Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crypto/arm64/sha2-armv8.pl
26285 views
1
#! /usr/bin/env perl
2
# SPDX-License-Identifier: GPL-2.0
3
4
# This code is taken from the OpenSSL project but the author (Andy Polyakov)
5
# has relicensed it under the GPLv2. Therefore this program is free software;
6
# you can redistribute it and/or modify it under the terms of the GNU General
7
# Public License version 2 as published by the Free Software Foundation.
8
#
9
# The original headers, including the original license headers, are
10
# included below for completeness.
11
12
# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
13
#
14
# Licensed under the OpenSSL license (the "License"). You may not use
15
# this file except in compliance with the License. You can obtain a copy
16
# in the file LICENSE in the source distribution or at
17
# https://www.openssl.org/source/license.html
18
19
# ====================================================================
20
# Written by Andy Polyakov <[email protected]> for the OpenSSL
21
# project. The module is, however, dual licensed under OpenSSL and
22
# CRYPTOGAMS licenses depending on where you obtain it. For further
23
# details see http://www.openssl.org/~appro/cryptogams/.
24
# ====================================================================
25
#
26
# SHA256/512 for ARMv8.
27
#
28
# Performance in cycles per processed byte and improvement coefficient
29
# over code generated with "default" compiler:
30
#
31
# SHA256-hw SHA256(*) SHA512
32
# Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
33
# Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
34
# Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
35
# Denver 2.01 10.5 (+26%) 6.70 (+8%)
36
# X-Gene 20.0 (+100%) 12.8 (+300%(***))
37
# Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
38
#
39
# (*) Software SHA256 results are of lesser relevance, presented
40
# mostly for informational purposes.
41
# (**) The result is a trade-off: it's possible to improve it by
42
# 10% (or by 1 cycle per round), but at the cost of 20% loss
43
# on Cortex-A53 (or by 4 cycles per round).
44
# (***) Super-impressive coefficients over gcc-generated code are
45
# indication of some compiler "pathology", most notably code
46
# generated with -mgeneral-regs-only is significantly faster
47
# and the gap is only 40-90%.
48
#
49
# October 2016.
50
#
51
# Originally it was reckoned that it makes no sense to implement NEON
52
# version of SHA256 for 64-bit processors. This is because performance
53
# improvement on most wide-spread Cortex-A5x processors was observed
54
# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
55
# observed that 32-bit NEON SHA256 performs significantly better than
56
# 64-bit scalar version on *some* of the more recent processors. As
57
# result 64-bit NEON version of SHA256 was added to provide best
58
# all-round performance. For example it executes ~30% faster on X-Gene
59
# and Mongoose. [For reference, NEON version of SHA512 is bound to
60
# deliver much less improvement, likely *negative* on Cortex-A5x.
61
# Which is why NEON support is limited to SHA256.]
62
63
$output=pop;
64
$flavour=pop;
65
66
if ($flavour && $flavour ne "void") {
67
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
68
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
69
( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
70
die "can't locate arm-xlate.pl";
71
72
open OUT,"| \"$^X\" $xlate $flavour $output";
73
*STDOUT=*OUT;
74
} else {
75
open STDOUT,">$output";
76
}
77
78
if ($output =~ /512/) {
79
$BITS=512;
80
$SZ=8;
81
@Sigma0=(28,34,39);
82
@Sigma1=(14,18,41);
83
@sigma0=(1, 8, 7);
84
@sigma1=(19,61, 6);
85
$rounds=80;
86
$reg_t="x";
87
} else {
88
$BITS=256;
89
$SZ=4;
90
@Sigma0=( 2,13,22);
91
@Sigma1=( 6,11,25);
92
@sigma0=( 7,18, 3);
93
@sigma1=(17,19,10);
94
$rounds=64;
95
$reg_t="w";
96
}
97
98
$func="sha${BITS}_block_data_order";
99
100
($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
101
102
@X=map("$reg_t$_",(3..15,0..2));
103
@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
104
($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
105
106
sub BODY_00_xx {
107
my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
108
my $j=($i+1)&15;
109
my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
110
$T0=@X[$i+3] if ($i<11);
111
112
$code.=<<___ if ($i<16);
113
#ifndef __AARCH64EB__
114
rev @X[$i],@X[$i] // $i
115
#endif
116
___
117
$code.=<<___ if ($i<13 && ($i&1));
118
ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ
119
___
120
$code.=<<___ if ($i==13);
121
ldp @X[14],@X[15],[$inp]
122
___
123
$code.=<<___ if ($i>=14);
124
ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
125
___
126
$code.=<<___ if ($i>0 && $i<16);
127
add $a,$a,$t1 // h+=Sigma0(a)
128
___
129
$code.=<<___ if ($i>=11);
130
str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
131
___
132
# While ARMv8 specifies merged rotate-n-logical operation such as
133
# 'eor x,y,z,ror#n', it was found to negatively affect performance
134
# on Apple A7. The reason seems to be that it requires even 'y' to
135
# be available earlier. This means that such merged instruction is
136
# not necessarily best choice on critical path... On the other hand
137
# Cortex-A5x handles merged instructions much better than disjoint
138
# rotate and logical... See (**) footnote above.
139
$code.=<<___ if ($i<15);
140
ror $t0,$e,#$Sigma1[0]
141
add $h,$h,$t2 // h+=K[i]
142
eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
143
and $t1,$f,$e
144
bic $t2,$g,$e
145
add $h,$h,@X[$i&15] // h+=X[i]
146
orr $t1,$t1,$t2 // Ch(e,f,g)
147
eor $t2,$a,$b // a^b, b^c in next round
148
eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e)
149
ror $T0,$a,#$Sigma0[0]
150
add $h,$h,$t1 // h+=Ch(e,f,g)
151
eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
152
add $h,$h,$t0 // h+=Sigma1(e)
153
and $t3,$t3,$t2 // (b^c)&=(a^b)
154
add $d,$d,$h // d+=h
155
eor $t3,$t3,$b // Maj(a,b,c)
156
eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a)
157
add $h,$h,$t3 // h+=Maj(a,b,c)
158
ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
159
//add $h,$h,$t1 // h+=Sigma0(a)
160
___
161
$code.=<<___ if ($i>=15);
162
ror $t0,$e,#$Sigma1[0]
163
add $h,$h,$t2 // h+=K[i]
164
ror $T1,@X[($j+1)&15],#$sigma0[0]
165
and $t1,$f,$e
166
ror $T2,@X[($j+14)&15],#$sigma1[0]
167
bic $t2,$g,$e
168
ror $T0,$a,#$Sigma0[0]
169
add $h,$h,@X[$i&15] // h+=X[i]
170
eor $t0,$t0,$e,ror#$Sigma1[1]
171
eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
172
orr $t1,$t1,$t2 // Ch(e,f,g)
173
eor $t2,$a,$b // a^b, b^c in next round
174
eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e)
175
eor $T0,$T0,$a,ror#$Sigma0[1]
176
add $h,$h,$t1 // h+=Ch(e,f,g)
177
and $t3,$t3,$t2 // (b^c)&=(a^b)
178
eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
179
eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1])
180
add $h,$h,$t0 // h+=Sigma1(e)
181
eor $t3,$t3,$b // Maj(a,b,c)
182
eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a)
183
eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14])
184
add @X[$j],@X[$j],@X[($j+9)&15]
185
add $d,$d,$h // d+=h
186
add $h,$h,$t3 // h+=Maj(a,b,c)
187
ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
188
add @X[$j],@X[$j],$T1
189
add $h,$h,$t1 // h+=Sigma0(a)
190
add @X[$j],@X[$j],$T2
191
___
192
($t2,$t3)=($t3,$t2);
193
}
194
195
$code.=<<___;
196
#ifndef __KERNEL__
197
# include "arm_arch.h"
198
#endif
199
200
.text
201
202
.extern OPENSSL_armcap_P
203
.globl $func
204
.type $func,%function
205
.align 6
206
$func:
207
___
208
$code.=<<___ if ($SZ==4);
209
#ifndef __KERNEL__
210
# ifdef __ILP32__
211
ldrsw x16,.LOPENSSL_armcap_P
212
# else
213
ldr x16,.LOPENSSL_armcap_P
214
# endif
215
adr x17,.LOPENSSL_armcap_P
216
add x16,x16,x17
217
ldr w16,[x16]
218
tst w16,#ARMV8_SHA256
219
b.ne .Lv8_entry
220
tst w16,#ARMV7_NEON
221
b.ne .Lneon_entry
222
#endif
223
___
224
$code.=<<___;
225
stp x29,x30,[sp,#-128]!
226
add x29,sp,#0
227
228
stp x19,x20,[sp,#16]
229
stp x21,x22,[sp,#32]
230
stp x23,x24,[sp,#48]
231
stp x25,x26,[sp,#64]
232
stp x27,x28,[sp,#80]
233
sub sp,sp,#4*$SZ
234
235
ldp $A,$B,[$ctx] // load context
236
ldp $C,$D,[$ctx,#2*$SZ]
237
ldp $E,$F,[$ctx,#4*$SZ]
238
add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
239
ldp $G,$H,[$ctx,#6*$SZ]
240
adr $Ktbl,.LK$BITS
241
stp $ctx,$num,[x29,#96]
242
243
.Loop:
244
ldp @X[0],@X[1],[$inp],#2*$SZ
245
ldr $t2,[$Ktbl],#$SZ // *K++
246
eor $t3,$B,$C // magic seed
247
str $inp,[x29,#112]
248
___
249
for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
250
$code.=".Loop_16_xx:\n";
251
for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
252
$code.=<<___;
253
cbnz $t2,.Loop_16_xx
254
255
ldp $ctx,$num,[x29,#96]
256
ldr $inp,[x29,#112]
257
sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
258
259
ldp @X[0],@X[1],[$ctx]
260
ldp @X[2],@X[3],[$ctx,#2*$SZ]
261
add $inp,$inp,#14*$SZ // advance input pointer
262
ldp @X[4],@X[5],[$ctx,#4*$SZ]
263
add $A,$A,@X[0]
264
ldp @X[6],@X[7],[$ctx,#6*$SZ]
265
add $B,$B,@X[1]
266
add $C,$C,@X[2]
267
add $D,$D,@X[3]
268
stp $A,$B,[$ctx]
269
add $E,$E,@X[4]
270
add $F,$F,@X[5]
271
stp $C,$D,[$ctx,#2*$SZ]
272
add $G,$G,@X[6]
273
add $H,$H,@X[7]
274
cmp $inp,$num
275
stp $E,$F,[$ctx,#4*$SZ]
276
stp $G,$H,[$ctx,#6*$SZ]
277
b.ne .Loop
278
279
ldp x19,x20,[x29,#16]
280
add sp,sp,#4*$SZ
281
ldp x21,x22,[x29,#32]
282
ldp x23,x24,[x29,#48]
283
ldp x25,x26,[x29,#64]
284
ldp x27,x28,[x29,#80]
285
ldp x29,x30,[sp],#128
286
ret
287
.size $func,.-$func
288
289
.align 6
290
.type .LK$BITS,%object
291
.LK$BITS:
292
___
293
$code.=<<___ if ($SZ==8);
294
.quad 0x428a2f98d728ae22,0x7137449123ef65cd
295
.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
296
.quad 0x3956c25bf348b538,0x59f111f1b605d019
297
.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
298
.quad 0xd807aa98a3030242,0x12835b0145706fbe
299
.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
300
.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
301
.quad 0x9bdc06a725c71235,0xc19bf174cf692694
302
.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
303
.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
304
.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
305
.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
306
.quad 0x983e5152ee66dfab,0xa831c66d2db43210
307
.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
308
.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
309
.quad 0x06ca6351e003826f,0x142929670a0e6e70
310
.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
311
.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
312
.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
313
.quad 0x81c2c92e47edaee6,0x92722c851482353b
314
.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
315
.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
316
.quad 0xd192e819d6ef5218,0xd69906245565a910
317
.quad 0xf40e35855771202a,0x106aa07032bbd1b8
318
.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
319
.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
320
.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
321
.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
322
.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
323
.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
324
.quad 0x90befffa23631e28,0xa4506cebde82bde9
325
.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
326
.quad 0xca273eceea26619c,0xd186b8c721c0c207
327
.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
328
.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
329
.quad 0x113f9804bef90dae,0x1b710b35131c471b
330
.quad 0x28db77f523047d84,0x32caab7b40c72493
331
.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
332
.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
333
.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
334
.quad 0 // terminator
335
___
336
$code.=<<___ if ($SZ==4);
337
.long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
338
.long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
339
.long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
340
.long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
341
.long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
342
.long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
343
.long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
344
.long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
345
.long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
346
.long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
347
.long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
348
.long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
349
.long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
350
.long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
351
.long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
352
.long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
353
.long 0 //terminator
354
___
355
$code.=<<___;
356
.size .LK$BITS,.-.LK$BITS
357
#ifndef __KERNEL__
358
.align 3
359
.LOPENSSL_armcap_P:
360
# ifdef __ILP32__
361
.long OPENSSL_armcap_P-.
362
# else
363
.quad OPENSSL_armcap_P-.
364
# endif
365
#endif
366
.asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
367
.align 2
368
___
369
370
if ($SZ==4) {
371
my $Ktbl="x3";
372
373
my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
374
my @MSG=map("v$_.16b",(4..7));
375
my ($W0,$W1)=("v16.4s","v17.4s");
376
my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
377
378
$code.=<<___;
379
#ifndef __KERNEL__
380
.type sha256_block_armv8,%function
381
.align 6
382
sha256_block_armv8:
383
.Lv8_entry:
384
stp x29,x30,[sp,#-16]!
385
add x29,sp,#0
386
387
ld1.32 {$ABCD,$EFGH},[$ctx]
388
adr $Ktbl,.LK256
389
390
.Loop_hw:
391
ld1 {@MSG[0]-@MSG[3]},[$inp],#64
392
sub $num,$num,#1
393
ld1.32 {$W0},[$Ktbl],#16
394
rev32 @MSG[0],@MSG[0]
395
rev32 @MSG[1],@MSG[1]
396
rev32 @MSG[2],@MSG[2]
397
rev32 @MSG[3],@MSG[3]
398
orr $ABCD_SAVE,$ABCD,$ABCD // offload
399
orr $EFGH_SAVE,$EFGH,$EFGH
400
___
401
for($i=0;$i<12;$i++) {
402
$code.=<<___;
403
ld1.32 {$W1},[$Ktbl],#16
404
add.i32 $W0,$W0,@MSG[0]
405
sha256su0 @MSG[0],@MSG[1]
406
orr $abcd,$ABCD,$ABCD
407
sha256h $ABCD,$EFGH,$W0
408
sha256h2 $EFGH,$abcd,$W0
409
sha256su1 @MSG[0],@MSG[2],@MSG[3]
410
___
411
($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
412
}
413
$code.=<<___;
414
ld1.32 {$W1},[$Ktbl],#16
415
add.i32 $W0,$W0,@MSG[0]
416
orr $abcd,$ABCD,$ABCD
417
sha256h $ABCD,$EFGH,$W0
418
sha256h2 $EFGH,$abcd,$W0
419
420
ld1.32 {$W0},[$Ktbl],#16
421
add.i32 $W1,$W1,@MSG[1]
422
orr $abcd,$ABCD,$ABCD
423
sha256h $ABCD,$EFGH,$W1
424
sha256h2 $EFGH,$abcd,$W1
425
426
ld1.32 {$W1},[$Ktbl]
427
add.i32 $W0,$W0,@MSG[2]
428
sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
429
orr $abcd,$ABCD,$ABCD
430
sha256h $ABCD,$EFGH,$W0
431
sha256h2 $EFGH,$abcd,$W0
432
433
add.i32 $W1,$W1,@MSG[3]
434
orr $abcd,$ABCD,$ABCD
435
sha256h $ABCD,$EFGH,$W1
436
sha256h2 $EFGH,$abcd,$W1
437
438
add.i32 $ABCD,$ABCD,$ABCD_SAVE
439
add.i32 $EFGH,$EFGH,$EFGH_SAVE
440
441
cbnz $num,.Loop_hw
442
443
st1.32 {$ABCD,$EFGH},[$ctx]
444
445
ldr x29,[sp],#16
446
ret
447
.size sha256_block_armv8,.-sha256_block_armv8
448
#endif
449
___
450
}
451
452
if ($SZ==4) { ######################################### NEON stuff #
453
# You'll surely note a lot of similarities with sha256-armv4 module,
454
# and of course it's not a coincidence. sha256-armv4 was used as
455
# initial template, but was adapted for ARMv8 instruction set and
456
# extensively re-tuned for all-round performance.
457
458
my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
459
my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
460
my $Ktbl="x16";
461
my $Xfer="x17";
462
my @X = map("q$_",(0..3));
463
my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
464
my $j=0;
465
466
sub AUTOLOAD() # thunk [simplified] x86-style perlasm
467
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
468
my $arg = pop;
469
$arg = "#$arg" if ($arg*1 eq $arg);
470
$code .= "\t$opcode\t".join(',',@_,$arg)."\n";
471
}
472
473
sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
474
sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
475
sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
476
477
sub Xupdate()
478
{ use integer;
479
my $body = shift;
480
my @insns = (&$body,&$body,&$body,&$body);
481
my ($a,$b,$c,$d,$e,$f,$g,$h);
482
483
&ext_8 ($T0,@X[0],@X[1],4); # X[1..4]
484
eval(shift(@insns));
485
eval(shift(@insns));
486
eval(shift(@insns));
487
&ext_8 ($T3,@X[2],@X[3],4); # X[9..12]
488
eval(shift(@insns));
489
eval(shift(@insns));
490
&mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15]
491
eval(shift(@insns));
492
eval(shift(@insns));
493
&ushr_32 ($T2,$T0,$sigma0[0]);
494
eval(shift(@insns));
495
&ushr_32 ($T1,$T0,$sigma0[2]);
496
eval(shift(@insns));
497
&add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12]
498
eval(shift(@insns));
499
&sli_32 ($T2,$T0,32-$sigma0[0]);
500
eval(shift(@insns));
501
eval(shift(@insns));
502
&ushr_32 ($T3,$T0,$sigma0[1]);
503
eval(shift(@insns));
504
eval(shift(@insns));
505
&eor_8 ($T1,$T1,$T2);
506
eval(shift(@insns));
507
eval(shift(@insns));
508
&sli_32 ($T3,$T0,32-$sigma0[1]);
509
eval(shift(@insns));
510
eval(shift(@insns));
511
&ushr_32 ($T4,$T7,$sigma1[0]);
512
eval(shift(@insns));
513
eval(shift(@insns));
514
&eor_8 ($T1,$T1,$T3); # sigma0(X[1..4])
515
eval(shift(@insns));
516
eval(shift(@insns));
517
&sli_32 ($T4,$T7,32-$sigma1[0]);
518
eval(shift(@insns));
519
eval(shift(@insns));
520
&ushr_32 ($T5,$T7,$sigma1[2]);
521
eval(shift(@insns));
522
eval(shift(@insns));
523
&ushr_32 ($T3,$T7,$sigma1[1]);
524
eval(shift(@insns));
525
eval(shift(@insns));
526
&add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
527
eval(shift(@insns));
528
eval(shift(@insns));
529
&sli_u32 ($T3,$T7,32-$sigma1[1]);
530
eval(shift(@insns));
531
eval(shift(@insns));
532
&eor_8 ($T5,$T5,$T4);
533
eval(shift(@insns));
534
eval(shift(@insns));
535
eval(shift(@insns));
536
&eor_8 ($T5,$T5,$T3); # sigma1(X[14..15])
537
eval(shift(@insns));
538
eval(shift(@insns));
539
eval(shift(@insns));
540
&add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
541
eval(shift(@insns));
542
eval(shift(@insns));
543
eval(shift(@insns));
544
&ushr_32 ($T6,@X[0],$sigma1[0]);
545
eval(shift(@insns));
546
&ushr_32 ($T7,@X[0],$sigma1[2]);
547
eval(shift(@insns));
548
eval(shift(@insns));
549
&sli_32 ($T6,@X[0],32-$sigma1[0]);
550
eval(shift(@insns));
551
&ushr_32 ($T5,@X[0],$sigma1[1]);
552
eval(shift(@insns));
553
eval(shift(@insns));
554
&eor_8 ($T7,$T7,$T6);
555
eval(shift(@insns));
556
eval(shift(@insns));
557
&sli_32 ($T5,@X[0],32-$sigma1[1]);
558
eval(shift(@insns));
559
eval(shift(@insns));
560
&ld1_32 ("{$T0}","[$Ktbl], #16");
561
eval(shift(@insns));
562
&eor_8 ($T7,$T7,$T5); # sigma1(X[16..17])
563
eval(shift(@insns));
564
eval(shift(@insns));
565
&eor_8 ($T5,$T5,$T5);
566
eval(shift(@insns));
567
eval(shift(@insns));
568
&mov (&Dhi($T5), &Dlo($T7));
569
eval(shift(@insns));
570
eval(shift(@insns));
571
eval(shift(@insns));
572
&add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
573
eval(shift(@insns));
574
eval(shift(@insns));
575
eval(shift(@insns));
576
&add_32 ($T0,$T0,@X[0]);
577
while($#insns>=1) { eval(shift(@insns)); }
578
&st1_32 ("{$T0}","[$Xfer], #16");
579
eval(shift(@insns));
580
581
push(@X,shift(@X)); # "rotate" X[]
582
}
583
584
sub Xpreload()
585
{ use integer;
586
my $body = shift;
587
my @insns = (&$body,&$body,&$body,&$body);
588
my ($a,$b,$c,$d,$e,$f,$g,$h);
589
590
eval(shift(@insns));
591
eval(shift(@insns));
592
&ld1_8 ("{@X[0]}","[$inp],#16");
593
eval(shift(@insns));
594
eval(shift(@insns));
595
&ld1_32 ("{$T0}","[$Ktbl],#16");
596
eval(shift(@insns));
597
eval(shift(@insns));
598
eval(shift(@insns));
599
eval(shift(@insns));
600
&rev32 (@X[0],@X[0]);
601
eval(shift(@insns));
602
eval(shift(@insns));
603
eval(shift(@insns));
604
eval(shift(@insns));
605
&add_32 ($T0,$T0,@X[0]);
606
foreach (@insns) { eval; } # remaining instructions
607
&st1_32 ("{$T0}","[$Xfer], #16");
608
609
push(@X,shift(@X)); # "rotate" X[]
610
}
611
612
sub body_00_15 () {
613
(
614
'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
615
'&add ($h,$h,$t1)', # h+=X[i]+K[i]
616
'&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
617
'&and ($t1,$f,$e)',
618
'&bic ($t4,$g,$e)',
619
'&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
620
'&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
621
'&orr ($t1,$t1,$t4)', # Ch(e,f,g)
622
'&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
623
'&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
624
'&add ($h,$h,$t1)', # h+=Ch(e,f,g)
625
'&ror ($t0,$t0,"#$Sigma1[0]")',
626
'&eor ($t2,$a,$b)', # a^b, b^c in next round
627
'&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
628
'&add ($h,$h,$t0)', # h+=Sigma1(e)
629
'&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
630
'&ldr ($t1,"[$Ktbl]") if ($j==15);'.
631
'&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
632
'&ror ($t4,$t4,"#$Sigma0[0]")',
633
'&add ($d,$d,$h)', # d+=h
634
'&eor ($t3,$t3,$b)', # Maj(a,b,c)
635
'$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
636
)
637
}
638
639
$code.=<<___;
640
#ifdef __KERNEL__
641
.globl sha256_block_neon
642
#endif
643
.type sha256_block_neon,%function
644
.align 4
645
sha256_block_neon:
646
.Lneon_entry:
647
stp x29, x30, [sp, #-16]!
648
mov x29, sp
649
sub sp,sp,#16*4
650
651
adr $Ktbl,.LK256
652
add $num,$inp,$num,lsl#6 // len to point at the end of inp
653
654
ld1.8 {@X[0]},[$inp], #16
655
ld1.8 {@X[1]},[$inp], #16
656
ld1.8 {@X[2]},[$inp], #16
657
ld1.8 {@X[3]},[$inp], #16
658
ld1.32 {$T0},[$Ktbl], #16
659
ld1.32 {$T1},[$Ktbl], #16
660
ld1.32 {$T2},[$Ktbl], #16
661
ld1.32 {$T3},[$Ktbl], #16
662
rev32 @X[0],@X[0] // yes, even on
663
rev32 @X[1],@X[1] // big-endian
664
rev32 @X[2],@X[2]
665
rev32 @X[3],@X[3]
666
mov $Xfer,sp
667
add.32 $T0,$T0,@X[0]
668
add.32 $T1,$T1,@X[1]
669
add.32 $T2,$T2,@X[2]
670
st1.32 {$T0-$T1},[$Xfer], #32
671
add.32 $T3,$T3,@X[3]
672
st1.32 {$T2-$T3},[$Xfer]
673
sub $Xfer,$Xfer,#32
674
675
ldp $A,$B,[$ctx]
676
ldp $C,$D,[$ctx,#8]
677
ldp $E,$F,[$ctx,#16]
678
ldp $G,$H,[$ctx,#24]
679
ldr $t1,[sp,#0]
680
mov $t2,wzr
681
eor $t3,$B,$C
682
mov $t4,wzr
683
b .L_00_48
684
685
.align 4
686
.L_00_48:
687
___
688
&Xupdate(\&body_00_15);
689
&Xupdate(\&body_00_15);
690
&Xupdate(\&body_00_15);
691
&Xupdate(\&body_00_15);
692
$code.=<<___;
693
cmp $t1,#0 // check for K256 terminator
694
ldr $t1,[sp,#0]
695
sub $Xfer,$Xfer,#64
696
bne .L_00_48
697
698
sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
699
cmp $inp,$num
700
mov $Xfer, #64
701
csel $Xfer, $Xfer, xzr, eq
702
sub $inp,$inp,$Xfer // avoid SEGV
703
mov $Xfer,sp
704
___
705
&Xpreload(\&body_00_15);
706
&Xpreload(\&body_00_15);
707
&Xpreload(\&body_00_15);
708
&Xpreload(\&body_00_15);
709
$code.=<<___;
710
add $A,$A,$t4 // h+=Sigma0(a) from the past
711
ldp $t0,$t1,[$ctx,#0]
712
add $A,$A,$t2 // h+=Maj(a,b,c) from the past
713
ldp $t2,$t3,[$ctx,#8]
714
add $A,$A,$t0 // accumulate
715
add $B,$B,$t1
716
ldp $t0,$t1,[$ctx,#16]
717
add $C,$C,$t2
718
add $D,$D,$t3
719
ldp $t2,$t3,[$ctx,#24]
720
add $E,$E,$t0
721
add $F,$F,$t1
722
ldr $t1,[sp,#0]
723
stp $A,$B,[$ctx,#0]
724
add $G,$G,$t2
725
mov $t2,wzr
726
stp $C,$D,[$ctx,#8]
727
add $H,$H,$t3
728
stp $E,$F,[$ctx,#16]
729
eor $t3,$B,$C
730
stp $G,$H,[$ctx,#24]
731
mov $t4,wzr
732
mov $Xfer,sp
733
b.ne .L_00_48
734
735
ldr x29,[x29]
736
add sp,sp,#16*4+16
737
ret
738
.size sha256_block_neon,.-sha256_block_neon
739
___
740
}
741
742
$code.=<<___;
743
#ifndef __KERNEL__
744
.comm OPENSSL_armcap_P,4,4
745
#endif
746
___
747
748
{ my %opcode = (
749
"sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
750
"sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
751
752
sub unsha256 {
753
my ($mnemonic,$arg)=@_;
754
755
$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
756
&&
757
sprintf ".inst\t0x%08x\t//%s %s",
758
$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
759
$mnemonic,$arg;
760
}
761
}
762
763
open SELF,$0;
764
while(<SELF>) {
765
next if (/^#!/);
766
last if (!s/^#/\/\// and !/^$/);
767
print;
768
}
769
close SELF;
770
771
foreach(split("\n",$code)) {
772
773
s/\`([^\`]*)\`/eval($1)/ge;
774
775
s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
776
777
s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
778
779
s/\.[ui]?8(\s)/$1/;
780
s/\.\w?32\b// and s/\.16b/\.4s/g;
781
m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;
782
783
print $_,"\n";
784
}
785
786
close STDOUT;
787
788