Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crypto/sha1.c
26285 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* SHA-1 and HMAC-SHA1 library functions
4
*/
5
6
#include <crypto/hmac.h>
7
#include <crypto/sha1.h>
8
#include <linux/bitops.h>
9
#include <linux/export.h>
10
#include <linux/kernel.h>
11
#include <linux/module.h>
12
#include <linux/string.h>
13
#include <linux/unaligned.h>
14
#include <linux/wordpart.h>
15
16
static const struct sha1_block_state sha1_iv = {
17
.h = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
18
};
19
20
/*
21
* If you have 32 registers or more, the compiler can (and should)
22
* try to change the array[] accesses into registers. However, on
23
* machines with less than ~25 registers, that won't really work,
24
* and at least gcc will make an unholy mess of it.
25
*
26
* So to avoid that mess which just slows things down, we force
27
* the stores to memory to actually happen (we might be better off
28
* with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
29
* suggested by Artur Skawina - that will also make gcc unable to
30
* try to do the silly "optimize away loads" part because it won't
31
* see what the value will be).
32
*
33
* Ben Herrenschmidt reports that on PPC, the C version comes close
34
* to the optimized asm with this (ie on PPC you don't want that
35
* 'volatile', since there are lots of registers).
36
*
37
* On ARM we get the best code generation by forcing a full memory barrier
38
* between each SHA_ROUND, otherwise gcc happily get wild with spilling and
39
* the stack frame size simply explode and performance goes down the drain.
40
*/
41
42
#ifdef CONFIG_X86
43
#define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
44
#elif defined(CONFIG_ARM)
45
#define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
46
#else
47
#define setW(x, val) (W(x) = (val))
48
#endif
49
50
/* This "rolls" over the 512-bit array */
51
#define W(x) (array[(x)&15])
52
53
/*
54
* Where do we get the source from? The first 16 iterations get it from
55
* the input data, the next mix it from the 512-bit array.
56
*/
57
#define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
58
#define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
59
60
#define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
61
__u32 TEMP = input(t); setW(t, TEMP); \
62
E += TEMP + rol32(A,5) + (fn) + (constant); \
63
B = ror32(B, 2); \
64
TEMP = E; E = D; D = C; C = B; B = A; A = TEMP; } while (0)
65
66
#define T_0_15(t, A, B, C, D, E) SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
67
#define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
68
#define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
69
#define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
70
#define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0xca62c1d6, A, B, C, D, E )
71
72
/**
73
* sha1_transform - single block SHA1 transform (deprecated)
74
*
75
* @digest: 160 bit digest to update
76
* @data: 512 bits of data to hash
77
* @array: 16 words of workspace (see note)
78
*
79
* This function executes SHA-1's internal compression function. It updates the
80
* 160-bit internal state (@digest) with a single 512-bit data block (@data).
81
*
82
* Don't use this function. SHA-1 is no longer considered secure. And even if
83
* you do have to use SHA-1, this isn't the correct way to hash something with
84
* SHA-1 as this doesn't handle padding and finalization.
85
*
86
* Note: If the hash is security sensitive, the caller should be sure
87
* to clear the workspace. This is left to the caller to avoid
88
* unnecessary clears between chained hashing operations.
89
*/
90
void sha1_transform(__u32 *digest, const char *data, __u32 *array)
91
{
92
__u32 A, B, C, D, E;
93
unsigned int i = 0;
94
95
A = digest[0];
96
B = digest[1];
97
C = digest[2];
98
D = digest[3];
99
E = digest[4];
100
101
/* Round 1 - iterations 0-16 take their input from 'data' */
102
for (; i < 16; ++i)
103
T_0_15(i, A, B, C, D, E);
104
105
/* Round 1 - tail. Input from 512-bit mixing array */
106
for (; i < 20; ++i)
107
T_16_19(i, A, B, C, D, E);
108
109
/* Round 2 */
110
for (; i < 40; ++i)
111
T_20_39(i, A, B, C, D, E);
112
113
/* Round 3 */
114
for (; i < 60; ++i)
115
T_40_59(i, A, B, C, D, E);
116
117
/* Round 4 */
118
for (; i < 80; ++i)
119
T_60_79(i, A, B, C, D, E);
120
121
digest[0] += A;
122
digest[1] += B;
123
digest[2] += C;
124
digest[3] += D;
125
digest[4] += E;
126
}
127
EXPORT_SYMBOL(sha1_transform);
128
129
/**
130
* sha1_init_raw - initialize the vectors for a SHA1 digest
131
* @buf: vector to initialize
132
*/
133
void sha1_init_raw(__u32 *buf)
134
{
135
buf[0] = 0x67452301;
136
buf[1] = 0xefcdab89;
137
buf[2] = 0x98badcfe;
138
buf[3] = 0x10325476;
139
buf[4] = 0xc3d2e1f0;
140
}
141
EXPORT_SYMBOL(sha1_init_raw);
142
143
static void __maybe_unused sha1_blocks_generic(struct sha1_block_state *state,
144
const u8 *data, size_t nblocks)
145
{
146
u32 workspace[SHA1_WORKSPACE_WORDS];
147
148
do {
149
sha1_transform(state->h, data, workspace);
150
data += SHA1_BLOCK_SIZE;
151
} while (--nblocks);
152
153
memzero_explicit(workspace, sizeof(workspace));
154
}
155
156
#ifdef CONFIG_CRYPTO_LIB_SHA1_ARCH
157
#include "sha1.h" /* $(SRCARCH)/sha1.h */
158
#else
159
#define sha1_blocks sha1_blocks_generic
160
#endif
161
162
void sha1_init(struct sha1_ctx *ctx)
163
{
164
ctx->state = sha1_iv;
165
ctx->bytecount = 0;
166
}
167
EXPORT_SYMBOL_GPL(sha1_init);
168
169
void sha1_update(struct sha1_ctx *ctx, const u8 *data, size_t len)
170
{
171
size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE;
172
173
ctx->bytecount += len;
174
175
if (partial + len >= SHA1_BLOCK_SIZE) {
176
size_t nblocks;
177
178
if (partial) {
179
size_t l = SHA1_BLOCK_SIZE - partial;
180
181
memcpy(&ctx->buf[partial], data, l);
182
data += l;
183
len -= l;
184
185
sha1_blocks(&ctx->state, ctx->buf, 1);
186
}
187
188
nblocks = len / SHA1_BLOCK_SIZE;
189
len %= SHA1_BLOCK_SIZE;
190
191
if (nblocks) {
192
sha1_blocks(&ctx->state, data, nblocks);
193
data += nblocks * SHA1_BLOCK_SIZE;
194
}
195
partial = 0;
196
}
197
if (len)
198
memcpy(&ctx->buf[partial], data, len);
199
}
200
EXPORT_SYMBOL_GPL(sha1_update);
201
202
static void __sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
203
{
204
u64 bitcount = ctx->bytecount << 3;
205
size_t partial = ctx->bytecount % SHA1_BLOCK_SIZE;
206
207
ctx->buf[partial++] = 0x80;
208
if (partial > SHA1_BLOCK_SIZE - 8) {
209
memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - partial);
210
sha1_blocks(&ctx->state, ctx->buf, 1);
211
partial = 0;
212
}
213
memset(&ctx->buf[partial], 0, SHA1_BLOCK_SIZE - 8 - partial);
214
*(__be64 *)&ctx->buf[SHA1_BLOCK_SIZE - 8] = cpu_to_be64(bitcount);
215
sha1_blocks(&ctx->state, ctx->buf, 1);
216
217
for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4)
218
put_unaligned_be32(ctx->state.h[i / 4], out + i);
219
}
220
221
void sha1_final(struct sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
222
{
223
__sha1_final(ctx, out);
224
memzero_explicit(ctx, sizeof(*ctx));
225
}
226
EXPORT_SYMBOL_GPL(sha1_final);
227
228
void sha1(const u8 *data, size_t len, u8 out[SHA1_DIGEST_SIZE])
229
{
230
struct sha1_ctx ctx;
231
232
sha1_init(&ctx);
233
sha1_update(&ctx, data, len);
234
sha1_final(&ctx, out);
235
}
236
EXPORT_SYMBOL_GPL(sha1);
237
238
static void __hmac_sha1_preparekey(struct sha1_block_state *istate,
239
struct sha1_block_state *ostate,
240
const u8 *raw_key, size_t raw_key_len)
241
{
242
union {
243
u8 b[SHA1_BLOCK_SIZE];
244
unsigned long w[SHA1_BLOCK_SIZE / sizeof(unsigned long)];
245
} derived_key = { 0 };
246
247
if (unlikely(raw_key_len > SHA1_BLOCK_SIZE))
248
sha1(raw_key, raw_key_len, derived_key.b);
249
else
250
memcpy(derived_key.b, raw_key, raw_key_len);
251
252
for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
253
derived_key.w[i] ^= REPEAT_BYTE(HMAC_IPAD_VALUE);
254
*istate = sha1_iv;
255
sha1_blocks(istate, derived_key.b, 1);
256
257
for (size_t i = 0; i < ARRAY_SIZE(derived_key.w); i++)
258
derived_key.w[i] ^= REPEAT_BYTE(HMAC_OPAD_VALUE ^
259
HMAC_IPAD_VALUE);
260
*ostate = sha1_iv;
261
sha1_blocks(ostate, derived_key.b, 1);
262
263
memzero_explicit(&derived_key, sizeof(derived_key));
264
}
265
266
void hmac_sha1_preparekey(struct hmac_sha1_key *key,
267
const u8 *raw_key, size_t raw_key_len)
268
{
269
__hmac_sha1_preparekey(&key->istate, &key->ostate,
270
raw_key, raw_key_len);
271
}
272
EXPORT_SYMBOL_GPL(hmac_sha1_preparekey);
273
274
void hmac_sha1_init(struct hmac_sha1_ctx *ctx, const struct hmac_sha1_key *key)
275
{
276
ctx->sha_ctx.state = key->istate;
277
ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE;
278
ctx->ostate = key->ostate;
279
}
280
EXPORT_SYMBOL_GPL(hmac_sha1_init);
281
282
void hmac_sha1_init_usingrawkey(struct hmac_sha1_ctx *ctx,
283
const u8 *raw_key, size_t raw_key_len)
284
{
285
__hmac_sha1_preparekey(&ctx->sha_ctx.state, &ctx->ostate,
286
raw_key, raw_key_len);
287
ctx->sha_ctx.bytecount = SHA1_BLOCK_SIZE;
288
}
289
EXPORT_SYMBOL_GPL(hmac_sha1_init_usingrawkey);
290
291
void hmac_sha1_final(struct hmac_sha1_ctx *ctx, u8 out[SHA1_DIGEST_SIZE])
292
{
293
/* Generate the padded input for the outer hash in ctx->sha_ctx.buf. */
294
__sha1_final(&ctx->sha_ctx, ctx->sha_ctx.buf);
295
memset(&ctx->sha_ctx.buf[SHA1_DIGEST_SIZE], 0,
296
SHA1_BLOCK_SIZE - SHA1_DIGEST_SIZE);
297
ctx->sha_ctx.buf[SHA1_DIGEST_SIZE] = 0x80;
298
*(__be32 *)&ctx->sha_ctx.buf[SHA1_BLOCK_SIZE - 4] =
299
cpu_to_be32(8 * (SHA1_BLOCK_SIZE + SHA1_DIGEST_SIZE));
300
301
/* Compute the outer hash, which gives the HMAC value. */
302
sha1_blocks(&ctx->ostate, ctx->sha_ctx.buf, 1);
303
for (size_t i = 0; i < SHA1_DIGEST_SIZE; i += 4)
304
put_unaligned_be32(ctx->ostate.h[i / 4], out + i);
305
306
memzero_explicit(ctx, sizeof(*ctx));
307
}
308
EXPORT_SYMBOL_GPL(hmac_sha1_final);
309
310
void hmac_sha1(const struct hmac_sha1_key *key,
311
const u8 *data, size_t data_len, u8 out[SHA1_DIGEST_SIZE])
312
{
313
struct hmac_sha1_ctx ctx;
314
315
hmac_sha1_init(&ctx, key);
316
hmac_sha1_update(&ctx, data, data_len);
317
hmac_sha1_final(&ctx, out);
318
}
319
EXPORT_SYMBOL_GPL(hmac_sha1);
320
321
void hmac_sha1_usingrawkey(const u8 *raw_key, size_t raw_key_len,
322
const u8 *data, size_t data_len,
323
u8 out[SHA1_DIGEST_SIZE])
324
{
325
struct hmac_sha1_ctx ctx;
326
327
hmac_sha1_init_usingrawkey(&ctx, raw_key, raw_key_len);
328
hmac_sha1_update(&ctx, data, data_len);
329
hmac_sha1_final(&ctx, out);
330
}
331
EXPORT_SYMBOL_GPL(hmac_sha1_usingrawkey);
332
333
#ifdef sha1_mod_init_arch
334
static int __init sha1_mod_init(void)
335
{
336
sha1_mod_init_arch();
337
return 0;
338
}
339
subsys_initcall(sha1_mod_init);
340
341
static void __exit sha1_mod_exit(void)
342
{
343
}
344
module_exit(sha1_mod_exit);
345
#endif
346
347
MODULE_DESCRIPTION("SHA-1 and HMAC-SHA1 library functions");
348
MODULE_LICENSE("GPL");
349
350