typically ~0.
80
* @buf: Input buffer pointer, performance might be improved if the
81
* buffer is on a doubleword boundary.
82
* @size: Size of the buffer, must be 64 bytes or greater.
83
* @constants: CRC-32 constant pool base pointer.
84
*
85
* Register usage:
86
* V0: Initial CRC value and intermediate constants and results.
87
* V1..V4: Data for CRC computation.
88
* V5..V8: Next data chunks that are fetched from the input buffer.
89
* V9: Constant for BE->LE conversion and shift operations
90
* V10..V14: CRC-32 constants.
91
*/
92
static u32 crc32_le_vgfm_generic(u32 crc, unsigned char const *buf, size_t size, unsigned long *constants)
93
{
94
/* Load CRC-32 constants */
95
fpu_vlm(CONST_PERM_LE2BE, CONST_CRC_POLY, constants);
96
97
/*
98
* Load the initial CRC value.
99
*
100
* The CRC value is loaded into the rightmost word of the
101
* vector register and is later XORed with the LSB portion
102
* of the loaded input data.
103
*/
104
fpu_vzero(0); /* Clear V0 */
105
fpu_vlvgf(0, crc, 3); /* Load CRC into rightmost word */
106
107
/* Load a 64-byte data chunk and XOR with CRC */
108
fpu_vlm(1, 4, buf);
109
fpu_vperm(1, 1, 1, CONST_PERM_LE2BE);
110
fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
111
fpu_vperm(3, 3, 3, CONST_PERM_LE2BE);
112
fpu_vperm(4, 4, 4, CONST_PERM_LE2BE);
113
114
fpu_vx(1, 0, 1); /* V1 ^= CRC */
115
buf += 64;
116
size -= 64;
117
118
while (size >= 64) {
119
fpu_vlm(5, 8, buf);
120
fpu_vperm(5, 5, 5, CONST_PERM_LE2BE);
121
fpu_vperm(6, 6, 6, CONST_PERM_LE2BE);
122
fpu_vperm(7, 7, 7, CONST_PERM_LE2BE);
123
fpu_vperm(8, 8, 8, CONST_PERM_LE2BE);
124
/*
125
* Perform a GF(2) multiplication of the doublewords in V1 with
126
* the R1 and R2 reduction constants in V0. The intermediate
127
* result is then folded (accumulated) with the next data chunk
128
* in V5 and stored in V1. Repeat this step for the register
129
* contents in V2, V3, and V4 respectively.
130
*/
131
fpu_vgfmag(1, CONST_R2R1, 1, 5);
132
fpu_vgfmag(2, CONST_R2R1, 2, 6);
133
fpu_vgfmag(3, CONST_R2R1, 3, 7);
134
fpu_vgfmag(4, CONST_R2R1, 4, 8);
135
buf += 64;
136
size -= 64;
137
}
138
139
/*
140
* Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
141
* and R4 and accumulating the next 128-bit chunk until a single 128-bit
142
* value remains.
143
*/
144
fpu_vgfmag(1, CONST_R4R3, 1, 2);
145
fpu_vgfmag(1, CONST_R4R3, 1, 3);
146
fpu_vgfmag(1, CONST_R4R3, 1, 4);
147
148
while (size >= 16) {
149
fpu_vl(2, buf);
150
fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);
151
fpu_vgfmag(1, CONST_R4R3, 1, 2);
152
buf += 16;
153
size -= 16;
154
}
155
156
/*
157
* Set up a vector register for byte shifts. The shift value must
158
* be loaded in bits 1-4 in byte element 7 of a vector register.
159
* Shift by 8 bytes: 0x40
160
* Shift by 4 bytes: 0x20
161
*/
162
fpu_vleib(9, 0x40, 7);
163
164
/*
165
* Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
166
* to move R4 into the rightmost doubleword and set the leftmost
167
* doubleword to 0x1.
168
*/
169
fpu_vsrlb(0, CONST_R4R3, 9);
170
fpu_vleig(0, 1, 0);
171
172
/*
173
* Compute GF(2) product of V1 and V0. The rightmost doubleword
174
* of V1 is multiplied with R4. The leftmost doubleword of V1 is
175
* multiplied by 0x1 and is then XORed with rightmost product.
176
* Implicitly, the intermediate leftmost product becomes padded
177
*/
178
fpu_vgfmg(1, 0, 1);
179
180
/*
181
* Now do the final 32-bit fold by multiplying the rightmost word
182
* in V1 with R5 and XOR the result with the remaining bits in V1.
183
*
184
* To achieve this by a single VGFMAG, right shift V1 by a word
185
* and store the result in V2 which is then accumulated. Use the
186
* vector unpack instruction to load the rightmost half of the
187
* doubleword into the rightmost doubleword element of V1; the other
188
* half is loaded in the leftmost doubleword.
189
* The vector register with CONST_R5 contains the R5 constant in the
190
* rightmost doubleword and the leftmost doubleword is zero to ignore
191
* the leftmost product of V1.
192
*/
193
fpu_vleib(9, 0x20, 7); /* Shift by words */
194
fpu_vsrlb(2, 1, 9); /* Store remaining bits in V2 */
195
fpu_vupllf(1, 1); /* Split rightmost doubleword */
196
fpu_vgfmag(1, CONST_R5, 1, 2); /* V1 = (V1 * R5) XOR V2 */
197
198
/*
199
* Apply a Barret reduction to compute the final 32-bit CRC value.
200
*
201
* The input values to the Barret reduction are the degree-63 polynomial
202
* in V1 (R(x)), degree-32 generator polynomial, and the reduction
203
* constant u. The Barret reduction result is the CRC value of R(x) mod
204
* P(x).
205
*
206
* The Barret reduction algorithm is defined as:
207
*
208
* 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
209
* 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
210
* 3. C(x) = R(x) XOR T2(x) mod x^32
211
*
212
* Note: The leftmost doubleword of vector register containing
213
* CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
214
* is zero and does not contribute to the final result.
215
*/
216
217
/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
218
fpu_vupllf(2, 1);
219
fpu_vgfmg(2, CONST_RU_POLY, 2);
220
221
/*
222
* Compute the GF(2) product of the CRC polynomial with T1(x) in
223
* V2 and XOR the intermediate result, T2(x), with the value in V1.
224
* The final result is stored in word element 2 of V2.
225
*/
226
fpu_vupllf(2, 2);
227
fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);
228
229
return fpu_vlgvf(2, 2);
230
}
231
232
u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
233
{
234
return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32_LE[0]);
235
}
236
237
u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)
238
{
239
return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32C_LE[0]);
240
}
241
242