/* SPDX-License-Identifier: GPL-2.0 */1/*2* Hardware-accelerated CRC-32 variants for Linux on z Systems3*4* Use the z/Architecture Vector Extension Facility to accelerate the5* computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet6* and Castagnoli.7*8* This CRC-32 implementation algorithm is bitreflected and processes9* the least-significant bit first (Little-Endian).10*11* Copyright IBM Corp. 201512* Author(s): Hendrik Brueckner <[email protected]>13*/1415#include <linux/types.h>16#include <asm/fpu.h>17#include "crc32-vx.h"1819/* Vector register range containing CRC-32 constants */20#define CONST_PERM_LE2BE 921#define CONST_R2R1 1022#define CONST_R4R3 1123#define CONST_R5 1224#define CONST_RU_POLY 1325#define CONST_CRC_POLY 142627/*28* The CRC-32 constant block contains reduction constants to fold and29* process particular chunks of the input data stream in parallel.30*31* For the CRC-32 variants, the constants are precomputed according to32* these definitions:33*34* R1 = [(x4*128+32 mod P'(x) << 32)]' << 135* R2 = [(x4*128-32 mod P'(x) << 32)]' << 136* R3 = [(x128+32 mod P'(x) << 32)]' << 137* R4 = [(x128-32 mod P'(x) << 32)]' << 138* R5 = [(x64 mod P'(x) << 32)]' << 139* R6 = [(x32 mod P'(x) << 32)]' << 140*41* The bitreflected Barret reduction constant, u', is defined as42* the bit reversal of floor(x**64 / P(x)).43*44* where P(x) is the polynomial in the normal domain and the P'(x) is the45* polynomial in the reversed (bitreflected) domain.46*47* CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:48*49* P(x) = 0x04C11DB750* P'(x) = 0xEDB8832051*52* CRC-32C (Castagnoli) polynomials:53*54* P(x) = 0x1EDC6F4155* P'(x) = 0x82F63B7856*/5758static unsigned long constants_CRC_32_LE[] = {590x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */600x1c6e41596, 0x154442bd4, /* R2, R1 */610x0ccaa009e, 0x1751997d0, /* R4, R3 */620x0, 0x163cd6124, /* R5 */630x0, 0x1f7011641, /* u' */640x0, 0x1db710641 /* P'(x) << 1 */65};6667static unsigned long constants_CRC_32C_LE[] = {680x0f0e0d0c0b0a0908, 0x0706050403020100, /* BE->LE mask */690x09e4addf8, 0x740eef02, /* R2, R1 */700x14cd00bd6, 0xf20c0dfe, /* R4, R3 */710x0, 0x0dd45aab8, /* R5 */720x0, 0x0dea713f1, /* u' */730x0, 0x105ec76f0 /* P'(x) << 1 */74};7576/**77* crc32_le_vgfm_generic - Compute CRC-32 (LE variant) with vector registers78* @crc: Initial CRC value, typically ~0.79* @buf: Input buffer pointer, performance might be improved if the80* buffer is on a doubleword boundary.81* @size: Size of the buffer, must be 64 bytes or greater.82* @constants: CRC-32 constant pool base pointer.83*84* Register usage:85* V0: Initial CRC value and intermediate constants and results.86* V1..V4: Data for CRC computation.87* V5..V8: Next data chunks that are fetched from the input buffer.88* V9: Constant for BE->LE conversion and shift operations89* V10..V14: CRC-32 constants.90*/91static u32 crc32_le_vgfm_generic(u32 crc, unsigned char const *buf, size_t size, unsigned long *constants)92{93/* Load CRC-32 constants */94fpu_vlm(CONST_PERM_LE2BE, CONST_CRC_POLY, constants);9596/*97* Load the initial CRC value.98*99* The CRC value is loaded into the rightmost word of the100* vector register and is later XORed with the LSB portion101* of the loaded input data.102*/103fpu_vzero(0); /* Clear V0 */104fpu_vlvgf(0, crc, 3); /* Load CRC into rightmost word */105106/* Load a 64-byte data chunk and XOR with CRC */107fpu_vlm(1, 4, buf);108fpu_vperm(1, 1, 1, CONST_PERM_LE2BE);109fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);110fpu_vperm(3, 3, 3, CONST_PERM_LE2BE);111fpu_vperm(4, 4, 4, CONST_PERM_LE2BE);112113fpu_vx(1, 0, 1); /* V1 ^= CRC */114buf += 64;115size -= 64;116117while (size >= 64) {118fpu_vlm(5, 8, buf);119fpu_vperm(5, 5, 5, CONST_PERM_LE2BE);120fpu_vperm(6, 6, 6, CONST_PERM_LE2BE);121fpu_vperm(7, 7, 7, CONST_PERM_LE2BE);122fpu_vperm(8, 8, 8, CONST_PERM_LE2BE);123/*124* Perform a GF(2) multiplication of the doublewords in V1 with125* the R1 and R2 reduction constants in V0. The intermediate126* result is then folded (accumulated) with the next data chunk127* in V5 and stored in V1. Repeat this step for the register128* contents in V2, V3, and V4 respectively.129*/130fpu_vgfmag(1, CONST_R2R1, 1, 5);131fpu_vgfmag(2, CONST_R2R1, 2, 6);132fpu_vgfmag(3, CONST_R2R1, 3, 7);133fpu_vgfmag(4, CONST_R2R1, 4, 8);134buf += 64;135size -= 64;136}137138/*139* Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3140* and R4 and accumulating the next 128-bit chunk until a single 128-bit141* value remains.142*/143fpu_vgfmag(1, CONST_R4R3, 1, 2);144fpu_vgfmag(1, CONST_R4R3, 1, 3);145fpu_vgfmag(1, CONST_R4R3, 1, 4);146147while (size >= 16) {148fpu_vl(2, buf);149fpu_vperm(2, 2, 2, CONST_PERM_LE2BE);150fpu_vgfmag(1, CONST_R4R3, 1, 2);151buf += 16;152size -= 16;153}154155/*156* Set up a vector register for byte shifts. The shift value must157* be loaded in bits 1-4 in byte element 7 of a vector register.158* Shift by 8 bytes: 0x40159* Shift by 4 bytes: 0x20160*/161fpu_vleib(9, 0x40, 7);162163/*164* Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes165* to move R4 into the rightmost doubleword and set the leftmost166* doubleword to 0x1.167*/168fpu_vsrlb(0, CONST_R4R3, 9);169fpu_vleig(0, 1, 0);170171/*172* Compute GF(2) product of V1 and V0. The rightmost doubleword173* of V1 is multiplied with R4. The leftmost doubleword of V1 is174* multiplied by 0x1 and is then XORed with rightmost product.175* Implicitly, the intermediate leftmost product becomes padded176*/177fpu_vgfmg(1, 0, 1);178179/*180* Now do the final 32-bit fold by multiplying the rightmost word181* in V1 with R5 and XOR the result with the remaining bits in V1.182*183* To achieve this by a single VGFMAG, right shift V1 by a word184* and store the result in V2 which is then accumulated. Use the185* vector unpack instruction to load the rightmost half of the186* doubleword into the rightmost doubleword element of V1; the other187* half is loaded in the leftmost doubleword.188* The vector register with CONST_R5 contains the R5 constant in the189* rightmost doubleword and the leftmost doubleword is zero to ignore190* the leftmost product of V1.191*/192fpu_vleib(9, 0x20, 7); /* Shift by words */193fpu_vsrlb(2, 1, 9); /* Store remaining bits in V2 */194fpu_vupllf(1, 1); /* Split rightmost doubleword */195fpu_vgfmag(1, CONST_R5, 1, 2); /* V1 = (V1 * R5) XOR V2 */196197/*198* Apply a Barret reduction to compute the final 32-bit CRC value.199*200* The input values to the Barret reduction are the degree-63 polynomial201* in V1 (R(x)), degree-32 generator polynomial, and the reduction202* constant u. The Barret reduction result is the CRC value of R(x) mod203* P(x).204*205* The Barret reduction algorithm is defined as:206*207* 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u208* 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)209* 3. C(x) = R(x) XOR T2(x) mod x^32210*211* Note: The leftmost doubleword of vector register containing212* CONST_RU_POLY is zero and, thus, the intermediate GF(2) product213* is zero and does not contribute to the final result.214*/215216/* T1(x) = floor( R(x) / x^32 ) GF2MUL u */217fpu_vupllf(2, 1);218fpu_vgfmg(2, CONST_RU_POLY, 2);219220/*221* Compute the GF(2) product of the CRC polynomial with T1(x) in222* V2 and XOR the intermediate result, T2(x), with the value in V1.223* The final result is stored in word element 2 of V2.224*/225fpu_vupllf(2, 2);226fpu_vgfmag(2, CONST_CRC_POLY, 2, 1);227228return fpu_vlgvf(2, 2);229}230231u32 crc32_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)232{233return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32_LE[0]);234}235236u32 crc32c_le_vgfm_16(u32 crc, unsigned char const *buf, size_t size)237{238return crc32_le_vgfm_generic(crc, buf, size, &constants_CRC_32C_LE[0]);239}240241242