Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/lib/crypto/x86/sha512-ssse3-asm.S
26292 views
1
########################################################################
2
# Implement fast SHA-512 with SSSE3 instructions. (x86_64)
3
#
4
# Copyright (C) 2013 Intel Corporation.
5
#
6
# Authors:
7
# James Guilford <[email protected]>
8
# Kirk Yap <[email protected]>
9
# David Cote <[email protected]>
10
# Tim Chen <[email protected]>
11
#
12
# This software is available to you under a choice of one of two
13
# licenses. You may choose to be licensed under the terms of the GNU
14
# General Public License (GPL) Version 2, available from the file
15
# COPYING in the main directory of this source tree, or the
16
# OpenIB.org BSD license below:
17
#
18
# Redistribution and use in source and binary forms, with or
19
# without modification, are permitted provided that the following
20
# conditions are met:
21
#
22
# - Redistributions of source code must retain the above
23
# copyright notice, this list of conditions and the following
24
# disclaimer.
25
#
26
# - Redistributions in binary form must reproduce the above
27
# copyright notice, this list of conditions and the following
28
# disclaimer in the documentation and/or other materials
29
# provided with the distribution.
30
#
31
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
35
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
36
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
37
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
38
# SOFTWARE.
39
#
40
########################################################################
41
#
42
# This code is described in an Intel White-Paper:
43
# "Fast SHA-512 Implementations on Intel Architecture Processors"
44
#
45
# To find it, surf to http://www.intel.com/p/en_US/embedded
46
# and search for that title.
47
#
48
########################################################################
49
50
#include <linux/linkage.h>
51
52
.text
53
54
# Virtual Registers
55
# ARG1
56
digest = %rdi
57
# ARG2
58
msg = %rsi
59
# ARG3
60
msglen = %rdx
61
T1 = %rcx
62
T2 = %r8
63
a_64 = %r9
64
b_64 = %r10
65
c_64 = %r11
66
d_64 = %r12
67
e_64 = %r13
68
f_64 = %r14
69
g_64 = %r15
70
h_64 = %rbx
71
tmp0 = %rax
72
73
# Local variables (stack frame)
74
75
W_SIZE = 80*8
76
WK_SIZE = 2*8
77
78
frame_W = 0
79
frame_WK = frame_W + W_SIZE
80
frame_size = frame_WK + WK_SIZE
81
82
# Useful QWORD "arrays" for simpler memory references
83
# MSG, DIGEST, K_t, W_t are arrays
84
# WK_2(t) points to 1 of 2 qwords at frame.WK depending on t being odd/even
85
86
# Input message (arg1)
87
#define MSG(i) 8*i(msg)
88
89
# Output Digest (arg2)
90
#define DIGEST(i) 8*i(digest)
91
92
# SHA Constants (static mem)
93
#define K_t(i) 8*i+K512(%rip)
94
95
# Message Schedule (stack frame)
96
#define W_t(i) 8*i+frame_W(%rsp)
97
98
# W[t]+K[t] (stack frame)
99
#define WK_2(i) 8*((i%2))+frame_WK(%rsp)
100
101
.macro RotateState
102
# Rotate symbols a..h right
103
TMP = h_64
104
h_64 = g_64
105
g_64 = f_64
106
f_64 = e_64
107
e_64 = d_64
108
d_64 = c_64
109
c_64 = b_64
110
b_64 = a_64
111
a_64 = TMP
112
.endm
113
114
.macro SHA512_Round rnd
115
116
# Compute Round %%t
117
mov f_64, T1 # T1 = f
118
mov e_64, tmp0 # tmp = e
119
xor g_64, T1 # T1 = f ^ g
120
ror $23, tmp0 # 41 # tmp = e ror 23
121
and e_64, T1 # T1 = (f ^ g) & e
122
xor e_64, tmp0 # tmp = (e ror 23) ^ e
123
xor g_64, T1 # T1 = ((f ^ g) & e) ^ g = CH(e,f,g)
124
idx = \rnd
125
add WK_2(idx), T1 # W[t] + K[t] from message scheduler
126
ror $4, tmp0 # 18 # tmp = ((e ror 23) ^ e) ror 4
127
xor e_64, tmp0 # tmp = (((e ror 23) ^ e) ror 4) ^ e
128
mov a_64, T2 # T2 = a
129
add h_64, T1 # T1 = CH(e,f,g) + W[t] + K[t] + h
130
ror $14, tmp0 # 14 # tmp = ((((e ror23)^e)ror4)^e)ror14 = S1(e)
131
add tmp0, T1 # T1 = CH(e,f,g) + W[t] + K[t] + S1(e)
132
mov a_64, tmp0 # tmp = a
133
xor c_64, T2 # T2 = a ^ c
134
and c_64, tmp0 # tmp = a & c
135
and b_64, T2 # T2 = (a ^ c) & b
136
xor tmp0, T2 # T2 = ((a ^ c) & b) ^ (a & c) = Maj(a,b,c)
137
mov a_64, tmp0 # tmp = a
138
ror $5, tmp0 # 39 # tmp = a ror 5
139
xor a_64, tmp0 # tmp = (a ror 5) ^ a
140
add T1, d_64 # e(next_state) = d + T1
141
ror $6, tmp0 # 34 # tmp = ((a ror 5) ^ a) ror 6
142
xor a_64, tmp0 # tmp = (((a ror 5) ^ a) ror 6) ^ a
143
lea (T1, T2), h_64 # a(next_state) = T1 + Maj(a,b,c)
144
ror $28, tmp0 # 28 # tmp = ((((a ror5)^a)ror6)^a)ror28 = S0(a)
145
add tmp0, h_64 # a(next_state) = T1 + Maj(a,b,c) S0(a)
146
RotateState
147
.endm
148
149
.macro SHA512_2Sched_2Round_sse rnd
150
151
# Compute rounds t-2 and t-1
152
# Compute message schedule QWORDS t and t+1
153
154
# Two rounds are computed based on the values for K[t-2]+W[t-2] and
155
# K[t-1]+W[t-1] which were previously stored at WK_2 by the message
156
# scheduler.
157
# The two new schedule QWORDS are stored at [W_t(%%t)] and [W_t(%%t+1)].
158
# They are then added to their respective SHA512 constants at
159
# [K_t(%%t)] and [K_t(%%t+1)] and stored at dqword [WK_2(%%t)]
160
# For brievity, the comments following vectored instructions only refer to
161
# the first of a pair of QWORDS.
162
# Eg. XMM2=W[t-2] really means XMM2={W[t-2]|W[t-1]}
163
# The computation of the message schedule and the rounds are tightly
164
# stitched to take advantage of instruction-level parallelism.
165
# For clarity, integer instructions (for the rounds calculation) are indented
166
# by one tab. Vectored instructions (for the message scheduler) are indented
167
# by two tabs.
168
169
mov f_64, T1
170
idx = \rnd -2
171
movdqa W_t(idx), %xmm2 # XMM2 = W[t-2]
172
xor g_64, T1
173
and e_64, T1
174
movdqa %xmm2, %xmm0 # XMM0 = W[t-2]
175
xor g_64, T1
176
idx = \rnd
177
add WK_2(idx), T1
178
idx = \rnd - 15
179
movdqu W_t(idx), %xmm5 # XMM5 = W[t-15]
180
mov e_64, tmp0
181
ror $23, tmp0 # 41
182
movdqa %xmm5, %xmm3 # XMM3 = W[t-15]
183
xor e_64, tmp0
184
ror $4, tmp0 # 18
185
psrlq $61-19, %xmm0 # XMM0 = W[t-2] >> 42
186
xor e_64, tmp0
187
ror $14, tmp0 # 14
188
psrlq $(8-7), %xmm3 # XMM3 = W[t-15] >> 1
189
add tmp0, T1
190
add h_64, T1
191
pxor %xmm2, %xmm0 # XMM0 = (W[t-2] >> 42) ^ W[t-2]
192
mov a_64, T2
193
xor c_64, T2
194
pxor %xmm5, %xmm3 # XMM3 = (W[t-15] >> 1) ^ W[t-15]
195
and b_64, T2
196
mov a_64, tmp0
197
psrlq $(19-6), %xmm0 # XMM0 = ((W[t-2]>>42)^W[t-2])>>13
198
and c_64, tmp0
199
xor tmp0, T2
200
psrlq $(7-1), %xmm3 # XMM3 = ((W[t-15]>>1)^W[t-15])>>6
201
mov a_64, tmp0
202
ror $5, tmp0 # 39
203
pxor %xmm2, %xmm0 # XMM0 = (((W[t-2]>>42)^W[t-2])>>13)^W[t-2]
204
xor a_64, tmp0
205
ror $6, tmp0 # 34
206
pxor %xmm5, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]
207
xor a_64, tmp0
208
ror $28, tmp0 # 28
209
psrlq $6, %xmm0 # XMM0 = ((((W[t-2]>>42)^W[t-2])>>13)^W[t-2])>>6
210
add tmp0, T2
211
add T1, d_64
212
psrlq $1, %xmm3 # XMM3 = (((W[t-15]>>1)^W[t-15])>>6)^W[t-15]>>1
213
lea (T1, T2), h_64
214
RotateState
215
movdqa %xmm2, %xmm1 # XMM1 = W[t-2]
216
mov f_64, T1
217
xor g_64, T1
218
movdqa %xmm5, %xmm4 # XMM4 = W[t-15]
219
and e_64, T1
220
xor g_64, T1
221
psllq $(64-19)-(64-61) , %xmm1 # XMM1 = W[t-2] << 42
222
idx = \rnd + 1
223
add WK_2(idx), T1
224
mov e_64, tmp0
225
psllq $(64-1)-(64-8), %xmm4 # XMM4 = W[t-15] << 7
226
ror $23, tmp0 # 41
227
xor e_64, tmp0
228
pxor %xmm2, %xmm1 # XMM1 = (W[t-2] << 42)^W[t-2]
229
ror $4, tmp0 # 18
230
xor e_64, tmp0
231
pxor %xmm5, %xmm4 # XMM4 = (W[t-15]<<7)^W[t-15]
232
ror $14, tmp0 # 14
233
add tmp0, T1
234
psllq $(64-61), %xmm1 # XMM1 = ((W[t-2] << 42)^W[t-2])<<3
235
add h_64, T1
236
mov a_64, T2
237
psllq $(64-8), %xmm4 # XMM4 = ((W[t-15]<<7)^W[t-15])<<56
238
xor c_64, T2
239
and b_64, T2
240
pxor %xmm1, %xmm0 # XMM0 = s1(W[t-2])
241
mov a_64, tmp0
242
and c_64, tmp0
243
idx = \rnd - 7
244
movdqu W_t(idx), %xmm1 # XMM1 = W[t-7]
245
xor tmp0, T2
246
pxor %xmm4, %xmm3 # XMM3 = s0(W[t-15])
247
mov a_64, tmp0
248
paddq %xmm3, %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15])
249
ror $5, tmp0 # 39
250
idx =\rnd-16
251
paddq W_t(idx), %xmm0 # XMM0 = s1(W[t-2]) + s0(W[t-15]) + W[t-16]
252
xor a_64, tmp0
253
paddq %xmm1, %xmm0 # XMM0 = s1(W[t-2]) + W[t-7] + s0(W[t-15]) + W[t-16]
254
ror $6, tmp0 # 34
255
movdqa %xmm0, W_t(\rnd) # Store scheduled qwords
256
xor a_64, tmp0
257
paddq K_t(\rnd), %xmm0 # Compute W[t]+K[t]
258
ror $28, tmp0 # 28
259
idx = \rnd
260
movdqa %xmm0, WK_2(idx) # Store W[t]+K[t] for next rounds
261
add tmp0, T2
262
add T1, d_64
263
lea (T1, T2), h_64
264
RotateState
265
.endm
266
267
########################################################################
268
# void sha512_transform_ssse3(struct sha512_block_state *state,
269
# const u8 *data, size_t nblocks);
270
# Purpose: Updates the SHA512 digest stored at "state" with the message
271
# stored in "data".
272
# The size of the message pointed to by "data" must be an integer multiple
273
# of SHA512 message blocks.
274
# "nblocks" is the message length in SHA512 blocks. Must be >= 1.
275
########################################################################
276
SYM_FUNC_START(sha512_transform_ssse3)
277
278
# Save GPRs
279
push %rbx
280
push %r12
281
push %r13
282
push %r14
283
push %r15
284
285
# Allocate Stack Space
286
push %rbp
287
mov %rsp, %rbp
288
sub $frame_size, %rsp
289
and $~(0x20 - 1), %rsp
290
291
.Lupdateblock:
292
293
# Load state variables
294
mov DIGEST(0), a_64
295
mov DIGEST(1), b_64
296
mov DIGEST(2), c_64
297
mov DIGEST(3), d_64
298
mov DIGEST(4), e_64
299
mov DIGEST(5), f_64
300
mov DIGEST(6), g_64
301
mov DIGEST(7), h_64
302
303
t = 0
304
.rept 80/2 + 1
305
# (80 rounds) / (2 rounds/iteration) + (1 iteration)
306
# +1 iteration because the scheduler leads hashing by 1 iteration
307
.if t < 2
308
# BSWAP 2 QWORDS
309
movdqa XMM_QWORD_BSWAP(%rip), %xmm1
310
movdqu MSG(t), %xmm0
311
pshufb %xmm1, %xmm0 # BSWAP
312
movdqa %xmm0, W_t(t) # Store Scheduled Pair
313
paddq K_t(t), %xmm0 # Compute W[t]+K[t]
314
movdqa %xmm0, WK_2(t) # Store into WK for rounds
315
.elseif t < 16
316
# BSWAP 2 QWORDS# Compute 2 Rounds
317
movdqu MSG(t), %xmm0
318
pshufb %xmm1, %xmm0 # BSWAP
319
SHA512_Round t-2 # Round t-2
320
movdqa %xmm0, W_t(t) # Store Scheduled Pair
321
paddq K_t(t), %xmm0 # Compute W[t]+K[t]
322
SHA512_Round t-1 # Round t-1
323
movdqa %xmm0, WK_2(t) # Store W[t]+K[t] into WK
324
.elseif t < 79
325
# Schedule 2 QWORDS# Compute 2 Rounds
326
SHA512_2Sched_2Round_sse t
327
.else
328
# Compute 2 Rounds
329
SHA512_Round t-2
330
SHA512_Round t-1
331
.endif
332
t = t+2
333
.endr
334
335
# Update digest
336
add a_64, DIGEST(0)
337
add b_64, DIGEST(1)
338
add c_64, DIGEST(2)
339
add d_64, DIGEST(3)
340
add e_64, DIGEST(4)
341
add f_64, DIGEST(5)
342
add g_64, DIGEST(6)
343
add h_64, DIGEST(7)
344
345
# Advance to next message block
346
add $16*8, msg
347
dec msglen
348
jnz .Lupdateblock
349
350
# Restore Stack Pointer
351
mov %rbp, %rsp
352
pop %rbp
353
354
# Restore GPRs
355
pop %r15
356
pop %r14
357
pop %r13
358
pop %r12
359
pop %rbx
360
361
RET
362
SYM_FUNC_END(sha512_transform_ssse3)
363
364
########################################################################
365
### Binary Data
366
367
.section .rodata.cst16.XMM_QWORD_BSWAP, "aM", @progbits, 16
368
.align 16
369
# Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb.
370
XMM_QWORD_BSWAP:
371
.octa 0x08090a0b0c0d0e0f0001020304050607
372
373
# Mergeable 640-byte rodata section. This allows linker to merge the table
374
# with other, exactly the same 640-byte fragment of another rodata section
375
# (if such section exists).
376
.section .rodata.cst640.K512, "aM", @progbits, 640
377
.align 64
378
# K[t] used in SHA512 hashing
379
K512:
380
.quad 0x428a2f98d728ae22,0x7137449123ef65cd
381
.quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
382
.quad 0x3956c25bf348b538,0x59f111f1b605d019
383
.quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
384
.quad 0xd807aa98a3030242,0x12835b0145706fbe
385
.quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
386
.quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
387
.quad 0x9bdc06a725c71235,0xc19bf174cf692694
388
.quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
389
.quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
390
.quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
391
.quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
392
.quad 0x983e5152ee66dfab,0xa831c66d2db43210
393
.quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
394
.quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
395
.quad 0x06ca6351e003826f,0x142929670a0e6e70
396
.quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
397
.quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
398
.quad 0x650a73548baf63de,0x766a0abb3c77b2a8
399
.quad 0x81c2c92e47edaee6,0x92722c851482353b
400
.quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
401
.quad 0xc24b8b70d0f89791,0xc76c51a30654be30
402
.quad 0xd192e819d6ef5218,0xd69906245565a910
403
.quad 0xf40e35855771202a,0x106aa07032bbd1b8
404
.quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
405
.quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
406
.quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
407
.quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
408
.quad 0x748f82ee5defb2fc,0x78a5636f43172f60
409
.quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
410
.quad 0x90befffa23631e28,0xa4506cebde82bde9
411
.quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
412
.quad 0xca273eceea26619c,0xd186b8c721c0c207
413
.quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
414
.quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
415
.quad 0x113f9804bef90dae,0x1b710b35131c471b
416
.quad 0x28db77f523047d84,0x32caab7b40c72493
417
.quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
418
.quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
419
.quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
420
421