#define pr_fmt(fmt) "cma: " fmt
#define CREATE_TRACE_POINTS
#include <linux/memblock.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <linux/string_choices.h>
#include <linux/log2.h>
#include <linux/cma.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/kmemleak.h>
#include <trace/events/cma.h>
#include "internal.h"
#include "cma.h"
struct cma cma_areas[MAX_CMA_AREAS];
unsigned int cma_area_count;
phys_addr_t cma_get_base(const struct cma *cma)
{
WARN_ON_ONCE(cma->nranges != 1);
return PFN_PHYS(cma->ranges[0].base_pfn);
}
unsigned long cma_get_size(const struct cma *cma)
{
return cma->count << PAGE_SHIFT;
}
const char *cma_get_name(const struct cma *cma)
{
return cma->name;
}
static unsigned long cma_bitmap_aligned_mask(const struct cma *cma,
unsigned int align_order)
{
if (align_order <= cma->order_per_bit)
return 0;
return (1UL << (align_order - cma->order_per_bit)) - 1;
}
static unsigned long cma_bitmap_aligned_offset(const struct cma *cma,
const struct cma_memrange *cmr,
unsigned int align_order)
{
return (cmr->base_pfn & ((1UL << align_order) - 1))
>> cma->order_per_bit;
}
static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma,
unsigned long pages)
{
return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit;
}
static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr,
unsigned long pfn, unsigned long count)
{
unsigned long bitmap_no, bitmap_count;
unsigned long flags;
bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit;
bitmap_count = cma_bitmap_pages_to_bits(cma, count);
spin_lock_irqsave(&cma->lock, flags);
bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count);
cma->available_count += count;
spin_unlock_irqrestore(&cma->lock, flags);
}
bool cma_validate_zones(struct cma *cma)
{
int r;
unsigned long base_pfn;
struct cma_memrange *cmr;
bool valid_bit_set;
valid_bit_set = test_bit(CMA_ZONES_VALID, &cma->flags);
if (valid_bit_set || test_bit(CMA_ZONES_INVALID, &cma->flags))
return valid_bit_set;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
base_pfn = cmr->base_pfn;
WARN_ON_ONCE(!pfn_valid(base_pfn));
if (pfn_range_intersects_zones(cma->nid, base_pfn, cmr->count)) {
set_bit(CMA_ZONES_INVALID, &cma->flags);
return false;
}
}
set_bit(CMA_ZONES_VALID, &cma->flags);
return true;
}
static void __init cma_activate_area(struct cma *cma)
{
unsigned long pfn, end_pfn, early_pfn[CMA_MAX_RANGES];
int allocrange, r;
struct cma_memrange *cmr;
unsigned long bitmap_count, count;
for (allocrange = 0; allocrange < cma->nranges; allocrange++) {
cmr = &cma->ranges[allocrange];
early_pfn[allocrange] = cmr->early_pfn;
cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr),
GFP_KERNEL);
if (!cmr->bitmap)
goto cleanup;
}
if (!cma_validate_zones(cma))
goto cleanup;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
if (early_pfn[r] != cmr->base_pfn) {
count = early_pfn[r] - cmr->base_pfn;
bitmap_count = cma_bitmap_pages_to_bits(cma, count);
bitmap_set(cmr->bitmap, 0, bitmap_count);
}
for (pfn = early_pfn[r]; pfn < cmr->base_pfn + cmr->count;
pfn += pageblock_nr_pages)
init_cma_reserved_pageblock(pfn_to_page(pfn));
}
spin_lock_init(&cma->lock);
mutex_init(&cma->alloc_mutex);
#ifdef CONFIG_CMA_DEBUGFS
INIT_HLIST_HEAD(&cma->mem_head);
spin_lock_init(&cma->mem_head_lock);
#endif
set_bit(CMA_ACTIVATED, &cma->flags);
return;
cleanup:
for (r = 0; r < allocrange; r++)
bitmap_free(cma->ranges[r].bitmap);
if (!test_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags)) {
for (r = 0; r < allocrange; r++) {
cmr = &cma->ranges[r];
end_pfn = cmr->base_pfn + cmr->count;
for (pfn = early_pfn[r]; pfn < end_pfn; pfn++)
free_reserved_page(pfn_to_page(pfn));
}
}
totalcma_pages -= cma->count;
cma->available_count = cma->count = 0;
pr_err("CMA area %s could not be activated\n", cma->name);
}
static int __init cma_init_reserved_areas(void)
{
int i;
for (i = 0; i < cma_area_count; i++)
cma_activate_area(&cma_areas[i]);
return 0;
}
core_initcall(cma_init_reserved_areas);
void __init cma_reserve_pages_on_error(struct cma *cma)
{
set_bit(CMA_RESERVE_PAGES_ON_ERROR, &cma->flags);
}
static int __init cma_new_area(const char *name, phys_addr_t size,
unsigned int order_per_bit,
struct cma **res_cma)
{
struct cma *cma;
if (cma_area_count == ARRAY_SIZE(cma_areas)) {
pr_err("Not enough slots for CMA reserved regions!\n");
return -ENOSPC;
}
cma = &cma_areas[cma_area_count];
cma_area_count++;
if (name)
snprintf(cma->name, CMA_MAX_NAME, "%s", name);
else
snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count);
cma->available_count = cma->count = size >> PAGE_SHIFT;
cma->order_per_bit = order_per_bit;
*res_cma = cma;
totalcma_pages += cma->count;
return 0;
}
static void __init cma_drop_area(struct cma *cma)
{
totalcma_pages -= cma->count;
cma_area_count--;
}
int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
unsigned int order_per_bit,
const char *name,
struct cma **res_cma)
{
struct cma *cma;
int ret;
if (!size || !memblock_is_region_reserved(base, size))
return -EINVAL;
if (!pageblock_order) {
pr_err("pageblock_order not yet initialized. Called during early boot?\n");
return -EINVAL;
}
if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES))
return -EINVAL;
ret = cma_new_area(name, size, order_per_bit, &cma);
if (ret != 0)
return ret;
cma->ranges[0].base_pfn = PFN_DOWN(base);
cma->ranges[0].early_pfn = PFN_DOWN(base);
cma->ranges[0].count = cma->count;
cma->nranges = 1;
cma->nid = NUMA_NO_NODE;
*res_cma = cma;
return 0;
}
struct cma_init_memrange {
phys_addr_t base;
phys_addr_t size;
struct list_head list;
};
static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata;
static bool __init revsizecmp(struct cma_init_memrange *mlp,
struct cma_init_memrange *mrp)
{
return mlp->size > mrp->size;
}
static bool __init basecmp(struct cma_init_memrange *mlp,
struct cma_init_memrange *mrp)
{
return mlp->base < mrp->base;
}
static void __init list_insert_sorted(
struct list_head *ranges,
struct cma_init_memrange *mrp,
bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh))
{
struct list_head *mp;
struct cma_init_memrange *mlp;
if (list_empty(ranges))
list_add(&mrp->list, ranges);
else {
list_for_each(mp, ranges) {
mlp = list_entry(mp, struct cma_init_memrange, list);
if (cmp(mlp, mrp))
break;
}
__list_add(&mrp->list, mlp->list.prev, &mlp->list);
}
}
static int __init cma_fixed_reserve(phys_addr_t base, phys_addr_t size)
{
if (IS_ENABLED(CONFIG_HIGHMEM)) {
phys_addr_t highmem_start = __pa(high_memory - 1) + 1;
if (base < highmem_start && base + size > highmem_start) {
pr_err("Region at %pa defined on low/high memory boundary (%pa)\n",
&base, &highmem_start);
return -EINVAL;
}
}
if (memblock_is_region_reserved(base, size) ||
memblock_reserve(base, size) < 0) {
return -EBUSY;
}
return 0;
}
static phys_addr_t __init cma_alloc_mem(phys_addr_t base, phys_addr_t size,
phys_addr_t align, phys_addr_t limit, int nid)
{
phys_addr_t addr = 0;
#ifdef CONFIG_PHYS_ADDR_T_64BIT
if (!memblock_bottom_up() && limit >= SZ_4G + size) {
memblock_set_bottom_up(true);
addr = memblock_alloc_range_nid(size, align, SZ_4G, limit,
nid, true);
memblock_set_bottom_up(false);
}
#endif
if (!addr && IS_ENABLED(CONFIG_HIGHMEM)) {
phys_addr_t highmem = __pa(high_memory - 1) + 1;
if (base < highmem && limit > highmem) {
addr = memblock_alloc_range_nid(size, align, highmem,
limit, nid, true);
limit = highmem;
}
}
if (!addr)
addr = memblock_alloc_range_nid(size, align, base, limit, nid,
true);
return addr;
}
static int __init __cma_declare_contiguous_nid(phys_addr_t *basep,
phys_addr_t size, phys_addr_t limit,
phys_addr_t alignment, unsigned int order_per_bit,
bool fixed, const char *name, struct cma **res_cma,
int nid)
{
phys_addr_t memblock_end = memblock_end_of_DRAM();
phys_addr_t base = *basep;
int ret;
pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n",
__func__, &size, &base, &limit, &alignment);
if (cma_area_count == ARRAY_SIZE(cma_areas)) {
pr_err("Not enough slots for CMA reserved regions!\n");
return -ENOSPC;
}
if (!size)
return -EINVAL;
if (alignment && !is_power_of_2(alignment))
return -EINVAL;
if (!IS_ENABLED(CONFIG_NUMA))
nid = NUMA_NO_NODE;
alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES);
if (fixed && base & (alignment - 1)) {
pr_err("Region at %pa must be aligned to %pa bytes\n",
&base, &alignment);
return -EINVAL;
}
base = ALIGN(base, alignment);
size = ALIGN(size, alignment);
limit &= ~(alignment - 1);
if (!base)
fixed = false;
if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit))
return -EINVAL;
if (limit == 0 || limit > memblock_end)
limit = memblock_end;
if (base + size > limit) {
pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n",
&size, &base, &limit);
return -EINVAL;
}
if (fixed) {
ret = cma_fixed_reserve(base, size);
if (ret)
return ret;
} else {
base = cma_alloc_mem(base, size, alignment, limit, nid);
if (!base)
return -ENOMEM;
kmemleak_ignore_phys(base);
}
ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma);
if (ret) {
memblock_phys_free(base, size);
return ret;
}
(*res_cma)->nid = nid;
*basep = base;
return 0;
}
int __init cma_declare_contiguous_multi(phys_addr_t total_size,
phys_addr_t align, unsigned int order_per_bit,
const char *name, struct cma **res_cma, int nid)
{
phys_addr_t start = 0, end;
phys_addr_t size, sizesum, sizeleft;
struct cma_init_memrange *mrp, *mlp, *failed;
struct cma_memrange *cmrp;
LIST_HEAD(ranges);
LIST_HEAD(final_ranges);
struct list_head *mp, *next;
int ret, nr = 1;
u64 i;
struct cma *cma;
ret = __cma_declare_contiguous_nid(&start, total_size, 0, align,
order_per_bit, false, name, res_cma, nid);
if (ret != -ENOMEM)
goto out;
nr = 0;
sizesum = 0;
failed = NULL;
ret = cma_new_area(name, total_size, order_per_bit, &cma);
if (ret != 0)
goto out;
align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) {
if (upper_32_bits(start) == 0)
continue;
start = ALIGN(start, align);
if (start >= end)
continue;
end = ALIGN_DOWN(end, align);
if (end <= start)
continue;
size = end - start;
size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit));
if (!size)
continue;
sizesum += size;
pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end);
if (nr < CMA_MAX_RANGES)
mrp = &memranges[nr++];
else {
mrp = list_last_entry(&ranges,
struct cma_init_memrange, list);
if (size < mrp->size)
continue;
list_del(&mrp->list);
sizesum -= mrp->size;
pr_debug("deleted %016llx - %016llx from the list\n",
(u64)mrp->base, (u64)mrp->base + size);
}
mrp->base = start;
mrp->size = size;
list_insert_sorted(&ranges, mrp, revsizecmp);
pr_debug("added %016llx - %016llx to the list\n",
(u64)mrp->base, (u64)mrp->base + size);
pr_debug("total size now %llu\n", (u64)sizesum);
}
if (sizesum < total_size) {
cma_drop_area(cma);
ret = -ENOMEM;
goto out;
}
sizesum = 0;
list_for_each_safe(mp, next, &ranges) {
mlp = list_entry(mp, struct cma_init_memrange, list);
list_del(mp);
list_insert_sorted(&final_ranges, mlp, basecmp);
sizesum += mlp->size;
if (sizesum >= total_size)
break;
}
nr = 0;
sizeleft = total_size;
list_for_each(mp, &final_ranges) {
mlp = list_entry(mp, struct cma_init_memrange, list);
size = min(sizeleft, mlp->size);
if (memblock_reserve(mlp->base, size)) {
failed = mlp;
break;
}
pr_debug("created region %d: %016llx - %016llx\n",
nr, (u64)mlp->base, (u64)mlp->base + size);
cmrp = &cma->ranges[nr++];
cmrp->base_pfn = PHYS_PFN(mlp->base);
cmrp->early_pfn = cmrp->base_pfn;
cmrp->count = size >> PAGE_SHIFT;
sizeleft -= size;
if (sizeleft == 0)
break;
}
if (failed) {
list_for_each(mp, &final_ranges) {
mlp = list_entry(mp, struct cma_init_memrange, list);
if (mlp == failed)
break;
memblock_phys_free(mlp->base, mlp->size);
}
cma_drop_area(cma);
ret = -ENOMEM;
goto out;
}
cma->nranges = nr;
cma->nid = nid;
*res_cma = cma;
out:
if (ret != 0)
pr_err("Failed to reserve %lu MiB\n",
(unsigned long)total_size / SZ_1M);
else
pr_info("Reserved %lu MiB in %d range%s\n",
(unsigned long)total_size / SZ_1M, nr, str_plural(nr));
return ret;
}
int __init cma_declare_contiguous_nid(phys_addr_t base,
phys_addr_t size, phys_addr_t limit,
phys_addr_t alignment, unsigned int order_per_bit,
bool fixed, const char *name, struct cma **res_cma,
int nid)
{
int ret;
ret = __cma_declare_contiguous_nid(&base, size, limit, alignment,
order_per_bit, fixed, name, res_cma, nid);
if (ret != 0)
pr_err("Failed to reserve %ld MiB\n",
(unsigned long)size / SZ_1M);
else
pr_info("Reserved %ld MiB at %pa\n",
(unsigned long)size / SZ_1M, &base);
return ret;
}
static void cma_debug_show_areas(struct cma *cma)
{
unsigned long start, end;
unsigned long nr_part;
unsigned long nbits;
int r;
struct cma_memrange *cmr;
spin_lock_irq(&cma->lock);
pr_info("number of available pages: ");
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
nbits = cma_bitmap_maxno(cma, cmr);
pr_info("range %d: ", r);
for_each_clear_bitrange(start, end, cmr->bitmap, nbits) {
nr_part = (end - start) << cma->order_per_bit;
pr_cont("%s%lu@%lu", start ? "+" : "", nr_part, start);
}
pr_info("\n");
}
pr_cont("=> %lu free of %lu total pages\n", cma->available_count,
cma->count);
spin_unlock_irq(&cma->lock);
}
static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr,
unsigned long count, unsigned int align,
struct page **pagep, gfp_t gfp)
{
unsigned long mask, offset;
unsigned long pfn = -1;
unsigned long start = 0;
unsigned long bitmap_maxno, bitmap_no, bitmap_count;
int ret = -EBUSY;
struct page *page = NULL;
mask = cma_bitmap_aligned_mask(cma, align);
offset = cma_bitmap_aligned_offset(cma, cmr, align);
bitmap_maxno = cma_bitmap_maxno(cma, cmr);
bitmap_count = cma_bitmap_pages_to_bits(cma, count);
if (bitmap_count > bitmap_maxno)
goto out;
for (;;) {
spin_lock_irq(&cma->lock);
if (count > cma->available_count) {
spin_unlock_irq(&cma->lock);
break;
}
bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap,
bitmap_maxno, start, bitmap_count, mask,
offset);
if (bitmap_no >= bitmap_maxno) {
spin_unlock_irq(&cma->lock);
break;
}
bitmap_set(cmr->bitmap, bitmap_no, bitmap_count);
cma->available_count -= count;
spin_unlock_irq(&cma->lock);
pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit);
mutex_lock(&cma->alloc_mutex);
ret = alloc_contig_range(pfn, pfn + count, ACR_FLAGS_CMA, gfp);
mutex_unlock(&cma->alloc_mutex);
if (ret == 0) {
page = pfn_to_page(pfn);
break;
}
cma_clear_bitmap(cma, cmr, pfn, count);
if (ret != -EBUSY)
break;
pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n",
__func__, pfn, pfn_to_page(pfn));
trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn),
count, align);
start = bitmap_no + mask + 1;
}
out:
*pagep = page;
return ret;
}
static struct page *__cma_alloc(struct cma *cma, unsigned long count,
unsigned int align, gfp_t gfp)
{
struct page *page = NULL;
int ret = -ENOMEM, r;
unsigned long i;
const char *name = cma ? cma->name : NULL;
if (!cma || !cma->count)
return page;
pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__,
(void *)cma, cma->name, count, align);
if (!count)
return page;
trace_cma_alloc_start(name, count, align);
for (r = 0; r < cma->nranges; r++) {
page = NULL;
ret = cma_range_alloc(cma, &cma->ranges[r], count, align,
&page, gfp);
if (ret != -EBUSY || page)
break;
}
if (page) {
for (i = 0; i < count; i++)
page_kasan_tag_reset(nth_page(page, i));
}
if (ret && !(gfp & __GFP_NOWARN)) {
pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n",
__func__, cma->name, count, ret);
cma_debug_show_areas(cma);
}
pr_debug("%s(): returned %p\n", __func__, page);
trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0,
page, count, align, ret);
if (page) {
count_vm_event(CMA_ALLOC_SUCCESS);
cma_sysfs_account_success_pages(cma, count);
} else {
count_vm_event(CMA_ALLOC_FAIL);
cma_sysfs_account_fail_pages(cma, count);
}
return page;
}
struct page *cma_alloc(struct cma *cma, unsigned long count,
unsigned int align, bool no_warn)
{
return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0));
}
struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp)
{
struct page *page;
if (WARN_ON(!order || !(gfp & __GFP_COMP)))
return NULL;
page = __cma_alloc(cma, 1 << order, order, gfp);
return page ? page_folio(page) : NULL;
}
bool cma_pages_valid(struct cma *cma, const struct page *pages,
unsigned long count)
{
unsigned long pfn, end;
int r;
struct cma_memrange *cmr;
bool ret;
if (!cma || !pages || count > cma->count)
return false;
pfn = page_to_pfn(pages);
ret = false;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
end = cmr->base_pfn + cmr->count;
if (pfn >= cmr->base_pfn && pfn < end) {
ret = pfn + count <= end;
break;
}
}
if (!ret)
pr_debug("%s(page %p, count %lu)\n",
__func__, (void *)pages, count);
return ret;
}
bool cma_release(struct cma *cma, const struct page *pages,
unsigned long count)
{
struct cma_memrange *cmr;
unsigned long pfn, end_pfn;
int r;
pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count);
if (!cma_pages_valid(cma, pages, count))
return false;
pfn = page_to_pfn(pages);
end_pfn = pfn + count;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
if (pfn >= cmr->base_pfn &&
pfn < (cmr->base_pfn + cmr->count)) {
VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count);
break;
}
}
if (r == cma->nranges)
return false;
free_contig_range(pfn, count);
cma_clear_bitmap(cma, cmr, pfn, count);
cma_sysfs_account_release_pages(cma, count);
trace_cma_release(cma->name, pfn, pages, count);
return true;
}
bool cma_free_folio(struct cma *cma, const struct folio *folio)
{
if (WARN_ON(!folio_test_large(folio)))
return false;
return cma_release(cma, &folio->page, folio_nr_pages(folio));
}
int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data)
{
int i;
for (i = 0; i < cma_area_count; i++) {
int ret = it(&cma_areas[i], data);
if (ret)
return ret;
}
return 0;
}
bool cma_intersects(struct cma *cma, unsigned long start, unsigned long end)
{
int r;
struct cma_memrange *cmr;
unsigned long rstart, rend;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
rstart = PFN_PHYS(cmr->base_pfn);
rend = PFN_PHYS(cmr->base_pfn + cmr->count);
if (end < rstart)
continue;
if (start >= rend)
continue;
return true;
}
return false;
}
void __init *cma_reserve_early(struct cma *cma, unsigned long size)
{
int r;
struct cma_memrange *cmr;
unsigned long available;
void *ret = NULL;
if (!cma || !cma->count)
return NULL;
if (test_bit(CMA_ACTIVATED, &cma->flags))
return NULL;
if (!IS_ALIGNED(size, CMA_MIN_ALIGNMENT_BYTES))
return NULL;
if (!IS_ALIGNED(size, (PAGE_SIZE << cma->order_per_bit)))
return NULL;
size >>= PAGE_SHIFT;
if (size > cma->available_count)
return NULL;
for (r = 0; r < cma->nranges; r++) {
cmr = &cma->ranges[r];
available = cmr->count - (cmr->early_pfn - cmr->base_pfn);
if (size <= available) {
ret = phys_to_virt(PFN_PHYS(cmr->early_pfn));
cmr->early_pfn += size;
cma->available_count -= size;
return ret;
}
}
return ret;
}