Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/damon/vaddr.c
49509 views
1
// SPDX-License-Identifier: GPL-2.0
2
/*
3
* DAMON Code for Virtual Address Spaces
4
*
5
* Author: SeongJae Park <[email protected]>
6
*/
7
8
#define pr_fmt(fmt) "damon-va: " fmt
9
10
#include <linux/highmem.h>
11
#include <linux/hugetlb.h>
12
#include <linux/mman.h>
13
#include <linux/mmu_notifier.h>
14
#include <linux/page_idle.h>
15
#include <linux/pagewalk.h>
16
#include <linux/sched/mm.h>
17
18
#include "../internal.h"
19
#include "ops-common.h"
20
21
#ifdef CONFIG_DAMON_VADDR_KUNIT_TEST
22
#undef DAMON_MIN_REGION
23
#define DAMON_MIN_REGION 1
24
#endif
25
26
/*
27
* 't->pid' should be the pointer to the relevant 'struct pid' having reference
28
* count. Caller must put the returned task, unless it is NULL.
29
*/
30
static inline struct task_struct *damon_get_task_struct(struct damon_target *t)
31
{
32
return get_pid_task(t->pid, PIDTYPE_PID);
33
}
34
35
/*
36
* Get the mm_struct of the given target
37
*
38
* Caller _must_ put the mm_struct after use, unless it is NULL.
39
*
40
* Returns the mm_struct of the target on success, NULL on failure
41
*/
42
static struct mm_struct *damon_get_mm(struct damon_target *t)
43
{
44
struct task_struct *task;
45
struct mm_struct *mm;
46
47
task = damon_get_task_struct(t);
48
if (!task)
49
return NULL;
50
51
mm = get_task_mm(task);
52
put_task_struct(task);
53
return mm;
54
}
55
56
/*
57
* Functions for the initial monitoring target regions construction
58
*/
59
60
/*
61
* Size-evenly split a region into 'nr_pieces' small regions
62
*
63
* Returns 0 on success, or negative error code otherwise.
64
*/
65
static int damon_va_evenly_split_region(struct damon_target *t,
66
struct damon_region *r, unsigned int nr_pieces)
67
{
68
unsigned long sz_orig, sz_piece, orig_end;
69
struct damon_region *n = NULL, *next;
70
unsigned long start;
71
unsigned int i;
72
73
if (!r || !nr_pieces)
74
return -EINVAL;
75
76
if (nr_pieces == 1)
77
return 0;
78
79
orig_end = r->ar.end;
80
sz_orig = damon_sz_region(r);
81
sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION);
82
83
if (!sz_piece)
84
return -EINVAL;
85
86
r->ar.end = r->ar.start + sz_piece;
87
next = damon_next_region(r);
88
for (start = r->ar.end, i = 1; i < nr_pieces; start += sz_piece, i++) {
89
n = damon_new_region(start, start + sz_piece);
90
if (!n)
91
return -ENOMEM;
92
damon_insert_region(n, r, next, t);
93
r = n;
94
}
95
/* complement last region for possible rounding error */
96
if (n)
97
n->ar.end = orig_end;
98
99
return 0;
100
}
101
102
static unsigned long sz_range(struct damon_addr_range *r)
103
{
104
return r->end - r->start;
105
}
106
107
/*
108
* Find three regions separated by two biggest unmapped regions
109
*
110
* vma the head vma of the target address space
111
* regions an array of three address ranges that results will be saved
112
*
113
* This function receives an address space and finds three regions in it which
114
* separated by the two biggest unmapped regions in the space. Please refer to
115
* below comments of '__damon_va_init_regions()' function to know why this is
116
* necessary.
117
*
118
* Returns 0 if success, or negative error code otherwise.
119
*/
120
static int __damon_va_three_regions(struct mm_struct *mm,
121
struct damon_addr_range regions[3])
122
{
123
struct damon_addr_range first_gap = {0}, second_gap = {0};
124
VMA_ITERATOR(vmi, mm, 0);
125
struct vm_area_struct *vma, *prev = NULL;
126
unsigned long start;
127
128
/*
129
* Find the two biggest gaps so that first_gap > second_gap > others.
130
* If this is too slow, it can be optimised to examine the maple
131
* tree gaps.
132
*/
133
rcu_read_lock();
134
for_each_vma(vmi, vma) {
135
unsigned long gap;
136
137
if (!prev) {
138
start = vma->vm_start;
139
goto next;
140
}
141
gap = vma->vm_start - prev->vm_end;
142
143
if (gap > sz_range(&first_gap)) {
144
second_gap = first_gap;
145
first_gap.start = prev->vm_end;
146
first_gap.end = vma->vm_start;
147
} else if (gap > sz_range(&second_gap)) {
148
second_gap.start = prev->vm_end;
149
second_gap.end = vma->vm_start;
150
}
151
next:
152
prev = vma;
153
}
154
rcu_read_unlock();
155
156
if (!sz_range(&second_gap) || !sz_range(&first_gap))
157
return -EINVAL;
158
159
/* Sort the two biggest gaps by address */
160
if (first_gap.start > second_gap.start)
161
swap(first_gap, second_gap);
162
163
/* Store the result */
164
regions[0].start = ALIGN(start, DAMON_MIN_REGION);
165
regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION);
166
regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION);
167
regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION);
168
regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION);
169
regions[2].end = ALIGN(prev->vm_end, DAMON_MIN_REGION);
170
171
return 0;
172
}
173
174
/*
175
* Get the three regions in the given target (task)
176
*
177
* Returns 0 on success, negative error code otherwise.
178
*/
179
static int damon_va_three_regions(struct damon_target *t,
180
struct damon_addr_range regions[3])
181
{
182
struct mm_struct *mm;
183
int rc;
184
185
mm = damon_get_mm(t);
186
if (!mm)
187
return -EINVAL;
188
189
mmap_read_lock(mm);
190
rc = __damon_va_three_regions(mm, regions);
191
mmap_read_unlock(mm);
192
193
mmput(mm);
194
return rc;
195
}
196
197
/*
198
* Initialize the monitoring target regions for the given target (task)
199
*
200
* t the given target
201
*
202
* Because only a number of small portions of the entire address space
203
* is actually mapped to the memory and accessed, monitoring the unmapped
204
* regions is wasteful. That said, because we can deal with small noises,
205
* tracking every mapping is not strictly required but could even incur a high
206
* overhead if the mapping frequently changes or the number of mappings is
207
* high. The adaptive regions adjustment mechanism will further help to deal
208
* with the noise by simply identifying the unmapped areas as a region that
209
* has no access. Moreover, applying the real mappings that would have many
210
* unmapped areas inside will make the adaptive mechanism quite complex. That
211
* said, too huge unmapped areas inside the monitoring target should be removed
212
* to not take the time for the adaptive mechanism.
213
*
214
* For the reason, we convert the complex mappings to three distinct regions
215
* that cover every mapped area of the address space. Also the two gaps
216
* between the three regions are the two biggest unmapped areas in the given
217
* address space. In detail, this function first identifies the start and the
218
* end of the mappings and the two biggest unmapped areas of the address space.
219
* Then, it constructs the three regions as below:
220
*
221
* [mappings[0]->start, big_two_unmapped_areas[0]->start)
222
* [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start)
223
* [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end)
224
*
225
* As usual memory map of processes is as below, the gap between the heap and
226
* the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed
227
* region and the stack will be two biggest unmapped regions. Because these
228
* gaps are exceptionally huge areas in usual address space, excluding these
229
* two biggest unmapped regions will be sufficient to make a trade-off.
230
*
231
* <heap>
232
* <BIG UNMAPPED REGION 1>
233
* <uppermost mmap()-ed region>
234
* (other mmap()-ed regions and small unmapped regions)
235
* <lowermost mmap()-ed region>
236
* <BIG UNMAPPED REGION 2>
237
* <stack>
238
*/
239
static void __damon_va_init_regions(struct damon_ctx *ctx,
240
struct damon_target *t)
241
{
242
struct damon_target *ti;
243
struct damon_region *r;
244
struct damon_addr_range regions[3];
245
unsigned long sz = 0, nr_pieces;
246
int i, tidx = 0;
247
248
if (damon_va_three_regions(t, regions)) {
249
damon_for_each_target(ti, ctx) {
250
if (ti == t)
251
break;
252
tidx++;
253
}
254
pr_debug("Failed to get three regions of %dth target\n", tidx);
255
return;
256
}
257
258
for (i = 0; i < 3; i++)
259
sz += regions[i].end - regions[i].start;
260
if (ctx->attrs.min_nr_regions)
261
sz /= ctx->attrs.min_nr_regions;
262
if (sz < DAMON_MIN_REGION)
263
sz = DAMON_MIN_REGION;
264
265
/* Set the initial three regions of the target */
266
for (i = 0; i < 3; i++) {
267
r = damon_new_region(regions[i].start, regions[i].end);
268
if (!r) {
269
pr_err("%d'th init region creation failed\n", i);
270
return;
271
}
272
damon_add_region(r, t);
273
274
nr_pieces = (regions[i].end - regions[i].start) / sz;
275
damon_va_evenly_split_region(t, r, nr_pieces);
276
}
277
}
278
279
/* Initialize '->regions_list' of every target (task) */
280
static void damon_va_init(struct damon_ctx *ctx)
281
{
282
struct damon_target *t;
283
284
damon_for_each_target(t, ctx) {
285
/* the user may set the target regions as they want */
286
if (!damon_nr_regions(t))
287
__damon_va_init_regions(ctx, t);
288
}
289
}
290
291
/*
292
* Update regions for current memory mappings
293
*/
294
static void damon_va_update(struct damon_ctx *ctx)
295
{
296
struct damon_addr_range three_regions[3];
297
struct damon_target *t;
298
299
damon_for_each_target(t, ctx) {
300
if (damon_va_three_regions(t, three_regions))
301
continue;
302
damon_set_regions(t, three_regions, 3, DAMON_MIN_REGION);
303
}
304
}
305
306
static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr,
307
unsigned long next, struct mm_walk *walk)
308
{
309
pte_t *pte;
310
spinlock_t *ptl;
311
312
ptl = pmd_trans_huge_lock(pmd, walk->vma);
313
if (ptl) {
314
pmd_t pmde = pmdp_get(pmd);
315
316
if (pmd_present(pmde))
317
damon_pmdp_mkold(pmd, walk->vma, addr);
318
spin_unlock(ptl);
319
return 0;
320
}
321
322
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
323
if (!pte)
324
return 0;
325
if (!pte_present(ptep_get(pte)))
326
goto out;
327
damon_ptep_mkold(pte, walk->vma, addr);
328
out:
329
pte_unmap_unlock(pte, ptl);
330
return 0;
331
}
332
333
#ifdef CONFIG_HUGETLB_PAGE
334
static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm,
335
struct vm_area_struct *vma, unsigned long addr)
336
{
337
bool referenced = false;
338
pte_t entry = huge_ptep_get(mm, addr, pte);
339
struct folio *folio = pfn_folio(pte_pfn(entry));
340
unsigned long psize = huge_page_size(hstate_vma(vma));
341
342
folio_get(folio);
343
344
if (pte_young(entry)) {
345
referenced = true;
346
entry = pte_mkold(entry);
347
set_huge_pte_at(mm, addr, pte, entry, psize);
348
}
349
350
if (mmu_notifier_clear_young(mm, addr,
351
addr + huge_page_size(hstate_vma(vma))))
352
referenced = true;
353
354
if (referenced)
355
folio_set_young(folio);
356
357
folio_set_idle(folio);
358
folio_put(folio);
359
}
360
361
static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask,
362
unsigned long addr, unsigned long end,
363
struct mm_walk *walk)
364
{
365
struct hstate *h = hstate_vma(walk->vma);
366
spinlock_t *ptl;
367
pte_t entry;
368
369
ptl = huge_pte_lock(h, walk->mm, pte);
370
entry = huge_ptep_get(walk->mm, addr, pte);
371
if (!pte_present(entry))
372
goto out;
373
374
damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr);
375
376
out:
377
spin_unlock(ptl);
378
return 0;
379
}
380
#else
381
#define damon_mkold_hugetlb_entry NULL
382
#endif /* CONFIG_HUGETLB_PAGE */
383
384
static const struct mm_walk_ops damon_mkold_ops = {
385
.pmd_entry = damon_mkold_pmd_entry,
386
.hugetlb_entry = damon_mkold_hugetlb_entry,
387
.walk_lock = PGWALK_RDLOCK,
388
};
389
390
static void damon_va_mkold(struct mm_struct *mm, unsigned long addr)
391
{
392
mmap_read_lock(mm);
393
walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL);
394
mmap_read_unlock(mm);
395
}
396
397
/*
398
* Functions for the access checking of the regions
399
*/
400
401
static void __damon_va_prepare_access_check(struct mm_struct *mm,
402
struct damon_region *r)
403
{
404
r->sampling_addr = damon_rand(r->ar.start, r->ar.end);
405
406
damon_va_mkold(mm, r->sampling_addr);
407
}
408
409
static void damon_va_prepare_access_checks(struct damon_ctx *ctx)
410
{
411
struct damon_target *t;
412
struct mm_struct *mm;
413
struct damon_region *r;
414
415
damon_for_each_target(t, ctx) {
416
mm = damon_get_mm(t);
417
if (!mm)
418
continue;
419
damon_for_each_region(r, t)
420
__damon_va_prepare_access_check(mm, r);
421
mmput(mm);
422
}
423
}
424
425
struct damon_young_walk_private {
426
/* size of the folio for the access checked virtual memory address */
427
unsigned long *folio_sz;
428
bool young;
429
};
430
431
static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr,
432
unsigned long next, struct mm_walk *walk)
433
{
434
pte_t *pte;
435
pte_t ptent;
436
spinlock_t *ptl;
437
struct folio *folio;
438
struct damon_young_walk_private *priv = walk->private;
439
440
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
441
ptl = pmd_trans_huge_lock(pmd, walk->vma);
442
if (ptl) {
443
pmd_t pmde = pmdp_get(pmd);
444
445
if (!pmd_present(pmde))
446
goto huge_out;
447
folio = vm_normal_folio_pmd(walk->vma, addr, pmde);
448
if (!folio)
449
goto huge_out;
450
if (pmd_young(pmde) || !folio_test_idle(folio) ||
451
mmu_notifier_test_young(walk->mm,
452
addr))
453
priv->young = true;
454
*priv->folio_sz = HPAGE_PMD_SIZE;
455
huge_out:
456
spin_unlock(ptl);
457
return 0;
458
}
459
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
460
461
pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
462
if (!pte)
463
return 0;
464
ptent = ptep_get(pte);
465
if (!pte_present(ptent))
466
goto out;
467
folio = vm_normal_folio(walk->vma, addr, ptent);
468
if (!folio)
469
goto out;
470
if (pte_young(ptent) || !folio_test_idle(folio) ||
471
mmu_notifier_test_young(walk->mm, addr))
472
priv->young = true;
473
*priv->folio_sz = folio_size(folio);
474
out:
475
pte_unmap_unlock(pte, ptl);
476
return 0;
477
}
478
479
#ifdef CONFIG_HUGETLB_PAGE
480
static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask,
481
unsigned long addr, unsigned long end,
482
struct mm_walk *walk)
483
{
484
struct damon_young_walk_private *priv = walk->private;
485
struct hstate *h = hstate_vma(walk->vma);
486
struct folio *folio;
487
spinlock_t *ptl;
488
pte_t entry;
489
490
ptl = huge_pte_lock(h, walk->mm, pte);
491
entry = huge_ptep_get(walk->mm, addr, pte);
492
if (!pte_present(entry))
493
goto out;
494
495
folio = pfn_folio(pte_pfn(entry));
496
folio_get(folio);
497
498
if (pte_young(entry) || !folio_test_idle(folio) ||
499
mmu_notifier_test_young(walk->mm, addr))
500
priv->young = true;
501
*priv->folio_sz = huge_page_size(h);
502
503
folio_put(folio);
504
505
out:
506
spin_unlock(ptl);
507
return 0;
508
}
509
#else
510
#define damon_young_hugetlb_entry NULL
511
#endif /* CONFIG_HUGETLB_PAGE */
512
513
static const struct mm_walk_ops damon_young_ops = {
514
.pmd_entry = damon_young_pmd_entry,
515
.hugetlb_entry = damon_young_hugetlb_entry,
516
.walk_lock = PGWALK_RDLOCK,
517
};
518
519
static bool damon_va_young(struct mm_struct *mm, unsigned long addr,
520
unsigned long *folio_sz)
521
{
522
struct damon_young_walk_private arg = {
523
.folio_sz = folio_sz,
524
.young = false,
525
};
526
527
mmap_read_lock(mm);
528
walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg);
529
mmap_read_unlock(mm);
530
return arg.young;
531
}
532
533
/*
534
* Check whether the region was accessed after the last preparation
535
*
536
* mm 'mm_struct' for the given virtual address space
537
* r the region to be checked
538
*/
539
static void __damon_va_check_access(struct mm_struct *mm,
540
struct damon_region *r, bool same_target,
541
struct damon_attrs *attrs)
542
{
543
static unsigned long last_addr;
544
static unsigned long last_folio_sz = PAGE_SIZE;
545
static bool last_accessed;
546
547
if (!mm) {
548
damon_update_region_access_rate(r, false, attrs);
549
return;
550
}
551
552
/* If the region is in the last checked page, reuse the result */
553
if (same_target && (ALIGN_DOWN(last_addr, last_folio_sz) ==
554
ALIGN_DOWN(r->sampling_addr, last_folio_sz))) {
555
damon_update_region_access_rate(r, last_accessed, attrs);
556
return;
557
}
558
559
last_accessed = damon_va_young(mm, r->sampling_addr, &last_folio_sz);
560
damon_update_region_access_rate(r, last_accessed, attrs);
561
562
last_addr = r->sampling_addr;
563
}
564
565
static unsigned int damon_va_check_accesses(struct damon_ctx *ctx)
566
{
567
struct damon_target *t;
568
struct mm_struct *mm;
569
struct damon_region *r;
570
unsigned int max_nr_accesses = 0;
571
bool same_target;
572
573
damon_for_each_target(t, ctx) {
574
mm = damon_get_mm(t);
575
same_target = false;
576
damon_for_each_region(r, t) {
577
__damon_va_check_access(mm, r, same_target,
578
&ctx->attrs);
579
max_nr_accesses = max(r->nr_accesses, max_nr_accesses);
580
same_target = true;
581
}
582
if (mm)
583
mmput(mm);
584
}
585
586
return max_nr_accesses;
587
}
588
589
static bool damos_va_filter_young_match(struct damos_filter *filter,
590
struct folio *folio, struct vm_area_struct *vma,
591
unsigned long addr, pte_t *ptep, pmd_t *pmdp)
592
{
593
bool young = false;
594
595
if (ptep)
596
young = pte_young(ptep_get(ptep));
597
else if (pmdp)
598
young = pmd_young(pmdp_get(pmdp));
599
600
young = young || !folio_test_idle(folio) ||
601
mmu_notifier_test_young(vma->vm_mm, addr);
602
603
if (young && ptep)
604
damon_ptep_mkold(ptep, vma, addr);
605
else if (young && pmdp)
606
damon_pmdp_mkold(pmdp, vma, addr);
607
608
return young == filter->matching;
609
}
610
611
static bool damos_va_filter_out(struct damos *scheme, struct folio *folio,
612
struct vm_area_struct *vma, unsigned long addr,
613
pte_t *ptep, pmd_t *pmdp)
614
{
615
struct damos_filter *filter;
616
bool matched;
617
618
if (scheme->core_filters_allowed)
619
return false;
620
621
damos_for_each_ops_filter(filter, scheme) {
622
/*
623
* damos_folio_filter_match checks the young filter by doing an
624
* rmap on the folio to find its page table. However, being the
625
* vaddr scheme, we have direct access to the page tables, so
626
* use that instead.
627
*/
628
if (filter->type == DAMOS_FILTER_TYPE_YOUNG)
629
matched = damos_va_filter_young_match(filter, folio,
630
vma, addr, ptep, pmdp);
631
else
632
matched = damos_folio_filter_match(filter, folio);
633
634
if (matched)
635
return !filter->allow;
636
}
637
return scheme->ops_filters_default_reject;
638
}
639
640
struct damos_va_migrate_private {
641
struct list_head *migration_lists;
642
struct damos *scheme;
643
};
644
645
/*
646
* Place the given folio in the migration_list corresponding to where the folio
647
* should be migrated.
648
*
649
* The algorithm used here is similar to weighted_interleave_nid()
650
*/
651
static void damos_va_migrate_dests_add(struct folio *folio,
652
struct vm_area_struct *vma, unsigned long addr,
653
struct damos_migrate_dests *dests,
654
struct list_head *migration_lists)
655
{
656
pgoff_t ilx;
657
int order;
658
unsigned int target;
659
unsigned int weight_total = 0;
660
int i;
661
662
/*
663
* If dests is empty, there is only one migration list corresponding
664
* to s->target_nid.
665
*/
666
if (!dests->nr_dests) {
667
i = 0;
668
goto isolate;
669
}
670
671
order = folio_order(folio);
672
ilx = vma->vm_pgoff >> order;
673
ilx += (addr - vma->vm_start) >> (PAGE_SHIFT + order);
674
675
for (i = 0; i < dests->nr_dests; i++)
676
weight_total += dests->weight_arr[i];
677
678
/* If the total weights are somehow 0, don't migrate at all */
679
if (!weight_total)
680
return;
681
682
target = ilx % weight_total;
683
for (i = 0; i < dests->nr_dests; i++) {
684
if (target < dests->weight_arr[i])
685
break;
686
target -= dests->weight_arr[i];
687
}
688
689
/* If the folio is already in the right node, don't do anything */
690
if (folio_nid(folio) == dests->node_id_arr[i])
691
return;
692
693
isolate:
694
if (!folio_isolate_lru(folio))
695
return;
696
697
list_add(&folio->lru, &migration_lists[i]);
698
}
699
700
static int damos_va_migrate_pmd_entry(pmd_t *pmd, unsigned long addr,
701
unsigned long next, struct mm_walk *walk)
702
{
703
struct damos_va_migrate_private *priv = walk->private;
704
struct list_head *migration_lists = priv->migration_lists;
705
struct damos *s = priv->scheme;
706
struct damos_migrate_dests *dests = &s->migrate_dests;
707
struct folio *folio;
708
spinlock_t *ptl;
709
pte_t *start_pte, *pte, ptent;
710
int nr;
711
712
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
713
ptl = pmd_trans_huge_lock(pmd, walk->vma);
714
if (ptl) {
715
pmd_t pmde = pmdp_get(pmd);
716
717
if (!pmd_present(pmde))
718
goto huge_out;
719
folio = vm_normal_folio_pmd(walk->vma, addr, pmde);
720
if (!folio)
721
goto huge_out;
722
if (damos_va_filter_out(s, folio, walk->vma, addr, NULL, pmd))
723
goto huge_out;
724
damos_va_migrate_dests_add(folio, walk->vma, addr, dests,
725
migration_lists);
726
huge_out:
727
spin_unlock(ptl);
728
return 0;
729
}
730
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
731
732
start_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
733
if (!pte)
734
return 0;
735
736
for (; addr < next; pte += nr, addr += nr * PAGE_SIZE) {
737
nr = 1;
738
ptent = ptep_get(pte);
739
740
if (pte_none(ptent) || !pte_present(ptent))
741
continue;
742
folio = vm_normal_folio(walk->vma, addr, ptent);
743
if (!folio)
744
continue;
745
if (damos_va_filter_out(s, folio, walk->vma, addr, pte, NULL))
746
continue;
747
damos_va_migrate_dests_add(folio, walk->vma, addr, dests,
748
migration_lists);
749
nr = folio_nr_pages(folio);
750
}
751
pte_unmap_unlock(start_pte, ptl);
752
return 0;
753
}
754
755
/*
756
* Functions for the target validity check and cleanup
757
*/
758
759
static bool damon_va_target_valid(struct damon_target *t)
760
{
761
struct task_struct *task;
762
763
task = damon_get_task_struct(t);
764
if (task) {
765
put_task_struct(task);
766
return true;
767
}
768
769
return false;
770
}
771
772
static void damon_va_cleanup_target(struct damon_target *t)
773
{
774
put_pid(t->pid);
775
}
776
777
#ifndef CONFIG_ADVISE_SYSCALLS
778
static unsigned long damos_madvise(struct damon_target *target,
779
struct damon_region *r, int behavior)
780
{
781
return 0;
782
}
783
#else
784
static unsigned long damos_madvise(struct damon_target *target,
785
struct damon_region *r, int behavior)
786
{
787
struct mm_struct *mm;
788
unsigned long start = PAGE_ALIGN(r->ar.start);
789
unsigned long len = PAGE_ALIGN(damon_sz_region(r));
790
unsigned long applied;
791
792
mm = damon_get_mm(target);
793
if (!mm)
794
return 0;
795
796
applied = do_madvise(mm, start, len, behavior) ? 0 : len;
797
mmput(mm);
798
799
return applied;
800
}
801
#endif /* CONFIG_ADVISE_SYSCALLS */
802
803
static unsigned long damos_va_migrate(struct damon_target *target,
804
struct damon_region *r, struct damos *s,
805
unsigned long *sz_filter_passed)
806
{
807
LIST_HEAD(folio_list);
808
struct damos_va_migrate_private priv;
809
struct mm_struct *mm;
810
int nr_dests;
811
int nid;
812
bool use_target_nid;
813
unsigned long applied = 0;
814
struct damos_migrate_dests *dests = &s->migrate_dests;
815
struct mm_walk_ops walk_ops = {
816
.pmd_entry = damos_va_migrate_pmd_entry,
817
.pte_entry = NULL,
818
.walk_lock = PGWALK_RDLOCK,
819
};
820
821
use_target_nid = dests->nr_dests == 0;
822
nr_dests = use_target_nid ? 1 : dests->nr_dests;
823
priv.scheme = s;
824
priv.migration_lists = kmalloc_array(nr_dests,
825
sizeof(*priv.migration_lists), GFP_KERNEL);
826
if (!priv.migration_lists)
827
return 0;
828
829
for (int i = 0; i < nr_dests; i++)
830
INIT_LIST_HEAD(&priv.migration_lists[i]);
831
832
833
mm = damon_get_mm(target);
834
if (!mm)
835
goto free_lists;
836
837
mmap_read_lock(mm);
838
walk_page_range(mm, r->ar.start, r->ar.end, &walk_ops, &priv);
839
mmap_read_unlock(mm);
840
mmput(mm);
841
842
for (int i = 0; i < nr_dests; i++) {
843
nid = use_target_nid ? s->target_nid : dests->node_id_arr[i];
844
applied += damon_migrate_pages(&priv.migration_lists[i], nid);
845
cond_resched();
846
}
847
848
free_lists:
849
kfree(priv.migration_lists);
850
return applied * PAGE_SIZE;
851
}
852
853
struct damos_va_stat_private {
854
struct damos *scheme;
855
unsigned long *sz_filter_passed;
856
};
857
858
static inline bool damos_va_invalid_folio(struct folio *folio,
859
struct damos *s)
860
{
861
return !folio || folio == s->last_applied;
862
}
863
864
static int damos_va_stat_pmd_entry(pmd_t *pmd, unsigned long addr,
865
unsigned long next, struct mm_walk *walk)
866
{
867
struct damos_va_stat_private *priv = walk->private;
868
struct damos *s = priv->scheme;
869
unsigned long *sz_filter_passed = priv->sz_filter_passed;
870
struct vm_area_struct *vma = walk->vma;
871
struct folio *folio;
872
spinlock_t *ptl;
873
pte_t *start_pte, *pte, ptent;
874
int nr;
875
876
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
877
ptl = pmd_trans_huge_lock(pmd, vma);
878
if (ptl) {
879
pmd_t pmde = pmdp_get(pmd);
880
881
if (!pmd_present(pmde))
882
goto huge_unlock;
883
884
folio = vm_normal_folio_pmd(vma, addr, pmde);
885
886
if (damos_va_invalid_folio(folio, s))
887
goto huge_unlock;
888
889
if (!damos_va_filter_out(s, folio, vma, addr, NULL, pmd))
890
*sz_filter_passed += folio_size(folio);
891
s->last_applied = folio;
892
893
huge_unlock:
894
spin_unlock(ptl);
895
return 0;
896
}
897
#endif
898
start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
899
if (!start_pte)
900
return 0;
901
902
for (; addr < next; pte += nr, addr += nr * PAGE_SIZE) {
903
nr = 1;
904
ptent = ptep_get(pte);
905
906
if (pte_none(ptent) || !pte_present(ptent))
907
continue;
908
909
folio = vm_normal_folio(vma, addr, ptent);
910
911
if (damos_va_invalid_folio(folio, s))
912
continue;
913
914
if (!damos_va_filter_out(s, folio, vma, addr, pte, NULL))
915
*sz_filter_passed += folio_size(folio);
916
nr = folio_nr_pages(folio);
917
s->last_applied = folio;
918
}
919
pte_unmap_unlock(start_pte, ptl);
920
return 0;
921
}
922
923
static unsigned long damos_va_stat(struct damon_target *target,
924
struct damon_region *r, struct damos *s,
925
unsigned long *sz_filter_passed)
926
{
927
struct damos_va_stat_private priv;
928
struct mm_struct *mm;
929
struct mm_walk_ops walk_ops = {
930
.pmd_entry = damos_va_stat_pmd_entry,
931
.walk_lock = PGWALK_RDLOCK,
932
};
933
934
priv.scheme = s;
935
priv.sz_filter_passed = sz_filter_passed;
936
937
if (!damos_ops_has_filter(s))
938
return 0;
939
940
mm = damon_get_mm(target);
941
if (!mm)
942
return 0;
943
944
mmap_read_lock(mm);
945
walk_page_range(mm, r->ar.start, r->ar.end, &walk_ops, &priv);
946
mmap_read_unlock(mm);
947
mmput(mm);
948
return 0;
949
}
950
951
static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx,
952
struct damon_target *t, struct damon_region *r,
953
struct damos *scheme, unsigned long *sz_filter_passed)
954
{
955
int madv_action;
956
957
switch (scheme->action) {
958
case DAMOS_WILLNEED:
959
madv_action = MADV_WILLNEED;
960
break;
961
case DAMOS_COLD:
962
madv_action = MADV_COLD;
963
break;
964
case DAMOS_PAGEOUT:
965
madv_action = MADV_PAGEOUT;
966
break;
967
case DAMOS_HUGEPAGE:
968
madv_action = MADV_HUGEPAGE;
969
break;
970
case DAMOS_NOHUGEPAGE:
971
madv_action = MADV_NOHUGEPAGE;
972
break;
973
case DAMOS_MIGRATE_HOT:
974
case DAMOS_MIGRATE_COLD:
975
return damos_va_migrate(t, r, scheme, sz_filter_passed);
976
case DAMOS_STAT:
977
return damos_va_stat(t, r, scheme, sz_filter_passed);
978
default:
979
/*
980
* DAMOS actions that are not yet supported by 'vaddr'.
981
*/
982
return 0;
983
}
984
985
return damos_madvise(t, r, madv_action);
986
}
987
988
static int damon_va_scheme_score(struct damon_ctx *context,
989
struct damon_target *t, struct damon_region *r,
990
struct damos *scheme)
991
{
992
993
switch (scheme->action) {
994
case DAMOS_PAGEOUT:
995
return damon_cold_score(context, r, scheme);
996
case DAMOS_MIGRATE_HOT:
997
return damon_hot_score(context, r, scheme);
998
case DAMOS_MIGRATE_COLD:
999
return damon_cold_score(context, r, scheme);
1000
default:
1001
break;
1002
}
1003
1004
return DAMOS_MAX_SCORE;
1005
}
1006
1007
static int __init damon_va_initcall(void)
1008
{
1009
struct damon_operations ops = {
1010
.id = DAMON_OPS_VADDR,
1011
.init = damon_va_init,
1012
.update = damon_va_update,
1013
.prepare_access_checks = damon_va_prepare_access_checks,
1014
.check_accesses = damon_va_check_accesses,
1015
.target_valid = damon_va_target_valid,
1016
.cleanup_target = damon_va_cleanup_target,
1017
.cleanup = NULL,
1018
.apply_scheme = damon_va_apply_scheme,
1019
.get_scheme_score = damon_va_scheme_score,
1020
};
1021
/* ops for fixed virtual address ranges */
1022
struct damon_operations ops_fvaddr = ops;
1023
int err;
1024
1025
/* Don't set the monitoring target regions for the entire mapping */
1026
ops_fvaddr.id = DAMON_OPS_FVADDR;
1027
ops_fvaddr.init = NULL;
1028
ops_fvaddr.update = NULL;
1029
1030
err = damon_register_ops(&ops);
1031
if (err)
1032
return err;
1033
return damon_register_ops(&ops_fvaddr);
1034
};
1035
1036
subsys_initcall(damon_va_initcall);
1037
1038
#include "tests/vaddr-kunit.h"
1039
1040