Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crypto/x86/sha512-avx2-asm.S
26292 views
1
########################################################################
2
# Implement fast SHA-512 with AVX2 instructions. (x86_64)
3
#
4
# Copyright (C) 2013 Intel Corporation.
5
#
6
# Authors:
7
# James Guilford <[email protected]>
8
# Kirk Yap <[email protected]>
9
# David Cote <[email protected]>
10
# Tim Chen <[email protected]>
11
#
12
# This software is available to you under a choice of one of two
13
# licenses. You may choose to be licensed under the terms of the GNU
14
# General Public License (GPL) Version 2, available from the file
15
# COPYING in the main directory of this source tree, or the
16
# OpenIB.org BSD license below:
17
#
18
# Redistribution and use in source and binary forms, with or
19
# without modification, are permitted provided that the following
20
# conditions are met:
21
#
22
# - Redistributions of source code must retain the above
23
# copyright notice, this list of conditions and the following
24
# disclaimer.
25
#
26
# - Redistributions in binary form must reproduce the above
27
# copyright notice, this list of conditions and the following
28
# disclaimer in the documentation and/or other materials
29
# provided with the distribution.
30
#
31
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38
# SOFTWARE.
39
#
40
########################################################################
41
#
42
# This code is described in an Intel White-Paper:
43
# "Fast SHA-512 Implementations on Intel Architecture Processors"
44
#
45
# To find it, surf to http://www.intel.com/p/en_US/embedded
46
# and search for that title.
47
#
48
########################################################################
49
# This code schedules 1 blocks at a time, with 4 lanes per block
50
########################################################################
51
52
#include <linux/linkage.h>
53
54
.text
55
56
# Virtual Registers
57
Y_0 = %ymm4
58
Y_1 = %ymm5
59
Y_2 = %ymm6
60
Y_3 = %ymm7
61
62
YTMP0 = %ymm0
63
YTMP1 = %ymm1
64
YTMP2 = %ymm2
65
YTMP3 = %ymm3
66
YTMP4 = %ymm8
67
XFER = YTMP0
68
69
BYTE_FLIP_MASK = %ymm9
70
71
# 1st arg is %rdi, which is saved to the stack and accessed later via %r12
72
CTX1 = %rdi
73
CTX2 = %r12
74
# 2nd arg
75
INP = %rsi
76
# 3rd arg
77
NUM_BLKS = %rdx
78
79
c = %rcx
80
d = %r8
81
e = %rdx
82
y3 = %rsi
83
84
TBL = %rdi # clobbers CTX1
85
86
a = %rax
87
b = %rbx
88
89
f = %r9
90
g = %r10
91
h = %r11
92
old_h = %r11
93
94
T1 = %r12 # clobbers CTX2
95
y0 = %r13
96
y1 = %r14
97
y2 = %r15
98
99
# Local variables (stack frame)
100
XFER_SIZE = 4*8
101
SRND_SIZE = 1*8
102
INP_SIZE = 1*8
103
INPEND_SIZE = 1*8
104
CTX_SIZE = 1*8
105
106
frame_XFER = 0
107
frame_SRND = frame_XFER + XFER_SIZE
108
frame_INP = frame_SRND + SRND_SIZE
109
frame_INPEND = frame_INP + INP_SIZE
110
frame_CTX = frame_INPEND + INPEND_SIZE
111
frame_size = frame_CTX + CTX_SIZE
112
113
## assume buffers not aligned
114
#define VMOVDQ vmovdqu
115
116
# addm [mem], reg
117
# Add reg to mem using reg-mem add and store
118
.macro addm p1 p2
119
add \p1, \p2
120
mov \p2, \p1
121
.endm
122
123
124
# COPY_YMM_AND_BSWAP ymm, [mem], byte_flip_mask
125
# Load ymm with mem and byte swap each dword
126
.macro COPY_YMM_AND_BSWAP p1 p2 p3
127
VMOVDQ \p2, \p1
128
vpshufb \p3, \p1, \p1
129
.endm
130
# rotate_Ys
131
# Rotate values of symbols Y0...Y3
132
.macro rotate_Ys
133
Y_ = Y_0
134
Y_0 = Y_1
135
Y_1 = Y_2
136
Y_2 = Y_3
137
Y_3 = Y_
138
.endm
139
140
# RotateState
141
.macro RotateState
142
# Rotate symbols a..h right
143
old_h = h
144
TMP_ = h
145
h = g
146
g = f
147
f = e
148
e = d
149
d = c
150
c = b
151
b = a
152
a = TMP_
153
.endm
154
155
# macro MY_VPALIGNR YDST, YSRC1, YSRC2, RVAL
156
# YDST = {YSRC1, YSRC2} >> RVAL*8
157
.macro MY_VPALIGNR YDST YSRC1 YSRC2 RVAL
158
vperm2f128 $0x3, \YSRC2, \YSRC1, \YDST # YDST = {YS1_LO, YS2_HI}
159
vpalignr $\RVAL, \YSRC2, \YDST, \YDST # YDST = {YDS1, YS2} >> RVAL*8
160
.endm
161
162
.macro FOUR_ROUNDS_AND_SCHED
163
################################### RND N + 0 #########################################
164
165
# Extract w[t-7]
166
MY_VPALIGNR YTMP0, Y_3, Y_2, 8 # YTMP0 = W[-7]
167
# Calculate w[t-16] + w[t-7]
168
vpaddq Y_0, YTMP0, YTMP0 # YTMP0 = W[-7] + W[-16]
169
# Extract w[t-15]
170
MY_VPALIGNR YTMP1, Y_1, Y_0, 8 # YTMP1 = W[-15]
171
172
# Calculate sigma0
173
174
# Calculate w[t-15] ror 1
175
vpsrlq $1, YTMP1, YTMP2
176
vpsllq $(64-1), YTMP1, YTMP3
177
vpor YTMP2, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1
178
# Calculate w[t-15] shr 7
179
vpsrlq $7, YTMP1, YTMP4 # YTMP4 = W[-15] >> 7
180
181
mov a, y3 # y3 = a # MAJA
182
rorx $41, e, y0 # y0 = e >> 41 # S1A
183
rorx $18, e, y1 # y1 = e >> 18 # S1B
184
add frame_XFER(%rsp),h # h = k + w + h # --
185
or c, y3 # y3 = a|c # MAJA
186
mov f, y2 # y2 = f # CH
187
rorx $34, a, T1 # T1 = a >> 34 # S0B
188
189
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
190
xor g, y2 # y2 = f^g # CH
191
rorx $14, e, y1 # y1 = (e >> 14) # S1
192
193
and e, y2 # y2 = (f^g)&e # CH
194
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
195
rorx $39, a, y1 # y1 = a >> 39 # S0A
196
add h, d # d = k + w + h + d # --
197
198
and b, y3 # y3 = (a|c)&b # MAJA
199
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
200
rorx $28, a, T1 # T1 = (a >> 28) # S0
201
202
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
203
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
204
mov a, T1 # T1 = a # MAJB
205
and c, T1 # T1 = a&c # MAJB
206
207
add y0, y2 # y2 = S1 + CH # --
208
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
209
add y1, h # h = k + w + h + S0 # --
210
211
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
212
213
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
214
add y3, h # h = t1 + S0 + MAJ # --
215
216
RotateState
217
218
################################### RND N + 1 #########################################
219
220
# Calculate w[t-15] ror 8
221
vpsrlq $8, YTMP1, YTMP2
222
vpsllq $(64-8), YTMP1, YTMP1
223
vpor YTMP2, YTMP1, YTMP1 # YTMP1 = W[-15] ror 8
224
# XOR the three components
225
vpxor YTMP4, YTMP3, YTMP3 # YTMP3 = W[-15] ror 1 ^ W[-15] >> 7
226
vpxor YTMP1, YTMP3, YTMP1 # YTMP1 = s0
227
228
229
# Add three components, w[t-16], w[t-7] and sigma0
230
vpaddq YTMP1, YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0
231
# Move to appropriate lanes for calculating w[16] and w[17]
232
vperm2f128 $0x0, YTMP0, YTMP0, Y_0 # Y_0 = W[-16] + W[-7] + s0 {BABA}
233
# Move to appropriate lanes for calculating w[18] and w[19]
234
vpand MASK_YMM_LO(%rip), YTMP0, YTMP0 # YTMP0 = W[-16] + W[-7] + s0 {DC00}
235
236
# Calculate w[16] and w[17] in both 128 bit lanes
237
238
# Calculate sigma1 for w[16] and w[17] on both 128 bit lanes
239
vperm2f128 $0x11, Y_3, Y_3, YTMP2 # YTMP2 = W[-2] {BABA}
240
vpsrlq $6, YTMP2, YTMP4 # YTMP4 = W[-2] >> 6 {BABA}
241
242
243
mov a, y3 # y3 = a # MAJA
244
rorx $41, e, y0 # y0 = e >> 41 # S1A
245
rorx $18, e, y1 # y1 = e >> 18 # S1B
246
add 1*8+frame_XFER(%rsp), h # h = k + w + h # --
247
or c, y3 # y3 = a|c # MAJA
248
249
250
mov f, y2 # y2 = f # CH
251
rorx $34, a, T1 # T1 = a >> 34 # S0B
252
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
253
xor g, y2 # y2 = f^g # CH
254
255
256
rorx $14, e, y1 # y1 = (e >> 14) # S1
257
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
258
rorx $39, a, y1 # y1 = a >> 39 # S0A
259
and e, y2 # y2 = (f^g)&e # CH
260
add h, d # d = k + w + h + d # --
261
262
and b, y3 # y3 = (a|c)&b # MAJA
263
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
264
265
rorx $28, a, T1 # T1 = (a >> 28) # S0
266
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
267
268
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
269
mov a, T1 # T1 = a # MAJB
270
and c, T1 # T1 = a&c # MAJB
271
add y0, y2 # y2 = S1 + CH # --
272
273
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
274
add y1, h # h = k + w + h + S0 # --
275
276
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
277
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
278
add y3, h # h = t1 + S0 + MAJ # --
279
280
RotateState
281
282
283
################################### RND N + 2 #########################################
284
285
vpsrlq $19, YTMP2, YTMP3 # YTMP3 = W[-2] >> 19 {BABA}
286
vpsllq $(64-19), YTMP2, YTMP1 # YTMP1 = W[-2] << 19 {BABA}
287
vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {BABA}
288
vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {BABA}
289
vpsrlq $61, YTMP2, YTMP3 # YTMP3 = W[-2] >> 61 {BABA}
290
vpsllq $(64-61), YTMP2, YTMP1 # YTMP1 = W[-2] << 61 {BABA}
291
vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {BABA}
292
vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
293
# (W[-2] ror 61) ^ (W[-2] >> 6) {BABA}
294
295
# Add sigma1 to the other compunents to get w[16] and w[17]
296
vpaddq YTMP4, Y_0, Y_0 # Y_0 = {W[1], W[0], W[1], W[0]}
297
298
# Calculate sigma1 for w[18] and w[19] for upper 128 bit lane
299
vpsrlq $6, Y_0, YTMP4 # YTMP4 = W[-2] >> 6 {DC--}
300
301
mov a, y3 # y3 = a # MAJA
302
rorx $41, e, y0 # y0 = e >> 41 # S1A
303
add 2*8+frame_XFER(%rsp), h # h = k + w + h # --
304
305
rorx $18, e, y1 # y1 = e >> 18 # S1B
306
or c, y3 # y3 = a|c # MAJA
307
mov f, y2 # y2 = f # CH
308
xor g, y2 # y2 = f^g # CH
309
310
rorx $34, a, T1 # T1 = a >> 34 # S0B
311
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
312
and e, y2 # y2 = (f^g)&e # CH
313
314
rorx $14, e, y1 # y1 = (e >> 14) # S1
315
add h, d # d = k + w + h + d # --
316
and b, y3 # y3 = (a|c)&b # MAJA
317
318
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
319
rorx $39, a, y1 # y1 = a >> 39 # S0A
320
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
321
322
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
323
rorx $28, a, T1 # T1 = (a >> 28) # S0
324
325
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
326
mov a, T1 # T1 = a # MAJB
327
and c, T1 # T1 = a&c # MAJB
328
add y0, y2 # y2 = S1 + CH # --
329
330
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
331
add y1, h # h = k + w + h + S0 # --
332
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
333
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
334
335
add y3, h # h = t1 + S0 + MAJ # --
336
337
RotateState
338
339
################################### RND N + 3 #########################################
340
341
vpsrlq $19, Y_0, YTMP3 # YTMP3 = W[-2] >> 19 {DC--}
342
vpsllq $(64-19), Y_0, YTMP1 # YTMP1 = W[-2] << 19 {DC--}
343
vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 19 {DC--}
344
vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = W[-2] ror 19 ^ W[-2] >> 6 {DC--}
345
vpsrlq $61, Y_0, YTMP3 # YTMP3 = W[-2] >> 61 {DC--}
346
vpsllq $(64-61), Y_0, YTMP1 # YTMP1 = W[-2] << 61 {DC--}
347
vpor YTMP1, YTMP3, YTMP3 # YTMP3 = W[-2] ror 61 {DC--}
348
vpxor YTMP3, YTMP4, YTMP4 # YTMP4 = s1 = (W[-2] ror 19) ^
349
# (W[-2] ror 61) ^ (W[-2] >> 6) {DC--}
350
351
# Add the sigma0 + w[t-7] + w[t-16] for w[18] and w[19]
352
# to newly calculated sigma1 to get w[18] and w[19]
353
vpaddq YTMP4, YTMP0, YTMP2 # YTMP2 = {W[3], W[2], --, --}
354
355
# Form w[19, w[18], w17], w[16]
356
vpblendd $0xF0, YTMP2, Y_0, Y_0 # Y_0 = {W[3], W[2], W[1], W[0]}
357
358
mov a, y3 # y3 = a # MAJA
359
rorx $41, e, y0 # y0 = e >> 41 # S1A
360
rorx $18, e, y1 # y1 = e >> 18 # S1B
361
add 3*8+frame_XFER(%rsp), h # h = k + w + h # --
362
or c, y3 # y3 = a|c # MAJA
363
364
365
mov f, y2 # y2 = f # CH
366
rorx $34, a, T1 # T1 = a >> 34 # S0B
367
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
368
xor g, y2 # y2 = f^g # CH
369
370
371
rorx $14, e, y1 # y1 = (e >> 14) # S1
372
and e, y2 # y2 = (f^g)&e # CH
373
add h, d # d = k + w + h + d # --
374
and b, y3 # y3 = (a|c)&b # MAJA
375
376
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
377
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
378
379
rorx $39, a, y1 # y1 = a >> 39 # S0A
380
add y0, y2 # y2 = S1 + CH # --
381
382
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
383
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
384
385
rorx $28, a, T1 # T1 = (a >> 28) # S0
386
387
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
388
mov a, T1 # T1 = a # MAJB
389
and c, T1 # T1 = a&c # MAJB
390
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
391
392
add y1, h # h = k + w + h + S0 # --
393
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
394
add y3, h # h = t1 + S0 + MAJ # --
395
396
RotateState
397
398
rotate_Ys
399
.endm
400
401
.macro DO_4ROUNDS
402
403
################################### RND N + 0 #########################################
404
405
mov f, y2 # y2 = f # CH
406
rorx $41, e, y0 # y0 = e >> 41 # S1A
407
rorx $18, e, y1 # y1 = e >> 18 # S1B
408
xor g, y2 # y2 = f^g # CH
409
410
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
411
rorx $14, e, y1 # y1 = (e >> 14) # S1
412
and e, y2 # y2 = (f^g)&e # CH
413
414
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
415
rorx $34, a, T1 # T1 = a >> 34 # S0B
416
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
417
rorx $39, a, y1 # y1 = a >> 39 # S0A
418
mov a, y3 # y3 = a # MAJA
419
420
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
421
rorx $28, a, T1 # T1 = (a >> 28) # S0
422
add frame_XFER(%rsp), h # h = k + w + h # --
423
or c, y3 # y3 = a|c # MAJA
424
425
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
426
mov a, T1 # T1 = a # MAJB
427
and b, y3 # y3 = (a|c)&b # MAJA
428
and c, T1 # T1 = a&c # MAJB
429
add y0, y2 # y2 = S1 + CH # --
430
431
add h, d # d = k + w + h + d # --
432
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
433
add y1, h # h = k + w + h + S0 # --
434
435
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
436
437
RotateState
438
439
################################### RND N + 1 #########################################
440
441
add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
442
mov f, y2 # y2 = f # CH
443
rorx $41, e, y0 # y0 = e >> 41 # S1A
444
rorx $18, e, y1 # y1 = e >> 18 # S1B
445
xor g, y2 # y2 = f^g # CH
446
447
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
448
rorx $14, e, y1 # y1 = (e >> 14) # S1
449
and e, y2 # y2 = (f^g)&e # CH
450
add y3, old_h # h = t1 + S0 + MAJ # --
451
452
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
453
rorx $34, a, T1 # T1 = a >> 34 # S0B
454
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
455
rorx $39, a, y1 # y1 = a >> 39 # S0A
456
mov a, y3 # y3 = a # MAJA
457
458
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
459
rorx $28, a, T1 # T1 = (a >> 28) # S0
460
add 8*1+frame_XFER(%rsp), h # h = k + w + h # --
461
or c, y3 # y3 = a|c # MAJA
462
463
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
464
mov a, T1 # T1 = a # MAJB
465
and b, y3 # y3 = (a|c)&b # MAJA
466
and c, T1 # T1 = a&c # MAJB
467
add y0, y2 # y2 = S1 + CH # --
468
469
add h, d # d = k + w + h + d # --
470
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
471
add y1, h # h = k + w + h + S0 # --
472
473
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
474
475
RotateState
476
477
################################### RND N + 2 #########################################
478
479
add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
480
mov f, y2 # y2 = f # CH
481
rorx $41, e, y0 # y0 = e >> 41 # S1A
482
rorx $18, e, y1 # y1 = e >> 18 # S1B
483
xor g, y2 # y2 = f^g # CH
484
485
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
486
rorx $14, e, y1 # y1 = (e >> 14) # S1
487
and e, y2 # y2 = (f^g)&e # CH
488
add y3, old_h # h = t1 + S0 + MAJ # --
489
490
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
491
rorx $34, a, T1 # T1 = a >> 34 # S0B
492
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
493
rorx $39, a, y1 # y1 = a >> 39 # S0A
494
mov a, y3 # y3 = a # MAJA
495
496
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
497
rorx $28, a, T1 # T1 = (a >> 28) # S0
498
add 8*2+frame_XFER(%rsp), h # h = k + w + h # --
499
or c, y3 # y3 = a|c # MAJA
500
501
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
502
mov a, T1 # T1 = a # MAJB
503
and b, y3 # y3 = (a|c)&b # MAJA
504
and c, T1 # T1 = a&c # MAJB
505
add y0, y2 # y2 = S1 + CH # --
506
507
add h, d # d = k + w + h + d # --
508
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
509
add y1, h # h = k + w + h + S0 # --
510
511
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
512
513
RotateState
514
515
################################### RND N + 3 #########################################
516
517
add y2, old_h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
518
mov f, y2 # y2 = f # CH
519
rorx $41, e, y0 # y0 = e >> 41 # S1A
520
rorx $18, e, y1 # y1 = e >> 18 # S1B
521
xor g, y2 # y2 = f^g # CH
522
523
xor y1, y0 # y0 = (e>>41) ^ (e>>18) # S1
524
rorx $14, e, y1 # y1 = (e >> 14) # S1
525
and e, y2 # y2 = (f^g)&e # CH
526
add y3, old_h # h = t1 + S0 + MAJ # --
527
528
xor y1, y0 # y0 = (e>>41) ^ (e>>18) ^ (e>>14) # S1
529
rorx $34, a, T1 # T1 = a >> 34 # S0B
530
xor g, y2 # y2 = CH = ((f^g)&e)^g # CH
531
rorx $39, a, y1 # y1 = a >> 39 # S0A
532
mov a, y3 # y3 = a # MAJA
533
534
xor T1, y1 # y1 = (a>>39) ^ (a>>34) # S0
535
rorx $28, a, T1 # T1 = (a >> 28) # S0
536
add 8*3+frame_XFER(%rsp), h # h = k + w + h # --
537
or c, y3 # y3 = a|c # MAJA
538
539
xor T1, y1 # y1 = (a>>39) ^ (a>>34) ^ (a>>28) # S0
540
mov a, T1 # T1 = a # MAJB
541
and b, y3 # y3 = (a|c)&b # MAJA
542
and c, T1 # T1 = a&c # MAJB
543
add y0, y2 # y2 = S1 + CH # --
544
545
546
add h, d # d = k + w + h + d # --
547
or T1, y3 # y3 = MAJ = (a|c)&b)|(a&c) # MAJ
548
add y1, h # h = k + w + h + S0 # --
549
550
add y2, d # d = k + w + h + d + S1 + CH = d + t1 # --
551
552
add y2, h # h = k + w + h + S0 + S1 + CH = t1 + S0# --
553
554
add y3, h # h = t1 + S0 + MAJ # --
555
556
RotateState
557
558
.endm
559
560
########################################################################
561
# void sha512_transform_rorx(struct sha512_block_state *state,
562
# const u8 *data, size_t nblocks);
563
# Purpose: Updates the SHA512 digest stored at "state" with the message
564
# stored in "data".
565
# The size of the message pointed to by "data" must be an integer multiple
566
# of SHA512 message blocks.
567
# "nblocks" is the message length in SHA512 blocks. Must be >= 1.
568
########################################################################
569
SYM_FUNC_START(sha512_transform_rorx)
570
571
# Save GPRs
572
push %rbx
573
push %r12
574
push %r13
575
push %r14
576
push %r15
577
578
# Allocate Stack Space
579
push %rbp
580
mov %rsp, %rbp
581
sub $frame_size, %rsp
582
and $~(0x20 - 1), %rsp
583
584
shl $7, NUM_BLKS # convert to bytes
585
add INP, NUM_BLKS # pointer to end of data
586
mov NUM_BLKS, frame_INPEND(%rsp)
587
588
## load initial digest
589
mov 8*0(CTX1), a
590
mov 8*1(CTX1), b
591
mov 8*2(CTX1), c
592
mov 8*3(CTX1), d
593
mov 8*4(CTX1), e
594
mov 8*5(CTX1), f
595
mov 8*6(CTX1), g
596
mov 8*7(CTX1), h
597
598
# save %rdi (CTX) before it gets clobbered
599
mov %rdi, frame_CTX(%rsp)
600
601
vmovdqa PSHUFFLE_BYTE_FLIP_MASK(%rip), BYTE_FLIP_MASK
602
603
.Lloop0:
604
lea K512(%rip), TBL
605
606
## byte swap first 16 dwords
607
COPY_YMM_AND_BSWAP Y_0, (INP), BYTE_FLIP_MASK
608
COPY_YMM_AND_BSWAP Y_1, 1*32(INP), BYTE_FLIP_MASK
609
COPY_YMM_AND_BSWAP Y_2, 2*32(INP), BYTE_FLIP_MASK
610
COPY_YMM_AND_BSWAP Y_3, 3*32(INP), BYTE_FLIP_MASK
611
612
mov INP, frame_INP(%rsp)
613
614
## schedule 64 input dwords, by doing 12 rounds of 4 each
615
movq $4, frame_SRND(%rsp)
616
617
.align 16
618
.Lloop1:
619
vpaddq (TBL), Y_0, XFER
620
vmovdqa XFER, frame_XFER(%rsp)
621
FOUR_ROUNDS_AND_SCHED
622
623
vpaddq 1*32(TBL), Y_0, XFER
624
vmovdqa XFER, frame_XFER(%rsp)
625
FOUR_ROUNDS_AND_SCHED
626
627
vpaddq 2*32(TBL), Y_0, XFER
628
vmovdqa XFER, frame_XFER(%rsp)
629
FOUR_ROUNDS_AND_SCHED
630
631
vpaddq 3*32(TBL), Y_0, XFER
632
vmovdqa XFER, frame_XFER(%rsp)
633
add $(4*32), TBL
634
FOUR_ROUNDS_AND_SCHED
635
636
subq $1, frame_SRND(%rsp)
637
jne .Lloop1
638
639
movq $2, frame_SRND(%rsp)
640
.Lloop2:
641
vpaddq (TBL), Y_0, XFER
642
vmovdqa XFER, frame_XFER(%rsp)
643
DO_4ROUNDS
644
vpaddq 1*32(TBL), Y_1, XFER
645
vmovdqa XFER, frame_XFER(%rsp)
646
add $(2*32), TBL
647
DO_4ROUNDS
648
649
vmovdqa Y_2, Y_0
650
vmovdqa Y_3, Y_1
651
652
subq $1, frame_SRND(%rsp)
653
jne .Lloop2
654
655
mov frame_CTX(%rsp), CTX2
656
addm 8*0(CTX2), a
657
addm 8*1(CTX2), b
658
addm 8*2(CTX2), c
659
addm 8*3(CTX2), d
660
addm 8*4(CTX2), e
661
addm 8*5(CTX2), f
662
addm 8*6(CTX2), g
663
addm 8*7(CTX2), h
664
665
mov frame_INP(%rsp), INP
666
add $128, INP
667
cmp frame_INPEND(%rsp), INP
668
jne .Lloop0
669
670
# Restore Stack Pointer
671
mov %rbp, %rsp
672
pop %rbp
673
674
# Restore GPRs
675
pop %r15
676
pop %r14
677
pop %r13
678
pop %r12
679
pop %rbx
680
681
vzeroupper
682
RET
683
SYM_FUNC_END(sha512_transform_rorx)
684
685
########################################################################
686
### Binary Data
687
688
689
# Mergeable 640-byte rodata section. This allows linker to merge the table
690
# with other, exactly the same 640-byte fragment of another rodata section
691
# (if such section exists).
692
.section .rodata.cst640.K512, "aM", @progbits, 640
693
.align 64
694
# K[t] used in SHA512 hashing
695
K512:
696
.quad 0x428a2f98d728ae22,0x7137449123ef65cd
697
.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
698
.quad 0x3956c25bf348b538,0x59f111f1b605d019
699
.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
700
.quad 0xd807aa98a3030242,0x12835b0145706fbe
701
.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
702
.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
703
.quad 0x9bdc06a725c71235,0xc19bf174cf692694
704
.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
705
.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
706
.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
707
.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
708
.quad 0x983e5152ee66dfab,0xa831c66d2db43210
709
.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
710
.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
711
.quad 0x06ca6351e003826f,0x142929670a0e6e70
712
.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
713
.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
714
.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
715
.quad 0x81c2c92e47edaee6,0x92722c851482353b
716
.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
717
.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
718
.quad 0xd192e819d6ef5218,0xd69906245565a910
719
.quad 0xf40e35855771202a,0x106aa07032bbd1b8
720
.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
721
.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
722
.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
723
.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
724
.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
725
.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
726
.quad 0x90befffa23631e28,0xa4506cebde82bde9
727
.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
728
.quad 0xca273eceea26619c,0xd186b8c721c0c207
729
.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
730
.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
731
.quad 0x113f9804bef90dae,0x1b710b35131c471b
732
.quad 0x28db77f523047d84,0x32caab7b40c72493
733
.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
734
.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
735
.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
736
737
.section .rodata.cst32.PSHUFFLE_BYTE_FLIP_MASK, "aM", @progbits, 32
738
.align 32
739
# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
740
PSHUFFLE_BYTE_FLIP_MASK:
741
.octa 0x08090a0b0c0d0e0f0001020304050607
742
.octa 0x18191a1b1c1d1e1f1011121314151617
743
744
.section .rodata.cst32.MASK_YMM_LO, "aM", @progbits, 32
745
.align 32
746
MASK_YMM_LO:
747
.octa 0x00000000000000000000000000000000
748
.octa 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
749
750