Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crypto/sha3.c
38179 views
1
// SPDX-License-Identifier: GPL-2.0-or-later
2
/*
3
* SHA-3, as specified in
4
* https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
5
*
6
* SHA-3 code by Jeff Garzik <[email protected]>
7
* Ard Biesheuvel <[email protected]>
8
* David Howells <[email protected]>
9
*
10
* See also Documentation/crypto/sha3.rst
11
*/
12
13
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
#include <crypto/sha3.h>
15
#include <crypto/utils.h>
16
#include <linux/export.h>
17
#include <linux/kernel.h>
18
#include <linux/module.h>
19
#include <linux/unaligned.h>
20
#include "fips.h"
21
22
/*
23
* On some 32-bit architectures, such as h8300, GCC ends up using over 1 KB of
24
* stack if the round calculation gets inlined into the loop in
25
* sha3_keccakf_generic(). On the other hand, on 64-bit architectures with
26
* plenty of [64-bit wide] general purpose registers, not inlining it severely
27
* hurts performance. So let's use 64-bitness as a heuristic to decide whether
28
* to inline or not.
29
*/
30
#ifdef CONFIG_64BIT
31
#define SHA3_INLINE inline
32
#else
33
#define SHA3_INLINE noinline
34
#endif
35
36
#define SHA3_KECCAK_ROUNDS 24
37
38
static const u64 sha3_keccakf_rndc[SHA3_KECCAK_ROUNDS] = {
39
0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL,
40
0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL,
41
0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL,
42
0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
43
0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL,
44
0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL,
45
0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL,
46
0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
47
};
48
49
/*
50
* Perform a single round of Keccak mixing.
51
*/
52
static SHA3_INLINE void sha3_keccakf_one_round_generic(u64 st[25], int round)
53
{
54
u64 t[5], tt, bc[5];
55
56
/* Theta */
57
bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
58
bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
59
bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
60
bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
61
bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
62
63
t[0] = bc[4] ^ rol64(bc[1], 1);
64
t[1] = bc[0] ^ rol64(bc[2], 1);
65
t[2] = bc[1] ^ rol64(bc[3], 1);
66
t[3] = bc[2] ^ rol64(bc[4], 1);
67
t[4] = bc[3] ^ rol64(bc[0], 1);
68
69
st[0] ^= t[0];
70
71
/* Rho Pi */
72
tt = st[1];
73
st[ 1] = rol64(st[ 6] ^ t[1], 44);
74
st[ 6] = rol64(st[ 9] ^ t[4], 20);
75
st[ 9] = rol64(st[22] ^ t[2], 61);
76
st[22] = rol64(st[14] ^ t[4], 39);
77
st[14] = rol64(st[20] ^ t[0], 18);
78
st[20] = rol64(st[ 2] ^ t[2], 62);
79
st[ 2] = rol64(st[12] ^ t[2], 43);
80
st[12] = rol64(st[13] ^ t[3], 25);
81
st[13] = rol64(st[19] ^ t[4], 8);
82
st[19] = rol64(st[23] ^ t[3], 56);
83
st[23] = rol64(st[15] ^ t[0], 41);
84
st[15] = rol64(st[ 4] ^ t[4], 27);
85
st[ 4] = rol64(st[24] ^ t[4], 14);
86
st[24] = rol64(st[21] ^ t[1], 2);
87
st[21] = rol64(st[ 8] ^ t[3], 55);
88
st[ 8] = rol64(st[16] ^ t[1], 45);
89
st[16] = rol64(st[ 5] ^ t[0], 36);
90
st[ 5] = rol64(st[ 3] ^ t[3], 28);
91
st[ 3] = rol64(st[18] ^ t[3], 21);
92
st[18] = rol64(st[17] ^ t[2], 15);
93
st[17] = rol64(st[11] ^ t[1], 10);
94
st[11] = rol64(st[ 7] ^ t[2], 6);
95
st[ 7] = rol64(st[10] ^ t[0], 3);
96
st[10] = rol64( tt ^ t[1], 1);
97
98
/* Chi */
99
bc[ 0] = ~st[ 1] & st[ 2];
100
bc[ 1] = ~st[ 2] & st[ 3];
101
bc[ 2] = ~st[ 3] & st[ 4];
102
bc[ 3] = ~st[ 4] & st[ 0];
103
bc[ 4] = ~st[ 0] & st[ 1];
104
st[ 0] ^= bc[ 0];
105
st[ 1] ^= bc[ 1];
106
st[ 2] ^= bc[ 2];
107
st[ 3] ^= bc[ 3];
108
st[ 4] ^= bc[ 4];
109
110
bc[ 0] = ~st[ 6] & st[ 7];
111
bc[ 1] = ~st[ 7] & st[ 8];
112
bc[ 2] = ~st[ 8] & st[ 9];
113
bc[ 3] = ~st[ 9] & st[ 5];
114
bc[ 4] = ~st[ 5] & st[ 6];
115
st[ 5] ^= bc[ 0];
116
st[ 6] ^= bc[ 1];
117
st[ 7] ^= bc[ 2];
118
st[ 8] ^= bc[ 3];
119
st[ 9] ^= bc[ 4];
120
121
bc[ 0] = ~st[11] & st[12];
122
bc[ 1] = ~st[12] & st[13];
123
bc[ 2] = ~st[13] & st[14];
124
bc[ 3] = ~st[14] & st[10];
125
bc[ 4] = ~st[10] & st[11];
126
st[10] ^= bc[ 0];
127
st[11] ^= bc[ 1];
128
st[12] ^= bc[ 2];
129
st[13] ^= bc[ 3];
130
st[14] ^= bc[ 4];
131
132
bc[ 0] = ~st[16] & st[17];
133
bc[ 1] = ~st[17] & st[18];
134
bc[ 2] = ~st[18] & st[19];
135
bc[ 3] = ~st[19] & st[15];
136
bc[ 4] = ~st[15] & st[16];
137
st[15] ^= bc[ 0];
138
st[16] ^= bc[ 1];
139
st[17] ^= bc[ 2];
140
st[18] ^= bc[ 3];
141
st[19] ^= bc[ 4];
142
143
bc[ 0] = ~st[21] & st[22];
144
bc[ 1] = ~st[22] & st[23];
145
bc[ 2] = ~st[23] & st[24];
146
bc[ 3] = ~st[24] & st[20];
147
bc[ 4] = ~st[20] & st[21];
148
st[20] ^= bc[ 0];
149
st[21] ^= bc[ 1];
150
st[22] ^= bc[ 2];
151
st[23] ^= bc[ 3];
152
st[24] ^= bc[ 4];
153
154
/* Iota */
155
st[0] ^= sha3_keccakf_rndc[round];
156
}
157
158
/* Generic implementation of the Keccak-f[1600] permutation */
159
static void sha3_keccakf_generic(struct sha3_state *state)
160
{
161
/*
162
* Temporarily convert the state words from little-endian to native-
163
* endian so that they can be operated on. Note that on little-endian
164
* machines this conversion is a no-op and is optimized out.
165
*/
166
167
for (int i = 0; i < ARRAY_SIZE(state->words); i++)
168
state->native_words[i] = le64_to_cpu(state->words[i]);
169
170
for (int round = 0; round < SHA3_KECCAK_ROUNDS; round++)
171
sha3_keccakf_one_round_generic(state->native_words, round);
172
173
for (int i = 0; i < ARRAY_SIZE(state->words); i++)
174
state->words[i] = cpu_to_le64(state->native_words[i]);
175
}
176
177
/*
178
* Generic implementation of absorbing the given nonzero number of full blocks
179
* into the sponge function Keccak[r=8*block_size, c=1600-8*block_size].
180
*/
181
static void __maybe_unused
182
sha3_absorb_blocks_generic(struct sha3_state *state, const u8 *data,
183
size_t nblocks, size_t block_size)
184
{
185
do {
186
for (size_t i = 0; i < block_size; i += 8)
187
state->words[i / 8] ^= get_unaligned((__le64 *)&data[i]);
188
sha3_keccakf_generic(state);
189
data += block_size;
190
} while (--nblocks);
191
}
192
193
#ifdef CONFIG_CRYPTO_LIB_SHA3_ARCH
194
#include "sha3.h" /* $(SRCARCH)/sha3.h */
195
#else
196
#define sha3_keccakf sha3_keccakf_generic
197
#define sha3_absorb_blocks sha3_absorb_blocks_generic
198
#endif
199
200
void __sha3_update(struct __sha3_ctx *ctx, const u8 *in, size_t in_len)
201
{
202
const size_t block_size = ctx->block_size;
203
size_t absorb_offset = ctx->absorb_offset;
204
205
/* Warn if squeezing has already begun. */
206
WARN_ON_ONCE(absorb_offset >= block_size);
207
208
if (absorb_offset && absorb_offset + in_len >= block_size) {
209
crypto_xor(&ctx->state.bytes[absorb_offset], in,
210
block_size - absorb_offset);
211
in += block_size - absorb_offset;
212
in_len -= block_size - absorb_offset;
213
sha3_keccakf(&ctx->state);
214
absorb_offset = 0;
215
}
216
217
if (in_len >= block_size) {
218
size_t nblocks = in_len / block_size;
219
220
sha3_absorb_blocks(&ctx->state, in, nblocks, block_size);
221
in += nblocks * block_size;
222
in_len -= nblocks * block_size;
223
}
224
225
if (in_len) {
226
crypto_xor(&ctx->state.bytes[absorb_offset], in, in_len);
227
absorb_offset += in_len;
228
}
229
ctx->absorb_offset = absorb_offset;
230
}
231
EXPORT_SYMBOL_GPL(__sha3_update);
232
233
void sha3_final(struct sha3_ctx *sha3_ctx, u8 *out)
234
{
235
struct __sha3_ctx *ctx = &sha3_ctx->ctx;
236
237
ctx->state.bytes[ctx->absorb_offset] ^= 0x06;
238
ctx->state.bytes[ctx->block_size - 1] ^= 0x80;
239
sha3_keccakf(&ctx->state);
240
memcpy(out, ctx->state.bytes, ctx->digest_size);
241
sha3_zeroize_ctx(sha3_ctx);
242
}
243
EXPORT_SYMBOL_GPL(sha3_final);
244
245
void shake_squeeze(struct shake_ctx *shake_ctx, u8 *out, size_t out_len)
246
{
247
struct __sha3_ctx *ctx = &shake_ctx->ctx;
248
const size_t block_size = ctx->block_size;
249
size_t squeeze_offset = ctx->squeeze_offset;
250
251
if (ctx->absorb_offset < block_size) {
252
/* First squeeze: */
253
254
/* Add the domain separation suffix and padding. */
255
ctx->state.bytes[ctx->absorb_offset] ^= 0x1f;
256
ctx->state.bytes[block_size - 1] ^= 0x80;
257
258
/* Indicate that squeezing has begun. */
259
ctx->absorb_offset = block_size;
260
261
/*
262
* Indicate that no output is pending yet, i.e. sha3_keccakf()
263
* will need to be called before the first copy.
264
*/
265
squeeze_offset = block_size;
266
}
267
while (out_len) {
268
if (squeeze_offset == block_size) {
269
sha3_keccakf(&ctx->state);
270
squeeze_offset = 0;
271
}
272
size_t copy = min(out_len, block_size - squeeze_offset);
273
274
memcpy(out, &ctx->state.bytes[squeeze_offset], copy);
275
out += copy;
276
out_len -= copy;
277
squeeze_offset += copy;
278
}
279
ctx->squeeze_offset = squeeze_offset;
280
}
281
EXPORT_SYMBOL_GPL(shake_squeeze);
282
283
#ifndef sha3_224_arch
284
static inline bool sha3_224_arch(const u8 *in, size_t in_len,
285
u8 out[SHA3_224_DIGEST_SIZE])
286
{
287
return false;
288
}
289
#endif
290
#ifndef sha3_256_arch
291
static inline bool sha3_256_arch(const u8 *in, size_t in_len,
292
u8 out[SHA3_256_DIGEST_SIZE])
293
{
294
return false;
295
}
296
#endif
297
#ifndef sha3_384_arch
298
static inline bool sha3_384_arch(const u8 *in, size_t in_len,
299
u8 out[SHA3_384_DIGEST_SIZE])
300
{
301
return false;
302
}
303
#endif
304
#ifndef sha3_512_arch
305
static inline bool sha3_512_arch(const u8 *in, size_t in_len,
306
u8 out[SHA3_512_DIGEST_SIZE])
307
{
308
return false;
309
}
310
#endif
311
312
void sha3_224(const u8 *in, size_t in_len, u8 out[SHA3_224_DIGEST_SIZE])
313
{
314
struct sha3_ctx ctx;
315
316
if (sha3_224_arch(in, in_len, out))
317
return;
318
sha3_224_init(&ctx);
319
sha3_update(&ctx, in, in_len);
320
sha3_final(&ctx, out);
321
}
322
EXPORT_SYMBOL_GPL(sha3_224);
323
324
void sha3_256(const u8 *in, size_t in_len, u8 out[SHA3_256_DIGEST_SIZE])
325
{
326
struct sha3_ctx ctx;
327
328
if (sha3_256_arch(in, in_len, out))
329
return;
330
sha3_256_init(&ctx);
331
sha3_update(&ctx, in, in_len);
332
sha3_final(&ctx, out);
333
}
334
EXPORT_SYMBOL_GPL(sha3_256);
335
336
void sha3_384(const u8 *in, size_t in_len, u8 out[SHA3_384_DIGEST_SIZE])
337
{
338
struct sha3_ctx ctx;
339
340
if (sha3_384_arch(in, in_len, out))
341
return;
342
sha3_384_init(&ctx);
343
sha3_update(&ctx, in, in_len);
344
sha3_final(&ctx, out);
345
}
346
EXPORT_SYMBOL_GPL(sha3_384);
347
348
void sha3_512(const u8 *in, size_t in_len, u8 out[SHA3_512_DIGEST_SIZE])
349
{
350
struct sha3_ctx ctx;
351
352
if (sha3_512_arch(in, in_len, out))
353
return;
354
sha3_512_init(&ctx);
355
sha3_update(&ctx, in, in_len);
356
sha3_final(&ctx, out);
357
}
358
EXPORT_SYMBOL_GPL(sha3_512);
359
360
void shake128(const u8 *in, size_t in_len, u8 *out, size_t out_len)
361
{
362
struct shake_ctx ctx;
363
364
shake128_init(&ctx);
365
shake_update(&ctx, in, in_len);
366
shake_squeeze(&ctx, out, out_len);
367
shake_zeroize_ctx(&ctx);
368
}
369
EXPORT_SYMBOL_GPL(shake128);
370
371
void shake256(const u8 *in, size_t in_len, u8 *out, size_t out_len)
372
{
373
struct shake_ctx ctx;
374
375
shake256_init(&ctx);
376
shake_update(&ctx, in, in_len);
377
shake_squeeze(&ctx, out, out_len);
378
shake_zeroize_ctx(&ctx);
379
}
380
EXPORT_SYMBOL_GPL(shake256);
381
382
#if defined(sha3_mod_init_arch) || defined(CONFIG_CRYPTO_FIPS)
383
static int __init sha3_mod_init(void)
384
{
385
#ifdef sha3_mod_init_arch
386
sha3_mod_init_arch();
387
#endif
388
if (fips_enabled) {
389
/*
390
* FIPS cryptographic algorithm self-test. As per the FIPS
391
* Implementation Guidance, testing any SHA-3 algorithm
392
* satisfies the test requirement for all of them.
393
*/
394
u8 hash[SHA3_256_DIGEST_SIZE];
395
396
sha3_256(fips_test_data, sizeof(fips_test_data), hash);
397
if (memcmp(fips_test_sha3_256_value, hash, sizeof(hash)) != 0)
398
panic("sha3: FIPS self-test failed\n");
399
}
400
return 0;
401
}
402
subsys_initcall(sha3_mod_init);
403
404
static void __exit sha3_mod_exit(void)
405
{
406
}
407
module_exit(sha3_mod_exit);
408
#endif
409
410
MODULE_DESCRIPTION("SHA-3 library functions");
411
MODULE_LICENSE("GPL");
412
413