Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/compaction.c
26131 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* linux/mm/compaction.c
4
*
5
* Memory compaction for the reduction of external fragmentation. Note that
6
* this heavily depends upon page migration to do all the real heavy
7
* lifting
8
*
9
* Copyright IBM Corp. 2007-2010 Mel Gorman <[email protected]>
10
*/
11
#include <linux/cpu.h>
12
#include <linux/swap.h>
13
#include <linux/migrate.h>
14
#include <linux/compaction.h>
15
#include <linux/mm_inline.h>
16
#include <linux/sched/signal.h>
17
#include <linux/backing-dev.h>
18
#include <linux/sysctl.h>
19
#include <linux/sysfs.h>
20
#include <linux/page-isolation.h>
21
#include <linux/kasan.h>
22
#include <linux/kthread.h>
23
#include <linux/freezer.h>
24
#include <linux/page_owner.h>
25
#include <linux/psi.h>
26
#include <linux/cpuset.h>
27
#include "internal.h"
28
29
#ifdef CONFIG_COMPACTION
30
/*
31
* Fragmentation score check interval for proactive compaction purposes.
32
*/
33
#define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
34
35
static inline void count_compact_event(enum vm_event_item item)
36
{
37
count_vm_event(item);
38
}
39
40
static inline void count_compact_events(enum vm_event_item item, long delta)
41
{
42
count_vm_events(item, delta);
43
}
44
45
/*
46
* order == -1 is expected when compacting proactively via
47
* 1. /proc/sys/vm/compact_memory
48
* 2. /sys/devices/system/node/nodex/compact
49
* 3. /proc/sys/vm/compaction_proactiveness
50
*/
51
static inline bool is_via_compact_memory(int order)
52
{
53
return order == -1;
54
}
55
56
#else
57
#define count_compact_event(item) do { } while (0)
58
#define count_compact_events(item, delta) do { } while (0)
59
static inline bool is_via_compact_memory(int order) { return false; }
60
#endif
61
62
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
63
64
#define CREATE_TRACE_POINTS
65
#include <trace/events/compaction.h>
66
67
#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
68
#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
69
70
/*
71
* Page order with-respect-to which proactive compaction
72
* calculates external fragmentation, which is used as
73
* the "fragmentation score" of a node/zone.
74
*/
75
#if defined CONFIG_TRANSPARENT_HUGEPAGE
76
#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
77
#elif defined CONFIG_HUGETLBFS
78
#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
79
#else
80
#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
81
#endif
82
83
static struct page *mark_allocated_noprof(struct page *page, unsigned int order, gfp_t gfp_flags)
84
{
85
post_alloc_hook(page, order, __GFP_MOVABLE);
86
set_page_refcounted(page);
87
return page;
88
}
89
#define mark_allocated(...) alloc_hooks(mark_allocated_noprof(__VA_ARGS__))
90
91
static unsigned long release_free_list(struct list_head *freepages)
92
{
93
int order;
94
unsigned long high_pfn = 0;
95
96
for (order = 0; order < NR_PAGE_ORDERS; order++) {
97
struct page *page, *next;
98
99
list_for_each_entry_safe(page, next, &freepages[order], lru) {
100
unsigned long pfn = page_to_pfn(page);
101
102
list_del(&page->lru);
103
/*
104
* Convert free pages into post allocation pages, so
105
* that we can free them via __free_page.
106
*/
107
mark_allocated(page, order, __GFP_MOVABLE);
108
__free_pages(page, order);
109
if (pfn > high_pfn)
110
high_pfn = pfn;
111
}
112
}
113
return high_pfn;
114
}
115
116
#ifdef CONFIG_COMPACTION
117
118
/* Do not skip compaction more than 64 times */
119
#define COMPACT_MAX_DEFER_SHIFT 6
120
121
/*
122
* Compaction is deferred when compaction fails to result in a page
123
* allocation success. 1 << compact_defer_shift, compactions are skipped up
124
* to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
125
*/
126
static void defer_compaction(struct zone *zone, int order)
127
{
128
zone->compact_considered = 0;
129
zone->compact_defer_shift++;
130
131
if (order < zone->compact_order_failed)
132
zone->compact_order_failed = order;
133
134
if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
135
zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
136
137
trace_mm_compaction_defer_compaction(zone, order);
138
}
139
140
/* Returns true if compaction should be skipped this time */
141
static bool compaction_deferred(struct zone *zone, int order)
142
{
143
unsigned long defer_limit = 1UL << zone->compact_defer_shift;
144
145
if (order < zone->compact_order_failed)
146
return false;
147
148
/* Avoid possible overflow */
149
if (++zone->compact_considered >= defer_limit) {
150
zone->compact_considered = defer_limit;
151
return false;
152
}
153
154
trace_mm_compaction_deferred(zone, order);
155
156
return true;
157
}
158
159
/*
160
* Update defer tracking counters after successful compaction of given order,
161
* which means an allocation either succeeded (alloc_success == true) or is
162
* expected to succeed.
163
*/
164
void compaction_defer_reset(struct zone *zone, int order,
165
bool alloc_success)
166
{
167
if (alloc_success) {
168
zone->compact_considered = 0;
169
zone->compact_defer_shift = 0;
170
}
171
if (order >= zone->compact_order_failed)
172
zone->compact_order_failed = order + 1;
173
174
trace_mm_compaction_defer_reset(zone, order);
175
}
176
177
/* Returns true if restarting compaction after many failures */
178
static bool compaction_restarting(struct zone *zone, int order)
179
{
180
if (order < zone->compact_order_failed)
181
return false;
182
183
return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
184
zone->compact_considered >= 1UL << zone->compact_defer_shift;
185
}
186
187
/* Returns true if the pageblock should be scanned for pages to isolate. */
188
static inline bool isolation_suitable(struct compact_control *cc,
189
struct page *page)
190
{
191
if (cc->ignore_skip_hint)
192
return true;
193
194
return !get_pageblock_skip(page);
195
}
196
197
static void reset_cached_positions(struct zone *zone)
198
{
199
zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
200
zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
201
zone->compact_cached_free_pfn =
202
pageblock_start_pfn(zone_end_pfn(zone) - 1);
203
}
204
205
#ifdef CONFIG_SPARSEMEM
206
/*
207
* If the PFN falls into an offline section, return the start PFN of the
208
* next online section. If the PFN falls into an online section or if
209
* there is no next online section, return 0.
210
*/
211
static unsigned long skip_offline_sections(unsigned long start_pfn)
212
{
213
unsigned long start_nr = pfn_to_section_nr(start_pfn);
214
215
if (online_section_nr(start_nr))
216
return 0;
217
218
while (++start_nr <= __highest_present_section_nr) {
219
if (online_section_nr(start_nr))
220
return section_nr_to_pfn(start_nr);
221
}
222
223
return 0;
224
}
225
226
/*
227
* If the PFN falls into an offline section, return the end PFN of the
228
* next online section in reverse. If the PFN falls into an online section
229
* or if there is no next online section in reverse, return 0.
230
*/
231
static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
232
{
233
unsigned long start_nr = pfn_to_section_nr(start_pfn);
234
235
if (!start_nr || online_section_nr(start_nr))
236
return 0;
237
238
while (start_nr-- > 0) {
239
if (online_section_nr(start_nr))
240
return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
241
}
242
243
return 0;
244
}
245
#else
246
static unsigned long skip_offline_sections(unsigned long start_pfn)
247
{
248
return 0;
249
}
250
251
static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
252
{
253
return 0;
254
}
255
#endif
256
257
/*
258
* Compound pages of >= pageblock_order should consistently be skipped until
259
* released. It is always pointless to compact pages of such order (if they are
260
* migratable), and the pageblocks they occupy cannot contain any free pages.
261
*/
262
static bool pageblock_skip_persistent(struct page *page)
263
{
264
if (!PageCompound(page))
265
return false;
266
267
page = compound_head(page);
268
269
if (compound_order(page) >= pageblock_order)
270
return true;
271
272
return false;
273
}
274
275
static bool
276
__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
277
bool check_target)
278
{
279
struct page *page = pfn_to_online_page(pfn);
280
struct page *block_page;
281
struct page *end_page;
282
unsigned long block_pfn;
283
284
if (!page)
285
return false;
286
if (zone != page_zone(page))
287
return false;
288
if (pageblock_skip_persistent(page))
289
return false;
290
291
/*
292
* If skip is already cleared do no further checking once the
293
* restart points have been set.
294
*/
295
if (check_source && check_target && !get_pageblock_skip(page))
296
return true;
297
298
/*
299
* If clearing skip for the target scanner, do not select a
300
* non-movable pageblock as the starting point.
301
*/
302
if (!check_source && check_target &&
303
get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
304
return false;
305
306
/* Ensure the start of the pageblock or zone is online and valid */
307
block_pfn = pageblock_start_pfn(pfn);
308
block_pfn = max(block_pfn, zone->zone_start_pfn);
309
block_page = pfn_to_online_page(block_pfn);
310
if (block_page) {
311
page = block_page;
312
pfn = block_pfn;
313
}
314
315
/* Ensure the end of the pageblock or zone is online and valid */
316
block_pfn = pageblock_end_pfn(pfn) - 1;
317
block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
318
end_page = pfn_to_online_page(block_pfn);
319
if (!end_page)
320
return false;
321
322
/*
323
* Only clear the hint if a sample indicates there is either a
324
* free page or an LRU page in the block. One or other condition
325
* is necessary for the block to be a migration source/target.
326
*/
327
do {
328
if (check_source && PageLRU(page)) {
329
clear_pageblock_skip(page);
330
return true;
331
}
332
333
if (check_target && PageBuddy(page)) {
334
clear_pageblock_skip(page);
335
return true;
336
}
337
338
page += (1 << PAGE_ALLOC_COSTLY_ORDER);
339
} while (page <= end_page);
340
341
return false;
342
}
343
344
/*
345
* This function is called to clear all cached information on pageblocks that
346
* should be skipped for page isolation when the migrate and free page scanner
347
* meet.
348
*/
349
static void __reset_isolation_suitable(struct zone *zone)
350
{
351
unsigned long migrate_pfn = zone->zone_start_pfn;
352
unsigned long free_pfn = zone_end_pfn(zone) - 1;
353
unsigned long reset_migrate = free_pfn;
354
unsigned long reset_free = migrate_pfn;
355
bool source_set = false;
356
bool free_set = false;
357
358
/* Only flush if a full compaction finished recently */
359
if (!zone->compact_blockskip_flush)
360
return;
361
362
zone->compact_blockskip_flush = false;
363
364
/*
365
* Walk the zone and update pageblock skip information. Source looks
366
* for PageLRU while target looks for PageBuddy. When the scanner
367
* is found, both PageBuddy and PageLRU are checked as the pageblock
368
* is suitable as both source and target.
369
*/
370
for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
371
free_pfn -= pageblock_nr_pages) {
372
cond_resched();
373
374
/* Update the migrate PFN */
375
if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
376
migrate_pfn < reset_migrate) {
377
source_set = true;
378
reset_migrate = migrate_pfn;
379
zone->compact_init_migrate_pfn = reset_migrate;
380
zone->compact_cached_migrate_pfn[0] = reset_migrate;
381
zone->compact_cached_migrate_pfn[1] = reset_migrate;
382
}
383
384
/* Update the free PFN */
385
if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
386
free_pfn > reset_free) {
387
free_set = true;
388
reset_free = free_pfn;
389
zone->compact_init_free_pfn = reset_free;
390
zone->compact_cached_free_pfn = reset_free;
391
}
392
}
393
394
/* Leave no distance if no suitable block was reset */
395
if (reset_migrate >= reset_free) {
396
zone->compact_cached_migrate_pfn[0] = migrate_pfn;
397
zone->compact_cached_migrate_pfn[1] = migrate_pfn;
398
zone->compact_cached_free_pfn = free_pfn;
399
}
400
}
401
402
void reset_isolation_suitable(pg_data_t *pgdat)
403
{
404
int zoneid;
405
406
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
407
struct zone *zone = &pgdat->node_zones[zoneid];
408
if (!populated_zone(zone))
409
continue;
410
411
__reset_isolation_suitable(zone);
412
}
413
}
414
415
/*
416
* Sets the pageblock skip bit if it was clear. Note that this is a hint as
417
* locks are not required for read/writers. Returns true if it was already set.
418
*/
419
static bool test_and_set_skip(struct compact_control *cc, struct page *page)
420
{
421
bool skip;
422
423
/* Do not update if skip hint is being ignored */
424
if (cc->ignore_skip_hint)
425
return false;
426
427
skip = get_pageblock_skip(page);
428
if (!skip && !cc->no_set_skip_hint)
429
set_pageblock_skip(page);
430
431
return skip;
432
}
433
434
static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
435
{
436
struct zone *zone = cc->zone;
437
438
/* Set for isolation rather than compaction */
439
if (cc->no_set_skip_hint)
440
return;
441
442
pfn = pageblock_end_pfn(pfn);
443
444
/* Update where async and sync compaction should restart */
445
if (pfn > zone->compact_cached_migrate_pfn[0])
446
zone->compact_cached_migrate_pfn[0] = pfn;
447
if (cc->mode != MIGRATE_ASYNC &&
448
pfn > zone->compact_cached_migrate_pfn[1])
449
zone->compact_cached_migrate_pfn[1] = pfn;
450
}
451
452
/*
453
* If no pages were isolated then mark this pageblock to be skipped in the
454
* future. The information is later cleared by __reset_isolation_suitable().
455
*/
456
static void update_pageblock_skip(struct compact_control *cc,
457
struct page *page, unsigned long pfn)
458
{
459
struct zone *zone = cc->zone;
460
461
if (cc->no_set_skip_hint)
462
return;
463
464
set_pageblock_skip(page);
465
466
if (pfn < zone->compact_cached_free_pfn)
467
zone->compact_cached_free_pfn = pfn;
468
}
469
#else
470
static inline bool isolation_suitable(struct compact_control *cc,
471
struct page *page)
472
{
473
return true;
474
}
475
476
static inline bool pageblock_skip_persistent(struct page *page)
477
{
478
return false;
479
}
480
481
static inline void update_pageblock_skip(struct compact_control *cc,
482
struct page *page, unsigned long pfn)
483
{
484
}
485
486
static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
487
{
488
}
489
490
static bool test_and_set_skip(struct compact_control *cc, struct page *page)
491
{
492
return false;
493
}
494
#endif /* CONFIG_COMPACTION */
495
496
/*
497
* Compaction requires the taking of some coarse locks that are potentially
498
* very heavily contended. For async compaction, trylock and record if the
499
* lock is contended. The lock will still be acquired but compaction will
500
* abort when the current block is finished regardless of success rate.
501
* Sync compaction acquires the lock.
502
*
503
* Always returns true which makes it easier to track lock state in callers.
504
*/
505
static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
506
struct compact_control *cc)
507
__acquires(lock)
508
{
509
/* Track if the lock is contended in async mode */
510
if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
511
if (spin_trylock_irqsave(lock, *flags))
512
return true;
513
514
cc->contended = true;
515
}
516
517
spin_lock_irqsave(lock, *flags);
518
return true;
519
}
520
521
/*
522
* Compaction requires the taking of some coarse locks that are potentially
523
* very heavily contended. The lock should be periodically unlocked to avoid
524
* having disabled IRQs for a long time, even when there is nobody waiting on
525
* the lock. It might also be that allowing the IRQs will result in
526
* need_resched() becoming true. If scheduling is needed, compaction schedules.
527
* Either compaction type will also abort if a fatal signal is pending.
528
* In either case if the lock was locked, it is dropped and not regained.
529
*
530
* Returns true if compaction should abort due to fatal signal pending.
531
* Returns false when compaction can continue.
532
*/
533
static bool compact_unlock_should_abort(spinlock_t *lock,
534
unsigned long flags, bool *locked, struct compact_control *cc)
535
{
536
if (*locked) {
537
spin_unlock_irqrestore(lock, flags);
538
*locked = false;
539
}
540
541
if (fatal_signal_pending(current)) {
542
cc->contended = true;
543
return true;
544
}
545
546
cond_resched();
547
548
return false;
549
}
550
551
/*
552
* Isolate free pages onto a private freelist. If @strict is true, will abort
553
* returning 0 on any invalid PFNs or non-free pages inside of the pageblock
554
* (even though it may still end up isolating some pages).
555
*/
556
static unsigned long isolate_freepages_block(struct compact_control *cc,
557
unsigned long *start_pfn,
558
unsigned long end_pfn,
559
struct list_head *freelist,
560
unsigned int stride,
561
bool strict)
562
{
563
int nr_scanned = 0, total_isolated = 0;
564
struct page *page;
565
unsigned long flags = 0;
566
bool locked = false;
567
unsigned long blockpfn = *start_pfn;
568
unsigned int order;
569
570
/* Strict mode is for isolation, speed is secondary */
571
if (strict)
572
stride = 1;
573
574
page = pfn_to_page(blockpfn);
575
576
/* Isolate free pages. */
577
for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
578
int isolated;
579
580
/*
581
* Periodically drop the lock (if held) regardless of its
582
* contention, to give chance to IRQs. Abort if fatal signal
583
* pending.
584
*/
585
if (!(blockpfn % COMPACT_CLUSTER_MAX)
586
&& compact_unlock_should_abort(&cc->zone->lock, flags,
587
&locked, cc))
588
break;
589
590
nr_scanned++;
591
592
/*
593
* For compound pages such as THP and hugetlbfs, we can save
594
* potentially a lot of iterations if we skip them at once.
595
* The check is racy, but we can consider only valid values
596
* and the only danger is skipping too much.
597
*/
598
if (PageCompound(page)) {
599
const unsigned int order = compound_order(page);
600
601
if ((order <= MAX_PAGE_ORDER) &&
602
(blockpfn + (1UL << order) <= end_pfn)) {
603
blockpfn += (1UL << order) - 1;
604
page += (1UL << order) - 1;
605
nr_scanned += (1UL << order) - 1;
606
}
607
608
goto isolate_fail;
609
}
610
611
if (!PageBuddy(page))
612
goto isolate_fail;
613
614
/* If we already hold the lock, we can skip some rechecking. */
615
if (!locked) {
616
locked = compact_lock_irqsave(&cc->zone->lock,
617
&flags, cc);
618
619
/* Recheck this is a buddy page under lock */
620
if (!PageBuddy(page))
621
goto isolate_fail;
622
}
623
624
/* Found a free page, will break it into order-0 pages */
625
order = buddy_order(page);
626
isolated = __isolate_free_page(page, order);
627
if (!isolated)
628
break;
629
set_page_private(page, order);
630
631
nr_scanned += isolated - 1;
632
total_isolated += isolated;
633
cc->nr_freepages += isolated;
634
list_add_tail(&page->lru, &freelist[order]);
635
636
if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
637
blockpfn += isolated;
638
break;
639
}
640
/* Advance to the end of split page */
641
blockpfn += isolated - 1;
642
page += isolated - 1;
643
continue;
644
645
isolate_fail:
646
if (strict)
647
break;
648
649
}
650
651
if (locked)
652
spin_unlock_irqrestore(&cc->zone->lock, flags);
653
654
/*
655
* Be careful to not go outside of the pageblock.
656
*/
657
if (unlikely(blockpfn > end_pfn))
658
blockpfn = end_pfn;
659
660
trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661
nr_scanned, total_isolated);
662
663
/* Record how far we have got within the block */
664
*start_pfn = blockpfn;
665
666
/*
667
* If strict isolation is requested by CMA then check that all the
668
* pages requested were isolated. If there were any failures, 0 is
669
* returned and CMA will fail.
670
*/
671
if (strict && blockpfn < end_pfn)
672
total_isolated = 0;
673
674
cc->total_free_scanned += nr_scanned;
675
if (total_isolated)
676
count_compact_events(COMPACTISOLATED, total_isolated);
677
return total_isolated;
678
}
679
680
/**
681
* isolate_freepages_range() - isolate free pages.
682
* @cc: Compaction control structure.
683
* @start_pfn: The first PFN to start isolating.
684
* @end_pfn: The one-past-last PFN.
685
*
686
* Non-free pages, invalid PFNs, or zone boundaries within the
687
* [start_pfn, end_pfn) range are considered errors, cause function to
688
* undo its actions and return zero. cc->freepages[] are empty.
689
*
690
* Otherwise, function returns one-past-the-last PFN of isolated page
691
* (which may be greater then end_pfn if end fell in a middle of
692
* a free page). cc->freepages[] contain free pages isolated.
693
*/
694
unsigned long
695
isolate_freepages_range(struct compact_control *cc,
696
unsigned long start_pfn, unsigned long end_pfn)
697
{
698
unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
699
int order;
700
701
for (order = 0; order < NR_PAGE_ORDERS; order++)
702
INIT_LIST_HEAD(&cc->freepages[order]);
703
704
pfn = start_pfn;
705
block_start_pfn = pageblock_start_pfn(pfn);
706
if (block_start_pfn < cc->zone->zone_start_pfn)
707
block_start_pfn = cc->zone->zone_start_pfn;
708
block_end_pfn = pageblock_end_pfn(pfn);
709
710
for (; pfn < end_pfn; pfn += isolated,
711
block_start_pfn = block_end_pfn,
712
block_end_pfn += pageblock_nr_pages) {
713
/* Protect pfn from changing by isolate_freepages_block */
714
unsigned long isolate_start_pfn = pfn;
715
716
/*
717
* pfn could pass the block_end_pfn if isolated freepage
718
* is more than pageblock order. In this case, we adjust
719
* scanning range to right one.
720
*/
721
if (pfn >= block_end_pfn) {
722
block_start_pfn = pageblock_start_pfn(pfn);
723
block_end_pfn = pageblock_end_pfn(pfn);
724
}
725
726
block_end_pfn = min(block_end_pfn, end_pfn);
727
728
if (!pageblock_pfn_to_page(block_start_pfn,
729
block_end_pfn, cc->zone))
730
break;
731
732
isolated = isolate_freepages_block(cc, &isolate_start_pfn,
733
block_end_pfn, cc->freepages, 0, true);
734
735
/*
736
* In strict mode, isolate_freepages_block() returns 0 if
737
* there are any holes in the block (ie. invalid PFNs or
738
* non-free pages).
739
*/
740
if (!isolated)
741
break;
742
743
/*
744
* If we managed to isolate pages, it is always (1 << n) *
745
* pageblock_nr_pages for some non-negative n. (Max order
746
* page may span two pageblocks).
747
*/
748
}
749
750
if (pfn < end_pfn) {
751
/* Loop terminated early, cleanup. */
752
release_free_list(cc->freepages);
753
return 0;
754
}
755
756
/* We don't use freelists for anything. */
757
return pfn;
758
}
759
760
/* Similar to reclaim, but different enough that they don't share logic */
761
static bool too_many_isolated(struct compact_control *cc)
762
{
763
pg_data_t *pgdat = cc->zone->zone_pgdat;
764
bool too_many;
765
766
unsigned long active, inactive, isolated;
767
768
inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
769
node_page_state(pgdat, NR_INACTIVE_ANON);
770
active = node_page_state(pgdat, NR_ACTIVE_FILE) +
771
node_page_state(pgdat, NR_ACTIVE_ANON);
772
isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
773
node_page_state(pgdat, NR_ISOLATED_ANON);
774
775
/*
776
* Allow GFP_NOFS to isolate past the limit set for regular
777
* compaction runs. This prevents an ABBA deadlock when other
778
* compactors have already isolated to the limit, but are
779
* blocked on filesystem locks held by the GFP_NOFS thread.
780
*/
781
if (cc->gfp_mask & __GFP_FS) {
782
inactive >>= 3;
783
active >>= 3;
784
}
785
786
too_many = isolated > (inactive + active) / 2;
787
if (!too_many)
788
wake_throttle_isolated(pgdat);
789
790
return too_many;
791
}
792
793
/**
794
* skip_isolation_on_order() - determine when to skip folio isolation based on
795
* folio order and compaction target order
796
* @order: to-be-isolated folio order
797
* @target_order: compaction target order
798
*
799
* This avoids unnecessary folio isolations during compaction.
800
*/
801
static bool skip_isolation_on_order(int order, int target_order)
802
{
803
/*
804
* Unless we are performing global compaction (i.e.,
805
* is_via_compact_memory), skip any folios that are larger than the
806
* target order: we wouldn't be here if we'd have a free folio with
807
* the desired target_order, so migrating this folio would likely fail
808
* later.
809
*/
810
if (!is_via_compact_memory(target_order) && order >= target_order)
811
return true;
812
/*
813
* We limit memory compaction to pageblocks and won't try
814
* creating free blocks of memory that are larger than that.
815
*/
816
return order >= pageblock_order;
817
}
818
819
/**
820
* isolate_migratepages_block() - isolate all migrate-able pages within
821
* a single pageblock
822
* @cc: Compaction control structure.
823
* @low_pfn: The first PFN to isolate
824
* @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
825
* @mode: Isolation mode to be used.
826
*
827
* Isolate all pages that can be migrated from the range specified by
828
* [low_pfn, end_pfn). The range is expected to be within same pageblock.
829
* Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
830
* -ENOMEM in case we could not allocate a page, or 0.
831
* cc->migrate_pfn will contain the next pfn to scan.
832
*
833
* The pages are isolated on cc->migratepages list (not required to be empty),
834
* and cc->nr_migratepages is updated accordingly.
835
*/
836
static int
837
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
838
unsigned long end_pfn, isolate_mode_t mode)
839
{
840
pg_data_t *pgdat = cc->zone->zone_pgdat;
841
unsigned long nr_scanned = 0, nr_isolated = 0;
842
struct lruvec *lruvec;
843
unsigned long flags = 0;
844
struct lruvec *locked = NULL;
845
struct folio *folio = NULL;
846
struct page *page = NULL, *valid_page = NULL;
847
struct address_space *mapping;
848
unsigned long start_pfn = low_pfn;
849
bool skip_on_failure = false;
850
unsigned long next_skip_pfn = 0;
851
bool skip_updated = false;
852
int ret = 0;
853
854
cc->migrate_pfn = low_pfn;
855
856
/*
857
* Ensure that there are not too many pages isolated from the LRU
858
* list by either parallel reclaimers or compaction. If there are,
859
* delay for some time until fewer pages are isolated
860
*/
861
while (unlikely(too_many_isolated(cc))) {
862
/* stop isolation if there are still pages not migrated */
863
if (cc->nr_migratepages)
864
return -EAGAIN;
865
866
/* async migration should just abort */
867
if (cc->mode == MIGRATE_ASYNC)
868
return -EAGAIN;
869
870
reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
871
872
if (fatal_signal_pending(current))
873
return -EINTR;
874
}
875
876
cond_resched();
877
878
if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
879
skip_on_failure = true;
880
next_skip_pfn = block_end_pfn(low_pfn, cc->order);
881
}
882
883
/* Time to isolate some pages for migration */
884
for (; low_pfn < end_pfn; low_pfn++) {
885
bool is_dirty, is_unevictable;
886
887
if (skip_on_failure && low_pfn >= next_skip_pfn) {
888
/*
889
* We have isolated all migration candidates in the
890
* previous order-aligned block, and did not skip it due
891
* to failure. We should migrate the pages now and
892
* hopefully succeed compaction.
893
*/
894
if (nr_isolated)
895
break;
896
897
/*
898
* We failed to isolate in the previous order-aligned
899
* block. Set the new boundary to the end of the
900
* current block. Note we can't simply increase
901
* next_skip_pfn by 1 << order, as low_pfn might have
902
* been incremented by a higher number due to skipping
903
* a compound or a high-order buddy page in the
904
* previous loop iteration.
905
*/
906
next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907
}
908
909
/*
910
* Periodically drop the lock (if held) regardless of its
911
* contention, to give chance to IRQs. Abort completely if
912
* a fatal signal is pending.
913
*/
914
if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
915
if (locked) {
916
unlock_page_lruvec_irqrestore(locked, flags);
917
locked = NULL;
918
}
919
920
if (fatal_signal_pending(current)) {
921
cc->contended = true;
922
ret = -EINTR;
923
924
goto fatal_pending;
925
}
926
927
cond_resched();
928
}
929
930
nr_scanned++;
931
932
page = pfn_to_page(low_pfn);
933
934
/*
935
* Check if the pageblock has already been marked skipped.
936
* Only the first PFN is checked as the caller isolates
937
* COMPACT_CLUSTER_MAX at a time so the second call must
938
* not falsely conclude that the block should be skipped.
939
*/
940
if (!valid_page && (pageblock_aligned(low_pfn) ||
941
low_pfn == cc->zone->zone_start_pfn)) {
942
if (!isolation_suitable(cc, page)) {
943
low_pfn = end_pfn;
944
folio = NULL;
945
goto isolate_abort;
946
}
947
valid_page = page;
948
}
949
950
if (PageHuge(page)) {
951
const unsigned int order = compound_order(page);
952
/*
953
* skip hugetlbfs if we are not compacting for pages
954
* bigger than its order. THPs and other compound pages
955
* are handled below.
956
*/
957
if (!cc->alloc_contig) {
958
959
if (order <= MAX_PAGE_ORDER) {
960
low_pfn += (1UL << order) - 1;
961
nr_scanned += (1UL << order) - 1;
962
}
963
goto isolate_fail;
964
}
965
/* for alloc_contig case */
966
if (locked) {
967
unlock_page_lruvec_irqrestore(locked, flags);
968
locked = NULL;
969
}
970
971
folio = page_folio(page);
972
ret = isolate_or_dissolve_huge_folio(folio, &cc->migratepages);
973
974
/*
975
* Fail isolation in case isolate_or_dissolve_huge_folio()
976
* reports an error. In case of -ENOMEM, abort right away.
977
*/
978
if (ret < 0) {
979
/* Do not report -EBUSY down the chain */
980
if (ret == -EBUSY)
981
ret = 0;
982
low_pfn += (1UL << order) - 1;
983
nr_scanned += (1UL << order) - 1;
984
goto isolate_fail;
985
}
986
987
if (folio_test_hugetlb(folio)) {
988
/*
989
* Hugepage was successfully isolated and placed
990
* on the cc->migratepages list.
991
*/
992
low_pfn += folio_nr_pages(folio) - 1;
993
goto isolate_success_no_list;
994
}
995
996
/*
997
* Ok, the hugepage was dissolved. Now these pages are
998
* Buddy and cannot be re-allocated because they are
999
* isolated. Fall-through as the check below handles
1000
* Buddy pages.
1001
*/
1002
}
1003
1004
/*
1005
* Skip if free. We read page order here without zone lock
1006
* which is generally unsafe, but the race window is small and
1007
* the worst thing that can happen is that we skip some
1008
* potential isolation targets.
1009
*/
1010
if (PageBuddy(page)) {
1011
unsigned long freepage_order = buddy_order_unsafe(page);
1012
1013
/*
1014
* Without lock, we cannot be sure that what we got is
1015
* a valid page order. Consider only values in the
1016
* valid order range to prevent low_pfn overflow.
1017
*/
1018
if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1019
low_pfn += (1UL << freepage_order) - 1;
1020
nr_scanned += (1UL << freepage_order) - 1;
1021
}
1022
continue;
1023
}
1024
1025
/*
1026
* Regardless of being on LRU, compound pages such as THP
1027
* (hugetlbfs is handled above) are not to be compacted unless
1028
* we are attempting an allocation larger than the compound
1029
* page size. We can potentially save a lot of iterations if we
1030
* skip them at once. The check is racy, but we can consider
1031
* only valid values and the only danger is skipping too much.
1032
*/
1033
if (PageCompound(page) && !cc->alloc_contig) {
1034
const unsigned int order = compound_order(page);
1035
1036
/* Skip based on page order and compaction target order. */
1037
if (skip_isolation_on_order(order, cc->order)) {
1038
if (order <= MAX_PAGE_ORDER) {
1039
low_pfn += (1UL << order) - 1;
1040
nr_scanned += (1UL << order) - 1;
1041
}
1042
goto isolate_fail;
1043
}
1044
}
1045
1046
/*
1047
* Check may be lockless but that's ok as we recheck later.
1048
* It's possible to migrate LRU and non-lru movable pages.
1049
* Skip any other type of page
1050
*/
1051
if (!PageLRU(page)) {
1052
/* Isolation code will deal with any races. */
1053
if (unlikely(page_has_movable_ops(page)) &&
1054
!PageMovableOpsIsolated(page)) {
1055
if (locked) {
1056
unlock_page_lruvec_irqrestore(locked, flags);
1057
locked = NULL;
1058
}
1059
1060
if (isolate_movable_ops_page(page, mode)) {
1061
folio = page_folio(page);
1062
goto isolate_success;
1063
}
1064
}
1065
1066
goto isolate_fail;
1067
}
1068
1069
/*
1070
* Be careful not to clear PageLRU until after we're
1071
* sure the page is not being freed elsewhere -- the
1072
* page release code relies on it.
1073
*/
1074
folio = folio_get_nontail_page(page);
1075
if (unlikely(!folio))
1076
goto isolate_fail;
1077
1078
/*
1079
* Migration will fail if an anonymous page is pinned in memory,
1080
* so avoid taking lru_lock and isolating it unnecessarily in an
1081
* admittedly racy check.
1082
*/
1083
mapping = folio_mapping(folio);
1084
if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1085
goto isolate_fail_put;
1086
1087
/*
1088
* Only allow to migrate anonymous pages in GFP_NOFS context
1089
* because those do not depend on fs locks.
1090
*/
1091
if (!(cc->gfp_mask & __GFP_FS) && mapping)
1092
goto isolate_fail_put;
1093
1094
/* Only take pages on LRU: a check now makes later tests safe */
1095
if (!folio_test_lru(folio))
1096
goto isolate_fail_put;
1097
1098
is_unevictable = folio_test_unevictable(folio);
1099
1100
/* Compaction might skip unevictable pages but CMA takes them */
1101
if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1102
goto isolate_fail_put;
1103
1104
/*
1105
* To minimise LRU disruption, the caller can indicate with
1106
* ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1107
* it will be able to migrate without blocking - clean pages
1108
* for the most part. PageWriteback would require blocking.
1109
*/
1110
if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1111
goto isolate_fail_put;
1112
1113
is_dirty = folio_test_dirty(folio);
1114
1115
if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1116
(mapping && is_unevictable)) {
1117
bool migrate_dirty = true;
1118
bool is_inaccessible;
1119
1120
/*
1121
* Only folios without mappings or that have
1122
* a ->migrate_folio callback are possible to migrate
1123
* without blocking.
1124
*
1125
* Folios from inaccessible mappings are not migratable.
1126
*
1127
* However, we can be racing with truncation, which can
1128
* free the mapping that we need to check. Truncation
1129
* holds the folio lock until after the folio is removed
1130
* from the page so holding it ourselves is sufficient.
1131
*
1132
* To avoid locking the folio just to check inaccessible,
1133
* assume every inaccessible folio is also unevictable,
1134
* which is a cheaper test. If our assumption goes
1135
* wrong, it's not a correctness bug, just potentially
1136
* wasted cycles.
1137
*/
1138
if (!folio_trylock(folio))
1139
goto isolate_fail_put;
1140
1141
mapping = folio_mapping(folio);
1142
if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1143
migrate_dirty = !mapping ||
1144
mapping->a_ops->migrate_folio;
1145
}
1146
is_inaccessible = mapping && mapping_inaccessible(mapping);
1147
folio_unlock(folio);
1148
if (!migrate_dirty || is_inaccessible)
1149
goto isolate_fail_put;
1150
}
1151
1152
/* Try isolate the folio */
1153
if (!folio_test_clear_lru(folio))
1154
goto isolate_fail_put;
1155
1156
lruvec = folio_lruvec(folio);
1157
1158
/* If we already hold the lock, we can skip some rechecking */
1159
if (lruvec != locked) {
1160
if (locked)
1161
unlock_page_lruvec_irqrestore(locked, flags);
1162
1163
compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1164
locked = lruvec;
1165
1166
lruvec_memcg_debug(lruvec, folio);
1167
1168
/*
1169
* Try get exclusive access under lock. If marked for
1170
* skip, the scan is aborted unless the current context
1171
* is a rescan to reach the end of the pageblock.
1172
*/
1173
if (!skip_updated && valid_page) {
1174
skip_updated = true;
1175
if (test_and_set_skip(cc, valid_page) &&
1176
!cc->finish_pageblock) {
1177
low_pfn = end_pfn;
1178
goto isolate_abort;
1179
}
1180
}
1181
1182
/*
1183
* Check LRU folio order under the lock
1184
*/
1185
if (unlikely(skip_isolation_on_order(folio_order(folio),
1186
cc->order) &&
1187
!cc->alloc_contig)) {
1188
low_pfn += folio_nr_pages(folio) - 1;
1189
nr_scanned += folio_nr_pages(folio) - 1;
1190
folio_set_lru(folio);
1191
goto isolate_fail_put;
1192
}
1193
}
1194
1195
/* The folio is taken off the LRU */
1196
if (folio_test_large(folio))
1197
low_pfn += folio_nr_pages(folio) - 1;
1198
1199
/* Successfully isolated */
1200
lruvec_del_folio(lruvec, folio);
1201
node_stat_mod_folio(folio,
1202
NR_ISOLATED_ANON + folio_is_file_lru(folio),
1203
folio_nr_pages(folio));
1204
1205
isolate_success:
1206
list_add(&folio->lru, &cc->migratepages);
1207
isolate_success_no_list:
1208
cc->nr_migratepages += folio_nr_pages(folio);
1209
nr_isolated += folio_nr_pages(folio);
1210
nr_scanned += folio_nr_pages(folio) - 1;
1211
1212
/*
1213
* Avoid isolating too much unless this block is being
1214
* fully scanned (e.g. dirty/writeback pages, parallel allocation)
1215
* or a lock is contended. For contention, isolate quickly to
1216
* potentially remove one source of contention.
1217
*/
1218
if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1219
!cc->finish_pageblock && !cc->contended) {
1220
++low_pfn;
1221
break;
1222
}
1223
1224
continue;
1225
1226
isolate_fail_put:
1227
/* Avoid potential deadlock in freeing page under lru_lock */
1228
if (locked) {
1229
unlock_page_lruvec_irqrestore(locked, flags);
1230
locked = NULL;
1231
}
1232
folio_put(folio);
1233
1234
isolate_fail:
1235
if (!skip_on_failure && ret != -ENOMEM)
1236
continue;
1237
1238
/*
1239
* We have isolated some pages, but then failed. Release them
1240
* instead of migrating, as we cannot form the cc->order buddy
1241
* page anyway.
1242
*/
1243
if (nr_isolated) {
1244
if (locked) {
1245
unlock_page_lruvec_irqrestore(locked, flags);
1246
locked = NULL;
1247
}
1248
putback_movable_pages(&cc->migratepages);
1249
cc->nr_migratepages = 0;
1250
nr_isolated = 0;
1251
}
1252
1253
if (low_pfn < next_skip_pfn) {
1254
low_pfn = next_skip_pfn - 1;
1255
/*
1256
* The check near the loop beginning would have updated
1257
* next_skip_pfn too, but this is a bit simpler.
1258
*/
1259
next_skip_pfn += 1UL << cc->order;
1260
}
1261
1262
if (ret == -ENOMEM)
1263
break;
1264
}
1265
1266
/*
1267
* The PageBuddy() check could have potentially brought us outside
1268
* the range to be scanned.
1269
*/
1270
if (unlikely(low_pfn > end_pfn))
1271
low_pfn = end_pfn;
1272
1273
folio = NULL;
1274
1275
isolate_abort:
1276
if (locked)
1277
unlock_page_lruvec_irqrestore(locked, flags);
1278
if (folio) {
1279
folio_set_lru(folio);
1280
folio_put(folio);
1281
}
1282
1283
/*
1284
* Update the cached scanner pfn once the pageblock has been scanned.
1285
* Pages will either be migrated in which case there is no point
1286
* scanning in the near future or migration failed in which case the
1287
* failure reason may persist. The block is marked for skipping if
1288
* there were no pages isolated in the block or if the block is
1289
* rescanned twice in a row.
1290
*/
1291
if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1292
if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1293
set_pageblock_skip(valid_page);
1294
update_cached_migrate(cc, low_pfn);
1295
}
1296
1297
trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1298
nr_scanned, nr_isolated);
1299
1300
fatal_pending:
1301
cc->total_migrate_scanned += nr_scanned;
1302
if (nr_isolated)
1303
count_compact_events(COMPACTISOLATED, nr_isolated);
1304
1305
cc->migrate_pfn = low_pfn;
1306
1307
return ret;
1308
}
1309
1310
/**
1311
* isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1312
* @cc: Compaction control structure.
1313
* @start_pfn: The first PFN to start isolating.
1314
* @end_pfn: The one-past-last PFN.
1315
*
1316
* Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1317
* in case we could not allocate a page, or 0.
1318
*/
1319
int
1320
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1321
unsigned long end_pfn)
1322
{
1323
unsigned long pfn, block_start_pfn, block_end_pfn;
1324
int ret = 0;
1325
1326
/* Scan block by block. First and last block may be incomplete */
1327
pfn = start_pfn;
1328
block_start_pfn = pageblock_start_pfn(pfn);
1329
if (block_start_pfn < cc->zone->zone_start_pfn)
1330
block_start_pfn = cc->zone->zone_start_pfn;
1331
block_end_pfn = pageblock_end_pfn(pfn);
1332
1333
for (; pfn < end_pfn; pfn = block_end_pfn,
1334
block_start_pfn = block_end_pfn,
1335
block_end_pfn += pageblock_nr_pages) {
1336
1337
block_end_pfn = min(block_end_pfn, end_pfn);
1338
1339
if (!pageblock_pfn_to_page(block_start_pfn,
1340
block_end_pfn, cc->zone))
1341
continue;
1342
1343
ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1344
ISOLATE_UNEVICTABLE);
1345
1346
if (ret)
1347
break;
1348
1349
if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1350
break;
1351
}
1352
1353
return ret;
1354
}
1355
1356
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1357
#ifdef CONFIG_COMPACTION
1358
1359
static bool suitable_migration_source(struct compact_control *cc,
1360
struct page *page)
1361
{
1362
int block_mt;
1363
1364
if (pageblock_skip_persistent(page))
1365
return false;
1366
1367
if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1368
return true;
1369
1370
block_mt = get_pageblock_migratetype(page);
1371
1372
if (cc->migratetype == MIGRATE_MOVABLE)
1373
return is_migrate_movable(block_mt);
1374
else
1375
return block_mt == cc->migratetype;
1376
}
1377
1378
/* Returns true if the page is within a block suitable for migration to */
1379
static bool suitable_migration_target(struct compact_control *cc,
1380
struct page *page)
1381
{
1382
/* If the page is a large free page, then disallow migration */
1383
if (PageBuddy(page)) {
1384
int order = cc->order > 0 ? cc->order : pageblock_order;
1385
1386
/*
1387
* We are checking page_order without zone->lock taken. But
1388
* the only small danger is that we skip a potentially suitable
1389
* pageblock, so it's not worth to check order for valid range.
1390
*/
1391
if (buddy_order_unsafe(page) >= order)
1392
return false;
1393
}
1394
1395
if (cc->ignore_block_suitable)
1396
return true;
1397
1398
/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1399
if (is_migrate_movable(get_pageblock_migratetype(page)))
1400
return true;
1401
1402
/* Otherwise skip the block */
1403
return false;
1404
}
1405
1406
static inline unsigned int
1407
freelist_scan_limit(struct compact_control *cc)
1408
{
1409
unsigned short shift = BITS_PER_LONG - 1;
1410
1411
return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1412
}
1413
1414
/*
1415
* Test whether the free scanner has reached the same or lower pageblock than
1416
* the migration scanner, and compaction should thus terminate.
1417
*/
1418
static inline bool compact_scanners_met(struct compact_control *cc)
1419
{
1420
return (cc->free_pfn >> pageblock_order)
1421
<= (cc->migrate_pfn >> pageblock_order);
1422
}
1423
1424
/*
1425
* Used when scanning for a suitable migration target which scans freelists
1426
* in reverse. Reorders the list such as the unscanned pages are scanned
1427
* first on the next iteration of the free scanner
1428
*/
1429
static void
1430
move_freelist_head(struct list_head *freelist, struct page *freepage)
1431
{
1432
LIST_HEAD(sublist);
1433
1434
if (!list_is_first(&freepage->buddy_list, freelist)) {
1435
list_cut_before(&sublist, freelist, &freepage->buddy_list);
1436
list_splice_tail(&sublist, freelist);
1437
}
1438
}
1439
1440
/*
1441
* Similar to move_freelist_head except used by the migration scanner
1442
* when scanning forward. It's possible for these list operations to
1443
* move against each other if they search the free list exactly in
1444
* lockstep.
1445
*/
1446
static void
1447
move_freelist_tail(struct list_head *freelist, struct page *freepage)
1448
{
1449
LIST_HEAD(sublist);
1450
1451
if (!list_is_last(&freepage->buddy_list, freelist)) {
1452
list_cut_position(&sublist, freelist, &freepage->buddy_list);
1453
list_splice_tail(&sublist, freelist);
1454
}
1455
}
1456
1457
static void
1458
fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1459
{
1460
unsigned long start_pfn, end_pfn;
1461
struct page *page;
1462
1463
/* Do not search around if there are enough pages already */
1464
if (cc->nr_freepages >= cc->nr_migratepages)
1465
return;
1466
1467
/* Minimise scanning during async compaction */
1468
if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1469
return;
1470
1471
/* Pageblock boundaries */
1472
start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1473
end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1474
1475
page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1476
if (!page)
1477
return;
1478
1479
isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
1480
1481
/* Skip this pageblock in the future as it's full or nearly full */
1482
if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1483
set_pageblock_skip(page);
1484
}
1485
1486
/* Search orders in round-robin fashion */
1487
static int next_search_order(struct compact_control *cc, int order)
1488
{
1489
order--;
1490
if (order < 0)
1491
order = cc->order - 1;
1492
1493
/* Search wrapped around? */
1494
if (order == cc->search_order) {
1495
cc->search_order--;
1496
if (cc->search_order < 0)
1497
cc->search_order = cc->order - 1;
1498
return -1;
1499
}
1500
1501
return order;
1502
}
1503
1504
static void fast_isolate_freepages(struct compact_control *cc)
1505
{
1506
unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1507
unsigned int nr_scanned = 0, total_isolated = 0;
1508
unsigned long low_pfn, min_pfn, highest = 0;
1509
unsigned long nr_isolated = 0;
1510
unsigned long distance;
1511
struct page *page = NULL;
1512
bool scan_start = false;
1513
int order;
1514
1515
/* Full compaction passes in a negative order */
1516
if (cc->order <= 0)
1517
return;
1518
1519
/*
1520
* If starting the scan, use a deeper search and use the highest
1521
* PFN found if a suitable one is not found.
1522
*/
1523
if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1524
limit = pageblock_nr_pages >> 1;
1525
scan_start = true;
1526
}
1527
1528
/*
1529
* Preferred point is in the top quarter of the scan space but take
1530
* a pfn from the top half if the search is problematic.
1531
*/
1532
distance = (cc->free_pfn - cc->migrate_pfn);
1533
low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1534
min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1535
1536
if (WARN_ON_ONCE(min_pfn > low_pfn))
1537
low_pfn = min_pfn;
1538
1539
/*
1540
* Search starts from the last successful isolation order or the next
1541
* order to search after a previous failure
1542
*/
1543
cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1544
1545
for (order = cc->search_order;
1546
!page && order >= 0;
1547
order = next_search_order(cc, order)) {
1548
struct free_area *area = &cc->zone->free_area[order];
1549
struct list_head *freelist;
1550
struct page *freepage;
1551
unsigned long flags;
1552
unsigned int order_scanned = 0;
1553
unsigned long high_pfn = 0;
1554
1555
if (!area->nr_free)
1556
continue;
1557
1558
spin_lock_irqsave(&cc->zone->lock, flags);
1559
freelist = &area->free_list[MIGRATE_MOVABLE];
1560
list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1561
unsigned long pfn;
1562
1563
order_scanned++;
1564
nr_scanned++;
1565
pfn = page_to_pfn(freepage);
1566
1567
if (pfn >= highest)
1568
highest = max(pageblock_start_pfn(pfn),
1569
cc->zone->zone_start_pfn);
1570
1571
if (pfn >= low_pfn) {
1572
cc->fast_search_fail = 0;
1573
cc->search_order = order;
1574
page = freepage;
1575
break;
1576
}
1577
1578
if (pfn >= min_pfn && pfn > high_pfn) {
1579
high_pfn = pfn;
1580
1581
/* Shorten the scan if a candidate is found */
1582
limit >>= 1;
1583
}
1584
1585
if (order_scanned >= limit)
1586
break;
1587
}
1588
1589
/* Use a maximum candidate pfn if a preferred one was not found */
1590
if (!page && high_pfn) {
1591
page = pfn_to_page(high_pfn);
1592
1593
/* Update freepage for the list reorder below */
1594
freepage = page;
1595
}
1596
1597
/* Reorder to so a future search skips recent pages */
1598
move_freelist_head(freelist, freepage);
1599
1600
/* Isolate the page if available */
1601
if (page) {
1602
if (__isolate_free_page(page, order)) {
1603
set_page_private(page, order);
1604
nr_isolated = 1 << order;
1605
nr_scanned += nr_isolated - 1;
1606
total_isolated += nr_isolated;
1607
cc->nr_freepages += nr_isolated;
1608
list_add_tail(&page->lru, &cc->freepages[order]);
1609
count_compact_events(COMPACTISOLATED, nr_isolated);
1610
} else {
1611
/* If isolation fails, abort the search */
1612
order = cc->search_order + 1;
1613
page = NULL;
1614
}
1615
}
1616
1617
spin_unlock_irqrestore(&cc->zone->lock, flags);
1618
1619
/* Skip fast search if enough freepages isolated */
1620
if (cc->nr_freepages >= cc->nr_migratepages)
1621
break;
1622
1623
/*
1624
* Smaller scan on next order so the total scan is related
1625
* to freelist_scan_limit.
1626
*/
1627
if (order_scanned >= limit)
1628
limit = max(1U, limit >> 1);
1629
}
1630
1631
trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1632
nr_scanned, total_isolated);
1633
1634
if (!page) {
1635
cc->fast_search_fail++;
1636
if (scan_start) {
1637
/*
1638
* Use the highest PFN found above min. If one was
1639
* not found, be pessimistic for direct compaction
1640
* and use the min mark.
1641
*/
1642
if (highest >= min_pfn) {
1643
page = pfn_to_page(highest);
1644
cc->free_pfn = highest;
1645
} else {
1646
if (cc->direct_compaction && pfn_valid(min_pfn)) {
1647
page = pageblock_pfn_to_page(min_pfn,
1648
min(pageblock_end_pfn(min_pfn),
1649
zone_end_pfn(cc->zone)),
1650
cc->zone);
1651
if (page && !suitable_migration_target(cc, page))
1652
page = NULL;
1653
1654
cc->free_pfn = min_pfn;
1655
}
1656
}
1657
}
1658
}
1659
1660
if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1661
highest -= pageblock_nr_pages;
1662
cc->zone->compact_cached_free_pfn = highest;
1663
}
1664
1665
cc->total_free_scanned += nr_scanned;
1666
if (!page)
1667
return;
1668
1669
low_pfn = page_to_pfn(page);
1670
fast_isolate_around(cc, low_pfn);
1671
}
1672
1673
/*
1674
* Based on information in the current compact_control, find blocks
1675
* suitable for isolating free pages from and then isolate them.
1676
*/
1677
static void isolate_freepages(struct compact_control *cc)
1678
{
1679
struct zone *zone = cc->zone;
1680
struct page *page;
1681
unsigned long block_start_pfn; /* start of current pageblock */
1682
unsigned long isolate_start_pfn; /* exact pfn we start at */
1683
unsigned long block_end_pfn; /* end of current pageblock */
1684
unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1685
unsigned int stride;
1686
1687
/* Try a small search of the free lists for a candidate */
1688
fast_isolate_freepages(cc);
1689
if (cc->nr_freepages)
1690
return;
1691
1692
/*
1693
* Initialise the free scanner. The starting point is where we last
1694
* successfully isolated from, zone-cached value, or the end of the
1695
* zone when isolating for the first time. For looping we also need
1696
* this pfn aligned down to the pageblock boundary, because we do
1697
* block_start_pfn -= pageblock_nr_pages in the for loop.
1698
* For ending point, take care when isolating in last pageblock of a
1699
* zone which ends in the middle of a pageblock.
1700
* The low boundary is the end of the pageblock the migration scanner
1701
* is using.
1702
*/
1703
isolate_start_pfn = cc->free_pfn;
1704
block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1705
block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1706
zone_end_pfn(zone));
1707
low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1708
stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1709
1710
/*
1711
* Isolate free pages until enough are available to migrate the
1712
* pages on cc->migratepages. We stop searching if the migrate
1713
* and free page scanners meet or enough free pages are isolated.
1714
*/
1715
for (; block_start_pfn >= low_pfn;
1716
block_end_pfn = block_start_pfn,
1717
block_start_pfn -= pageblock_nr_pages,
1718
isolate_start_pfn = block_start_pfn) {
1719
unsigned long nr_isolated;
1720
1721
/*
1722
* This can iterate a massively long zone without finding any
1723
* suitable migration targets, so periodically check resched.
1724
*/
1725
if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1726
cond_resched();
1727
1728
page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1729
zone);
1730
if (!page) {
1731
unsigned long next_pfn;
1732
1733
next_pfn = skip_offline_sections_reverse(block_start_pfn);
1734
if (next_pfn)
1735
block_start_pfn = max(next_pfn, low_pfn);
1736
1737
continue;
1738
}
1739
1740
/* Check the block is suitable for migration */
1741
if (!suitable_migration_target(cc, page))
1742
continue;
1743
1744
/* If isolation recently failed, do not retry */
1745
if (!isolation_suitable(cc, page))
1746
continue;
1747
1748
/* Found a block suitable for isolating free pages from. */
1749
nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1750
block_end_pfn, cc->freepages, stride, false);
1751
1752
/* Update the skip hint if the full pageblock was scanned */
1753
if (isolate_start_pfn == block_end_pfn)
1754
update_pageblock_skip(cc, page, block_start_pfn -
1755
pageblock_nr_pages);
1756
1757
/* Are enough freepages isolated? */
1758
if (cc->nr_freepages >= cc->nr_migratepages) {
1759
if (isolate_start_pfn >= block_end_pfn) {
1760
/*
1761
* Restart at previous pageblock if more
1762
* freepages can be isolated next time.
1763
*/
1764
isolate_start_pfn =
1765
block_start_pfn - pageblock_nr_pages;
1766
}
1767
break;
1768
} else if (isolate_start_pfn < block_end_pfn) {
1769
/*
1770
* If isolation failed early, do not continue
1771
* needlessly.
1772
*/
1773
break;
1774
}
1775
1776
/* Adjust stride depending on isolation */
1777
if (nr_isolated) {
1778
stride = 1;
1779
continue;
1780
}
1781
stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1782
}
1783
1784
/*
1785
* Record where the free scanner will restart next time. Either we
1786
* broke from the loop and set isolate_start_pfn based on the last
1787
* call to isolate_freepages_block(), or we met the migration scanner
1788
* and the loop terminated due to isolate_start_pfn < low_pfn
1789
*/
1790
cc->free_pfn = isolate_start_pfn;
1791
}
1792
1793
/*
1794
* This is a migrate-callback that "allocates" freepages by taking pages
1795
* from the isolated freelists in the block we are migrating to.
1796
*/
1797
static struct folio *compaction_alloc_noprof(struct folio *src, unsigned long data)
1798
{
1799
struct compact_control *cc = (struct compact_control *)data;
1800
struct folio *dst;
1801
int order = folio_order(src);
1802
bool has_isolated_pages = false;
1803
int start_order;
1804
struct page *freepage;
1805
unsigned long size;
1806
1807
again:
1808
for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1809
if (!list_empty(&cc->freepages[start_order]))
1810
break;
1811
1812
/* no free pages in the list */
1813
if (start_order == NR_PAGE_ORDERS) {
1814
if (has_isolated_pages)
1815
return NULL;
1816
isolate_freepages(cc);
1817
has_isolated_pages = true;
1818
goto again;
1819
}
1820
1821
freepage = list_first_entry(&cc->freepages[start_order], struct page,
1822
lru);
1823
size = 1 << start_order;
1824
1825
list_del(&freepage->lru);
1826
1827
while (start_order > order) {
1828
start_order--;
1829
size >>= 1;
1830
1831
list_add(&freepage[size].lru, &cc->freepages[start_order]);
1832
set_page_private(&freepage[size], start_order);
1833
}
1834
dst = (struct folio *)freepage;
1835
1836
post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1837
set_page_refcounted(&dst->page);
1838
if (order)
1839
prep_compound_page(&dst->page, order);
1840
cc->nr_freepages -= 1 << order;
1841
cc->nr_migratepages -= 1 << order;
1842
return page_rmappable_folio(&dst->page);
1843
}
1844
1845
static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1846
{
1847
return alloc_hooks(compaction_alloc_noprof(src, data));
1848
}
1849
1850
/*
1851
* This is a migrate-callback that "frees" freepages back to the isolated
1852
* freelist. All pages on the freelist are from the same zone, so there is no
1853
* special handling needed for NUMA.
1854
*/
1855
static void compaction_free(struct folio *dst, unsigned long data)
1856
{
1857
struct compact_control *cc = (struct compact_control *)data;
1858
int order = folio_order(dst);
1859
struct page *page = &dst->page;
1860
1861
if (folio_put_testzero(dst)) {
1862
free_pages_prepare(page, order);
1863
list_add(&dst->lru, &cc->freepages[order]);
1864
cc->nr_freepages += 1 << order;
1865
}
1866
cc->nr_migratepages += 1 << order;
1867
/*
1868
* someone else has referenced the page, we cannot take it back to our
1869
* free list.
1870
*/
1871
}
1872
1873
/* possible outcome of isolate_migratepages */
1874
typedef enum {
1875
ISOLATE_ABORT, /* Abort compaction now */
1876
ISOLATE_NONE, /* No pages isolated, continue scanning */
1877
ISOLATE_SUCCESS, /* Pages isolated, migrate */
1878
} isolate_migrate_t;
1879
1880
/*
1881
* Allow userspace to control policy on scanning the unevictable LRU for
1882
* compactable pages.
1883
*/
1884
static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1885
/*
1886
* Tunable for proactive compaction. It determines how
1887
* aggressively the kernel should compact memory in the
1888
* background. It takes values in the range [0, 100].
1889
*/
1890
static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1891
static int sysctl_extfrag_threshold = 500;
1892
static int __read_mostly sysctl_compact_memory;
1893
1894
static inline void
1895
update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1896
{
1897
if (cc->fast_start_pfn == ULONG_MAX)
1898
return;
1899
1900
if (!cc->fast_start_pfn)
1901
cc->fast_start_pfn = pfn;
1902
1903
cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1904
}
1905
1906
static inline unsigned long
1907
reinit_migrate_pfn(struct compact_control *cc)
1908
{
1909
if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1910
return cc->migrate_pfn;
1911
1912
cc->migrate_pfn = cc->fast_start_pfn;
1913
cc->fast_start_pfn = ULONG_MAX;
1914
1915
return cc->migrate_pfn;
1916
}
1917
1918
/*
1919
* Briefly search the free lists for a migration source that already has
1920
* some free pages to reduce the number of pages that need migration
1921
* before a pageblock is free.
1922
*/
1923
static unsigned long fast_find_migrateblock(struct compact_control *cc)
1924
{
1925
unsigned int limit = freelist_scan_limit(cc);
1926
unsigned int nr_scanned = 0;
1927
unsigned long distance;
1928
unsigned long pfn = cc->migrate_pfn;
1929
unsigned long high_pfn;
1930
int order;
1931
bool found_block = false;
1932
1933
/* Skip hints are relied on to avoid repeats on the fast search */
1934
if (cc->ignore_skip_hint)
1935
return pfn;
1936
1937
/*
1938
* If the pageblock should be finished then do not select a different
1939
* pageblock.
1940
*/
1941
if (cc->finish_pageblock)
1942
return pfn;
1943
1944
/*
1945
* If the migrate_pfn is not at the start of a zone or the start
1946
* of a pageblock then assume this is a continuation of a previous
1947
* scan restarted due to COMPACT_CLUSTER_MAX.
1948
*/
1949
if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1950
return pfn;
1951
1952
/*
1953
* For smaller orders, just linearly scan as the number of pages
1954
* to migrate should be relatively small and does not necessarily
1955
* justify freeing up a large block for a small allocation.
1956
*/
1957
if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1958
return pfn;
1959
1960
/*
1961
* Only allow kcompactd and direct requests for movable pages to
1962
* quickly clear out a MOVABLE pageblock for allocation. This
1963
* reduces the risk that a large movable pageblock is freed for
1964
* an unmovable/reclaimable small allocation.
1965
*/
1966
if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1967
return pfn;
1968
1969
/*
1970
* When starting the migration scanner, pick any pageblock within the
1971
* first half of the search space. Otherwise try and pick a pageblock
1972
* within the first eighth to reduce the chances that a migration
1973
* target later becomes a source.
1974
*/
1975
distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1976
if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1977
distance >>= 2;
1978
high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1979
1980
for (order = cc->order - 1;
1981
order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1982
order--) {
1983
struct free_area *area = &cc->zone->free_area[order];
1984
struct list_head *freelist;
1985
unsigned long flags;
1986
struct page *freepage;
1987
1988
if (!area->nr_free)
1989
continue;
1990
1991
spin_lock_irqsave(&cc->zone->lock, flags);
1992
freelist = &area->free_list[MIGRATE_MOVABLE];
1993
list_for_each_entry(freepage, freelist, buddy_list) {
1994
unsigned long free_pfn;
1995
1996
if (nr_scanned++ >= limit) {
1997
move_freelist_tail(freelist, freepage);
1998
break;
1999
}
2000
2001
free_pfn = page_to_pfn(freepage);
2002
if (free_pfn < high_pfn) {
2003
/*
2004
* Avoid if skipped recently. Ideally it would
2005
* move to the tail but even safe iteration of
2006
* the list assumes an entry is deleted, not
2007
* reordered.
2008
*/
2009
if (get_pageblock_skip(freepage))
2010
continue;
2011
2012
/* Reorder to so a future search skips recent pages */
2013
move_freelist_tail(freelist, freepage);
2014
2015
update_fast_start_pfn(cc, free_pfn);
2016
pfn = pageblock_start_pfn(free_pfn);
2017
if (pfn < cc->zone->zone_start_pfn)
2018
pfn = cc->zone->zone_start_pfn;
2019
cc->fast_search_fail = 0;
2020
found_block = true;
2021
break;
2022
}
2023
}
2024
spin_unlock_irqrestore(&cc->zone->lock, flags);
2025
}
2026
2027
cc->total_migrate_scanned += nr_scanned;
2028
2029
/*
2030
* If fast scanning failed then use a cached entry for a page block
2031
* that had free pages as the basis for starting a linear scan.
2032
*/
2033
if (!found_block) {
2034
cc->fast_search_fail++;
2035
pfn = reinit_migrate_pfn(cc);
2036
}
2037
return pfn;
2038
}
2039
2040
/*
2041
* Isolate all pages that can be migrated from the first suitable block,
2042
* starting at the block pointed to by the migrate scanner pfn within
2043
* compact_control.
2044
*/
2045
static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2046
{
2047
unsigned long block_start_pfn;
2048
unsigned long block_end_pfn;
2049
unsigned long low_pfn;
2050
struct page *page;
2051
const isolate_mode_t isolate_mode =
2052
(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2053
(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2054
bool fast_find_block;
2055
2056
/*
2057
* Start at where we last stopped, or beginning of the zone as
2058
* initialized by compact_zone(). The first failure will use
2059
* the lowest PFN as the starting point for linear scanning.
2060
*/
2061
low_pfn = fast_find_migrateblock(cc);
2062
block_start_pfn = pageblock_start_pfn(low_pfn);
2063
if (block_start_pfn < cc->zone->zone_start_pfn)
2064
block_start_pfn = cc->zone->zone_start_pfn;
2065
2066
/*
2067
* fast_find_migrateblock() has already ensured the pageblock is not
2068
* set with a skipped flag, so to avoid the isolation_suitable check
2069
* below again, check whether the fast search was successful.
2070
*/
2071
fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2072
2073
/* Only scan within a pageblock boundary */
2074
block_end_pfn = pageblock_end_pfn(low_pfn);
2075
2076
/*
2077
* Iterate over whole pageblocks until we find the first suitable.
2078
* Do not cross the free scanner.
2079
*/
2080
for (; block_end_pfn <= cc->free_pfn;
2081
fast_find_block = false,
2082
cc->migrate_pfn = low_pfn = block_end_pfn,
2083
block_start_pfn = block_end_pfn,
2084
block_end_pfn += pageblock_nr_pages) {
2085
2086
/*
2087
* This can potentially iterate a massively long zone with
2088
* many pageblocks unsuitable, so periodically check if we
2089
* need to schedule.
2090
*/
2091
if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2092
cond_resched();
2093
2094
page = pageblock_pfn_to_page(block_start_pfn,
2095
block_end_pfn, cc->zone);
2096
if (!page) {
2097
unsigned long next_pfn;
2098
2099
next_pfn = skip_offline_sections(block_start_pfn);
2100
if (next_pfn)
2101
block_end_pfn = min(next_pfn, cc->free_pfn);
2102
continue;
2103
}
2104
2105
/*
2106
* If isolation recently failed, do not retry. Only check the
2107
* pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2108
* to be visited multiple times. Assume skip was checked
2109
* before making it "skip" so other compaction instances do
2110
* not scan the same block.
2111
*/
2112
if ((pageblock_aligned(low_pfn) ||
2113
low_pfn == cc->zone->zone_start_pfn) &&
2114
!fast_find_block && !isolation_suitable(cc, page))
2115
continue;
2116
2117
/*
2118
* For async direct compaction, only scan the pageblocks of the
2119
* same migratetype without huge pages. Async direct compaction
2120
* is optimistic to see if the minimum amount of work satisfies
2121
* the allocation. The cached PFN is updated as it's possible
2122
* that all remaining blocks between source and target are
2123
* unsuitable and the compaction scanners fail to meet.
2124
*/
2125
if (!suitable_migration_source(cc, page)) {
2126
update_cached_migrate(cc, block_end_pfn);
2127
continue;
2128
}
2129
2130
/* Perform the isolation */
2131
if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2132
isolate_mode))
2133
return ISOLATE_ABORT;
2134
2135
/*
2136
* Either we isolated something and proceed with migration. Or
2137
* we failed and compact_zone should decide if we should
2138
* continue or not.
2139
*/
2140
break;
2141
}
2142
2143
return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2144
}
2145
2146
/*
2147
* Determine whether kswapd is (or recently was!) running on this node.
2148
*
2149
* pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2150
* zero it.
2151
*/
2152
static bool kswapd_is_running(pg_data_t *pgdat)
2153
{
2154
bool running;
2155
2156
pgdat_kswapd_lock(pgdat);
2157
running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2158
pgdat_kswapd_unlock(pgdat);
2159
2160
return running;
2161
}
2162
2163
/*
2164
* A zone's fragmentation score is the external fragmentation wrt to the
2165
* COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2166
*/
2167
static unsigned int fragmentation_score_zone(struct zone *zone)
2168
{
2169
return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2170
}
2171
2172
/*
2173
* A weighted zone's fragmentation score is the external fragmentation
2174
* wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2175
* returns a value in the range [0, 100].
2176
*
2177
* The scaling factor ensures that proactive compaction focuses on larger
2178
* zones like ZONE_NORMAL, rather than smaller, specialized zones like
2179
* ZONE_DMA32. For smaller zones, the score value remains close to zero,
2180
* and thus never exceeds the high threshold for proactive compaction.
2181
*/
2182
static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2183
{
2184
unsigned long score;
2185
2186
score = zone->present_pages * fragmentation_score_zone(zone);
2187
return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2188
}
2189
2190
/*
2191
* The per-node proactive (background) compaction process is started by its
2192
* corresponding kcompactd thread when the node's fragmentation score
2193
* exceeds the high threshold. The compaction process remains active till
2194
* the node's score falls below the low threshold, or one of the back-off
2195
* conditions is met.
2196
*/
2197
static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2198
{
2199
unsigned int score = 0;
2200
int zoneid;
2201
2202
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2203
struct zone *zone;
2204
2205
zone = &pgdat->node_zones[zoneid];
2206
if (!populated_zone(zone))
2207
continue;
2208
score += fragmentation_score_zone_weighted(zone);
2209
}
2210
2211
return score;
2212
}
2213
2214
static unsigned int fragmentation_score_wmark(bool low)
2215
{
2216
unsigned int wmark_low, leeway;
2217
2218
wmark_low = 100U - sysctl_compaction_proactiveness;
2219
leeway = min(10U, wmark_low / 2);
2220
return low ? wmark_low : min(wmark_low + leeway, 100U);
2221
}
2222
2223
static bool should_proactive_compact_node(pg_data_t *pgdat)
2224
{
2225
int wmark_high;
2226
2227
if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2228
return false;
2229
2230
wmark_high = fragmentation_score_wmark(false);
2231
return fragmentation_score_node(pgdat) > wmark_high;
2232
}
2233
2234
static enum compact_result __compact_finished(struct compact_control *cc)
2235
{
2236
unsigned int order;
2237
const int migratetype = cc->migratetype;
2238
int ret;
2239
2240
/* Compaction run completes if the migrate and free scanner meet */
2241
if (compact_scanners_met(cc)) {
2242
/* Let the next compaction start anew. */
2243
reset_cached_positions(cc->zone);
2244
2245
/*
2246
* Mark that the PG_migrate_skip information should be cleared
2247
* by kswapd when it goes to sleep. kcompactd does not set the
2248
* flag itself as the decision to be clear should be directly
2249
* based on an allocation request.
2250
*/
2251
if (cc->direct_compaction)
2252
cc->zone->compact_blockskip_flush = true;
2253
2254
if (cc->whole_zone)
2255
return COMPACT_COMPLETE;
2256
else
2257
return COMPACT_PARTIAL_SKIPPED;
2258
}
2259
2260
if (cc->proactive_compaction) {
2261
int score, wmark_low;
2262
pg_data_t *pgdat;
2263
2264
pgdat = cc->zone->zone_pgdat;
2265
if (kswapd_is_running(pgdat))
2266
return COMPACT_PARTIAL_SKIPPED;
2267
2268
score = fragmentation_score_zone(cc->zone);
2269
wmark_low = fragmentation_score_wmark(true);
2270
2271
if (score > wmark_low)
2272
ret = COMPACT_CONTINUE;
2273
else
2274
ret = COMPACT_SUCCESS;
2275
2276
goto out;
2277
}
2278
2279
if (is_via_compact_memory(cc->order))
2280
return COMPACT_CONTINUE;
2281
2282
/*
2283
* Always finish scanning a pageblock to reduce the possibility of
2284
* fallbacks in the future. This is particularly important when
2285
* migration source is unmovable/reclaimable but it's not worth
2286
* special casing.
2287
*/
2288
if (!pageblock_aligned(cc->migrate_pfn))
2289
return COMPACT_CONTINUE;
2290
2291
/*
2292
* When defrag_mode is enabled, make kcompactd target
2293
* watermarks in whole pageblocks. Because they can be stolen
2294
* without polluting, no further fallback checks are needed.
2295
*/
2296
if (defrag_mode && !cc->direct_compaction) {
2297
if (__zone_watermark_ok(cc->zone, cc->order,
2298
high_wmark_pages(cc->zone),
2299
cc->highest_zoneidx, cc->alloc_flags,
2300
zone_page_state(cc->zone,
2301
NR_FREE_PAGES_BLOCKS)))
2302
return COMPACT_SUCCESS;
2303
2304
return COMPACT_CONTINUE;
2305
}
2306
2307
/* Direct compactor: Is a suitable page free? */
2308
ret = COMPACT_NO_SUITABLE_PAGE;
2309
for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2310
struct free_area *area = &cc->zone->free_area[order];
2311
2312
/* Job done if page is free of the right migratetype */
2313
if (!free_area_empty(area, migratetype))
2314
return COMPACT_SUCCESS;
2315
2316
#ifdef CONFIG_CMA
2317
/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2318
if (migratetype == MIGRATE_MOVABLE &&
2319
!free_area_empty(area, MIGRATE_CMA))
2320
return COMPACT_SUCCESS;
2321
#endif
2322
/*
2323
* Job done if allocation would steal freepages from
2324
* other migratetype buddy lists.
2325
*/
2326
if (find_suitable_fallback(area, order, migratetype, true) >= 0)
2327
/*
2328
* Movable pages are OK in any pageblock. If we are
2329
* stealing for a non-movable allocation, make sure
2330
* we finish compacting the current pageblock first
2331
* (which is assured by the above migrate_pfn align
2332
* check) so it is as free as possible and we won't
2333
* have to steal another one soon.
2334
*/
2335
return COMPACT_SUCCESS;
2336
}
2337
2338
out:
2339
if (cc->contended || fatal_signal_pending(current))
2340
ret = COMPACT_CONTENDED;
2341
2342
return ret;
2343
}
2344
2345
static enum compact_result compact_finished(struct compact_control *cc)
2346
{
2347
int ret;
2348
2349
ret = __compact_finished(cc);
2350
trace_mm_compaction_finished(cc->zone, cc->order, ret);
2351
if (ret == COMPACT_NO_SUITABLE_PAGE)
2352
ret = COMPACT_CONTINUE;
2353
2354
return ret;
2355
}
2356
2357
static bool __compaction_suitable(struct zone *zone, int order,
2358
unsigned long watermark, int highest_zoneidx,
2359
unsigned long free_pages)
2360
{
2361
/*
2362
* Watermarks for order-0 must be met for compaction to be able to
2363
* isolate free pages for migration targets. This means that the
2364
* watermark have to match, or be more pessimistic than the check in
2365
* __isolate_free_page().
2366
*
2367
* For costly orders, we require a higher watermark for compaction to
2368
* proceed to increase its chances.
2369
*
2370
* We use the direct compactor's highest_zoneidx to skip over zones
2371
* where lowmem reserves would prevent allocation even if compaction
2372
* succeeds.
2373
*
2374
* ALLOC_CMA is used, as pages in CMA pageblocks are considered
2375
* suitable migration targets.
2376
*/
2377
watermark += compact_gap(order);
2378
if (order > PAGE_ALLOC_COSTLY_ORDER)
2379
watermark += low_wmark_pages(zone) - min_wmark_pages(zone);
2380
return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2381
ALLOC_CMA, free_pages);
2382
}
2383
2384
/*
2385
* compaction_suitable: Is this suitable to run compaction on this zone now?
2386
*/
2387
bool compaction_suitable(struct zone *zone, int order, unsigned long watermark,
2388
int highest_zoneidx)
2389
{
2390
enum compact_result compact_result;
2391
bool suitable;
2392
2393
suitable = __compaction_suitable(zone, order, watermark, highest_zoneidx,
2394
zone_page_state(zone, NR_FREE_PAGES));
2395
/*
2396
* fragmentation index determines if allocation failures are due to
2397
* low memory or external fragmentation
2398
*
2399
* index of -1000 would imply allocations might succeed depending on
2400
* watermarks, but we already failed the high-order watermark check
2401
* index towards 0 implies failure is due to lack of memory
2402
* index towards 1000 implies failure is due to fragmentation
2403
*
2404
* Only compact if a failure would be due to fragmentation. Also
2405
* ignore fragindex for non-costly orders where the alternative to
2406
* a successful reclaim/compaction is OOM. Fragindex and the
2407
* vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2408
* excessive compaction for costly orders, but it should not be at the
2409
* expense of system stability.
2410
*/
2411
if (suitable) {
2412
compact_result = COMPACT_CONTINUE;
2413
if (order > PAGE_ALLOC_COSTLY_ORDER) {
2414
int fragindex = fragmentation_index(zone, order);
2415
2416
if (fragindex >= 0 &&
2417
fragindex <= sysctl_extfrag_threshold) {
2418
suitable = false;
2419
compact_result = COMPACT_NOT_SUITABLE_ZONE;
2420
}
2421
}
2422
} else {
2423
compact_result = COMPACT_SKIPPED;
2424
}
2425
2426
trace_mm_compaction_suitable(zone, order, compact_result);
2427
2428
return suitable;
2429
}
2430
2431
/* Used by direct reclaimers */
2432
bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2433
int alloc_flags)
2434
{
2435
struct zone *zone;
2436
struct zoneref *z;
2437
2438
/*
2439
* Make sure at least one zone would pass __compaction_suitable if we continue
2440
* retrying the reclaim.
2441
*/
2442
for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2443
ac->highest_zoneidx, ac->nodemask) {
2444
unsigned long available;
2445
2446
/*
2447
* Do not consider all the reclaimable memory because we do not
2448
* want to trash just for a single high order allocation which
2449
* is even not guaranteed to appear even if __compaction_suitable
2450
* is happy about the watermark check.
2451
*/
2452
available = zone_reclaimable_pages(zone) / order;
2453
available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2454
if (__compaction_suitable(zone, order, min_wmark_pages(zone),
2455
ac->highest_zoneidx, available))
2456
return true;
2457
}
2458
2459
return false;
2460
}
2461
2462
/*
2463
* Should we do compaction for target allocation order.
2464
* Return COMPACT_SUCCESS if allocation for target order can be already
2465
* satisfied
2466
* Return COMPACT_SKIPPED if compaction for target order is likely to fail
2467
* Return COMPACT_CONTINUE if compaction for target order should be ran
2468
*/
2469
static enum compact_result
2470
compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2471
int highest_zoneidx, unsigned int alloc_flags,
2472
bool async, bool kcompactd)
2473
{
2474
unsigned long free_pages;
2475
unsigned long watermark;
2476
2477
if (kcompactd && defrag_mode)
2478
free_pages = zone_page_state(zone, NR_FREE_PAGES_BLOCKS);
2479
else
2480
free_pages = zone_page_state(zone, NR_FREE_PAGES);
2481
2482
watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2483
if (__zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2484
alloc_flags, free_pages))
2485
return COMPACT_SUCCESS;
2486
2487
/*
2488
* For unmovable allocations (without ALLOC_CMA), check if there is enough
2489
* free memory in the non-CMA pageblocks. Otherwise compaction could form
2490
* the high-order page in CMA pageblocks, which would not help the
2491
* allocation to succeed. However, limit the check to costly order async
2492
* compaction (such as opportunistic THP attempts) because there is the
2493
* possibility that compaction would migrate pages from non-CMA to CMA
2494
* pageblock.
2495
*/
2496
if (order > PAGE_ALLOC_COSTLY_ORDER && async &&
2497
!(alloc_flags & ALLOC_CMA)) {
2498
if (!__zone_watermark_ok(zone, 0, watermark + compact_gap(order),
2499
highest_zoneidx, 0,
2500
zone_page_state(zone, NR_FREE_PAGES)))
2501
return COMPACT_SKIPPED;
2502
}
2503
2504
if (!compaction_suitable(zone, order, watermark, highest_zoneidx))
2505
return COMPACT_SKIPPED;
2506
2507
return COMPACT_CONTINUE;
2508
}
2509
2510
static enum compact_result
2511
compact_zone(struct compact_control *cc, struct capture_control *capc)
2512
{
2513
enum compact_result ret;
2514
unsigned long start_pfn = cc->zone->zone_start_pfn;
2515
unsigned long end_pfn = zone_end_pfn(cc->zone);
2516
unsigned long last_migrated_pfn;
2517
const bool sync = cc->mode != MIGRATE_ASYNC;
2518
bool update_cached;
2519
unsigned int nr_succeeded = 0, nr_migratepages;
2520
int order;
2521
2522
/*
2523
* These counters track activities during zone compaction. Initialize
2524
* them before compacting a new zone.
2525
*/
2526
cc->total_migrate_scanned = 0;
2527
cc->total_free_scanned = 0;
2528
cc->nr_migratepages = 0;
2529
cc->nr_freepages = 0;
2530
for (order = 0; order < NR_PAGE_ORDERS; order++)
2531
INIT_LIST_HEAD(&cc->freepages[order]);
2532
INIT_LIST_HEAD(&cc->migratepages);
2533
2534
cc->migratetype = gfp_migratetype(cc->gfp_mask);
2535
2536
if (!is_via_compact_memory(cc->order)) {
2537
ret = compaction_suit_allocation_order(cc->zone, cc->order,
2538
cc->highest_zoneidx,
2539
cc->alloc_flags,
2540
cc->mode == MIGRATE_ASYNC,
2541
!cc->direct_compaction);
2542
if (ret != COMPACT_CONTINUE)
2543
return ret;
2544
}
2545
2546
/*
2547
* Clear pageblock skip if there were failures recently and compaction
2548
* is about to be retried after being deferred.
2549
*/
2550
if (compaction_restarting(cc->zone, cc->order))
2551
__reset_isolation_suitable(cc->zone);
2552
2553
/*
2554
* Setup to move all movable pages to the end of the zone. Used cached
2555
* information on where the scanners should start (unless we explicitly
2556
* want to compact the whole zone), but check that it is initialised
2557
* by ensuring the values are within zone boundaries.
2558
*/
2559
cc->fast_start_pfn = 0;
2560
if (cc->whole_zone) {
2561
cc->migrate_pfn = start_pfn;
2562
cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2563
} else {
2564
cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2565
cc->free_pfn = cc->zone->compact_cached_free_pfn;
2566
if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2567
cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2568
cc->zone->compact_cached_free_pfn = cc->free_pfn;
2569
}
2570
if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2571
cc->migrate_pfn = start_pfn;
2572
cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2573
cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2574
}
2575
2576
if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2577
cc->whole_zone = true;
2578
}
2579
2580
last_migrated_pfn = 0;
2581
2582
/*
2583
* Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2584
* the basis that some migrations will fail in ASYNC mode. However,
2585
* if the cached PFNs match and pageblocks are skipped due to having
2586
* no isolation candidates, then the sync state does not matter.
2587
* Until a pageblock with isolation candidates is found, keep the
2588
* cached PFNs in sync to avoid revisiting the same blocks.
2589
*/
2590
update_cached = !sync &&
2591
cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2592
2593
trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2594
2595
/* lru_add_drain_all could be expensive with involving other CPUs */
2596
lru_add_drain();
2597
2598
while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2599
int err;
2600
unsigned long iteration_start_pfn = cc->migrate_pfn;
2601
2602
/*
2603
* Avoid multiple rescans of the same pageblock which can
2604
* happen if a page cannot be isolated (dirty/writeback in
2605
* async mode) or if the migrated pages are being allocated
2606
* before the pageblock is cleared. The first rescan will
2607
* capture the entire pageblock for migration. If it fails,
2608
* it'll be marked skip and scanning will proceed as normal.
2609
*/
2610
cc->finish_pageblock = false;
2611
if (pageblock_start_pfn(last_migrated_pfn) ==
2612
pageblock_start_pfn(iteration_start_pfn)) {
2613
cc->finish_pageblock = true;
2614
}
2615
2616
rescan:
2617
switch (isolate_migratepages(cc)) {
2618
case ISOLATE_ABORT:
2619
ret = COMPACT_CONTENDED;
2620
putback_movable_pages(&cc->migratepages);
2621
cc->nr_migratepages = 0;
2622
goto out;
2623
case ISOLATE_NONE:
2624
if (update_cached) {
2625
cc->zone->compact_cached_migrate_pfn[1] =
2626
cc->zone->compact_cached_migrate_pfn[0];
2627
}
2628
2629
/*
2630
* We haven't isolated and migrated anything, but
2631
* there might still be unflushed migrations from
2632
* previous cc->order aligned block.
2633
*/
2634
goto check_drain;
2635
case ISOLATE_SUCCESS:
2636
update_cached = false;
2637
last_migrated_pfn = max(cc->zone->zone_start_pfn,
2638
pageblock_start_pfn(cc->migrate_pfn - 1));
2639
}
2640
2641
/*
2642
* Record the number of pages to migrate since the
2643
* compaction_alloc/free() will update cc->nr_migratepages
2644
* properly.
2645
*/
2646
nr_migratepages = cc->nr_migratepages;
2647
err = migrate_pages(&cc->migratepages, compaction_alloc,
2648
compaction_free, (unsigned long)cc, cc->mode,
2649
MR_COMPACTION, &nr_succeeded);
2650
2651
trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
2652
2653
/* All pages were either migrated or will be released */
2654
cc->nr_migratepages = 0;
2655
if (err) {
2656
putback_movable_pages(&cc->migratepages);
2657
/*
2658
* migrate_pages() may return -ENOMEM when scanners meet
2659
* and we want compact_finished() to detect it
2660
*/
2661
if (err == -ENOMEM && !compact_scanners_met(cc)) {
2662
ret = COMPACT_CONTENDED;
2663
goto out;
2664
}
2665
/*
2666
* If an ASYNC or SYNC_LIGHT fails to migrate a page
2667
* within the pageblock_order-aligned block and
2668
* fast_find_migrateblock may be used then scan the
2669
* remainder of the pageblock. This will mark the
2670
* pageblock "skip" to avoid rescanning in the near
2671
* future. This will isolate more pages than necessary
2672
* for the request but avoid loops due to
2673
* fast_find_migrateblock revisiting blocks that were
2674
* recently partially scanned.
2675
*/
2676
if (!pageblock_aligned(cc->migrate_pfn) &&
2677
!cc->ignore_skip_hint && !cc->finish_pageblock &&
2678
(cc->mode < MIGRATE_SYNC)) {
2679
cc->finish_pageblock = true;
2680
2681
/*
2682
* Draining pcplists does not help THP if
2683
* any page failed to migrate. Even after
2684
* drain, the pageblock will not be free.
2685
*/
2686
if (cc->order == COMPACTION_HPAGE_ORDER)
2687
last_migrated_pfn = 0;
2688
2689
goto rescan;
2690
}
2691
}
2692
2693
/* Stop if a page has been captured */
2694
if (capc && capc->page) {
2695
ret = COMPACT_SUCCESS;
2696
break;
2697
}
2698
2699
check_drain:
2700
/*
2701
* Has the migration scanner moved away from the previous
2702
* cc->order aligned block where we migrated from? If yes,
2703
* flush the pages that were freed, so that they can merge and
2704
* compact_finished() can detect immediately if allocation
2705
* would succeed.
2706
*/
2707
if (cc->order > 0 && last_migrated_pfn) {
2708
unsigned long current_block_start =
2709
block_start_pfn(cc->migrate_pfn, cc->order);
2710
2711
if (last_migrated_pfn < current_block_start) {
2712
lru_add_drain_cpu_zone(cc->zone);
2713
/* No more flushing until we migrate again */
2714
last_migrated_pfn = 0;
2715
}
2716
}
2717
}
2718
2719
out:
2720
/*
2721
* Release free pages and update where the free scanner should restart,
2722
* so we don't leave any returned pages behind in the next attempt.
2723
*/
2724
if (cc->nr_freepages > 0) {
2725
unsigned long free_pfn = release_free_list(cc->freepages);
2726
2727
cc->nr_freepages = 0;
2728
VM_BUG_ON(free_pfn == 0);
2729
/* The cached pfn is always the first in a pageblock */
2730
free_pfn = pageblock_start_pfn(free_pfn);
2731
/*
2732
* Only go back, not forward. The cached pfn might have been
2733
* already reset to zone end in compact_finished()
2734
*/
2735
if (free_pfn > cc->zone->compact_cached_free_pfn)
2736
cc->zone->compact_cached_free_pfn = free_pfn;
2737
}
2738
2739
count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2740
count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2741
2742
trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2743
2744
VM_BUG_ON(!list_empty(&cc->migratepages));
2745
2746
return ret;
2747
}
2748
2749
static enum compact_result compact_zone_order(struct zone *zone, int order,
2750
gfp_t gfp_mask, enum compact_priority prio,
2751
unsigned int alloc_flags, int highest_zoneidx,
2752
struct page **capture)
2753
{
2754
enum compact_result ret;
2755
struct compact_control cc = {
2756
.order = order,
2757
.search_order = order,
2758
.gfp_mask = gfp_mask,
2759
.zone = zone,
2760
.mode = (prio == COMPACT_PRIO_ASYNC) ?
2761
MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2762
.alloc_flags = alloc_flags,
2763
.highest_zoneidx = highest_zoneidx,
2764
.direct_compaction = true,
2765
.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2766
.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2767
.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2768
};
2769
struct capture_control capc = {
2770
.cc = &cc,
2771
.page = NULL,
2772
};
2773
2774
/*
2775
* Make sure the structs are really initialized before we expose the
2776
* capture control, in case we are interrupted and the interrupt handler
2777
* frees a page.
2778
*/
2779
barrier();
2780
WRITE_ONCE(current->capture_control, &capc);
2781
2782
ret = compact_zone(&cc, &capc);
2783
2784
/*
2785
* Make sure we hide capture control first before we read the captured
2786
* page pointer, otherwise an interrupt could free and capture a page
2787
* and we would leak it.
2788
*/
2789
WRITE_ONCE(current->capture_control, NULL);
2790
*capture = READ_ONCE(capc.page);
2791
/*
2792
* Technically, it is also possible that compaction is skipped but
2793
* the page is still captured out of luck(IRQ came and freed the page).
2794
* Returning COMPACT_SUCCESS in such cases helps in properly accounting
2795
* the COMPACT[STALL|FAIL] when compaction is skipped.
2796
*/
2797
if (*capture)
2798
ret = COMPACT_SUCCESS;
2799
2800
return ret;
2801
}
2802
2803
/**
2804
* try_to_compact_pages - Direct compact to satisfy a high-order allocation
2805
* @gfp_mask: The GFP mask of the current allocation
2806
* @order: The order of the current allocation
2807
* @alloc_flags: The allocation flags of the current allocation
2808
* @ac: The context of current allocation
2809
* @prio: Determines how hard direct compaction should try to succeed
2810
* @capture: Pointer to free page created by compaction will be stored here
2811
*
2812
* This is the main entry point for direct page compaction.
2813
*/
2814
enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2815
unsigned int alloc_flags, const struct alloc_context *ac,
2816
enum compact_priority prio, struct page **capture)
2817
{
2818
struct zoneref *z;
2819
struct zone *zone;
2820
enum compact_result rc = COMPACT_SKIPPED;
2821
2822
if (!gfp_compaction_allowed(gfp_mask))
2823
return COMPACT_SKIPPED;
2824
2825
trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2826
2827
/* Compact each zone in the list */
2828
for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2829
ac->highest_zoneidx, ac->nodemask) {
2830
enum compact_result status;
2831
2832
if (cpusets_enabled() &&
2833
(alloc_flags & ALLOC_CPUSET) &&
2834
!__cpuset_zone_allowed(zone, gfp_mask))
2835
continue;
2836
2837
if (prio > MIN_COMPACT_PRIORITY
2838
&& compaction_deferred(zone, order)) {
2839
rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2840
continue;
2841
}
2842
2843
status = compact_zone_order(zone, order, gfp_mask, prio,
2844
alloc_flags, ac->highest_zoneidx, capture);
2845
rc = max(status, rc);
2846
2847
/* The allocation should succeed, stop compacting */
2848
if (status == COMPACT_SUCCESS) {
2849
/*
2850
* We think the allocation will succeed in this zone,
2851
* but it is not certain, hence the false. The caller
2852
* will repeat this with true if allocation indeed
2853
* succeeds in this zone.
2854
*/
2855
compaction_defer_reset(zone, order, false);
2856
2857
break;
2858
}
2859
2860
if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2861
status == COMPACT_PARTIAL_SKIPPED))
2862
/*
2863
* We think that allocation won't succeed in this zone
2864
* so we defer compaction there. If it ends up
2865
* succeeding after all, it will be reset.
2866
*/
2867
defer_compaction(zone, order);
2868
2869
/*
2870
* We might have stopped compacting due to need_resched() in
2871
* async compaction, or due to a fatal signal detected. In that
2872
* case do not try further zones
2873
*/
2874
if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2875
|| fatal_signal_pending(current))
2876
break;
2877
}
2878
2879
return rc;
2880
}
2881
2882
/*
2883
* compact_node() - compact all zones within a node
2884
* @pgdat: The node page data
2885
* @proactive: Whether the compaction is proactive
2886
*
2887
* For proactive compaction, compact till each zone's fragmentation score
2888
* reaches within proactive compaction thresholds (as determined by the
2889
* proactiveness tunable), it is possible that the function returns before
2890
* reaching score targets due to various back-off conditions, such as,
2891
* contention on per-node or per-zone locks.
2892
*/
2893
static int compact_node(pg_data_t *pgdat, bool proactive)
2894
{
2895
int zoneid;
2896
struct zone *zone;
2897
struct compact_control cc = {
2898
.order = -1,
2899
.mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2900
.ignore_skip_hint = true,
2901
.whole_zone = true,
2902
.gfp_mask = GFP_KERNEL,
2903
.proactive_compaction = proactive,
2904
};
2905
2906
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2907
zone = &pgdat->node_zones[zoneid];
2908
if (!populated_zone(zone))
2909
continue;
2910
2911
if (fatal_signal_pending(current))
2912
return -EINTR;
2913
2914
cc.zone = zone;
2915
2916
compact_zone(&cc, NULL);
2917
2918
if (proactive) {
2919
count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2920
cc.total_migrate_scanned);
2921
count_compact_events(KCOMPACTD_FREE_SCANNED,
2922
cc.total_free_scanned);
2923
}
2924
}
2925
2926
return 0;
2927
}
2928
2929
/* Compact all zones of all nodes in the system */
2930
static int compact_nodes(void)
2931
{
2932
int ret, nid;
2933
2934
/* Flush pending updates to the LRU lists */
2935
lru_add_drain_all();
2936
2937
for_each_online_node(nid) {
2938
ret = compact_node(NODE_DATA(nid), false);
2939
if (ret)
2940
return ret;
2941
}
2942
2943
return 0;
2944
}
2945
2946
static int compaction_proactiveness_sysctl_handler(const struct ctl_table *table, int write,
2947
void *buffer, size_t *length, loff_t *ppos)
2948
{
2949
int rc, nid;
2950
2951
rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2952
if (rc)
2953
return rc;
2954
2955
if (write && sysctl_compaction_proactiveness) {
2956
for_each_online_node(nid) {
2957
pg_data_t *pgdat = NODE_DATA(nid);
2958
2959
if (pgdat->proactive_compact_trigger)
2960
continue;
2961
2962
pgdat->proactive_compact_trigger = true;
2963
trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2964
pgdat->nr_zones - 1);
2965
wake_up_interruptible(&pgdat->kcompactd_wait);
2966
}
2967
}
2968
2969
return 0;
2970
}
2971
2972
/*
2973
* This is the entry point for compacting all nodes via
2974
* /proc/sys/vm/compact_memory
2975
*/
2976
static int sysctl_compaction_handler(const struct ctl_table *table, int write,
2977
void *buffer, size_t *length, loff_t *ppos)
2978
{
2979
int ret;
2980
2981
ret = proc_dointvec(table, write, buffer, length, ppos);
2982
if (ret)
2983
return ret;
2984
2985
if (sysctl_compact_memory != 1)
2986
return -EINVAL;
2987
2988
if (write)
2989
ret = compact_nodes();
2990
2991
return ret;
2992
}
2993
2994
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2995
static ssize_t compact_store(struct device *dev,
2996
struct device_attribute *attr,
2997
const char *buf, size_t count)
2998
{
2999
int nid = dev->id;
3000
3001
if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
3002
/* Flush pending updates to the LRU lists */
3003
lru_add_drain_all();
3004
3005
compact_node(NODE_DATA(nid), false);
3006
}
3007
3008
return count;
3009
}
3010
static DEVICE_ATTR_WO(compact);
3011
3012
int compaction_register_node(struct node *node)
3013
{
3014
return device_create_file(&node->dev, &dev_attr_compact);
3015
}
3016
3017
void compaction_unregister_node(struct node *node)
3018
{
3019
device_remove_file(&node->dev, &dev_attr_compact);
3020
}
3021
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
3022
3023
static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3024
{
3025
return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3026
pgdat->proactive_compact_trigger;
3027
}
3028
3029
static bool kcompactd_node_suitable(pg_data_t *pgdat)
3030
{
3031
int zoneid;
3032
struct zone *zone;
3033
enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3034
enum compact_result ret;
3035
unsigned int alloc_flags = defrag_mode ?
3036
ALLOC_WMARK_HIGH : ALLOC_WMARK_MIN;
3037
3038
for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3039
zone = &pgdat->node_zones[zoneid];
3040
3041
if (!populated_zone(zone))
3042
continue;
3043
3044
ret = compaction_suit_allocation_order(zone,
3045
pgdat->kcompactd_max_order,
3046
highest_zoneidx, alloc_flags,
3047
false, true);
3048
if (ret == COMPACT_CONTINUE)
3049
return true;
3050
}
3051
3052
return false;
3053
}
3054
3055
static void kcompactd_do_work(pg_data_t *pgdat)
3056
{
3057
/*
3058
* With no special task, compact all zones so that a page of requested
3059
* order is allocatable.
3060
*/
3061
int zoneid;
3062
struct zone *zone;
3063
struct compact_control cc = {
3064
.order = pgdat->kcompactd_max_order,
3065
.search_order = pgdat->kcompactd_max_order,
3066
.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3067
.mode = MIGRATE_SYNC_LIGHT,
3068
.ignore_skip_hint = false,
3069
.gfp_mask = GFP_KERNEL,
3070
.alloc_flags = defrag_mode ? ALLOC_WMARK_HIGH : ALLOC_WMARK_MIN,
3071
};
3072
enum compact_result ret;
3073
3074
trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3075
cc.highest_zoneidx);
3076
count_compact_event(KCOMPACTD_WAKE);
3077
3078
for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3079
int status;
3080
3081
zone = &pgdat->node_zones[zoneid];
3082
if (!populated_zone(zone))
3083
continue;
3084
3085
if (compaction_deferred(zone, cc.order))
3086
continue;
3087
3088
ret = compaction_suit_allocation_order(zone,
3089
cc.order, zoneid, cc.alloc_flags,
3090
false, true);
3091
if (ret != COMPACT_CONTINUE)
3092
continue;
3093
3094
if (kthread_should_stop())
3095
return;
3096
3097
cc.zone = zone;
3098
status = compact_zone(&cc, NULL);
3099
3100
if (status == COMPACT_SUCCESS) {
3101
compaction_defer_reset(zone, cc.order, false);
3102
} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3103
/*
3104
* Buddy pages may become stranded on pcps that could
3105
* otherwise coalesce on the zone's free area for
3106
* order >= cc.order. This is ratelimited by the
3107
* upcoming deferral.
3108
*/
3109
drain_all_pages(zone);
3110
3111
/*
3112
* We use sync migration mode here, so we defer like
3113
* sync direct compaction does.
3114
*/
3115
defer_compaction(zone, cc.order);
3116
}
3117
3118
count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3119
cc.total_migrate_scanned);
3120
count_compact_events(KCOMPACTD_FREE_SCANNED,
3121
cc.total_free_scanned);
3122
}
3123
3124
/*
3125
* Regardless of success, we are done until woken up next. But remember
3126
* the requested order/highest_zoneidx in case it was higher/tighter
3127
* than our current ones
3128
*/
3129
if (pgdat->kcompactd_max_order <= cc.order)
3130
pgdat->kcompactd_max_order = 0;
3131
if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3132
pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3133
}
3134
3135
void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3136
{
3137
if (!order)
3138
return;
3139
3140
if (pgdat->kcompactd_max_order < order)
3141
pgdat->kcompactd_max_order = order;
3142
3143
if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3144
pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3145
3146
/*
3147
* Pairs with implicit barrier in wait_event_freezable()
3148
* such that wakeups are not missed.
3149
*/
3150
if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3151
return;
3152
3153
if (!kcompactd_node_suitable(pgdat))
3154
return;
3155
3156
trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3157
highest_zoneidx);
3158
wake_up_interruptible(&pgdat->kcompactd_wait);
3159
}
3160
3161
/*
3162
* The background compaction daemon, started as a kernel thread
3163
* from the init process.
3164
*/
3165
static int kcompactd(void *p)
3166
{
3167
pg_data_t *pgdat = (pg_data_t *)p;
3168
long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3169
long timeout = default_timeout;
3170
3171
current->flags |= PF_KCOMPACTD;
3172
set_freezable();
3173
3174
pgdat->kcompactd_max_order = 0;
3175
pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3176
3177
while (!kthread_should_stop()) {
3178
unsigned long pflags;
3179
3180
/*
3181
* Avoid the unnecessary wakeup for proactive compaction
3182
* when it is disabled.
3183
*/
3184
if (!sysctl_compaction_proactiveness)
3185
timeout = MAX_SCHEDULE_TIMEOUT;
3186
trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3187
if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3188
kcompactd_work_requested(pgdat), timeout) &&
3189
!pgdat->proactive_compact_trigger) {
3190
3191
psi_memstall_enter(&pflags);
3192
kcompactd_do_work(pgdat);
3193
psi_memstall_leave(&pflags);
3194
/*
3195
* Reset the timeout value. The defer timeout from
3196
* proactive compaction is lost here but that is fine
3197
* as the condition of the zone changing substantionally
3198
* then carrying on with the previous defer interval is
3199
* not useful.
3200
*/
3201
timeout = default_timeout;
3202
continue;
3203
}
3204
3205
/*
3206
* Start the proactive work with default timeout. Based
3207
* on the fragmentation score, this timeout is updated.
3208
*/
3209
timeout = default_timeout;
3210
if (should_proactive_compact_node(pgdat)) {
3211
unsigned int prev_score, score;
3212
3213
prev_score = fragmentation_score_node(pgdat);
3214
compact_node(pgdat, true);
3215
score = fragmentation_score_node(pgdat);
3216
/*
3217
* Defer proactive compaction if the fragmentation
3218
* score did not go down i.e. no progress made.
3219
*/
3220
if (unlikely(score >= prev_score))
3221
timeout =
3222
default_timeout << COMPACT_MAX_DEFER_SHIFT;
3223
}
3224
if (unlikely(pgdat->proactive_compact_trigger))
3225
pgdat->proactive_compact_trigger = false;
3226
}
3227
3228
current->flags &= ~PF_KCOMPACTD;
3229
3230
return 0;
3231
}
3232
3233
/*
3234
* This kcompactd start function will be called by init and node-hot-add.
3235
* On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3236
*/
3237
void __meminit kcompactd_run(int nid)
3238
{
3239
pg_data_t *pgdat = NODE_DATA(nid);
3240
3241
if (pgdat->kcompactd)
3242
return;
3243
3244
pgdat->kcompactd = kthread_create_on_node(kcompactd, pgdat, nid, "kcompactd%d", nid);
3245
if (IS_ERR(pgdat->kcompactd)) {
3246
pr_err("Failed to start kcompactd on node %d\n", nid);
3247
pgdat->kcompactd = NULL;
3248
} else {
3249
wake_up_process(pgdat->kcompactd);
3250
}
3251
}
3252
3253
/*
3254
* Called by memory hotplug when all memory in a node is offlined. Caller must
3255
* be holding mem_hotplug_begin/done().
3256
*/
3257
void __meminit kcompactd_stop(int nid)
3258
{
3259
struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3260
3261
if (kcompactd) {
3262
kthread_stop(kcompactd);
3263
NODE_DATA(nid)->kcompactd = NULL;
3264
}
3265
}
3266
3267
static int proc_dointvec_minmax_warn_RT_change(const struct ctl_table *table,
3268
int write, void *buffer, size_t *lenp, loff_t *ppos)
3269
{
3270
int ret, old;
3271
3272
if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3273
return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3274
3275
old = *(int *)table->data;
3276
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3277
if (ret)
3278
return ret;
3279
if (old != *(int *)table->data)
3280
pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3281
table->procname, current->comm,
3282
task_pid_nr(current));
3283
return ret;
3284
}
3285
3286
static const struct ctl_table vm_compaction[] = {
3287
{
3288
.procname = "compact_memory",
3289
.data = &sysctl_compact_memory,
3290
.maxlen = sizeof(int),
3291
.mode = 0200,
3292
.proc_handler = sysctl_compaction_handler,
3293
},
3294
{
3295
.procname = "compaction_proactiveness",
3296
.data = &sysctl_compaction_proactiveness,
3297
.maxlen = sizeof(sysctl_compaction_proactiveness),
3298
.mode = 0644,
3299
.proc_handler = compaction_proactiveness_sysctl_handler,
3300
.extra1 = SYSCTL_ZERO,
3301
.extra2 = SYSCTL_ONE_HUNDRED,
3302
},
3303
{
3304
.procname = "extfrag_threshold",
3305
.data = &sysctl_extfrag_threshold,
3306
.maxlen = sizeof(int),
3307
.mode = 0644,
3308
.proc_handler = proc_dointvec_minmax,
3309
.extra1 = SYSCTL_ZERO,
3310
.extra2 = SYSCTL_ONE_THOUSAND,
3311
},
3312
{
3313
.procname = "compact_unevictable_allowed",
3314
.data = &sysctl_compact_unevictable_allowed,
3315
.maxlen = sizeof(int),
3316
.mode = 0644,
3317
.proc_handler = proc_dointvec_minmax_warn_RT_change,
3318
.extra1 = SYSCTL_ZERO,
3319
.extra2 = SYSCTL_ONE,
3320
},
3321
};
3322
3323
static int __init kcompactd_init(void)
3324
{
3325
int nid;
3326
3327
for_each_node_state(nid, N_MEMORY)
3328
kcompactd_run(nid);
3329
register_sysctl_init("vm", vm_compaction);
3330
return 0;
3331
}
3332
subsys_initcall(kcompactd_init)
3333
3334
#endif /* CONFIG_COMPACTION */
3335
3336