Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crypto/gf128mul.c
26282 views
1
/* gf128mul.c - GF(2^128) multiplication functions
2
*
3
* Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
4
* Copyright (c) 2006, Rik Snel <[email protected]>
5
*
6
* Based on Dr Brian Gladman's (GPL'd) work published at
7
* http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
8
* See the original copyright notice below.
9
*
10
* This program is free software; you can redistribute it and/or modify it
11
* under the terms of the GNU General Public License as published by the Free
12
* Software Foundation; either version 2 of the License, or (at your option)
13
* any later version.
14
*/
15
16
/*
17
---------------------------------------------------------------------------
18
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
19
20
LICENSE TERMS
21
22
The free distribution and use of this software in both source and binary
23
form is allowed (with or without changes) provided that:
24
25
1. distributions of this source code include the above copyright
26
notice, this list of conditions and the following disclaimer;
27
28
2. distributions in binary form include the above copyright
29
notice, this list of conditions and the following disclaimer
30
in the documentation and/or other associated materials;
31
32
3. the copyright holder's name is not used to endorse products
33
built using this software without specific written permission.
34
35
ALTERNATIVELY, provided that this notice is retained in full, this product
36
may be distributed under the terms of the GNU General Public License (GPL),
37
in which case the provisions of the GPL apply INSTEAD OF those given above.
38
39
DISCLAIMER
40
41
This software is provided 'as is' with no explicit or implied warranties
42
in respect of its properties, including, but not limited to, correctness
43
and/or fitness for purpose.
44
---------------------------------------------------------------------------
45
Issue 31/01/2006
46
47
This file provides fast multiplication in GF(2^128) as required by several
48
cryptographic authentication modes
49
*/
50
51
#include <crypto/gf128mul.h>
52
#include <linux/export.h>
53
#include <linux/kernel.h>
54
#include <linux/module.h>
55
#include <linux/slab.h>
56
57
#define gf128mul_dat(q) { \
58
q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
59
q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
60
q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
61
q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
62
q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
63
q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
64
q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
65
q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
66
q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
67
q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
68
q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
69
q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
70
q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
71
q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
72
q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
73
q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
74
q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
75
q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
76
q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
77
q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
78
q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
79
q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
80
q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
81
q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
82
q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
83
q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
84
q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
85
q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
86
q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
87
q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
88
q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
89
q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
90
}
91
92
/*
93
* Given a value i in 0..255 as the byte overflow when a field element
94
* in GF(2^128) is multiplied by x^8, the following macro returns the
95
* 16-bit value that must be XOR-ed into the low-degree end of the
96
* product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
97
*
98
* There are two versions of the macro, and hence two tables: one for
99
* the "be" convention where the highest-order bit is the coefficient of
100
* the highest-degree polynomial term, and one for the "le" convention
101
* where the highest-order bit is the coefficient of the lowest-degree
102
* polynomial term. In both cases the values are stored in CPU byte
103
* endianness such that the coefficients are ordered consistently across
104
* bytes, i.e. in the "be" table bits 15..0 of the stored value
105
* correspond to the coefficients of x^15..x^0, and in the "le" table
106
* bits 15..0 correspond to the coefficients of x^0..x^15.
107
*
108
* Therefore, provided that the appropriate byte endianness conversions
109
* are done by the multiplication functions (and these must be in place
110
* anyway to support both little endian and big endian CPUs), the "be"
111
* table can be used for multiplications of both "bbe" and "ble"
112
* elements, and the "le" table can be used for multiplications of both
113
* "lle" and "lbe" elements.
114
*/
115
116
#define xda_be(i) ( \
117
(i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
118
(i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
119
(i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
120
(i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
121
)
122
123
#define xda_le(i) ( \
124
(i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
125
(i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
126
(i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
127
(i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
128
)
129
130
static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
131
static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
132
133
/*
134
* The following functions multiply a field element by x^8 in
135
* the polynomial field representation. They use 64-bit word operations
136
* to gain speed but compensate for machine endianness and hence work
137
* correctly on both styles of machine.
138
*/
139
140
static void gf128mul_x8_lle(be128 *x)
141
{
142
u64 a = be64_to_cpu(x->a);
143
u64 b = be64_to_cpu(x->b);
144
u64 _tt = gf128mul_table_le[b & 0xff];
145
146
x->b = cpu_to_be64((b >> 8) | (a << 56));
147
x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
148
}
149
150
/* time invariant version of gf128mul_x8_lle */
151
static void gf128mul_x8_lle_ti(be128 *x)
152
{
153
u64 a = be64_to_cpu(x->a);
154
u64 b = be64_to_cpu(x->b);
155
u64 _tt = xda_le(b & 0xff); /* avoid table lookup */
156
157
x->b = cpu_to_be64((b >> 8) | (a << 56));
158
x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
159
}
160
161
static void gf128mul_x8_bbe(be128 *x)
162
{
163
u64 a = be64_to_cpu(x->a);
164
u64 b = be64_to_cpu(x->b);
165
u64 _tt = gf128mul_table_be[a >> 56];
166
167
x->a = cpu_to_be64((a << 8) | (b >> 56));
168
x->b = cpu_to_be64((b << 8) ^ _tt);
169
}
170
171
void gf128mul_x8_ble(le128 *r, const le128 *x)
172
{
173
u64 a = le64_to_cpu(x->a);
174
u64 b = le64_to_cpu(x->b);
175
u64 _tt = gf128mul_table_be[a >> 56];
176
177
r->a = cpu_to_le64((a << 8) | (b >> 56));
178
r->b = cpu_to_le64((b << 8) ^ _tt);
179
}
180
EXPORT_SYMBOL(gf128mul_x8_ble);
181
182
void gf128mul_lle(be128 *r, const be128 *b)
183
{
184
/*
185
* The p array should be aligned to twice the size of its element type,
186
* so that every even/odd pair is guaranteed to share a cacheline
187
* (assuming a cacheline size of 32 bytes or more, which is by far the
188
* most common). This ensures that each be128_xor() call in the loop
189
* takes the same amount of time regardless of the value of 'ch', which
190
* is derived from function parameter 'b', which is commonly used as a
191
* key, e.g., for GHASH. The odd array elements are all set to zero,
192
* making each be128_xor() a NOP if its associated bit in 'ch' is not
193
* set, and this is equivalent to calling be128_xor() conditionally.
194
* This approach aims to avoid leaking information about such keys
195
* through execution time variances.
196
*
197
* Unfortunately, __aligned(16) or higher does not work on x86 for
198
* variables on the stack so we need to perform the alignment by hand.
199
*/
200
be128 array[16 + 3] = {};
201
be128 *p = PTR_ALIGN(&array[0], 2 * sizeof(be128));
202
int i;
203
204
p[0] = *r;
205
for (i = 0; i < 7; ++i)
206
gf128mul_x_lle(&p[2 * i + 2], &p[2 * i]);
207
208
memset(r, 0, sizeof(*r));
209
for (i = 0;;) {
210
u8 ch = ((u8 *)b)[15 - i];
211
212
be128_xor(r, r, &p[ 0 + !(ch & 0x80)]);
213
be128_xor(r, r, &p[ 2 + !(ch & 0x40)]);
214
be128_xor(r, r, &p[ 4 + !(ch & 0x20)]);
215
be128_xor(r, r, &p[ 6 + !(ch & 0x10)]);
216
be128_xor(r, r, &p[ 8 + !(ch & 0x08)]);
217
be128_xor(r, r, &p[10 + !(ch & 0x04)]);
218
be128_xor(r, r, &p[12 + !(ch & 0x02)]);
219
be128_xor(r, r, &p[14 + !(ch & 0x01)]);
220
221
if (++i >= 16)
222
break;
223
224
gf128mul_x8_lle_ti(r); /* use the time invariant version */
225
}
226
}
227
EXPORT_SYMBOL(gf128mul_lle);
228
229
/* This version uses 64k bytes of table space.
230
A 16 byte buffer has to be multiplied by a 16 byte key
231
value in GF(2^128). If we consider a GF(2^128) value in
232
the buffer's lowest byte, we can construct a table of
233
the 256 16 byte values that result from the 256 values
234
of this byte. This requires 4096 bytes. But we also
235
need tables for each of the 16 higher bytes in the
236
buffer as well, which makes 64 kbytes in total.
237
*/
238
/* additional explanation
239
* t[0][BYTE] contains g*BYTE
240
* t[1][BYTE] contains g*x^8*BYTE
241
* ..
242
* t[15][BYTE] contains g*x^120*BYTE */
243
struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
244
{
245
struct gf128mul_64k *t;
246
int i, j, k;
247
248
t = kzalloc(sizeof(*t), GFP_KERNEL);
249
if (!t)
250
goto out;
251
252
for (i = 0; i < 16; i++) {
253
t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
254
if (!t->t[i]) {
255
gf128mul_free_64k(t);
256
t = NULL;
257
goto out;
258
}
259
}
260
261
t->t[0]->t[1] = *g;
262
for (j = 1; j <= 64; j <<= 1)
263
gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
264
265
for (i = 0;;) {
266
for (j = 2; j < 256; j += j)
267
for (k = 1; k < j; ++k)
268
be128_xor(&t->t[i]->t[j + k],
269
&t->t[i]->t[j], &t->t[i]->t[k]);
270
271
if (++i >= 16)
272
break;
273
274
for (j = 128; j > 0; j >>= 1) {
275
t->t[i]->t[j] = t->t[i - 1]->t[j];
276
gf128mul_x8_bbe(&t->t[i]->t[j]);
277
}
278
}
279
280
out:
281
return t;
282
}
283
EXPORT_SYMBOL(gf128mul_init_64k_bbe);
284
285
void gf128mul_free_64k(struct gf128mul_64k *t)
286
{
287
int i;
288
289
for (i = 0; i < 16; i++)
290
kfree_sensitive(t->t[i]);
291
kfree_sensitive(t);
292
}
293
EXPORT_SYMBOL(gf128mul_free_64k);
294
295
void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
296
{
297
u8 *ap = (u8 *)a;
298
be128 r[1];
299
int i;
300
301
*r = t->t[0]->t[ap[15]];
302
for (i = 1; i < 16; ++i)
303
be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
304
*a = *r;
305
}
306
EXPORT_SYMBOL(gf128mul_64k_bbe);
307
308
/* This version uses 4k bytes of table space.
309
A 16 byte buffer has to be multiplied by a 16 byte key
310
value in GF(2^128). If we consider a GF(2^128) value in a
311
single byte, we can construct a table of the 256 16 byte
312
values that result from the 256 values of this byte.
313
This requires 4096 bytes. If we take the highest byte in
314
the buffer and use this table to get the result, we then
315
have to multiply by x^120 to get the final value. For the
316
next highest byte the result has to be multiplied by x^112
317
and so on. But we can do this by accumulating the result
318
in an accumulator starting with the result for the top
319
byte. We repeatedly multiply the accumulator value by
320
x^8 and then add in (i.e. xor) the 16 bytes of the next
321
lower byte in the buffer, stopping when we reach the
322
lowest byte. This requires a 4096 byte table.
323
*/
324
struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
325
{
326
struct gf128mul_4k *t;
327
int j, k;
328
329
t = kzalloc(sizeof(*t), GFP_KERNEL);
330
if (!t)
331
goto out;
332
333
t->t[128] = *g;
334
for (j = 64; j > 0; j >>= 1)
335
gf128mul_x_lle(&t->t[j], &t->t[j+j]);
336
337
for (j = 2; j < 256; j += j)
338
for (k = 1; k < j; ++k)
339
be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
340
341
out:
342
return t;
343
}
344
EXPORT_SYMBOL(gf128mul_init_4k_lle);
345
346
void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
347
{
348
u8 *ap = (u8 *)a;
349
be128 r[1];
350
int i = 15;
351
352
*r = t->t[ap[15]];
353
while (i--) {
354
gf128mul_x8_lle(r);
355
be128_xor(r, r, &t->t[ap[i]]);
356
}
357
*a = *r;
358
}
359
EXPORT_SYMBOL(gf128mul_4k_lle);
360
361
MODULE_LICENSE("GPL");
362
MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
363
364