Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crypto/x86/sha512-avx-asm.S
26292 views
1
########################################################################
2
# Implement fast SHA-512 with AVX instructions. (x86_64)
3
#
4
# Copyright (C) 2013 Intel Corporation.
5
#
6
# Authors:
7
# James Guilford <[email protected]>
8
# Kirk Yap <[email protected]>
9
# David Cote <[email protected]>
10
# Tim Chen <[email protected]>
11
#
12
# This software is available to you under a choice of one of two
13
# licenses. You may choose to be licensed under the terms of the GNU
14
# General Public License (GPL) Version 2, available from the file
15
# COPYING in the main directory of this source tree, or the
16
# OpenIB.org BSD license below:
17
#
18
# Redistribution and use in source and binary forms, with or
19
# without modification, are permitted provided that the following
20
# conditions are met:
21
#
22
# - Redistributions of source code must retain the above
23
# copyright notice, this list of conditions and the following
24
# disclaimer.
25
#
26
# - Redistributions in binary form must reproduce the above
27
# copyright notice, this list of conditions and the following
28
# disclaimer in the documentation and/or other materials
29
# provided with the distribution.
30
#
31
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38
# SOFTWARE.
39
#
40
########################################################################
41
#
42
# This code is described in an Intel White-Paper:
43
# "Fast SHA-512 Implementations on Intel Architecture Processors"
44
#
45
# To find it, surf to http://www.intel.com/p/en_US/embedded
46
# and search for that title.
47
#
48
########################################################################
49
50
#include <linux/linkage.h>
51
52
.text
53
54
# Virtual Registers
55
# ARG1
56
digest = %rdi
57
# ARG2
58
msg = %rsi
59
# ARG3
60
msglen = %rdx
61
T1 = %rcx
62
T2 = %r8
63
a_64 = %r9
64
b_64 = %r10
65
c_64 = %r11
66
d_64 = %r12
67
e_64 = %r13
68
f_64 = %r14
69
g_64 = %r15
70
h_64 = %rbx
71
tmp0 = %rax
72
73
# Local variables (stack frame)
74
75
# Message Schedule
76
W_SIZE = 80*8
77
# W[t] + K[t] | W[t+1] + K[t+1]
78
WK_SIZE = 2*8
79
80
frame_W = 0
81
frame_WK = frame_W + W_SIZE
82
frame_size = frame_WK + WK_SIZE
83
84
# Useful QWORD "arrays" for simpler memory references
85
# MSG, DIGEST, K_t, W_t are arrays
86
# WK_2(t) points to 1 of 2 qwords at frame.WK depending on t being odd/even
87
88
# Input message (arg1)
89
#define MSG(i) 8*i(msg)
90
91
# Output Digest (arg2)
92
#define DIGEST(i) 8*i(digest)
93
94
# SHA Constants (static mem)
95
#define K_t(i) 8*i+K512(%rip)
96
97
# Message Schedule (stack frame)
98
#define W_t(i) 8*i+frame_W(%rsp)
99
100
# W[t]+K[t] (stack frame)
101
#define WK_2(i) 8*((i%2))+frame_WK(%rsp)
102
103
.macro RotateState
104
# Rotate symbols a..h right
105
TMP = h_64
106
h_64 = g_64
107
g_64 = f_64
108
f_64 = e_64
109
e_64 = d_64
110
d_64 = c_64
111
c_64 = b_64
112
b_64 = a_64
113
a_64 = TMP
114
.endm
115
116
.macro RORQ p1 p2
117
# shld is faster than ror on Sandybridge
118
shld $(64-\p2), \p1, \p1
119
.endm
120
121
.macro SHA512_Round rnd
122
# Compute Round %%t
123
mov f_64, T1 # T1 = f
124
mov e_64, tmp0 # tmp = e
125
xor g_64, T1 # T1 = f ^ g
126
RORQ tmp0, 23 # 41 # tmp = e ror 23
127
and e_64, T1 # T1 = (f ^ g) & e
128
xor e_64, tmp0 # tmp = (e ror 23) ^ e
129
xor g_64, T1 # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
130
idx = \rnd
131
add WK_2(idx), T1 # W[t] + K[t] from message scheduler
132
RORQ tmp0, 4 # 18 # tmp = ((e ror 23) ^ e) ror 4
133
xor e_64, tmp0 # tmp = (((e ror 23) ^ e) ror 4) ^ e
134
mov a_64, T2 # T2 = a
135
add h_64, T1 # T1 = CH(e,f,g) + W[t] + K[t] + h
136
RORQ tmp0, 14 # 14 # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
137
add tmp0, T1 # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
138
mov a_64, tmp0 # tmp = a
139
xor c_64, T2 # T2 = a ^ c
140
and c_64, tmp0 # tmp = a & c
141
and b_64, T2 # T2 = (a ^ c) & b
142
xor tmp0, T2 # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
143
mov a_64, tmp0 # tmp = a
144
RORQ tmp0, 5 # 39 # tmp = a ror 5
145
xor a_64, tmp0 # tmp = (a ror 5) ^ a
146
add T1, d_64 # e(next_state) = d + T1
147
RORQ tmp0, 6 # 34 # tmp = ((a ror 5) ^ a) ror 6
148
xor a_64, tmp0 # tmp = (((a ror 5) ^ a) ror 6) ^ a
149
lea (T1, T2), h_64 # a(next_state) = T1 + Maj(a,b,c)
150
RORQ tmp0, 28 # 28 # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
151
add tmp0, h_64 # a(next_state) = T1 + Maj(a,b,c) S0(a)
152
RotateState
153
.endm
154
155
.macro SHA512_2Sched_2Round_avx rnd
156
# Compute rounds t-2 and t-1
157
# Compute message schedule QWORDS t and t+1
158
159
# Two rounds are computed based on the values for K[t-2]+W[t-2] and
160
# K[t-1]+W[t-1] which were previously stored at WK_2 by the message
161
# scheduler.
162
# The two new schedule QWORDS are stored at [W_t(t)] and [W_t(t+1)].
163
# They are then added to their respective SHA512 constants at
164
# [K_t(t)] and [K_t(t+1)] and stored at dqword [WK_2(t)]
165
# For brievity, the comments following vectored instructions only refer to
166
# the first of a pair of QWORDS.
167
# Eg. XMM4=W[t-2] really means XMM4={W[t-2]|W[t-1]}
168
# The computation of the message schedule and the rounds are tightly
169
# stitched to take advantage of instruction-level parallelism.
170
171
idx = \rnd - 2
172
vmovdqa W_t(idx), %xmm4 # XMM4 = W[t-2]
173
idx = \rnd - 15
174
vmovdqu W_t(idx), %xmm5 # XMM5 = W[t-15]
175
mov f_64, T1
176
vpsrlq $61, %xmm4, %xmm0 # XMM0 = W[t-2]>>61
177
mov e_64, tmp0
178
vpsrlq $1, %xmm5, %xmm6 # XMM6 = W[t-15]>>1
179
xor g_64, T1
180
RORQ tmp0, 23 # 41
181
vpsrlq $19, %xmm4, %xmm1 # XMM1 = W[t-2]>>19
182
and e_64, T1
183
xor e_64, tmp0
184
vpxor %xmm1, %xmm0, %xmm0 # XMM0 = W[t-2]>>61 ^ W[t-2]>>19
185
xor g_64, T1
186
idx = \rnd
187
add WK_2(idx), T1#
188
vpsrlq $8, %xmm5, %xmm7 # XMM7 = W[t-15]>>8
189
RORQ tmp0, 4 # 18
190
vpsrlq $6, %xmm4, %xmm2 # XMM2 = W[t-2]>>6
191
xor e_64, tmp0
192
mov a_64, T2
193
add h_64, T1
194
vpxor %xmm7, %xmm6, %xmm6 # XMM6 = W[t-15]>>1 ^ W[t-15]>>8
195
RORQ tmp0, 14 # 14
196
add tmp0, T1
197
vpsrlq $7, %xmm5, %xmm8 # XMM8 = W[t-15]>>7
198
mov a_64, tmp0
199
xor c_64, T2
200
vpsllq $(64-61), %xmm4, %xmm3 # XMM3 = W[t-2]<<3
201
and c_64, tmp0
202
and b_64, T2
203
vpxor %xmm3, %xmm2, %xmm2 # XMM2 = W[t-2]>>6 ^ W[t-2]<<3
204
xor tmp0, T2
205
mov a_64, tmp0
206
vpsllq $(64-1), %xmm5, %xmm9 # XMM9 = W[t-15]<<63
207
RORQ tmp0, 5 # 39
208
vpxor %xmm9, %xmm8, %xmm8 # XMM8 = W[t-15]>>7 ^ W[t-15]<<63
209
xor a_64, tmp0
210
add T1, d_64
211
RORQ tmp0, 6 # 34
212
xor a_64, tmp0
213
vpxor %xmm8, %xmm6, %xmm6 # XMM6 = W[t-15]>>1 ^ W[t-15]>>8 ^
214
# W[t-15]>>7 ^ W[t-15]<<63
215
lea (T1, T2), h_64
216
RORQ tmp0, 28 # 28
217
vpsllq $(64-19), %xmm4, %xmm4 # XMM4 = W[t-2]<<25
218
add tmp0, h_64
219
RotateState
220
vpxor %xmm4, %xmm0, %xmm0 # XMM0 = W[t-2]>>61 ^ W[t-2]>>19 ^
221
# W[t-2]<<25
222
mov f_64, T1
223
vpxor %xmm2, %xmm0, %xmm0 # XMM0 = s1(W[t-2])
224
mov e_64, tmp0
225
xor g_64, T1
226
idx = \rnd - 16
227
vpaddq W_t(idx), %xmm0, %xmm0 # XMM0 = s1(W[t-2]) + W[t-16]
228
idx = \rnd - 7
229
vmovdqu W_t(idx), %xmm1 # XMM1 = W[t-7]
230
RORQ tmp0, 23 # 41
231
and e_64, T1
232
xor e_64, tmp0
233
xor g_64, T1
234
vpsllq $(64-8), %xmm5, %xmm5 # XMM5 = W[t-15]<<56
235
idx = \rnd + 1
236
add WK_2(idx), T1
237
vpxor %xmm5, %xmm6, %xmm6 # XMM6 = s0(W[t-15])
238
RORQ tmp0, 4 # 18
239
vpaddq %xmm6, %xmm0, %xmm0 # XMM0 = s1(W[t-2]) + W[t-16] + s0(W[t-15])
240
xor e_64, tmp0
241
vpaddq %xmm1, %xmm0, %xmm0 # XMM0 = W[t] = s1(W[t-2]) + W[t-7] +
242
# s0(W[t-15]) + W[t-16]
243
mov a_64, T2
244
add h_64, T1
245
RORQ tmp0, 14 # 14
246
add tmp0, T1
247
idx = \rnd
248
vmovdqa %xmm0, W_t(idx) # Store W[t]
249
vpaddq K_t(idx), %xmm0, %xmm0 # Compute W[t]+K[t]
250
vmovdqa %xmm0, WK_2(idx) # Store W[t]+K[t] for next rounds
251
mov a_64, tmp0
252
xor c_64, T2
253
and c_64, tmp0
254
and b_64, T2
255
xor tmp0, T2
256
mov a_64, tmp0
257
RORQ tmp0, 5 # 39
258
xor a_64, tmp0
259
add T1, d_64
260
RORQ tmp0, 6 # 34
261
xor a_64, tmp0
262
lea (T1, T2), h_64
263
RORQ tmp0, 28 # 28
264
add tmp0, h_64
265
RotateState
266
.endm
267
268
########################################################################
269
# void sha512_transform_avx(struct sha512_block_state *state,
270
# const u8 *data, size_t nblocks);
271
# Purpose: Updates the SHA512 digest stored at "state" with the message
272
# stored in "data".
273
# The size of the message pointed to by "data" must be an integer multiple
274
# of SHA512 message blocks.
275
# "nblocks" is the message length in SHA512 blocks. Must be >= 1.
276
########################################################################
277
SYM_FUNC_START(sha512_transform_avx)
278
279
# Save GPRs
280
push %rbx
281
push %r12
282
push %r13
283
push %r14
284
push %r15
285
286
# Allocate Stack Space
287
push %rbp
288
mov %rsp, %rbp
289
sub $frame_size, %rsp
290
and $~(0x20 - 1), %rsp
291
292
.Lupdateblock:
293
294
# Load state variables
295
mov DIGEST(0), a_64
296
mov DIGEST(1), b_64
297
mov DIGEST(2), c_64
298
mov DIGEST(3), d_64
299
mov DIGEST(4), e_64
300
mov DIGEST(5), f_64
301
mov DIGEST(6), g_64
302
mov DIGEST(7), h_64
303
304
t = 0
305
.rept 80/2 + 1
306
# (80 rounds) / (2 rounds/iteration) + (1 iteration)
307
# +1 iteration because the scheduler leads hashing by 1 iteration
308
.if t < 2
309
# BSWAP 2 QWORDS
310
vmovdqa XMM_QWORD_BSWAP(%rip), %xmm1
311
vmovdqu MSG(t), %xmm0
312
vpshufb %xmm1, %xmm0, %xmm0 # BSWAP
313
vmovdqa %xmm0, W_t(t) # Store Scheduled Pair
314
vpaddq K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
315
vmovdqa %xmm0, WK_2(t) # Store into WK for rounds
316
.elseif t < 16
317
# BSWAP 2 QWORDS# Compute 2 Rounds
318
vmovdqu MSG(t), %xmm0
319
vpshufb %xmm1, %xmm0, %xmm0 # BSWAP
320
SHA512_Round t-2 # Round t-2
321
vmovdqa %xmm0, W_t(t) # Store Scheduled Pair
322
vpaddq K_t(t), %xmm0, %xmm0 # Compute W[t]+K[t]
323
SHA512_Round t-1 # Round t-1
324
vmovdqa %xmm0, WK_2(t)# Store W[t]+K[t] into WK
325
.elseif t < 79
326
# Schedule 2 QWORDS# Compute 2 Rounds
327
SHA512_2Sched_2Round_avx t
328
.else
329
# Compute 2 Rounds
330
SHA512_Round t-2
331
SHA512_Round t-1
332
.endif
333
t = t+2
334
.endr
335
336
# Update digest
337
add a_64, DIGEST(0)
338
add b_64, DIGEST(1)
339
add c_64, DIGEST(2)
340
add d_64, DIGEST(3)
341
add e_64, DIGEST(4)
342
add f_64, DIGEST(5)
343
add g_64, DIGEST(6)
344
add h_64, DIGEST(7)
345
346
# Advance to next message block
347
add $16*8, msg
348
dec msglen
349
jnz .Lupdateblock
350
351
# Restore Stack Pointer
352
mov %rbp, %rsp
353
pop %rbp
354
355
# Restore GPRs
356
pop %r15
357
pop %r14
358
pop %r13
359
pop %r12
360
pop %rbx
361
362
RET
363
SYM_FUNC_END(sha512_transform_avx)
364
365
########################################################################
366
### Binary Data
367
368
.section .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
369
.align 16
370
# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
371
XMM_QWORD_BSWAP:
372
.octa 0x08090a0b0c0d0e0f0001020304050607
373
374
# Mergeable 640-byte rodata section. This allows linker to merge the table
375
# with other, exactly the same 640-byte fragment of another rodata section
376
# (if such section exists).
377
.section .rodata.cst640.K512, "aM", @progbits, 640
378
.align 64
379
# K[t] used in SHA512 hashing
380
K512:
381
.quad 0x428a2f98d728ae22,0x7137449123ef65cd
382
.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
383
.quad 0x3956c25bf348b538,0x59f111f1b605d019
384
.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
385
.quad 0xd807aa98a3030242,0x12835b0145706fbe
386
.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
387
.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
388
.quad 0x9bdc06a725c71235,0xc19bf174cf692694
389
.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
390
.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
391
.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
392
.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
393
.quad 0x983e5152ee66dfab,0xa831c66d2db43210
394
.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
395
.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
396
.quad 0x06ca6351e003826f,0x142929670a0e6e70
397
.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
398
.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
399
.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
400
.quad 0x81c2c92e47edaee6,0x92722c851482353b
401
.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
402
.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
403
.quad 0xd192e819d6ef5218,0xd69906245565a910
404
.quad 0xf40e35855771202a,0x106aa07032bbd1b8
405
.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
406
.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
407
.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
408
.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
409
.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
410
.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
411
.quad 0x90befffa23631e28,0xa4506cebde82bde9
412
.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
413
.quad 0xca273eceea26619c,0xd186b8c721c0c207
414
.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
415
.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
416
.quad 0x113f9804bef90dae,0x1b710b35131c471b
417
.quad 0x28db77f523047d84,0x32caab7b40c72493
418
.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
419
.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
420
.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
421
422