Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
torvalds
GitHub Repository: torvalds/linux
Path: blob/master/mm/dmapool.c
26131 views
1
// SPDX-License-Identifier: GPL-2.0-only
2
/*
3
* DMA Pool allocator
4
*
5
* Copyright 2001 David Brownell
6
* Copyright 2007 Intel Corporation
7
* Author: Matthew Wilcox <[email protected]>
8
*
9
* This allocator returns small blocks of a given size which are DMA-able by
10
* the given device. It uses the dma_alloc_coherent page allocator to get
11
* new pages, then splits them up into blocks of the required size.
12
* Many older drivers still have their own code to do this.
13
*
14
* The current design of this allocator is fairly simple. The pool is
15
* represented by the 'struct dma_pool' which keeps a doubly-linked list of
16
* allocated pages. Each page in the page_list is split into blocks of at
17
* least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
18
* list of free blocks across all pages. Used blocks aren't tracked, but we
19
* keep a count of how many are currently allocated from each page.
20
*/
21
22
#include <linux/device.h>
23
#include <linux/dma-mapping.h>
24
#include <linux/dmapool.h>
25
#include <linux/kernel.h>
26
#include <linux/list.h>
27
#include <linux/export.h>
28
#include <linux/mutex.h>
29
#include <linux/poison.h>
30
#include <linux/sched.h>
31
#include <linux/sched/mm.h>
32
#include <linux/slab.h>
33
#include <linux/stat.h>
34
#include <linux/spinlock.h>
35
#include <linux/string.h>
36
#include <linux/types.h>
37
#include <linux/wait.h>
38
39
#ifdef CONFIG_SLUB_DEBUG_ON
40
#define DMAPOOL_DEBUG 1
41
#endif
42
43
struct dma_block {
44
struct dma_block *next_block;
45
dma_addr_t dma;
46
};
47
48
struct dma_pool { /* the pool */
49
struct list_head page_list;
50
spinlock_t lock;
51
struct dma_block *next_block;
52
size_t nr_blocks;
53
size_t nr_active;
54
size_t nr_pages;
55
struct device *dev;
56
unsigned int size;
57
unsigned int allocation;
58
unsigned int boundary;
59
int node;
60
char name[32];
61
struct list_head pools;
62
};
63
64
struct dma_page { /* cacheable header for 'allocation' bytes */
65
struct list_head page_list;
66
void *vaddr;
67
dma_addr_t dma;
68
};
69
70
static DEFINE_MUTEX(pools_lock);
71
static DEFINE_MUTEX(pools_reg_lock);
72
73
static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf)
74
{
75
struct dma_pool *pool;
76
unsigned size;
77
78
size = sysfs_emit(buf, "poolinfo - 0.1\n");
79
80
mutex_lock(&pools_lock);
81
list_for_each_entry(pool, &dev->dma_pools, pools) {
82
/* per-pool info, no real statistics yet */
83
size += sysfs_emit_at(buf, size, "%-16s %4zu %4zu %4u %2zu\n",
84
pool->name, pool->nr_active,
85
pool->nr_blocks, pool->size,
86
pool->nr_pages);
87
}
88
mutex_unlock(&pools_lock);
89
90
return size;
91
}
92
93
static DEVICE_ATTR_RO(pools);
94
95
#ifdef DMAPOOL_DEBUG
96
static void pool_check_block(struct dma_pool *pool, struct dma_block *block,
97
gfp_t mem_flags)
98
{
99
u8 *data = (void *)block;
100
int i;
101
102
for (i = sizeof(struct dma_block); i < pool->size; i++) {
103
if (data[i] == POOL_POISON_FREED)
104
continue;
105
dev_err(pool->dev, "%s %s, %p (corrupted)\n", __func__,
106
pool->name, block);
107
108
/*
109
* Dump the first 4 bytes even if they are not
110
* POOL_POISON_FREED
111
*/
112
print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
113
data, pool->size, 1);
114
break;
115
}
116
117
if (!want_init_on_alloc(mem_flags))
118
memset(block, POOL_POISON_ALLOCATED, pool->size);
119
}
120
121
static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
122
{
123
struct dma_page *page;
124
125
list_for_each_entry(page, &pool->page_list, page_list) {
126
if (dma < page->dma)
127
continue;
128
if ((dma - page->dma) < pool->allocation)
129
return page;
130
}
131
return NULL;
132
}
133
134
static bool pool_block_err(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
135
{
136
struct dma_block *block = pool->next_block;
137
struct dma_page *page;
138
139
page = pool_find_page(pool, dma);
140
if (!page) {
141
dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n",
142
__func__, pool->name, vaddr, &dma);
143
return true;
144
}
145
146
while (block) {
147
if (block != vaddr) {
148
block = block->next_block;
149
continue;
150
}
151
dev_err(pool->dev, "%s %s, dma %pad already free\n",
152
__func__, pool->name, &dma);
153
return true;
154
}
155
156
memset(vaddr, POOL_POISON_FREED, pool->size);
157
return false;
158
}
159
160
static void pool_init_page(struct dma_pool *pool, struct dma_page *page)
161
{
162
memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
163
}
164
#else
165
static void pool_check_block(struct dma_pool *pool, struct dma_block *block,
166
gfp_t mem_flags)
167
{
168
}
169
170
static bool pool_block_err(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
171
{
172
if (want_init_on_free())
173
memset(vaddr, 0, pool->size);
174
return false;
175
}
176
177
static void pool_init_page(struct dma_pool *pool, struct dma_page *page)
178
{
179
}
180
#endif
181
182
static struct dma_block *pool_block_pop(struct dma_pool *pool)
183
{
184
struct dma_block *block = pool->next_block;
185
186
if (block) {
187
pool->next_block = block->next_block;
188
pool->nr_active++;
189
}
190
return block;
191
}
192
193
static void pool_block_push(struct dma_pool *pool, struct dma_block *block,
194
dma_addr_t dma)
195
{
196
block->dma = dma;
197
block->next_block = pool->next_block;
198
pool->next_block = block;
199
}
200
201
202
/**
203
* dma_pool_create_node - Creates a pool of coherent DMA memory blocks.
204
* @name: name of pool, for diagnostics
205
* @dev: device that will be doing the DMA
206
* @size: size of the blocks in this pool.
207
* @align: alignment requirement for blocks; must be a power of two
208
* @boundary: returned blocks won't cross this power of two boundary
209
* @node: optional NUMA node to allocate structs 'dma_pool' and 'dma_page' on
210
* Context: not in_interrupt()
211
*
212
* Given one of these pools, dma_pool_alloc()
213
* may be used to allocate memory. Such memory will all have coherent
214
* DMA mappings, accessible by the device and its driver without using
215
* cache flushing primitives. The actual size of blocks allocated may be
216
* larger than requested because of alignment.
217
*
218
* If @boundary is nonzero, objects returned from dma_pool_alloc() won't
219
* cross that size boundary. This is useful for devices which have
220
* addressing restrictions on individual DMA transfers, such as not crossing
221
* boundaries of 4KBytes.
222
*
223
* Return: a dma allocation pool with the requested characteristics, or
224
* %NULL if one can't be created.
225
*/
226
struct dma_pool *dma_pool_create_node(const char *name, struct device *dev,
227
size_t size, size_t align, size_t boundary, int node)
228
{
229
struct dma_pool *retval;
230
size_t allocation;
231
bool empty;
232
233
if (!dev)
234
return NULL;
235
236
if (align == 0)
237
align = 1;
238
else if (align & (align - 1))
239
return NULL;
240
241
if (size == 0 || size > INT_MAX)
242
return NULL;
243
if (size < sizeof(struct dma_block))
244
size = sizeof(struct dma_block);
245
246
size = ALIGN(size, align);
247
allocation = max_t(size_t, size, PAGE_SIZE);
248
249
if (!boundary)
250
boundary = allocation;
251
else if ((boundary < size) || (boundary & (boundary - 1)))
252
return NULL;
253
254
boundary = min(boundary, allocation);
255
256
retval = kzalloc_node(sizeof(*retval), GFP_KERNEL, node);
257
if (!retval)
258
return retval;
259
260
strscpy(retval->name, name, sizeof(retval->name));
261
262
retval->dev = dev;
263
264
INIT_LIST_HEAD(&retval->page_list);
265
spin_lock_init(&retval->lock);
266
retval->size = size;
267
retval->boundary = boundary;
268
retval->allocation = allocation;
269
retval->node = node;
270
INIT_LIST_HEAD(&retval->pools);
271
272
/*
273
* pools_lock ensures that the ->dma_pools list does not get corrupted.
274
* pools_reg_lock ensures that there is not a race between
275
* dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
276
* when the first invocation of dma_pool_create() failed on
277
* device_create_file() and the second assumes that it has been done (I
278
* know it is a short window).
279
*/
280
mutex_lock(&pools_reg_lock);
281
mutex_lock(&pools_lock);
282
empty = list_empty(&dev->dma_pools);
283
list_add(&retval->pools, &dev->dma_pools);
284
mutex_unlock(&pools_lock);
285
if (empty) {
286
int err;
287
288
err = device_create_file(dev, &dev_attr_pools);
289
if (err) {
290
mutex_lock(&pools_lock);
291
list_del(&retval->pools);
292
mutex_unlock(&pools_lock);
293
mutex_unlock(&pools_reg_lock);
294
kfree(retval);
295
return NULL;
296
}
297
}
298
mutex_unlock(&pools_reg_lock);
299
return retval;
300
}
301
EXPORT_SYMBOL(dma_pool_create_node);
302
303
static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
304
{
305
unsigned int next_boundary = pool->boundary, offset = 0;
306
struct dma_block *block, *first = NULL, *last = NULL;
307
308
pool_init_page(pool, page);
309
while (offset + pool->size <= pool->allocation) {
310
if (offset + pool->size > next_boundary) {
311
offset = next_boundary;
312
next_boundary += pool->boundary;
313
continue;
314
}
315
316
block = page->vaddr + offset;
317
block->dma = page->dma + offset;
318
block->next_block = NULL;
319
320
if (last)
321
last->next_block = block;
322
else
323
first = block;
324
last = block;
325
326
offset += pool->size;
327
pool->nr_blocks++;
328
}
329
330
last->next_block = pool->next_block;
331
pool->next_block = first;
332
333
list_add(&page->page_list, &pool->page_list);
334
pool->nr_pages++;
335
}
336
337
static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
338
{
339
struct dma_page *page;
340
341
page = kmalloc_node(sizeof(*page), mem_flags, pool->node);
342
if (!page)
343
return NULL;
344
345
page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
346
&page->dma, mem_flags);
347
if (!page->vaddr) {
348
kfree(page);
349
return NULL;
350
}
351
352
return page;
353
}
354
355
/**
356
* dma_pool_destroy - destroys a pool of dma memory blocks.
357
* @pool: dma pool that will be destroyed
358
* Context: !in_interrupt()
359
*
360
* Caller guarantees that no more memory from the pool is in use,
361
* and that nothing will try to use the pool after this call.
362
*/
363
void dma_pool_destroy(struct dma_pool *pool)
364
{
365
struct dma_page *page, *tmp;
366
bool empty, busy = false;
367
368
if (unlikely(!pool))
369
return;
370
371
mutex_lock(&pools_reg_lock);
372
mutex_lock(&pools_lock);
373
list_del(&pool->pools);
374
empty = list_empty(&pool->dev->dma_pools);
375
mutex_unlock(&pools_lock);
376
if (empty)
377
device_remove_file(pool->dev, &dev_attr_pools);
378
mutex_unlock(&pools_reg_lock);
379
380
if (pool->nr_active) {
381
dev_err(pool->dev, "%s %s busy\n", __func__, pool->name);
382
busy = true;
383
}
384
385
list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) {
386
if (!busy)
387
dma_free_coherent(pool->dev, pool->allocation,
388
page->vaddr, page->dma);
389
list_del(&page->page_list);
390
kfree(page);
391
}
392
393
kfree(pool);
394
}
395
EXPORT_SYMBOL(dma_pool_destroy);
396
397
/**
398
* dma_pool_alloc - get a block of coherent memory
399
* @pool: dma pool that will produce the block
400
* @mem_flags: GFP_* bitmask
401
* @handle: pointer to dma address of block
402
*
403
* Return: the kernel virtual address of a currently unused block,
404
* and reports its dma address through the handle.
405
* If such a memory block can't be allocated, %NULL is returned.
406
*/
407
void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
408
dma_addr_t *handle)
409
{
410
struct dma_block *block;
411
struct dma_page *page;
412
unsigned long flags;
413
414
might_alloc(mem_flags);
415
416
spin_lock_irqsave(&pool->lock, flags);
417
block = pool_block_pop(pool);
418
if (!block) {
419
/*
420
* pool_alloc_page() might sleep, so temporarily drop
421
* &pool->lock
422
*/
423
spin_unlock_irqrestore(&pool->lock, flags);
424
425
page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
426
if (!page)
427
return NULL;
428
429
spin_lock_irqsave(&pool->lock, flags);
430
pool_initialise_page(pool, page);
431
block = pool_block_pop(pool);
432
}
433
spin_unlock_irqrestore(&pool->lock, flags);
434
435
*handle = block->dma;
436
pool_check_block(pool, block, mem_flags);
437
if (want_init_on_alloc(mem_flags))
438
memset(block, 0, pool->size);
439
440
return block;
441
}
442
EXPORT_SYMBOL(dma_pool_alloc);
443
444
/**
445
* dma_pool_free - put block back into dma pool
446
* @pool: the dma pool holding the block
447
* @vaddr: virtual address of block
448
* @dma: dma address of block
449
*
450
* Caller promises neither device nor driver will again touch this block
451
* unless it is first re-allocated.
452
*/
453
void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
454
{
455
struct dma_block *block = vaddr;
456
unsigned long flags;
457
458
spin_lock_irqsave(&pool->lock, flags);
459
if (!pool_block_err(pool, vaddr, dma)) {
460
pool_block_push(pool, block, dma);
461
pool->nr_active--;
462
}
463
spin_unlock_irqrestore(&pool->lock, flags);
464
}
465
EXPORT_SYMBOL(dma_pool_free);
466
467
/*
468
* Managed DMA pool
469
*/
470
static void dmam_pool_release(struct device *dev, void *res)
471
{
472
struct dma_pool *pool = *(struct dma_pool **)res;
473
474
dma_pool_destroy(pool);
475
}
476
477
static int dmam_pool_match(struct device *dev, void *res, void *match_data)
478
{
479
return *(struct dma_pool **)res == match_data;
480
}
481
482
/**
483
* dmam_pool_create - Managed dma_pool_create()
484
* @name: name of pool, for diagnostics
485
* @dev: device that will be doing the DMA
486
* @size: size of the blocks in this pool.
487
* @align: alignment requirement for blocks; must be a power of two
488
* @allocation: returned blocks won't cross this boundary (or zero)
489
*
490
* Managed dma_pool_create(). DMA pool created with this function is
491
* automatically destroyed on driver detach.
492
*
493
* Return: a managed dma allocation pool with the requested
494
* characteristics, or %NULL if one can't be created.
495
*/
496
struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
497
size_t size, size_t align, size_t allocation)
498
{
499
struct dma_pool **ptr, *pool;
500
501
ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
502
if (!ptr)
503
return NULL;
504
505
pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
506
if (pool)
507
devres_add(dev, ptr);
508
else
509
devres_free(ptr);
510
511
return pool;
512
}
513
EXPORT_SYMBOL(dmam_pool_create);
514
515
/**
516
* dmam_pool_destroy - Managed dma_pool_destroy()
517
* @pool: dma pool that will be destroyed
518
*
519
* Managed dma_pool_destroy().
520
*/
521
void dmam_pool_destroy(struct dma_pool *pool)
522
{
523
struct device *dev = pool->dev;
524
525
WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
526
}
527
EXPORT_SYMBOL(dmam_pool_destroy);
528
529